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1 Introduction

Tests of perfect risk sharing are pervasive in economics. The canonical model of risk sharing

considers a social planner costlessly allocating a pool of aggregate endowment across risk-averse

economic agents (Mace, 1991; Cochrane, 1991; Townsend, 1994, 1995). The model predicts that

under optimality, the social planner allocates a fixed proportion of aggregate endowment to each

agent. Therefore, the consumption of an agent varies only with the aggregate pool of endowments

and is independent of their own endowment (Mace, 1991; Cochrane, 1991; Townsend, 1994; Ob-

stfeld, 1994; Bardhan and Udry, 1999). This prediction of the complete risk-sharing model has

been tested several times and at different levels across panels of countries, states, regions, villages,

and households. Although the justification across studies for testing the complete risk-sharing hy-

pothesis may vary, what remains common is the canonical complete markets benchmark dictated

by the planner’s solution.1

In this paper, we study the role of transaction costs in risk sharing. In the canonical model,

redistribution by a social planner eliminates any positive correlation between consumption and

income. Adding transaction costs to this model limit the planner’s ability to fully insure agents

(Obstfeld and Rogoff, 2001; Fitzgerald, 2012; Jack and Suri, 2014). We introduce costly transfers

using iceberg-type trade costs popular in the trade literature. The subsequent first order conditions

do not relate the consumption of an agent to an “aggregate risk” component shared by all agents.

An agent’s consumption instead depends on the transaction costs and network structure linking

agents in the economy.

We take a network theory based approach which allows us to derive an expression that makes

an agent’s consumption a function of a network-specific “aggregate risk” component. Our method

1Even with a large body of literature testing the risk-sharing hypothesis, few have found any evidence of perfect
risk sharing (Canova and Ravn, 1996; Lewis, 1996). This has led to alternative explanations for why the data shows a
positive correlation between income and consumption and deviates from the complete market benchmark. One strand
of literature explains this observed correlation based on information frictions leading to moral hazard and limited
commitment (Ligon, 1998; Ligon et al., 2002; Genicot and Ray, 2003; Laczó, 2015; Ábrahám and Laczó, 2018;
Attanasio and Krutikova, 2020; Bold and Broer, 2021; Ambrus et al., 2022). Another growing strand of literature has
focused on frictions in the form of transaction costs to explain the apparent lack of risk sharing (Obstfeld and Rogoff,
2001; Schulhofer-Wohl, 2011; Fitzgerald, 2012; Jack and Suri, 2014; Clance et al., 2019; Bradford et al., 2022).
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takes into account all of the trading links within a network, including between agents who do

not directly trade but are indirectly connected through other trading partners. This gives rise to

a new risk-sharing estimation method that we implement on the global trade of three major food

commodities — rice, wheat, and maize. We show how the information from these network frictions

can be aggregated to sufficiently control for them, and ignoring these bilateral frictions in the

aggregate analysis can bias estimation. In our application, the aggregate variable is consumption

at the country-year level, and the bilateral variable is the trade linkage between two countries. Our

framework is micro-founded from a social planner’s problem, and is applicable to any environment

with bilateral interactions between agents.

Using simulations from the model, we first establish some basic results. We show that a re-

duction in transaction costs leads to: (i) greater linkages between agents and more connectedness

in a network, (ii) reduced consumption inequality across agents, (iii) lower correlation between

domestic consumption and endowment, and (iv) reduced consumption variation and higher global

utility. Similar results are reported by Jack and Suri (2014) in a three agent risk-sharing model

with fixed transaction costs. We show that these results hold in our generalized framework with

iceberg costs and with an arbitrary number of players. Next, we derive a structural test of risk

sharing which explicitly takes the network structure of transfers into account. Finally, we solve

the estimated model and study two relevant issues in global food trade. First, we show how coun-

terfactual changes to transaction costs affect global risk-sharing, and second, we illustrate how the

Russia-Ukraine conflict affects the global wheat trade network.

A unique contribution of this paper is the introduction of a network approach to the analysis of

risk-sharing models. While other studies have introduced transaction costs in risk-sharing analysis,

we are the first to characterize and estimate a generalized model. Bradford, Negi, and Ramaswami

(2022) also introduce transaction costs in the risk-sharing model but do not directly incorporate

network structure in estimation. We differ from their analysis in multiple ways. First, we generalize

their model and fully characterize how transaction costs affect the trade network for any number of

agents. Second, we directly incorporate trade networks in estimation and use the structural model
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for counterfactual predictions. Schulhofer-Wohl (2011) allows for the possibility of costly transfers

in the standard social planner’s allocation problem. In Schulhofer-Wohl’s formulation, however,

transaction costs do not vary at the trading pair level. We relax this assumption in our model.

Fitzgerald (2012) embeds a gravity model of trade in intermediate goods in a standard DSGE model

to propose a gravity based test of risk sharing. Fitzgerald’s approach induces dependency across

countries which is distinct from our case of perfect substitution; this difference has consequences

on network formation and the role of transaction costs in risk sharing. Finally, Laczó (2015)

structurally estimates a risk-sharing model, but with frictions that arise in the form of limited

commitment.

This paper also relates to the literature on specification issues in risk-sharing tests. A recent

strand of literature has established the omission of heterogeneous risk preferences as an impor-

tant source of bias (Schulhofer-Wohl, 2011; Mazzocco and Saini, 2012; Asdrubali et al., 2019).

Likewise, studies have suggested that risk sharing may happen within networks which may or may

not span the entire universe of agents (Fafchamps and Lund, 2003; De Weerdt and Dercon, 2006;

Bramoullé and Kranton, 2007; Attanasio et al., 2012; Attanasio and Krutikova, 2020). The impli-

cation is that aggregate shocks should be network specific (Ambrus et al., 2014, 2022). Adding

to this literature, we discuss how ignoring transaction costs and the implied network structure can

lead to biased estimates of risk sharing. Incorporating networks into estimation also introduces

a complication in the form of network dependence in the error structure. We allow errors in the

risk-sharing regression to exhibit such dependence and use results from Kojevnikov et al. (2021)

to propose a network heteroskedasticity and autocorrelation robust variance estimator for conduct-

ing valid inference on the risk-sharing parameters. The standard errors robust to general network

dependence are presented along with the results.

The rest of the paper is laid out as follows. Section 2 presents the augmented model of risk

sharing with transaction costs. Section 3 presents simulation based results from the model. Sec-

tion 4 presents the structural risk-sharing test specification and discusses its connection with the

conventional tests. Section 5 presents the empirical application in the global trade network of three
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commodities alongside counterfactual analysis. Finally, section 6 concludes.

2 Risk Sharing Model with Transaction Costs

In the following section, we modify the standard model to accommodate bilateral transactions costs

with transfers among agents. We model transfers as costly bilateral trade flows between agents and

solve a social planner’s solution to this problem. We study the optimality conditions of the social

planner’s problem to illustrate the connection between an agent’s consumption and their bilateral

transfers. We then re-frame the model in terms of formal networks and use this setup to precisely

characterize how all agents within a network are indirectly linked to each other. We then illustrate

the empirically relevant aspects of the model.

2.1 Model Setup

The world consists of T time periods t = 0, ..., T , with a state of the world per period st drawn

from a known discrete distribution st ∼ Dt. The realization of each state affects the primitives of

the model, and thus each is state contingent.

Consider N agents (countries, villages, households, etc.), each indexed with i. Each agent has

a commonly known endowment per period (realized after the state) yit(st) of a divisible homoge-

neous good with which they can trade; let yEijt be exported endowment (from agent i to agent j)

and yDit be domestic endowment (part of endowment not exported and consumed instead). Thus,

yit = yDit +
N∑
j 6=i

yEijt (1)

The state contingent global endowment in period t is then Yt(st) ≡
∑

i yit =
∑N

i=1 y
D
it +∑N

i=1

∑N
j 6=i y

E
ijt. Likewise, we define total consumption in period t for an agent as:

cit = cDit + cIit (2)
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where cDit is the consumption from domestic endowment and cIit is the consumption from im-

ports. We abstract away from storage and intertemporal trade as a means to smooth consumption

to focus on frictions only in the form of transaction costs. Since there is no storage in this model:

cDit = yDit (3)

Now suppose that imports are costly, meaning that one exported unit from agent j ends up being

less than one unit received for importing agent i. The fraction with which exports are converted

into imports is allowed to vary by each trading pair. Suppose that for each unit of exports from

agent j to agent i, only a fraction δjit ∈ [0, 1] is converted into imported consumption:

cIit =
N∑
j 6=i

yEjitδjit (4)

The term 1 − δjit captures the loss from shipping costs (in terms of the good), “lost at sea”

cargo, and wasteful rents extracted by some middleman; all of these prevent the full exported

amount from being consumed by importers.2

The social planner’s program is to maximize the ex-ante lifetime utilitarian social welfare func-

tion with discount βt, per period agent utility ui(cit), and per period Pareto weights αit defined such

that
∑N

i=1 αit = 1. They choose the endowment allocation per agent (yDit (st), y
E
ijt(st) ∀j 6= i)∀i

for each period and state, with constraints for agent i governed by the endowments: cit = yDit +∑N
j 6=i y

E
jitδjit, yit = yDit +

∑N
j 6=i y

E
ijt, and yDit , y

E
ijt ≥ 0. To simplify the program, we can express it

just in terms of exports and total endowments, with an ex-ante expectation E0[·]:3

max
yEjit(st)≥0

∀st∀t,∀i,j 6=i

N∑
i=1

E0

[
T∑
t=0

αitβ
tui

(
yit(st)−

N∑
j 6=i

yEijt(st) +
N∑
j 6=i

yEjit(st)δjit

)]
(5)

2In this model, global consumption can be less than global endowment per period: Ct ≡
∑
i cit =

∑
i(c

D
it +cIit) =∑N

i=1(yDit +
∑N
j 6=i y

E
jitδjit) ≤ Yt. Also, these iceberg costs are distinct from fixed costs; the optimal number of links

and the amount exchanged per link would change. Fixed costs would likely lead to higher inequality as more agents
would be left out of the network as opposed to just having a smaller inflow of trade.

3Note that we do not have the ceiling inequality constraint on exports; when you receive imports you can in fact
export more than your own endowment.
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This setup generalizes the standard risk-sharing model. Let P0(st) be the probability of state

st. The system of first order conditions (FOC) is as follows, with modified Lagrangian multiplier

for the non-negativity constraint βtP0(st)λijt(st) (following Schulhofer-Wohl (2011)):


αjt

∂uj
∂cjt

δijt − αit ∂ui∂cit
− λijt = 0

λijtyijt = 0, λijt ≥ 0, yijt ≥ 0

∀st∀t ∩ ∀i, j 6= i (6)

Since our focus is on an empirical setting with a known trade network, we assume knowledge

of the set of trading partners for deriving the empirical expressions; we know which yijt = 0.4

Then, for a known set of trading partners and CRRA utility u(cit) =
c1−γit

1−γ , we can derive a closed-

form solution for a given realization of the state variable; we drop the explicit conditioning on st

for notational ease. The FOC system in equation (6) yields the linear system of equations (7).5 An

important parameter in this system that captures how trading partners are linked is the direct trade

weight ∆ijt ≡
(
δijtαjt
αit

)−1/γ

.

∆ijt

(
yjt −

N∑
k 6=j

yEjkt +
N∑
k 6=j

yEkjtδkjt

)
=

(
yit −

N∑
k 6=i

yEikt +
N∑
k 6=i

yEkitδkit

)
∀i exporting to j (7)

The system of equations in (7) can be solved for optimal exports, which then allows us to

calculate optimal consumption c∗it. In Appendix A, we show that the optimal consumption per

state-period is linear in endowments, meaning c∗it =
∑

k yktω
it
kt, where the weight ωitkt ≥ 0 is an

agent-k-specific function of parameters (∆ijt, δijt)∀i,j 6=i. Using this and equation (7) rewritten as

∆ijtcjt = cit, we can then express agent j’s optimal consumption in terms of i’s solution:

c∗jt =
1

∆ijt

·

(∑
k

yktω
it
kt

)
if i exports to j (8)

Thus if two agents trade, their consumption share a common element that is scaled by the direct

4For our simulations, we evaluate all possible trading network shapes, required to solve the the full system in (6).
5Note that if there are heterogeneous preferences (γi 6= γj), then the FOC cannot be linearly transformed.
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trade weight. Now consider an agent k that shares a trading partner with i (say k also exports to j)

but i and k do not trade. In this case, there is no FOC directly pairing i and k, but they are indirectly

linked via an intermediary (agent j). Define the indirect trade weight ∆i→k,t for two agents that

are not directly linked: ∆i→k,tc
∗
kt = c∗it, where ∆i→k,t = ∆ikt if the two are directly linked.6 To

finish characterizing the model and derive a general formula for ∆i→k,t, we utilize network theory.

2.2 Trade Networks

The extensive part of our trade model, meaning whether two agents have any trade relationship,

can be thought of as a directed graph or network. The graph represents each agent as a node (or

vertex), and if two agents trade, they are connected to each other with an edge (or link). Since

trade can be asymmetric, the graph is directed. If there is an undirected path connecting all agents

in our directed graph, then our network is weakly connected and trade is “global”. Otherwise

there are “trading islands”, called components: connected induced-subgraphs that are disjoint from

other components. We will refer to each (weak) component of a disconnected graph as the “trade

network”, and describe the network within the subgraph. Thus, the universe of agents is the graph

and each “trade network” is a subgraph, with autarkic agents being isolated nodes within the graph

which are not connected to any subgraph. Define the trade network in period t by the ordered pair

Tt = (Nt,St), where Nt = {1, 2, . . . , N} is the set of nodes and St is the shape or adjacency

matrix of directed links.

To link the previous section with the current discussion, first fix an exporter ī ∈ Nt within Tt,

called the index agent for periot t. Then, using equation (8), we can express c∗jt ∀j ∈ Nt in terms

of c∗īt with a common term within network Tt: A∗Tt ≡ c∗īt =
∑

k∈N yktω
īt
kt, as shown in equation (9).

We call A∗Tt the aggregate risk function, a concept originating from Bradford et al. (2022), which

we generalize and integrate into the estimation.

c∗jt =
A∗Tt

∆ī→j,t
if ī, j ∈ Nt (9)

6In the example, i is linked to k via ci = ck(
δijαk

δkjαi
)−1/γ , and ∆i→k = ∆ij/∆kj . In general δik 6= δij

δkj
.
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Thus a network member’s consumption is just the ratio of a network-specific function of en-

dowments and parameters and an agent-specific function of parameters.7 Any consumption risk

that is based on an endowment shock is shared at the network level (rather than agent level), with

heterogeneity in consumption being driven solely by exogenous parameters such as preferences,

Pareto weights, and transaction costs. Furthermore, this risk is shared by everyone throughout the

entire network, not just with one’s direct trading partners.

Our main empirical specification is based on equation (9), which requires calculating the indi-

rect trade weight; we derive a formula for the shortest-path ∆ī→j utilizing the observed network

shape S, dropping the time subscript to reduce clutter. Let Pik be the collection of links for the

geodesic (shortest) undirected path from i to k, meaning the minimum link-distance from node i to

node k from the matrix S̃ = S+S ′; in our case, this symmetric matrix is exactly the undirected ad-

jacency matrix.8 Thus Pik is a sequence of elements of S̃ along the undirected path.9 For example,

to get from i to k, suppose the smallest distance using S̃ goes through links (i, j), (j, l), and (l, k).

The indirect trade weight ∆i→k, shown in equation (10), is a function of all of the transaction terms

δ along such a path. How these intermediary trade costs affect the end result is based on whether

the links are export links (S(i, j) = 1) or import links (S ′(i, j) = 1).

∆i→k =
∏

(r,s)∈Pik

(∆rs)
S(r,s)

(∆sr)S
′(r,s)

=

αk
αi

∏
(r,s)∈Pik

(δrs)
S(r,s)

(δsr)S
′(r,s)

−1/γ

(10)

The exponent terms are elements of the adjacency matrices and are either 1 or 0. The first

[second] intermediaries (in each pair) who export [import] are in the numerator and the opposite

intermediaries are in the denominator. See proof of Proposition 2 in Appendix A. Note that Pik are

in general not unique; when calculating them, we order agents by their closeness to the index such

that the path chosen is the geodesic path that passes through the most central agents.

7Note that it is superfluous to say “agent-network-specific” because if an agent is connected to two separate “net-
works”, then in fact they are all one network.

8No symmetric trade is an outcome of our model and so there is no overlap between S and S ′; thus we do not need
to divide such entries by 2, which would be required in the general case.

9A directed path only follows arrows in their specific direction; for our purposes, the indirect links that “connect”
two non-trading partners are undirected via the first order conditions. The direction determines the order of δs.
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This formulation comes directly from the first order conditions. Any first order condition can

be rewritten in terms of others through substitution; if two agents do not trade, there is no direct

way of comparing their consumption via a trade weight; however one can indirectly compare them

with pairwise comparisons of each trading pair along any path that connects the two non-trading

agents. The geodesic path is chosen as it has the natural interpretation of being the most efficient

path in terms of number of links. However, one could use an alternative algorithm like minimum

cost by calculating the path that maximizes the sum of δs towards the index. Those two paths are

not guaranteed to be unique, but the existing trade network is based on δs, so the shortest path and

minimum cost path will be similar in equilibrium. Solving for the minimum cost path is costly

as the number of combinations to check is high, but we find that the shortest distance does cross

through agents that have relatively low transaction costs compared to neighbors not directly along

the path; this indicates high overlap between the two types of paths in reality.

The intuition behind the indirect trade weight is that an agent’s degree of centrality within a

network is not only dependent on the efficiency of their trading, but also on how isolated it is

by the trade efficiency of its neighbors. This iterative approach allows one to characterize every

agent’s trade efficiency with respect to every other agent even if they do not directly trade in

equilibrium; there are indirect transfers via intermediary agents that are not captured by looking at

direct bilateral transfers. This is a novel measure based not only on the network shape, but also on

the transaction costs that inform the equilibrium shape.

3 Simulations

How do trade flows and the overall network change as transaction costs and endowment shocks

change? First, we consider the effects of a decrease in costs by increasing trade efficiency δ. The

model of Jack and Suri (2014) is a simplified version of our model with lump-sum transaction costs;

they find that a cost reduction results in better consumption smoothing across shocks, increased

number of transactions, and increased number of network participants. We show that this result
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holds in our generalized framework with iceberg costs and with a larger number of players.

In the example shown in Figure 1, the endowments are [42, 81, 55] and all countries have iden-

tical transaction costs and Pareto weights. With high transaction costs, there is no trade. With

a slightly lower cost, agent 2 exports to 1. With a further decrease in cost, agent 2 increases its

amount to 1, and eventually exports to agent 3. In a larger example of five countries with endow-

ments [100, 50, 40, 90, 72], we see the trade networks growing and shifting as more countries start

to trade as costs continually decrease. In terms of consumption smoothing, Figure 2 shows that as

transaction costs decrease, the social planner is able to smooth the endowment shocks such that

consumption equalizes across countries. Increasing trade flows decreases inequality from redistri-

bution, but also decreases total consumption due to transaction costs.

It is also interesting to see how adding new trading partners changes global risk sharing dif-

ferentially. Consider 5 countries with endowments, [100, 20, 20, 100, 22], all with equal Pareto

weights and equal (small) transaction costs. In this case, trade is efficient from the high endow-

ment to low endowment countries. Consider five different trading scenarios displayed in Figure

3. First we have full autarky, then bilateral trade between 1 and 2, then additional isolated trade

between 4-5, followed by letting 1 trade with 3 as well, and finally, connecting all five countries

by having 4 trade with 3. How do these different scenarios affect welfare?

In Figure 4 we show how the previous trade scenarios affect the standard deviation of consump-

tion [on the left] and global utility [on the right]. Not surprisingly, increasing trade flows reduces

consumption inequality and promotes global utility. This is even the case when going from sce-

nario 4 to scenario 5: note that in this scenario, all countries are still trading in scenario 4 but in

scenario 5, the two distinct trading islands are linked by agent 3. Even in this case, risk sharing is

improved. Thus a single linkage between two disparate networks will lead to risk sharing across all

countries involved. Note however that the effect is smaller than when adding a completely autarkic

agent to a network: the slope on utility increasing from scenario 4 to 5 is smaller than the rest.

Again this is not surprising as we are simply allowing for smoother risk sharing.

Next, we consider the number of trading interactions and players as the transaction costs de-
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crease; this is shown in Figure 5. Both the number of players in the network and the number of

total trading links increase. Finally, we consider the correlation between consumption and produc-

tion, the main measure of risk sharing. As costs decrease, this correlation decreases, as shown in

Figure 5.

4 Identification and Estimation

Recall that our goal is to estimate risk sharing controlling for transaction costs and network struc-

ture. We can use our model to derive such a test. We discuss the main risk-sharing regression, the

bias associated with ignoring transaction costs, model extensions, and network dependent infer-

ence.

4.1 Risk-Sharing Equation from Model

Consider the optimal consumption for time period t as defined in equation (9). Assuming that the

observed consumption cjt is measured with exponential multiplicative (zero mean) error compared

to the model consumption: cjt = exp(εjt)c
∗
jt and taking logs, equation (9) can be expressed as:

ln(cjt) = − ln(∆jt) + ln(A∗Ttt) + εjt (11)

The first component ∆jt ≡ ∆īt→j,t, is an agent-year specific parameter (relative to an index

agent which changes by network and year, denoted with īt) and is a function of transaction costs,

Pareto weights, and preferences. In particular, it contains information about agent j and the index

agent ī. If j does not trade directly with ī, then ∆jt also contains information on all agents that

indirectly link j and ī based on the network shape St. The indirect trade weight is indexed by j

and t as it will be different for each agent based on its position in the network and will also change

with time since we allow networks to change overtime.

The second component A∗Ttt is the aggregate risk function, which is the common element to

consumption allocation of all agents in a given network, and thus varies at the network-year level.
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Network T is indexed by time, Tt, to emphasize the fact that networks can change every period;

both membership Nt and shape St affect consumption each year.

The empirical implication of the model is that, conditional on indirect trade weight and the

aggregate risk function, consumption should be independent of own endowment. To arrive at a

test, we follow the literature and add endowment as a covariate in equation (11).

ln(cjt) = − ln(∆jt) + ln(A∗Ttt) + η · ln(yjt) + εjt (12)

Equation (12) defines a misspecification test of our model. Under perfect risk sharing, η =

0. If η 6= 0, consumption is correlated with production and therefore the complete risk sharing

hypothesis is rejected. Under that scenario, (1−η) gives us a measure of the degree of risk sharing

achieved in the network (Asdrubali et al., 1996; Crucini, 1999; Crucini and Hess, 1999; Asdrubali

et al., 2020; Bradford et al., 2022). It is important to reiterate that ∆jt and A∗Ttt are functions

of parameters and hence will be estimated simultaneously with η.10 We also add a constant to

equation (12) to better justify the zero-mean assumption for the error term εjt. As demonstrated

in Schulhofer-Wohl (2011), it is more realistic to have agent specific preferences γi instead of a

constant γ. In Appendix C.1 we discuss and estimate such a specification.

The canonical risk-sharing regression is equivalent to the model with δijt = 1 for all trading

pairs. In Appendix B.1, we give a detailed discussion of how the regressions compare in terms

of potential bias and interpretation. Given that the network shape is an equilibrium function of

the endowments, and ∆ is a nonlinear function of the shape and transaction costs, the bias does

not have a straightforward expression. We illustrate the bias with a simulated example.11 For the

countries in each network per year, we regress the consumption on production, initially alone, and

then control for the aggregate risk function and transaction costs. The results are presented in

Table 1. The coefficient on production is akin to the risk sharing test; controlling for the aggregate

10Recall that yit is contained inA∗Ttt and so separate identification of η relies on nonlinearity of ln(A∗Ttt) in ln(yjt);
this is satisfied as A∗Ttt is linear in network participant endowments (see Appendix A). This restriction is implicit in
other risk-sharing tests as well when controlling for the aggregate shock.

11We simulate the model for a 4 country case with homogeneous Pareto weights and fluctuating transaction costs
(random uniform draws averaged around 0.6) across 50 time periods.
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risk slightly reduces the coefficient and significance, but controlling for transaction costs causes

the production coefficient to be small and noisy. Thus, depending on the context, controlling for

transaction costs can change the risk sharing prediction.

4.2 Estimation

The estimation steps are as follows. First we calculate the network shape St for each year using

the observed set of bilateral trading partners. We set the network to be undirected and calculate St

for each isolated network.12 For each isolated network, we define the index based on the highest

betweenness-centrality measure for all countries in the network. We then calculate the geodesic

(shortest) path between all countries in the network and the index. We generate the path of coun-

tries that links each country to the index. This allows us to calculate the indirect trade weight for

each country j as ∆jt, with the added step of noting which country in each link along the path is

an exporter or importer.

To estimate equation (12) we use non-linear least squares with Logistic transaction costs, δijt =

exp(Xijtβ)/(1 + exp(Xijtβ)). To calculate A∗Ttt, one can use the index country’s consumption or

solve the model for each ωit (see Section 2.2). If the data allows, one can also capture A∗Ttt with a

network-year indicator, and we use this approach in our application as we have a global network

structure every year.13 We set the Pareto weights αit to each country’s population, scaled to sum to

1. For a given parameter vector: (γ, β, η, Tt ∀t), we calculate ∆jt for all countries and years. Then

we plug ∆jt into equation (12), calculate
∑

jt ε
2
jt, and iterate using modified Newton’s method.

The transaction cost network terms capture time-varying changes that affects countries directly

and indirectly; for example, the Green Revolution affected grain production capacity in some coun-

tries more than others, but this also affected the overall network structure, which is captured in the

time-varying ∆ andA. While the indirect trade weight, combined with the aggregate risk function,

are in some sense “sufficient” to characterize consumption within a network, the specification of

12We utilize the nwcommands package in Stata (Grund, 2015), which allows the user to format data into a network
and calculate various network properties.

13In Appendix B.2 we show how to incorporate non-trading countries.
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the individual δ are important. We also include time trends and individual fixed effects.

4.3 Network Dependent Inference

Given the network structure of trade, we allow the errors (εit) in the risk sharing equation to

exhibit general network dependence.14 This affects inference since the usual heteroskedasticity and

autocorrelation robust (HAC) standard errors, which assume independence between cross sectional

units, will be incorrect for the parameters of the regression equation in (12). To account for network

dependence, we use the results in Kojevnikov et al. (2021) (KMS thereafter) to arrive at a consistent

network-HAC variance estimator. The latter allows covariances between any two nodes to decay

relatively fast as a function of the network-distance, DN(i, j) = d ∈ R, which is defined on TN to

be the length of the shortest-path between nodes, i, j ∈ NN .15

With network dependent data, the limit theorems needed to obtain asymptotic results including

the variance-covariance matrix only hold if the network is not too dense. In particular, we need

sufficient conditions which restrict not only the strength of network dependence between nodes but

also the number of neighbors at a given distance, d, which depends on the network shape. To limit

the strength of dependence, we assume that εi = (εi1, . . . , εiT )′ ∈ RT is conditionally ψ-dependent

given CN with dependence coefficients given by λN = {λN,d}d≥0, λN,0 = 1. The notion of

ψ-dependence is the primary way in which KMS measure the strength of covariance between two

sets of nodes that are at least d-distance apart. The sequence of dependence coefficients λN provide

an upper bound on such covariance terms where this sequence approaches zero as d increases.

The exact conditions needed to argue that the Law of Large Numbers and the Central Limit

Theorem apply and consistent estimation of the variance is possible are given in Appendix B.3.

These conditions have been adapted from KMS to fit the current setup.

Then given the regression equation in (19) of the appendix, a consistent estimator for the net-

14A motivation for using network dependent robust standard errors would be a formal statistical test. Network
dependence tests exist for specific functional forms or settings not studied in our paper (Liu and Prucha 2018; Lee,
Shen, Priebe, and Vogelstein 2019; Su, Lu, Song, and Huang 2019; Fischer and LeSage 2020).

15The indexing by N is to emphasize the fact that asymptotic theory follows due to the size of the network getting
large, i.e. N →∞.
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work HAC variance is then given by Q̂T Ω̂T Q̂T where the middle (sandwich term) is constructed to

be a weighted average of the covariances of node iwith its neighbors, j, who are exactly d-distance

away denoted by the set N ∂
N(i, d). Formally, N ∂

N(i, d) = {j ∈ NN : DN(i, j) = d}.

Ω̂T =
1

NT 2

∑
d≥0

KN(d)

∑
i∈NN

∑
j∈N ∂N (i,d)

h
(1)
i (θ̂)ε̂iε̂

′
jh

(1)
j (θ̂)′

 (13)

where h
(1)
i (θ̂) is the jacobian of hi(θ̂) (see equation (19) in the appendix) and KN(d) = K(d/bN)

is the kernel used to weight the sample covariances as a function of the network distance. In

particular, we use the Bartlett kernel i.e. K(x) = (1 − |x|) · 1{|x| < 1}. The term bN is the

bandwidth parameter which depends on N and is used to truncate how many such covariance

terms appear in the double sum. In our case, we use bN = b(N)1/3c where b·c is the floor function.

Another thing to note is that while KMS do not impose any restriction on ΩT , we assume that

the off-diagonal elements of ΩT are zero. These terms correspond to E(εitεjt′ |wit,wjt′), which

are the error covariances at lags and leads. In other words, we assume that there is no dependence

between node i and its network neighbors across different time points. Therefore, we only allow

network dependence between contemporaneous errors, E(εitεjt|wit,wjt), and assume that such

cross-sectional dependence becomes substantially weaker as one considers increasingly distant

neighbors in the network.

5 Empirical Application

5.1 Data

We implement our risk-sharing test on data from global markets of rice, wheat, and maize. Data on

consumption, production, exports, imports, and other aggregates at the country level are extracted

from the Food and Agriculture Organization’s (FAO) ‘Food Balance Sheets’ database (FAOSTAT,

2014). They provide country-level time series of production, domestic supply, food consumption,

stock variations, and trade of major agricultural commodities from 1960 to 2013.
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FAO also has data on trading pair-level trade flows for countries. This data is available from

1986 to 2013.16 The dataset lists origin and destination country pairs with export and import

amounts to the destination from the origin country. Our main usage of the trade-flow data is just

the binary information on whether two countries have a trading relationship in a given year and

in what direction. We use the trade quantities to trim the dataset, as discussed in Section 5.3. To

measure trade flows, we use the export quantity for measuring exports from origin to destination

(with some exceptions).17

For estimation, we combine the FAO trade-flow data with data from the Centre d’Etudes

Prospectives et d’Informations (CEPII) gravity dataset. The CEPII contains a set of variables

that are generally used by researchers to understand the determinants of trade flows between coun-

tries (Conte et al., 2020).18 We use some of the variables in CEPII dataset to model the per unit

bilateral transaction costs between countries. To capture trade frictions in terms of tariffs and other

indirect trade barriers, we also use data on Nominal Rates of Assistance from the Distortions to

Agricultural Incentives database (Anderson and Signe, 2013). Finally, trade networks may also be

influenced by relative productivity and comparative advantage. Data on indicators of a particular

crop’s productivity based on agro-climatic conditions and natural endowments is available from

the FAO’s Global Agro-Ecological Zones database (Fischer et al., 2021). This dataset provides

country-level simulated potential yields from agronomic models. We use these simulated potential

yields to calculate relative productivity for country pairs.

16For some year and country pairs, we observe exports not matching imports on a non-trivial level. The FAO reports
this can occur for a variety of reasons. One explanation is “exported quantities could be destroyed or lost en route
due to accidents, weather conditions”. Note that our definition of transaction-cost includes “lost at sea” as explaining
part of the gap between imported consumption and exported endowment amount in the model. We do not believe that
the transaction cost can simply be identified by comparing the gap between the FAO reported export/import amounts
because our definition also includes other possible reasons.

17The dataset is not balanced and thus we must use the import amount when measuring exports from destination
country to origin country in certain cases. To be specific: there are cases where country A exports to country B but
country A is only listed as a destination country with an “import” amount that country B declares from A (which was
the export from A to B). Thus for these cases, we generate the missing row for an A to B export amount using the
import reported to be received by B from A.

18The CEPII provides trade pair level data on population weighted distance, time difference, whether the pairs were
common colonies, common language, religious proximity, etc. It also provides data on macroeconomic variables like
national income, population, total trade flows, and membership of regional trade agreements and the WTO.
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5.2 Global Trade Networks

Figure 6 shows the network plots for the three commodities. The nodes denote countries and the

edges denote the trade linkages. Since these linkages would vary over time depending on the state

of the world and the production realizations, we show networks for three time periods. As can be

seen from Figure 6, the network structure varies both across commodities and across time. Our

estimation routine takes the network structure of trade into account while testing for risk sharing.

Another feature of networks is the number of connections called the degree of each node in

the network. The degree distribution of a network gives us some information about the type of

network. In our case, the networks of all three commodities have a left-skewed degree distribution

(Appendix Figure A1). This implies that most nodes have a small number of connections, but a

few nodes have a very high number of connections. This means that trade in these commodities

is dominated by one or a few countries. Appendix Figure A2 plots the average number of trade

partners per country for each year in our dataset. Across all three commodities, we observe a

rising number of trade partners over time. This indicates that trade linkages have possibly grown

on account of greater connectivity and lowering of freight and transaction costs.

5.3 Regression Results

We estimate equation (12) for 1986-2013. Our main sample includes countries with a population

of at least 10 million and we ignore small trade quantities (we consider an expanded sample for

robustness).19 Also, we ignore the smaller amount in any reciprocal trade of the same commodity

in the sense that we do not consider it as a link in that commodity’s trade network; this is an

equilibrium outcome of the model and fits the data in most cases. Our standard errors are derived

using the network HAC estimator given in (13) which allows for general network dependence in

the errors of the risk sharing equation as discussed in Section 4.3. The results are displayed in

Table 2 for the commodities maize, wheat, and rice respectively. All specifications include year

19We use separate cutoffs per commodity as the mean trading levels vary by an order of magnitude: we cut off trade
levels of 800 for maize, 20,000 for wheat, and 500 for rice (each is below 10% of the mean). We tried various cutoffs
based on rules like % of total imports, and the relative results (within commodities across models) were not sensitive.
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fixed effects to control for aggregate shocks. This is feasible as we have a global network each year.

This implies that the aggregate shock will be common to all (trading) countries and be distinct each

year. As discussed, this is generally not the case, but happens to be true in this particular sample.

The baseline specifications in Table 2 show the results from the risk-sharing test without ac-

counting for transaction costs. We observe that own production is significant in the baseline regres-

sion in all three commodities, implying a rejection of the perfect risk-sharing hypothesis.20 The

wheat market is closest to achieving perfect risk sharing followed by rice and maize. In particular,

for maize, the baseline production coefficient η is 0.303 with a standard error of 0.133. For wheat,

η is 0.180 (0.042) and for rice, η is 0.241 (0.053).

In the second column for each commodity, we introduce transaction costs. The constant in

the transaction cost term varies across each country-network pair as even if all countries have

identical costs, the indirect ∆ paths connecting them to the index country are different; some

are longer/shorter, some have more exporters/importers, and these affect ∆ even with constant δ.

The pure effects of the network shape are captured here, via the relative number of exporters to

importers along the path between a country and the index. The other controls add link specific

heterogeneity in transaction costs. We consider log distance between the two countries and various

economic/cultural similarity indices for the country pairs, which are standard variables in trade

gravity models. Specifically, we include common language, time zone difference, GATT/WTO

membership by destination and origin, relative (historical) productivity by country-pair, and rate

of assistance from the World Bank “Distortion from Agricultural Incentives” Database. We also

include time trends and country fixed effects to the transaction cost specifications.

For maize, the transaction cost specification yields an estimate on η of 0.159 (0.130). This is a

48% decline from the baseline and a 2% decrease in its standard error. For wheat, this specification

yields a coefficient of 0.149 (0.042). The coefficient decreases by 17%, whereas the standard error

does not change meaningfully. Finally, for rice, the estimate is 0.163 (0.046); this is a 32% decrease

in the production coefficient and a 13% decrease in the standard error. Overall, the variables

20Relative results do not change if we include non-trading countries, only the coefficient on own production gets
shifted down by running regression (16) instead.
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included are not individually significant. However, the downstream effects on consumption via the

network structure with link specific transaction cost variation do affect the production coefficient

across various specifications, in particular for maize and rice.

In Appendix C, we discuss additional specifications, specifically one with heterogeneous risk

preferences. Heterogeneity in risk preferences effectively include country fixed effects in the spec-

ification. Appendix Table A1 presents estimates, including country fixed effects in the baseline and

network based risk sharing regressions. The results from these regressions are broadly comparable

to those in Table 2.

5.4 Counterfactual Analysis

The regressions allow us to predict how a change in the transaction cost affects consumption, hold-

ing the existing network shape fixed and accounting for possible misspecification in the models.

We first calculate counterfactual consumption by changing the estimated transaction cost parame-

ters. We then compare these values with the fitted consumption from the original estimates. For

maize, a 10% decrease in transaction costs leads to a 8.0% increase in consumption. For wheat

and rice, the consumption increases are similar, at 6.9% and 5.2%, respectively. These predictions

have a reduced form interpretation as they do not take into account how changing transaction costs

will also change the equilibrium network shape.

Next, we fully solve the model for the equilibrium network shape and study how trade frictions,

particularly freezing of trade during wartime, affects global risk sharing and utility.21 It is not fea-

sible to solve for all network shapes for 74 countries, so we consider global trade at the continental

level. We group countries in North America, South America, Europe, Africa, and Asia/Oceania.

We then collapse the data to calculate average transaction costs across them.

Our first full-model counterfactual in Table 3 shows the effects of changing the trade efficiency

δ (thereby changing costs 1−δ) on the degree of risk sharing, measured by the correlation between

21Note that our risk-sharing test estimates indicate that the production parameter is non-trivial in most specifications,
which does indicate that the intensive margin of trade may differ from the model. Thus our focus is on the extensive
margin of trade, which may be less sensitive to this.
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production and consumption. The first column shows the effects of fully efficient trade, which is

equivalent to zero transaction costs (or δ = 1). In this case, trade flows increase significantly

such that the correlation between production and consumption decrease for all commodities. For

rice, the negative correlation is a consequence of the highly concentrated exporters from whom

the social planner redistributes a significant amount. This highlights how the global rice trade

is substantially lower in volume than is optimal due to transaction costs. The second column

shows the degree of risk sharing from the model based on the estimates from the actual trade data.

Finally, the next two columns take the main estimate and decrease the estimated δ to simulate

higher transaction costs. A 50% decrease leads to almost zero risk sharing in maize and rice

(correlation close to 1). The decrease in risk sharing from increasing the costs is moderate, whereas

the benchmark correlations are substantially lower than the main estimates. This indicates that

transaction costs are still a major component in limiting global trade, and policy improvements in

decreasing costs may have significant impacts.

The second counterfactual in Figure 7 shows the effects of isolating a single agent; consider

the case of Russia after the 2020 invasion of Ukraine. Given that Ukraine and Russia are major

producers and exporters of wheat, we simulate how the global trade in wheat is affected by a

complete halting of trade between the rest of the world and Russia/Ukraine. This is close to reality,

as the conflict led to Ukraine being unable to export wheat to the rest of the world and Russia

being sanctioned. The trade embargo also has the effect of breaking down of other trade links. The

first main effect is the isolation of Europe, as Russia/Ukraine were their main trade partner, and a

second order effect is a shift in Africa’s dependence on the US as a trading partner. Our estimates

suggest that the overall global risk sharing does not significantly change as Asia’s trading increases,

but we find that the global utility declines substantially.
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6 Conclusion

In this paper, we study the role of transaction costs in risk sharing. The standard model of risk

sharing implicitly assumes costless trade across agents and is modeled at the level of consumption.

We explicitly model trade flows between agents with iceberg-type transaction costs which vary

with each trading pair and are proportional to the volume of trade flows. In this augmented model,

link formation is costly, and hence trade networks play an important role in risk sharing. This

seemingly simple modification adds a non-trivial estimation hurdle. Although the model gives us

an empirically testable specification that mirrors the standard risk-sharing analysis, the existence of

the transaction cost parameters requires a network-based approach. We estimate the model using

consumption, production, and trade network data from the global food markets of rice, wheat, and

maize. To conduct valid inference, we also adjust the standard errors for network dependence.

Simulations from the model show that declining transaction costs lead to expansion of the

network and greater connectedness within the network. This in turn, leads to reduced consumption

volatility and greater social welfare. We show that the omission of transaction costs and the implied

network structure can bias the estimates of risk sharing. Risk sharing estimates and counterfactual

analysis show that transaction costs impede risk sharing in all three food commodities, but more

so for maize and rice trade than for wheat. This is consistent with the observation that more of the

globally produced wheat is traded compared to rice and maize. Finally, our counterfactual analysis

highlights the role that transaction costs and embargoes have in shaping global consumption and

trading networks.

Our theoretical setup is general enough to fit into different contexts and can be used to study risk

sharing in the presence of transaction costs among households in a village or across countries. The

estimation method does not require observing the trade flows, but only the network shape alongside

data on aggregate consumption and production. Given the availability of such information, the

same model can be used to test for risk sharing under different contexts and settings. Extending

the framework to incorporate storage, savings, or intertemporal trade are promising avenues for

future research.
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Figures and Tables

Figure 1: Effect of Increasing δ on Trade Network

Note: The figure plots the optimal network shapes as δ increase or transaction costs
decrease. The left panel is a 3 country example and the right panel is a 5 country
example.
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Figure 2: Effect of Increasing δ on Consumption

Note: The figure plots the optimal consumption (from social planner’s problem) in a 3 country
example as δ increase of transaction costs decrease.
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Figure 3: Adding Trade Partners

Note: The figure plots the network shapes of a 5 country exam-
ple under different trading scenarios.
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Figure 4: Efficiency Effects of Adding Partners
Consumption Variance and Global Utility

Note: The figure plots the consumption standard deviation and social welfare
of a 5 country example when increasing the number of trading pairs.
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Figure 5: Transaction/Trade Costs, Trade Activity and Risk Sharing

(a) Trade Efficiency and Trade Networks
(b) Trade Efficiency and Risk Sharing

Note: Figure (a) plots the number of trading links and number of members in the network as trade
costs decrease. Figure (b) plots the correlation between own consumption and production as trade
costs decrease.
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Figure 6: Trade Networks for the Three Commodities

(a) Rice

1990 2000 2010

(b) Wheat

1990 2000 2010

(c) Maize

1990 2000 2010

Note: The figure presents the network plots for rice, wheat, and maize for three slices of time. The blue
dots are nodes or trading countries and the lines or edges denote trade links between countries.
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Figure 7: Wheat Russia/Ukraine Trade Collapse Counterfactuals

The figure plots equilibrium trade under two scenarios. The node side is the endow-
ment and the line size is the trade flow. The country groups are: NA+SA=North
America and South America, EU=European Union, AF=Africa, AS+OC=Asia and
Oceania, and RU+UK=Russia and Ukraine.
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Table 1: Simulated Risk-Sharing Regression and Bias

Dependent Variable: log consumption
(1) (2) (3)

Log production 0.3913∗∗∗ 0.3377∗∗ 0.0647
(0.0157) (0.0457) (0.0325)

Control for A No Yes Yes
Control for ∆ No No Yes
Observations 128 128 128
R2 0.546 0.673 0.925

Note: Table present the estimates of risk sharing regressions
from simulated data. The term A refers to the aggregate risk
function. The term ∆ refers to the indirect trade weight, which
captures transaction costs. Network dependent standard errors
in parentheses. ***, **, and * indicate statistical significance
at the 1%, 5%, and 10% levels, respectively.
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Table 2: Structural Risk-Sharing Test Estimates

Commodity: Maize Wheat Rice

Dependent Variable: log consumption Baseline Tran. Costs Baseline Tran. Costs Baseline Tran. Costs

Log production 0.303∗ 0.159 0.180∗∗∗ 0.149∗∗∗ 0.241∗∗∗ 0.163∗∗∗

(0.133) (0.130) (0.042) (0.042) (0.053) (0.046)
Preference parameter 1.288∗∗∗ 1.092∗∗∗ 1.252∗∗∗ 1.297∗∗∗ 1.121∗∗∗ 1.281∗∗∗

(0.33) (0.215) (0.134) (0.143) (0.138) (0.197)
Constant 10.755∗∗∗ 13.249∗∗∗ 12.677∗∗∗ 13.423∗∗∗ 13.771∗∗∗ 15.501∗∗∗

(1.931) (1.925) (0.502) (0.652) (0.924) (0.812)

Trade-cost constant 4.003 20.225 -1.370
(34.697) (33.477) (26.842)

Common language(ij) 0.809 -0.020 -0.098
(3.185) (4.836) (3.202)

Log weighted distance(ij) -0.866 -2.309 -1.035
(2.865) (4.245) (2.983)

Country i GATT member(it) 0.274 0.172 0.260
(6.844) (6.500) (5.612)

Country j GATT member(jt) 0.671 0.356 -0.228
(24.563) (6.479) (14.864)

Time difference between i and j (ij) 0.036 0.259 0.071
(0.555) (0.694) (0.651)

Log relative productivity(ij) -0.266 0.033 -0.002
(2.179) (0.967) (0.706)

Nominal rate of assistance(ijt) -0.003 -0.009 0.003
(0.265) (0.686) (0.216)

Time trend 0.050 0.038 -0.001
(0.269) (0.214) (0.247)

Year FE Yes Yes Yes Yes Yes Yes
Transaction Cost Country FE No Yes No Yes No Yes
Observations 1752 1752 1722 1722 1860 1860

Notes: The preference parameter is a coefficient both on the Pareto weights log ratio and the transaction cost. Common
language is a dummy variable coded as 1 if a language is spoken by at least 9% of the population in both countries. Population
weighted distance between the two countries in kilometers. Time difference in number of hours difference between country
i and j. GATT membership is a dummy variable coded as 1 if the country is GATT/WTO member. Relative (historical)
productivity is calculate for country-pair and is extracted from the GAEZ database. Nominal rates of assistance (scaled
by 10) are from the World Bank, Distortion from Agricultural Incentives Database. Network dependent standard errors in
parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

34



Table 3: Counterfactual Analysis

(1) (2) (3) (4)

Corr(Y,C) Benchmark Main Estimate 90% 50%
Maize 0.26457 0.78791 0.86175 0.98618
Wheat 0.34561 0.80947 0.93309 0.94149
Rice -0.41892 0.96605 0.98257 0.9962

Notes: Table presents the correlation between production and consumption
simulated for different transaction cost scenarios. Full benchmark is the case of
zero transaction costs. Main estimate in column (2) is based on the transaction
cost parameters estimated from the data. In columns (3) and (4), we scale
down the estimated bilateral δ’s (from the main estimate) by the 90% and 50%,
respectively.
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Appendix

A Model Details

A.1 Symmetric Trade Result
Symmetric trading is not optimal. This motivates excluding the smaller importer in such cases.

Lemma 1. Given a linear transaction cost of the form in equation (4) and with nonzero fractional
bilateral trade parameter δij ∈ (0, 1] ∀i∀j 6= i (assuming both not equal to 1), any nonzero
bilateral trade between i and j is one directional, meaning yijyji = 0, yij ≥ 0, yji ≥ 0.

Proof. Suppose both i and j trade with each other, meaning yij > 0 and yji > 0. Then, based on
the FOC system in equation (6), the two conditions would need to hold simultaneously:

∂U

∂ci
δji =

∂U

∂cj
∩ ∂U
∂cj

δij =
∂U

∂ci

These can only hold if δji = 1/δij . However that can only happen if both are equal to 1 or if one
is greater than 1 (either case violating the assumptions). Thus one of these first order conditions
does not hold with equality, meaning at least one export is zero.

A.2 Optimal Consumption Result
Proposition 1. Optimal c∗i is a linear combination of endowments.

Proof. Given a known set of exporters and for a given state, the system of equations that define the
optimal export choices can be written as the following:

∆ij

(
yj −

N∑
k 6=j

yEjk +
N∑
k 6=j

yEkjδkj

)
=

(
yi −

N∑
k 6=i

yEik +
N∑
k 6=i

yEkiδki

)
∀ exporter i

Implicit in this equation is that yij > 0 and thus yji = 0 (by Lemma 1 in Appendix A). This can
be rearranged into an Ax = b matrix format, with x = [yEij , ...]. b = [yi−∆ijyj, ...]. The formula
for A is convoluted and involves the products of transaction costs, relative Pareto weights, and
the preference parameter. Then the solution by inversion, due to being square (and assuming full
rank), is x = A−1b. This is simply a linear combination of the vector b, which in this case is just a
linear combination of endowments yi∀i. Thus the export choices are linear in endowments. Since
consumption is also just a linear combination of exports and endowments, optimal consumption
will be a linear combination of endowments.

Specifically, the endowments are yi and yj from the same trade network. Optimal consumption
has the following pattern, where Ω ≡ [∆ij, δij ∀i∀j 6= i], and f, gik, hki are all functions c∗i = (yi ·
f(Ω)−

∑N
k 6=i g

ik(yk∀k,Ω) +
∑N

k 6=i h
ki(yk∀k,Ω)δki)/f(Ω). Both agent pair specific functions (gik

and hki) are simply weighted sums of all endowments. The endowments of any agent connected
via the trade network has non-zero weight. Any agent in a separate network has zero weight.
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A.3 Indirect Trade Weight Result
Proposition 2. The (geodesic path) indirect trade weight from index i to ending partner k is:

∆i→k =

αk
αi

∏
(r,s)∈Pik

δ
S(r,s)
rs

δ
S′(r,s)
sr

−1/γ

(14)

Proof. Consider the undirected geodesic path from i to k, which exists if i, k ∈ T , but may not
be unique. There exists a path i, k1, ..., kn−1, kn = k with n steps. The first FOC comparing i to
k1 is either ci = ∆i,k1ck1 or ck1 = ∆k1,ici depending on which is the importer or exporter; either
S ′(i, k1) = 1 or S(i, k1) = 1, which due to Lemma 1 are mutually exclusive. The second is either
ck1 = ∆k1,k2ck2 or ck2 = ∆k2,k1ck1 . The combined chain is then:

ci = ∆
S(i,k1)
i,k1

·∆−S
′(i,k1)

k1,i
·∆S(k1,k2)

k1,k2
·∆−S

′(k1,k2)
k2,k1

ck2

If n = 2 then the expression above is the final answer. Now suppose it holds for n = m, meaning
the path from i to k with m steps yields: ci =

∏
(r,s)∈Pikm

∆
S(r,s)
rs ∆

−S′(r,s)
sr ckm .

Now suppose we actually need one more link to reach k from i, meaning n = m + 1. If m
exports to m + 1 = k, then cm = ∆m,kck and if k exports to m then ck = ∆k,mcm. Then we can
compare ci to ck through ckm:

ci = ∆i→kmckm = ∆i→km · (∆
S(m,k)
m,k ∆

−S′(m,k)
k,m ck)

Thus we’ve shown ∆i→k =
∏

(r,s)∈Pik ∆
S(r,s)
rs ∆

−S′(r,s)
sr . Substituting out ∆ik ≡ (δikαk/αi)

−1/γ

immediately yields the result.

Note that the geodesic path is not in general the “lowest cost” path; geodesic paths only con-
sider the number of links and there may be a “longer” path that has a lower indirect cost.22 Also,
in the case of heterogeneous γ, the ratios of γi along the path change the formula in scaling each
intermediary direct ∆.

B Estimation Details

B.1 Ignoring Transaction Costs and Bias
To see how equation (12) compares with the benchmark of no transactions costs, we derive the test
assuming δijt = 1. The canonical risk-sharing regression is equivalent to the model with δijt = 1
for all trading pairs. This results in the following regression:

ln(cjt) = (1/γ) ln(αj) + Tt + η · ln(yjt) + ε̃jt (15)

Equation (15) is the standard test of risk sharing. Since there are no transaction costs, the
trading network is global and aggregate risk, Tt, is only indexed by time. Also, each ∆jt just

22Finding the lowest-cost path from all paths is computationally restrictive; restricting the set of paths based on
some fixed length above the geodesic length and comparing the trade weights from each path is feasible.
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collapses to the Pareto weights. The standard tests, given in (15), are generally estimated using
a two-way fixed effects approach where time fixed effects control for aggregate risks and unit
fixed effects control for the Pareto weights. The two-way fixed effects approach is not generally
appropriate for our case as we allow networks to change every year in an unrestricted manner. This
implies that both ∆jt andA∗Ttt, which depend on the network shape and the position of the agent in
the network, will vary across individuals and over time. Aggregate risk and indirect trade weight
can only be subsumed into a network-year and a unit fixed effect when the networks are observed
and are stable over time.23

If in reality we have δijt < 1, then the estimate of η from regression (15) is biased. To see how
transaction costs can influence the estimate of risk sharing, we decompose the trade weight term
using the formula from equation (10) as− ln(∆jt) = (1/γ) ln(αj/αīt)+(1/γ) ln(F (δNt|St)). The
F term is a network specific function of transaction costs for exporters and importers along country
j’s geodesic path to the index country in the network: F (δNt |St) =

∏
(r,s)∈Pīt,j

(δrst)
St(r,s)/(δsrt)

S′t(r,s).
This captures the country specific transaction cost network effects which limit risk sharing. The
costs of each country along the path between a country and the central trading country (the index)
is an intensive measure of how costly trade is for a country, which affects their consumption level.

The extent of the bias is based on the covariance Cov(log(yit), ln(F (δNt|St))), which is likely
non-zero for two reasons. First, the (optimal) network shape is endogenously determined by the
social planner and hence is a function of the endowment distribution. The social planner wants
to re-distribute endowment but takes into account the efficiency per transaction; very inefficient
linkages are less likely to be optimal. In this case, inefficient countries are more likely to be left
out of the network; if a low endowment country is surrounded by inefficient countries, then their
trade efficiency is likely low and they may be left out.

Second, the exogenous characteristics that affect transaction costs may correlate with endow-
ments. Low endowment countries may have high barriers to trade, which exacerbates their problem
as they can benefit the most from sharing risk, but are least able. Countries with efficient trading
cost network effects (those whose linkages are mostly exporters with low costs) may have higher
endowments; in this case the covariance is positive and there is upward bias in η.

B.2 Trading Participation Selection
The risk-sharing equation is derived from the FOC of the model; for agents who are not part of
any network in a given year, their consumption is simply equal to their production: ln(cjt) =
ln(yjt) + εjt, and so there is no “risk-sharing” parameter to test since they are unable to share risk
in that period. Note however that the fact that the agent is not trading is endogenous to the model;
the realization of shocks in a year combined with transaction costs could lead to an agent not
trading. Thus it does raise the question of selection bias present in the sample if we only estimate
the risk-sharing regression for trading agents.

If one simply wants to capture how being in a network reduces dependence on own produc-
tion, then conditioning on the network participants is sufficient. However if one is interested in
understanding the extent of global risk sharing induced by variation in endowment shocks, then

23If every agent is linked directly or indirectly to every other agent (meaning no isolated networks) then global
trading is one network and the aggregate risk function varies only at the yearly level: A∗Ttt = A∗t . In this case, it can
be subsumed by a year fixed effect.
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one should include excluded countries as their autarkic status in a given year reveals the extent of
risk sharing.24 If the selection is based on observables, then an augmented risk-sharing equation is
sufficient to capture membership as follows (expressed in terms of a single network):

ln(cit) = ln(c∗it) · 1[it ∈ Tt] + ln(yit) · 1[it 6∈ Tt] + η ln(yit) + εit (16)

B.3 Asymptotic Derivations
The risk sharing test controlling for aggregate risk function and transaction costs is given as:

ln(cjt) = ln(A∗Ttt) + η · ln(yjt)− ln(∆∗jt) + εjt, (17)

for each j ∈ NN = {1, . . . , N} and t = 1, 2, . . . , T . Let xit = (xit1, xit2), zit =
(
{zjit}

|Iit|
1 , {zkit}

|Eit|
1

)
where |Iit| and |Eit| denote the cardinality of the importer and exporter sets, respectively of
country i at time t. Let ft = (f1t, . . . , fTt) denote the vector of binary time indicators. Let
wit = (dt,xit, zit) and θ = (α,β)′. Here β = (β1, β2, β3, β4)′ and α = (α1, . . . , αT )′. Then, one
may rewrite the risk sharing regression as:

yit = ftα+ β1xit1 + β2xit2 + β2

∑
j∈Iit

g(zjit1, z
j
it2;β3, β4)−

∑
l∈Eit

g(zlit1, z
l
it2;β3, β4)

+ εit

≡ h(wit,θ) + εit (18)

where g(·; ·) = log
(

exp(·)
1+exp(·)

)
. The summations over j and l are adding over countries that indi-

rectly connect i with the index country ī in the importer and exporter sets, respectively. Hence,
{(yit,wit); i ∈ NN ; t = 1, 2, . . . , T} represent the observed sample from the population. Then,
stacking equation (18) across time periods, we can write the regression more compactly as25

yi = hi(θ) + εi, i ∈ NN (19)

where yi = (yi1, . . . , yiT )′, hi(θ) = (hi1(θ), . . . , hiT (θ))′, and εi = (εi1, . . . , εiT )′.

Assumption 1. E(εit|wi) = E(εit|wit) = 0

Assumption 1 implies that strict exogeneity holds with respect to risk sharing regression equa-
tion. Given the estimating equation in 19, we minimize the following nonlinear least squares
objective function,

min
θ∈Θ

1

NT

∑
i∈NN

ε̂2
i ≡ min

θ∈Θ

1

NT

∑
i∈NN

(yi − hi(θ̂))2 (20)

24This would require a different approach: regress the probability of a network forming of a certain type as a
function of endowment shocks. This is a selection equation that the post-selection risk-sharing regression ignores.

25Note that we do not explicitly introduce a binary indicator sit for missing data given that our application involves
an unbalanced panel. We simply assume that the observed data is conditionally independent of the errors, εit.
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with the first order conditions for θ̂ given as

1

NT

∑
i∈NN

∇θhi(θ̂)′ε̂i =
1

NT

∑
i∈NN

h
(1)
i (θ̂)ε̂i = 0 (21)

where

h
(1)
i (θ̂)′ = ∇θhi(θ̂) =


∂hi1(θ̂)
∂θ1

· · · ∂hi1(θ̂)
∂θM

∂hi2(θ̂)
∂θ1

· · · ∂hi2(θ̂)
∂θM... . . . ...

∂hiT (θ̂)
∂θ1

· · · ∂hiT (θ̂)
∂θM


(T×M)

Then, by first-order taylor expansion of equation (21) around the true θ, we have the following
influence function representation for θ̂

√
N(θ̂ − θ) = −Q−1

T

(
1√
N

∑
i∈NN

vi

)
+ op(1) (22)

where, vi = h
(1)
i (θ)εi = 1

T

∑T
t=1∇θhit(θ)εit and QT = plim

N→∞

1
NT

∑
i∈NN ∇θ{h(1)

i (θ̃)ε̃i}

= − 1
T
E[h

(1)
i (θ)h

(1)
i (θ)′].

Now, in order to obtain the asymptotic distribution of θ̂, we need to apply the LLN and CLT for
network dependent data to the sequence, N−1/2

∑
i∈NN vi, where E(vi|wi) = 0 due to assumption

1a).26 Provided that certain regularity conditions hold (mentioned below) which are informed by
KMS, we will obtain the following asymptotic normality result.

√
N(θ̂ − θ) ∼ N

(
0,Q−1

T ΩTQ−1
T

)
(23)

with the network-HAC variance is given by

ΩT = Avar(N−1/2
∑
i∈NN

vi) = lim
N→∞

1

NT 2

∑
d≥0

∑
i∈NN

∑
j∈N ∂N (i,d)

E(viv
′
j |wi,wj) (24)

where N ∂
N(i, d) = {j ∈ NN : DN(i, j) = d} is the set of neighbors of node i who are exactly

d-links away. In our context, these cross-correlations result from network dependence among the
errors εi’s. This is because

E(viv
′
j|wi,wj) = h

(1)
i (θ)E(εiε

′
j|wi,wj)h

(1)
j (θ)′

In particular, we assume weak dependence which means that these covariances diminish as the
network-distance between any two pairs of nodes, i and j, grows large. To limit the strength of
dependence, we impose regularity conditions that assume the network data to be conditionally

26Such an aggregation helps to express the original panel problem solely in terms of the cross sectional dimension.
This matters for the asymptotic argument in our setting where we assume T to be fixed and N to approach infinity.
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ψ-dependent given the σ-algebra, CN .
Note that we have assumed conditional ψ-dependence with respect to εi. This is easily trans-

lated into conditional ψ-dependence of the linear transformation, vi = h
(1)
i (θ)εi given CN with

dependence coefficients, λN , from using Lemma 2.1 of KMS. The other conditions required for
the LLN and CLT include moments conditions for vi, as follows

Assumption 2 (Moment conditions). i) For some ε > 0, supN≥1maxi∈NN ||vi||CN ,1+ε < ∞ a.s; ii)
For some p > 4, supN≥1maxi∈NN ||vi||CN ,p <∞ a.s. where ||vi||CN ,p =

(
E[|vi|p|CN ]1/p

)
.

Assumption 3 (Denseness and strength of network dependence). i) 1
N

∑
d≥0 ζ

∂
N(d)λN,d →a.s. 0

where ζ∂N(d) = N−1
∑

i∈NN |N
∂
N(i, d)|; ii) There exists a positive sequence, mN → ∞ such that

for k = 1, 2

N1−k ·Ω−kN
∑
d≥0

aN(d,mN ; k)λ
1− 2+k

p

N,d →a.s. 0

N3/2 ·Ω−1/2
N λ

1−1/p
N,mN

→a.s. 0

as N →∞, where p > 4 and aN(·, ·; ) is the measure of network denseness used in KMS.

where ζ∂N(d) gives us the average neighborhood size and aN(·, ·; ) is a combination of average
neighborhood size and average neighborhood shell size. These are being used as measures of net-
work denseness. As KMS put it, this condition appears in the form of a tradeoff between network
denseness and strength of dependence needed to ensure that covariance decays as a function of
network-distance, d.

A consistent estimator for the network HAC variance can then be obtained from constructing a
sample analogue of the expression in (23) where the middle term is taken to be a weighted average
of the sample covariances of h

(1)
i (θ̂)ε̂i and h

(1)
j (θ̂)ε̂j as follows:

Ω̂T =
1

NT 2

∑
d≥0

KN(d)

∑
i∈NN

∑
j∈N ∂N (i,d)

h
(1)
i (θ̂)ε̂iε̂

′
jh

(1)
j (θ̂)′


with KN(d) = K(d/bN) as the weight given to sample covariances as a function of the distance.

Consistency of Ω̂T can be established using the results in KMS if we assume the following
conditions hold along with Assumption 2) ii).

Assumption 4 (Consistency of the HAC estimator). There exists a p > 4 such that
i) limN→∞

∑
d≥1 |KN(d)− 1|ζ∂N(d)λ

1−2/p
N,d = 0 a.s. and

ii) limN→∞N
−1
∑

d≥0 aN(d, bN ; 2)λ
1−4/p
N,d = 0 a.s.
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C Results Appendix

Figure A1: Degree Distribution of Nodes in Networks
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Note: The figure plots the histogram of number of trade links per country for rice, wheat, and maize.
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Figure A2: Average Number of Trade Partners: 1986-2013
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Note: The figure plots trends in the average number of trade partners per country for rice, wheat, and maize.

C.1 Heterogeneous Preferences
As demonstrated in Schulhofer-Wohl (2011), it is more realistic to have agent specific preferences
γi instead of a constant γ. In this case, the FOC still has an exponential proportional form cγii =
c
γj
j (αjδij/αi). Just as before, we can, without loss, define A∗T to be agent ī’s consumption. Then

by the FOC, cj = Ãγī/γj/(∆̃ī→j)
−1/γj , where ∆̃ ≡ ∆−γ . Then the risk-sharing regression has

scaled model terms per country:

ln(cjt) =
ln(∆̃jt)

γj
+
γīt ln(ATtt)

γj
+ η · ln(yjt) + εjt (25)

Note that γīt can change every year depending on the network structure; a previous member
chosen for the index could be absent in the network the following year, and thus the identity of
īt = ī(Nt) changes. Note the presence of the index country’s γ term as a coefficient on ATtt.
This is a network-specific term and thus even if one omits trading costs from the model, the cor-
rect model specification with heterogeneous preferences uses trade network information. As the
heterogeneous specification has country specific γj , it can soak up time-invariant country specific
factors that could affect the relationship between production and consumption. Fully addressing
all possible alternative explanations for nonzero η beyond transaction costs is beyond the scope of
this analysis, but this specification aids in this.

Table A1 reports estimates from the heterogeneous risk preference model in equation (25) for
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baseline and transaction cost specifications for all three commodities.27 These regressions include
country fixed effects in all specifications. We compare the baseline to the trade-cost-constant
specification as the full set of cost controls were not well estimated separately from the country-
level slopes. Overall the results are noisier for production, consistent with Schulhofer-Wohl (2011).

For maize, the baseline model yields a production coefficient η of 0.255 (0.137), with the
standard error in parentheses. The full model with transaction cost specification yields η equal
to 0.1711 (0.08845). This is a 33.1% decrease in η and a 35.3% decrease in its standard error.
For wheat, the baseline η is 0.11481 (0.038932), and the model yields 0.11695 (0.066531). This
is a 1.86% increase in η and a 71.9% increase in its standard error. Thus, while the coefficient
increases a trivial amount, the predictive power of production decreases significantly. Finally, for
rice, baseline η is 0.21078 (0.21541), and the model yields 0.18163 (0.20765). This is a 13.8%
decrease in the coefficient and a 3.60% decrease in its standard error.

The trade-cost-constant specification under heterogeneous preferences yields larger changes to
risk-sharing than in the homogeneous case. This is intuitive as the effects of the network shape are
likely dependent on a country’s location in the network, which the latter specification averages out.

Table A1: Heterogeneous Effects

Commodity: Maize Wheat Rice

DV: log consumption Baseline Trans. Cost Baseline Trans. Cost Baseline Trans. Cost

Log production 0.255 0.171 0.115∗∗ 0.117 0.211 0.182
(0.137) (0.088) (0.039) (0.067) (0.215) (0.208)

Constant 11.548∗∗∗ 12.509∗∗∗ 13.343∗∗∗ 13.493∗∗∗ 13.899∗∗∗ 13.415∗∗∗

(0.089) (0.056) (0.650) (3.022) (0.361) (0.576)
Trade-cost constant 19.987 19.989∗∗∗ 19.957∗∗∗

(19.822) (1.917) (0.535)

Year FE Yes Yes Yes Yes Yes Yes
Country γ-FE Yes Yes Yes Yes Yes Yes
Observations 1752 1752 1722 1722 1860 1860

Notes: Country γ−FE refers to country specific slopes for preferences. Other parameter estimates omitted.
Network dependent standard errors in parentheses. ***, **, and * indicate statistical significance at the 1%,
5%, and 10% levels, respectively.

C.2 Additional Results
To see how centrality of the network affects risk sharing, we consider specifications in which we
only include countries that are within a certain distance (network-distance) from the index. When
only including agents within a 1-link radius from the index, the risk sharing parameter should
be smaller than the whole sample. As one increases the number of links included (meaning go-
ing away from the center of the network center), risk-sharing would naturally go down; the less
connected countries are not as integrated into the trading network. The effects of controlling for
transaction costs should also matter at all levels of the radius. For maize, at ≤ 3-links, the coeffi-
cient decreases by 9.9% from baseline, at ≤ 2-links it decreases by 11%, and at 1-link it decreases

27For countries without variation over time, we normalize their γ to 1.
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by 23%. In addition, at 1-link distance the statistical significance decreases. This indicates that
near the center of the network, there is stronger evidence of risk-sharing in Maize after controlling
for transaction costs. For the distance from center results, for wheat, ≤ 3-links yields a -5.7%
change, ≤ 2-links has -6.6%, and 1-link has -10.4%. For rice, ≤ 3-links yields a -9.6% change,
≤ 2-links has a similar decrease, and 1-link has a -5.6% change.

As an alternative sample, we consider a 1 million population cutoff and keep all nonzero trade
levels. Results are weaker (smaller or no difference between baseline and full model) and there
is less aggregate risk sharing; this is intuitive as many more countries which are less connected
(and trade significantly less) are included in this sample. For functional form robustness, first we
consider a probit instead of logit for the costs, δ. Second, we consider a more substantial functional
form change that still captures the indirect trade effects. We specify the log indirect trade weight
as a single logit of the linear difference in covariates across export/import pairs. Across all com-
modities, we find similar risk-sharing estimates and some small changes to statistical significance
of the controls.
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