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1 Introduction

Firms dynamically adjust prices in many markets with perishable inventory. Examples range

from seats on airplanes and trains, tickets for entertainment events, reservations for cruises, to

inventory in retailing. In these markets, prices may adjust for a variety of reasons. First, prices

reflect changing opportunity costs due to demand uncertainty—in the presence of scarcity, the

cost of selling a unit of inventory today depends on a firm’s ability to sell it in the future. Sec-

ond, demand may change over time in predictable ways. If consumers with high willingness to

pay tend to arrive late, firms have an incentive to save inventory. Finally, in all aforementioned

examples, prices may adjust in response to competitive interactions. Yet, much of the theoreti-

cal and empirical literature on dynamic pricing in perishable goods markets has abstracted from

competition entirely. In this paper we introduce a framework to study dynamic price compe-

tition. We explore how dynamic price competition can adversely affect market efficiency and

how alternative pricing mechanisms can improve overall welfare.

In order to understand how competition can generate market inefficiencies, consider two

competing airlines selling seats for a given departure date. Demand is uncertain. A social

planner would initially set high prices because of the option value of allocating seats to future

consumers with higher valuations. However, when competing firms engage in dynamic pricing,

intense competition can lead to inefficiently low prices early on. As a result, there is an over-

provision of bookings far from departure and an under-provision of bookings close to departure.

We call this effect the Bertrand scarcity trap. Although this inefficiency can arise even when

underlying demand is constant, it can worsen when late-arriving buyers have higher valuations.

We formalize this intuition and empirically measure the welfare consequences of firms en-

gaging in dynamic pricing by building a rich model of dynamic price competition. We provide

sufficient conditions for equilibrium existence and uniqueness and for convergence to a system

of ordinary differential equations (ODEs). This characterization allows us to derive new theoret-

ical insights on dynamic price competition and to simulate market outcomes without explicitly

solving stage game equilibria. We demonstrate the usefulness of this result in our empirical

application that involves billions of stage games. We apply our model to one of the best known

examples of dynamic pricing under competition—the U.S. airline industry. We use novel data
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that provide daily bookings and prices for multiple, competing U.S. airlines. With demand esti-

mated, we compare market outcomes under the competitive equilibrium outcome to a scenario

where airlines do not react to competitor scarcity and use a discrete set of fares. This scenario

matches the constraints that we observe in one airline’s internal pricing systems. Our main

empirical finding is that the adoption of such heuristics softens competition and allows airlines

to alleviate the Bertrand scarcity trap. We estimate that this is welfare improving, increasing

revenues (by 4-5%) and consumer surplus (by 3%), relative to the competitive outcome.

Our framework extends single-agent dynamic pricing models (e.g., Gallego and Van Ryzin,

1994; Zhao and Zheng, 2000; Talluri and Van Ryzin, 2004) to oligopoly. We consider un-

certain, time-varying demands for an arbitrary number of differentiated products and firms.

Firms are exogenously endowed with limited initial inventory. Demand satisfies general reg-

ularity conditions. Our framework accommodates demand models beyond independence of

irrelevant alternatives, including the form of nested logit demand used in our empirical applica-

tion. Consumers arrive randomly according to a time-varying Poisson process with preferences

that depend on their arrival time. Upon arrival, each consumer decides whether to purchase an

available product or exit the market by selecting an outside option. Within a period, firms simul-

taneously choose prices after observing all remaining inventories. Then, demand is realized and

remaining inventories are updated. This process repeats until the deadline or until all products

are sold out. Unsold inventory is scrapped after the deadline. We characterize Markov-perfect

equilibria, where the payoff-relevant state is the vector of remaining inventories and time.

The Markovian structure allows us to summarize the impact of today’s prices on the con-

tinuation game in a “scarcity matrix” that depends on the current state. We call the marginal

impact on a firm’s continuation profit of selling a unit of an own product own-scarcity effect.

Similarly, we define the impact on a firm’s continuation profit of a competitor selling a unit

competitor-scarcity effect. These scarcity effects define the scarcity matrix, where the number

of scarcity effects is equal to the number of firms times the products in the game.

Stage games are complex because each firm’s payoff is affected not only by its own residual

demands but also by competitors’ demands through the competitor-scarcity effects. Prices can
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be of strategic complements or strategic substitutes.1 Stage game payoffs are generally not (log)

supermodular (Milgrom and Roberts, 1990), nor are they of the form considered in Caplin and

Nalebuff (1991) and Nocke and Schutz (2018). To make progress, we use a fixed-point theorem

in Kellogg (1976) to derive sufficient conditions for both existence and uniqueness of stage

game equilibria. We provide some guidance on when multiplicities may arise.

Our main theorem provides conditions under which the dynamic equilibrium is unique. We

prove that the continuous-time limit of the unique discrete-time equilibrium is characterized by

a system of ODEs. We first use the characterization to show that well-known results from the

single-firm dynamic pricing setting do not carry over to the oligopoly case. For example, value

functions are not concave in time, nor are they monotonic or concave in capacity. All scarcity

effects can be positive or negative, and non-monotonic in time.

Second, we prove near the deadline that a sale by the firm with the lowest inventory re-

maining softens competition the most. This result substantiates how intuition from single-firm

dynamic pricing models may not hold in an oligopoly, e.g., that scarcity implies high prices.

Instead, limited own inventory can result in rivals charging relatively high prices (and the firm

relatively low prices) in an attempt to get the firm to sell out. Firms generally benefit from

asymmetries. Competition is fiercest when firms have the same number of units remaining. This

generalizes Dudey (1992) and Martínez-de Albéniz and Talluri (2011), who focus on undiffer-

entiated products and homogeneous consumers with deterministic constant demand. Moreover,

some of the economic forces in our model occur when a single firm faces long-lived buyers and

therefore, essentially competes against its future self (Board and Skrzypacz, 2016; Gershkov

et al., 2018; Dilme and Li, 2019).2 As in Dilme and Li (2019), a firm may have fire sales

(offer low prices) in order to create future scarcity. Our model has additional dimensions of

scarcity that create complementary incentives to increase prices in an attempt to shift demand

to competitors.3

1Downward sloping best-response curves may arise even though we do not endogenize the initial capacity
choice as in Dana and Williams (2022).

2Board and Skrzypacz (2016) and Gershkov et al. (2018) consider forward-looking buyers when the firm can
fully commit to a selling mechanism and hence, resist the temptation to fire-sale.

3There exists a large literature on dynamic price competition in other settings, e.g., Maskin and Tirole (1988);
Bergemann and Välimäki (2006) who do not consider limited capacity. In related work, Dana (1999a) and Dana
(1999b) allow firms to choose prices and quantities before demand uncertainty is resolved. We abstract from
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Third, we identify a new welfare effect under price competition—the Bertrand scarcity trap.

We provide examples in which dynamic price competition leads to inefficient rationing because

low prices result in over-provision early on and under-provision close to the perishability date. It

is possible that welfare under dynamic price competition can be lower than if all products were

managed by a single firm. Whether or not restricting competitive interactions yields higher

welfare depends on demand, which we measure in an economically important industry.

We apply our framework to study airline pricing. While this industry has been noted for sig-

nificant price dispersion within and across routes (Borenstein and Rose, 1994; Stavins, 2001;

Gerardi and Shapiro, 2009; Berry and Jia, 2010; Sengupta and Wiggins, 2014), limited access to

necessary data has made it difficult to study dynamic pricing in oligopoly. Most dynamic pric-

ing studies involving perishable inventory consider single-firm settings (e.g., Lazarev, 2013;

Williams, 2022; Aryal et al., 2022; Cho et al., 2018; D’Haultfœuille et al., 2022). Exceptions

include Puller et al. (2012), who study the role of ticket characteristics in explaining fares,

Siegert and Ulbricht (2020), who document airline pricing patterns based on market structure,

and Chen and Jeziorski (2023), who analyze dynamic pricing in a duopoly airline route with

collected data.4 We use novel data provided to us by a large U.S. airline that contain not only

flight-level prices and bookings for its own flights, but also the same granular data for its com-

petitors.5 The data are similar to the Nielsen data used to study retail markets, except that our

data are not anonymized. Our sample covers 50 routes and nine months of departures in 2019.

We use the data to document new facts on airline pricing and to estimate a Poisson demand

model, where aggregate demand uncertainty is captured through Poisson arrivals, and prefer-

ences are modeled through discrete choice nested logit demand using a rich set of observable

characteristics. Instead of fixing the market size, as commonly done in empirical work, we

use search data for one airline to inform arrival process parameters. We scale up the estimated

arrival process to account for unobserved searches, e.g., searches conducted on online travel

agencies or a rival’s website. We show that our results are robust to the choice of scaling param-

forward-looking buyers due to recent empirical evidence that shows limited reshopping using clickstream data in
airline markets (Hortaçsu et al., 2021b).

4Dynamic pricing without perishable capacity has also been studied. Sweeting et al. (2020) studies limit pricing
in airline markets. Kehoe et al. (2018) consider dynamic pricing and the role of information applied to e-commerce.

5The airline has elected to remain anonymous.
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eter as well as the inclusion of unobserved preferences that are potentially correlated with price

(beyond hundreds of fixed effects). We find significant variation in willingness to pay across

routes and days before departure. In general, demand becomes more inelastic as the departure

date approaches. Average own-price elasticities are -1.4.

With demand estimated, we simulate a number of counterfactuals. We use our ODE equilib-

rium characterization to solve dynamic games (route-departure dates) with large state spaces—

some feature over 131 million states. In total, our analysis studies thousands of dynamic games,

involving over 59 billion stage games. We first compare dynamic competitive equilibrium out-

comes to another useful theoretical benchmark—uniform pricing. With uniform pricing, each

firm commits to a single price for each flight. We find that uniform price competition results

in higher total welfare than dynamic price competition, which contrasts with work in single-

firm settings, including Hendel and Nevo (2013) in retailing, Castillo (2022) in ride-share, and

Williams (2022) for single-carrier airline markets. The reason is that uniform pricing shifts

the distribution of sales to later periods where consumers are less price sensitive. This effect

outweighs the welfare loss stemming from the inability to react to scarcity.

We then investigate the use of airline pricing heuristics. We base our analysis on the ob-

served pricing technology of one airline—we observe both the pricing heuristic’s code and

associated documentation. The pricing heuristic is not a reinforcement learning algorithm (Cal-

vano et al., 2020; Asker et al., 2021; Hansen et al., 2021) as it focuses on perishable inventory

subject to time-varying opportunity costs of remaining capacity. Our empirical findings suggest

a strategic reason for why airlines use pricing heuristics. Heuristics soften price competition

early on and alleviate the Bertrand scarcity trap. Firms benefit from shifting the distribution

of bookings to periods with less price sensitive demands (by up to 5% revenue increase). Two

opposing forces affect late-arriving, price insensitive consumers. Heuristics result in higher

prices than under uniform pricing, but lower prices than the competitive equilibrium close to

departure. Output under heuristics is higher close to departure and therefore, in aggregate, we

find that heuristics also benefit consumers (3% higher consumer surplus).

Although our analysis identifies that pricing heuristics may improve welfare relative to the

perfect information, competitive benchmark, we find that the overall benefits of competition are
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significant. The competitive equilibrium yields substantially higher welfare (16%) than joint-

profit maximization by a single firm. The dynamic competitive equilibrium outcome obtains

88% of the first best under a social planner. Heuristics obtain 93% of the first best.

2 A Model of Dynamic Price Competition

In this section, we build and analyze a model of dynamic price competition with finite inventory

and a sales deadline. In Section 2.1, we set up the dynamic pricing game and detail our demand

assumptions. In Section 2.2, we consider the special case where all products are owned by a

single firm. We then characterize the equilibrium of the oligopoly case in Section 2.3. We dis-

cuss stage game properties in Section 2.4 and properties of equilibrium dynamics in Section 2.5.

Finally, we formalize the Bertrand scarcity trap in Section 2.6.

2.1 Model

Firms, products, and timing. We consider a set F := {1, . . . , F } of firms and a set J :=

{1, . . . , J } of products. Products in J f are owned by firm f , where
�

J f

�

f ∈F is a partition of J .

That is, J =
⋃

f ∈F
J f and J f ∩J f ′ = ; for f ̸= f ′ so that each product is sold by exactly one

firm. Each firm f is endowed with initial inventories K j ,0 ∈N, j ∈J f . Any remaining inventory

at the deadline T > 0 is scrapped with zero value. We study a discrete-time environment with

periods t ∈ {0,∆, . . . , T −∆}, ∆ > 0, and later consider the continuous-time limit as ∆→ 0. In

every period t , firms simultaneously set prices of their products p f ,t := (pj ,t ) j∈J f
. Then, a single

consumer arrives with probability ∆λt , where λt is smooth in t . Therefore, each consumer can

be indexed by her arrival time t . Consumer t either buys a unit of an available product upon

arrival or leaves the market. In the following, we impose assumptions on purchase probabilities.

Demand. If all products are available, then consumer t , facing a price vector p :=
�

pj

�

j∈J , buys

product j with probability s j (p;θ t ,J ), where θ t ∈T ⊂Rn is a vector of n ≥ 1 parameters that

are smooth and deterministic in t . We impose the following regularity conditions on s j .

Assumption 1. For all θ ∈T and p ∈RJ , the following hold:
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i) For any j , limpj→∞ s j (p;θ ,J )pj = 0. For any subsetA ⊂J and j ∈A , the limit6

s j (p
A ;θ ,A ) := lim

pj ′→∞
j ′ ̸∈A

s j (p;θ ,J ) ∈ [0, 1]

exists and is smooth in θ and pA ∈RA , where pAj ′ = pj ′ for all j ′ ∈A ;

ii) For all j , s j (p;θ ,J ) is strictly decreasing in pj and strictly increasing in pj ′ for j ′ ̸= j ;

iii) For allA ⊂J , j ∈A and p ∈RA , there exists a C > 0 such that for all pA ≥ p,

C s j (p
A ;θ ,A )<

∂ s0

∂ pj
(pA ;θ ,A ) for all j ,

where s0(pA ;θ ,A ) := 1−
∑

j ′∈A
s j ′(pA ;θ ,A ).

Assumption 1-i) ensures that demand is well-defined when products sell out, i.e., when

these products’ prices are set to equal infinity. Assumption 1-ii) states that all products are

imperfect substitutes. Assumption 1-iii) can be viewed as a generalized concavity assump-

tion as it assures that profit-maximizing prices of a static multi-product problem are interior

and uniformly bounded from above. This relatively weak assumption essentially asserts that
∂ s0
∂ pj
(pA ;θ ,A )/s j (pA ;θ ,A ) remains bounded from zero when pAj is large. The condition also

implies that ∂ s0
∂ pj
(pA ;θ ,A )> 0, i.e., the outside option is an imperfect substitute for all products.

We show in Appendix A that Assumption 1 implies that a single firm’s profit-maximizing

prices solve a system of first-order conditions (FOCs). To write these FOCs in matrix form, we

denote the vector of choice probabilities of available products by sA (·) :=
�

s j (·)
�

j∈A and define

for any θ ,A , and p ∈RA , the vector of inverse quasi own-price elasticities of demand as7

ε̂(p;θ ,A ) :=
� �

DpsA (p;θ ,A )
�⊺ �−1

sA (p;θ ,A ).

Therefore, the FOCs of a single firm’s profit maximization problem maxp∈RA sA (p;θ ,A )⊺(p−

6The limit takes all prices of products j ′ ̸∈A to infinity where the order does not matter.
7The Jacobian of the demand vector is invertible by Assumption 1-iii) as we explain in the Appendix A.2. We

restrict attention to available products to assure that the Jacobian matrix of the demand vector is invertible.
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c) for an arbitrary marginal cost vector c ∈RA can be written as a classic markup formula:

p− c=−ε̂(p;θ ,A ).

This system of equations has a unique solution if we impose the following assumption:

Assumption 2. The vector of inverse quasi own-price elasticities ε̂(p;θ ,A ) satisfies

det
�

−Dpε̂(p;θ ,A )− I
�

̸= 0

for all p ∈RA , θ ∈T , andA ⊂J , where I ∈RA×A is the identity matrix.

Assumption 2 is exactly the assumption made in Kellogg (1976) that implies that c −

ε̂(p;θ ,A ) has a unique fixed point. This assumption replaces the commonly made assump-

tion of quasi-concavity or log-concavity which is, for example, not satisfied for multinomial

logit (see, e.g., Hanson and Martin, 1996). Our demand assumptions hold for commonly used

demand systems, e.g., logit demand. We show in Appendix C that our assumptions also hold

for the form of nested logit demand that we consider in our empirical application.

We omit the conditioning arguments θ and/or A in all expressions whenever the meaning

is unambiguous. When the time index is relevant, we write s j ,t (p) := s j (p;θ t ,At ).

Markov perfect equilibrium. The payoff-relevant state in the pricing game is given by the

vector of inventories K := (K j ) j∈J and time t . We study Markov perfect equilibria in which

each firm’s strategy is measurable with respect to (K, t ). We denote a Markov pricing strategy

of firm f by p f ,t (K) =
�

pj ,t (K)
�

j∈J f
.

2.2 The Single-Firm Case

We start with a special case of our model when all products are owned by a single firm. This

allows us to introduce supply-side notation that we carry over to the oligopoly case. We demon-

strate that the single-firm case is well behaved and exhibits “nice” properties. Unfortunately, all

of these properties can fail in the oligopoly case.
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Consider a single firm M that offers all J products for sale. The firm’s continuation payoff

at time t ≤ T −∆, given capacity vector K, satisfies the dynamic program

ΠM ,t (K;∆) =

max
p
∆λt

∑

j∈J

s j ,t (p)
�

pj +ΠM ,t+∆(K−e j ;∆)
�

︸ ︷︷ ︸

payoff from selling product j

+
�

1−∆λt

∑

j∈J

s j ,t (p)
�

︸ ︷︷ ︸

probability of no purchase

ΠM ,t+∆(K;∆),

where e j ∈ NJ is the unit vector of zeros with a one in the j th position. The firm receives a

revenue of pj and a continuation value in period t +∆ with one fewer unit of j if it sells. If the

firm does not sell, the capacity vector remains unchanged, and time moves forward by ∆. The

firm faces two boundary conditions: (i) ΠM ,T (K;∆) = 0 for all K and (ii) ΠM ,t (K;∆) = −∞ if

K j < 0 for a j ∈J . The boundary conditions ensure that remaining inventory is scrapped with

zero value after the deadline T and that the firm cannot oversell.

Hence, the optimal price at each state (K, t ) solves a static maximization problem parame-

terized by the demand parameters θ and ω= (ω j ) j∈J , where ω j =ΠM ,t (K;∆)−ΠM ,t (K−e j ;∆)

is commonly referred to as the opportunity cost of selling product j :8

max
p

∑

j∈J

s j (p;θ ,J )
�

pj −ω j

�

.

We denote the profit-maximizing price for parameters θ and ω by pM (ω,θ ) := (p M
j (ω,θ )) j∈J .

By Kellogg (1976), Assumption 2 implies that there is a unique optimal price vector which is

continuous in ω and θ . The solution of the optimal control problem can be characterized by an

ordinary differential equation (ODE) as ∆→ 0 by the following Lemma.

Lemma 1. ΠM ,t (K) := lim∆→0ΠM ,t (K;∆) solves the ordinary differential equation

Π̇M ,t (K) =−λt

∑

j∈J

s j ,t

�

pM (ωt (K),θ )
�

�

p M
j (ωt (K),θ )−ω j ,t (K)

�

, (1)

8Note that strictly speaking, the opportunity cost of selling product j is given by ω j −
∑

j ′ ̸= j

s ′j (p)
1−s j (p)

ω j ′ as by
selling product j , the firm forgoes the opportunity to sell any other product to the customer.
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whereωt (K) :=
�

ΠM ,t (K)−ΠM ,t (K−e j )
�

j∈J with boundary conditions (i) ΠM ,T (K) = 0 for all K,

and (ii) ΠM ,t (K) =−∞ if K j < 0 for a j ∈J .

Each state (K, t ) defines a set of available products A (K) = { j : K j ̸= 0} and a vector

of opportunity costs of available products ωA ,t (K) :=
�

ΠM ,t (K)−ΠM ,t (K−e j )
�

j∈A . Profit-

maximizing prices pM
t (K) ∈R

A (K) of available products solve

p= ωA ,t (K)
︸ ︷︷ ︸

opportunity costs

− ε̂(p;θ ,A )
︸ ︷︷ ︸

inverse quasi own-price elasticities

. (2)

Hence, the optimal pricing policy pM
t (K) is continuous in time and its dynamics are governed

by the evolution of quasi own-price elasticities and the opportunity costs. The opportunity costs

in turn depend on the stochastic process of remaining inventory Kt =
�

K j ,t

�

j∈J .9 Proposition 1

summarizes properties of the single-firm dynamic pricing model.

Proposition 1. The solution to the continuous-time single-firm revenue maximization problem

in Lemma 1 satisfies the following:

i) ΠM ,t (K) is decreasing in t for K ̸= 0 and increasing in K j , for all j ∈J and t < T ;

ii) ω j ,t (K) is decreasing in t for K ̸= 0 and decreasing in K j , for all j and t < T ;

iii) The stochastic process ω j ,t∧τ(Kt ), τ := inf{t ≥ 0|K j ,t ≤ 1}, is a submartingale.

Statements i) and ii) of Proposition 1 imply that more inventory and more time remaining

increase continuation profits, continuation profits are concave in capacity, and that opportunity

costs are decreasing towards the deadline if K is held fixed. These properties generalize Gallego

and Van Ryzin (1994), who consider a single product. Statement (iii) asserts that, on average,

opportunity costs are increasing. This formal result implies that given constant θ t ≡ θ , price

paths are on average increasing in time by Equation 2. That is, demand uncertainty alone causes

prices to increase on average over time. The price of a product may decrease when only one

unit of it remains because the firm cannot benefit from scarcity once the product sells out.10

9Note that we abuse notation slightly by denoting the optimal price policy pM
t (K), while also denoting the static

optimal price parameterized by (ω,θ ) by pM (ω,θ ).
10This result explains the inverted U-shape found when plotting average dynamic prices over time (McAfee and

Te Velde, 2006, e.g.,). One a product sells out, its price is excluded from the average price.
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2.3 Equilibrium Characterization of the Oligopoly Pricing Game

We derive an analogous system of ODEs to Equation 1 for the limit of continuation profits of all

firms f , denoted Π f ,t (K;∆). One of our key insights is to show that equilibrium prices in state

(K, t ) correspond to an equilibrium of a stage game that is parameterized by scarcity effects. We

define the scarcity effect of product j on firm f in state (K, t ) to be

ω
f
j ,t (K;∆) :=Π f ,t+∆(K;∆)−Π f ,t+∆(K−e j ;∆).

This scarcity effect captures the impact that one fewer unit of product j has on the continuation

value of firm f . We call ω f
j ,t (K;∆) for j ∈ J f own-scarcity effects and ω f

j ,t (K;∆) for j ̸∈ J f

competitor-scarcity effects. The competitor-scarcity effects capture the impact of a sale of a

competitor’s product on own continuation profits. Today’s prices affect future payoffs through

these scarcity effects. Formally, given a pricing strategy pt (K) :=
�

pj ,t (K)
�

j∈J , firm f ’s value

function can be recursively written as (omitting ∆ for readability)

Π f ,t (K;∆) = ∆λt

�

∑

j∈J f

s j ,t (pt (K)) (pj ,t (K) +Π f ,t+∆(K−e j ;∆))

︸ ︷︷ ︸

payoff from own sale

+

∑

j ′ ̸=J \J f

s j ′,t (pt (K))Π f ,t+∆(K−e j ′ ;∆)

︸ ︷︷ ︸

payoff if competitor sells j ′

�

+
�

1−∆λt

∑

j ′∈J

s j ′(pt (K))
�

︸ ︷︷ ︸

probability of no purchase

Π f ,t+∆(K;∆).

Subtracting Π f ,t+∆(K;∆) does not change pricing incentives in state (K, t ), so firm f chooses its

prices pt (K) to maximize Π f ,t (K;∆)−Π f ,t+∆(K;∆) which is equal to

∆λt

�

∑

j∈J f

s j ,t (pt (K))
�

pj ,t (K)−ω
f
j ,t (K;∆)

�

−
∑

j ′ ̸∈J f
s j ′,t (pt (K))ω

f
j ′,t (K;∆)

�

. (3)

The first part of Equation 3 is analogous to the single-firm setting—expected demand times

a markup. The second part of the equation is new and measures how a firm is affected by

competitor scarcity, weighted by competitor demand.

For any equilibrium Markov pricing strategy (p∗t (·))t=0,...T−∆ of the dynamic pricing game,
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p∗t (K) is an equilibrium of a stage game in which each firm f maximizes Equation 3. For each

state (K, t ), the stage game can be parameterized by a scarcity matrix

Ωt (K;∆) =
�

ω
f
j ,t (K;∆)

�

f , j
∈RF×J

and demand parameters θ . We denote equilibrium prices of a stage game with parameters Ω,θ

by p∗(Ω,θ ). Unfortunately, stage game equilibria are generally not unique as we show in Section

2.4. However, if the time horizon is not too long and for sufficiently small ∆, Ωt (K;∆) stays

in a neighborhood that guarantees that all stage games admit a unique equilibrium. Therefore,

equilibrium continuation profits can be characterized by a system of ODEs.

We additionally derive an ODE for equilibrium price paths using the FOCs of the stage

game. Specifically, consider a capacity vector K. The equilibrium stage game payoff of firm

f given K can be written in matrix form. Given the demand vector sA (K)f (·) = (s j (·)) j∈J f ∩A (K) of

available products owned by firm f and the limiting equilibrium price vector pA (K),∗t of available

products, the equilibrium payoff is given by

sA (K)f (pA (K),∗t ;θ t ,A (K))⊺pA (K),∗f ,t − s(pA (K),∗t ;θ t ,A (K))⊺ω f
t (K).

We omit the sub- and superscripts and arguments A and K since we are holding the capacity

vector fixed for the following argument. It follows that p∗t satisfies the FOC

g f (p,Ωt ,θ t ) :=
� �

Dp f
s f (p;θ t )

�⊺ �−1
Dp f

�

s(p;θ t )
⊺ω f

t

�⊺

︸ ︷︷ ︸

net opportunity costs
of selling

−
� �

Dp f
s f (p;θ t )

�⊺ �−1
s f (p;θ t )

︸ ︷︷ ︸

inverse quasi
own-price elasticities

≡ p.

This implies that for g := (g f ) f ∈F , ∂
∂ t

�

g(pt ,Ωt ,θ t )−pt

�

= 0 defines an ODE for equilibrium

prices. We summarize our main theoretical result in Theorem 1.

Theorem 1 (Continuous-time Limit). For every K, there exists a T0(K) > 0, non-increasing in

K, so that for any T ≤ T0(K), there exists a unique equilibrium of the dynamic pricing game for

sufficiently small ∆ with the following properties:

i) Each equilibrium value function Π∗f ,t (K;∆) converge to a limit Π∗f ,t (K) as ∆ → 0 that

13



solves the ordinary differential equation

Π̇ f ,t (K) =−λt

�

∑

j∈J f

s j (p∗(Ωt (K),θ t ))
�

p ∗j (Ωt (K),θ t )− (Π f ,t (K)−Π f ,t (K−e j ))
�

−
∑

j ′ /∈J f

s j ′ (p∗(Ωt (K);θ t ))
�

Π f ,t (K)−Π f ,t (K−e j ′ )
�

�

,

where Ωt (K)) = lim∆→0Ωt (K);∆), with boundary conditions (i) Π f ,T (K) = 0 for all K, (ii)

Π f ,t (K) = −∞ if K j < 0 for a j ∈ J f , and (iii) Π f ,t (K− e j ′) = Π f ,t (K) if K j ′ = 0 for a

j ′ ̸∈ J f , K j ≥ 0 for all j ∈J f ;

ii) For each capacity vector K, the vector of equilibrium prices p∗t (K) ∈ R
A (K) of available

products satisfies the ordinary differential equation

ṗt =−
�

Dpg(pt ,Ωt ,θ t )− I
�−1

 

∑

j , f

D
ω

f
j
g(pt ,Ωt ,θ t )ω̇

f
j ,t +Dθg(pt ,Ωt ,θ t )

!

,

where we omit all arguments K and take ω̇ f
j ,t (K) = Π̇ f ,t (K)− Π̇ f ,t (K− e j ) as given, with

boundary condition pT = g(pT , O,θ T ).

Using this system of ODEs, we can calculate Π f ,t (K), pt (K), and Ωt (K), for all t without

explicitly calculating stage game equilibria except for at time T . This single stage game is easy

to analyze because ΩT = 0. Theorem 1 offers a powerful tool to simulate equilibria in games

with large stage spaces because stage games are not solved explicitly. It also allows us to derive

equilibrium properties that we discuss next.

2.4 Properties of the Stage Game

In this section, we examine how own/competitor scarcity affects the nature of price competition

and uniqueness of stage game equilibria. We illustrate stage game properties using a simple

duopoly example with two products and logit demand of the form s f (p) =
exp(1−pf )

1+
∑

f ′∈{1,2}
exp(1−pf ′) for

14



f ∈ {1, 2}. Stage games are parameterized by a 2×2 dimension matrix

Ω=





ω1
1 ω1

2

ω2
1 ω2

2



 .

Each firm maximizes s f (p)
�

pf −ω
f
f

�

− s f ′ (p)ω
f
f ′ with corresponding FOC:

∂ s f ′

∂ pf
(p)

�

∂ s f

∂ pf
(p)

�−1

ω
f
f ′ +ω

f
f − s f (p)

�

∂ s f (p)

∂ pf

�−1

= pf .

Note that the left-hand side of the above equation defines g f (p1, p2). An increase in the com-

petitor price increases firm f ’s best response price if ∂ g f

∂ pf ′
> 0. That is, the competitor’s price is

a strategic complement. However, if ∂ g f

∂ pf ′
< 0, then an increase in the competitor price decreases

firm f ’s best response price. That is, the competitor’s price is a strategic substitute.

To show when strategic complements or strategic substitutes arise for this example, we

calculate (see Figure 14 in Appendix D for graphs)

∂

∂ pf ′
g f (p) =

∂

∂ pf ′

�∂ s f ′

∂ pf
(p)

�

∂ s f

∂ pf
(p)

�−1�

ω
f
f ′ −

∂

∂ pf ′

�

s f (p)

�

∂ s f (p)

∂ pf

�−1

︸ ︷︷ ︸

inverse quasi
own-price elasticity

�

. (4)

First, note that the inverse-quasi own-price elasticity s f (p)
�

∂ s f (p)
∂ pf

�−1
=−(1− s f (p))−1 is decreas-

ing in the competitor’s price pf ′ . Hence, if the competitor-scarcity effect ω f
f ′ is zero, then the

competitor price is a strategic complement. This game coincides with a static price competition

game with imperfect substitutes.11 Caplin and Nalebuff (1991) and Nocke and Schutz (2018)

study such oligopoly games if demand satisfies the property of independence of irrelevant al-

ternatives. Second, note that ∂ s f ′

∂ pf
(p)

�

∂ s f

∂ pf
(p)
�−1
= − exp(1−pf ′ )

1+exp(1−pf ′ )
is increasing in pf ′ . Hence, if the

competitor-scarcity effect ω f
f ′ is positive, the competitor price is also a strategic complement.

In the dynamic game, ω f
f ′ measures the impact on a firm’s profit if the rival sells. Because

scarcity typically (but not always as we show in Section 2.5) increases prices, ω f
f ′ is typically

11As noted in Vives (2018) and Nocke and Schutz (2018), static oligopoly games in multi-product environments
are generally not games of strategic complements.
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negative. If ω f
f ′ is large and negative, then the competitor price can be a strategic substitute.

Intuitively, the competitor’s market share increases if the competitor decreases its price and

hence, the firm’s marginal benefit of selling decreases if the competitor-scarcity effect is large.

As a result, the firm increases its own price.

Figure 1: Multiplicities in stage-game equilibria
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16 14 12 10 8 6 4 2 0 2
1
2

16
14
12
10
8
6
4
2
0
2

2 1

x = 0

x = 1

(b) Multiplicity in equilibrium prices
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2(x ),ω

2
1(x )) =

�

−15 cos
�

π
2 x

�

,−15 sin
�

π
2 x

��

, x ∈ [0, 1], where we set
(ω1

1,ω2
2) = (0, 0), and assume logit demand with δ = (1, 1), αt = 1. Panel (a) depicts the parameterized curve and panel (b) equilibrium

prices of both firms given (ω2
1,ω1

2) at varying values of x .

These strategic effects are the reason why Proposition 1 does not extend to oligopoly and

why multiplicity of equilibria may arise. Note that while own-scarcity effects simply shift

best-response functions, competitor-scarcity effects also change their slopes.12 Our sufficient

condition for uniqueness of stage games (Assumption 3 in Appendix A) requires

�

s1(p) +αω
1
2s0(p)

��

s2(p) +αω
2
1s0(p)

�

̸= 1+
1− s1(p)− s2(p)

s1(p)s2(p)
for all p.

Indeed, this condition does not depend on firms’ own-scarcity effects (ω1
1 and ω2

2), but it can

be violated if competitor-scarcity effects are large. We demonstrate that multiplicity may arise

using logit demand. We set own-scarcity effects equal to zero and parameterize competitor-

scarcity effects using a continuous function. We plot a parameterization of a path of (ω2
1,ω1

2)

in Figure 1-(a) along with the corresponding equilibrium prices for both firms in Figure 1-(b).

Note that moving along x results in price jumps to a different equilibrium at around x = 0.55.

12We illustrate this in Figure 15 in Appendix D.
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While this example suggests that the dynamic pricing game might not converge to a system

of ODEs, we show in Appendix A that any scarcity matrix in a neighborhood of Ω =O results

in a unique equilibrium. Thus, Lemma 1 can be generalized to an oligopoly as long as the

time horizon is not too long. Otherwise, scarcity effects can become sufficiently large so that

multiplicities arise.

2.5 Properties of Equilibrium Dynamics

Using our equilibrium characterization, we can show that the general insights from the single-

firm setting (Proposition 1) do not extend to oligopoly. We continue with the duopoly example

of the previous section. We fix firm 2’s initial capacity to be K2 = 3 and vary firm 1’s initial

capacity K1 (either 2 or 4). In Figure 2-(a), we plot firm 1’s profits over time, and in panel (b),

we plot firm 1’s own-scarcity effects over time. The graphs show that firm 1 expects higher

profits with K1 = 4 than with K1 = 2 far from the deadline, however, this reverses close to the

the deadline. As a result, (i) value functions are non-monotonic in own capacity; (ii) own-

scarcity effects are non-monotonic in own capacity; and (iii) all scarcity effects can be positive

or negative (shown in Figure 16 in Appendix D).

Figure 2: Simulated profits and own-scarcity effects when K2 = 3 and K1 varies

(a) Firm 1 equilibrium profit, Π1
t (K1, 3)
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(b) Firm 1 own-scarcity effect, ω1
1,t (K1, 3)
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Notes: The simulations assume δ = (1, 1), αt ≡ 1 and logit demand. Panel (a) shows firm 1’s profits over time, t ∈ [0, 1], for K = (2, 3) and
K= (4, 3). Panel (b) shows firm 2’s profits over time, t ∈ [0, 1], for the same states.

Although this simple example shows that the properties of Proposition 1 do not hold for the

dynamic pricing game, we make progress by showing that equilibrium dynamics are affected
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by scarcity in an intuitive way. We show that with a constant distribution of demand over time,

prices increase the most, i.e., competition softens the most, after a sale of the product with the

smallest inventory remaining. Formally, close to the deadline, we compare the evolution over

time of equilibrium price paths p∗t (K) across different capacity vectors K. The price level at

the deadline T is independent of the capacity vector as it is simply the equilibrium price in a

Bertrand game with zero marginal cost for all available products. Hence, it suffices to compare

the order of change of p∗t close to the deadline for different capacity vectors K. We show that

the order of change for all available products is determined by the inventory remaining of the

product with the smallest inventory remaining. Hence, price changes are relatively large if the

inventory of this product changes. We illustrate this in Figure 17 in Appendix D and state the

formal result here.

Proposition 2. Let λt ≡λ, θ t ≡ θ . Then, for K with K :=min
j

K j , the following holds:

pj ,t (K) = p ∗j ,T +O (|T − t |K ), t → T for all j ,

i.e., price changes close to the deadline are at most of order K . If lim
t→T
(Π f ,t )(K )(K− e j ′) ̸= 0 for

all f and j ′ with K j ′ = K , then

pj ,t (K) = p ∗j ,T +Θ(|T − t |K ), t → T for all j ,

i.e., price changes are exactly of order K .

Proposition 2 is a generalization of the equilibrium property of Dudey (1992) and Martínez-

de Albéniz and Talluri (2011) who consider undifferentiated products and deterministic de-

mand. Without uncertainty and fixed demand, the firm with the least capacity deterministically

sells out its products first before the next product is offered at an acceptable price. Note that

while Proposition 2 only covers the case where the distribution of demands does not change

over time, we empirically verify that this property also holds if demand becomes more inelastic

over time.
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2.6 The Bertrand Scarcity Trap

In this section, we discuss a novel welfare effect that arises in the presence of scarcity. Price

competition can cause capacity to be mis-allocated to consumers with relatively low willingness

to pay even if there are opportunities to sell to higher-valuation consumers in the future. In order

to formalize this idea, assume that a consumer who arrives in period t has consumption utility

for product j given by u j ,t = δ j −αt pt + ε j ,t where (ε j ,t ) j∈J is drawn from some continuous

distribution, e.g., type-1 extreme value. Then, s j ,t (p;At ) denotes the probability that u j ,t ≥

maxi∈At
u j ,t . We further define a state-(K, t ) outcome to be a tuple ( j , u j ,t ) where j is an

available product and u j ,t is the realized utility level. An allocation rule a maps each state

(K, t ) to a probability measure on the set of feasible outcomes in that state. An allocation rule

can be induced by Bertrand price competition, a single firm’s pricing decision, a social planner,

or alternative pricing mechanisms. We formalize how an allocation rule can “add inefficiencies”

over time. We denote the continuation welfare in state (K, t ), given an allocation rule a , by

W a
t (K, t ) and introduce the following definition.

Definition 1. We define a state-(K, t ) constrained-efficient price given allocation rule a to be

p̄a
t (K) =

�

p̄ a
j ,t (K)

�

j∈A (K)
∈

arg max
p

1

αt
E
�

max
i∈A (K)

�

δi −αt pi +εi ,t

�

�

︸ ︷︷ ︸

consumer surplus

+
∑

j∈A (K)

s j (p;A (K))















pj −
�

W a
t+∆(K)−W a

t+∆(K−e j )
�

︸ ︷︷ ︸

forgone future
welfare of selling j















.

Thus, a price vector is state-(K, t ) constrained efficient given a if it maximizes the sum of

consumer surplus and producer surplus minus the forgone continuation welfare if a unit is sold

(taking future allocations as given) in state (K, t ). This allows us to distinguish between two

types of inefficiencies that can occur in each stage game.

Definition 2. We say product j is over-provided if pj < p̄ a
j ,t (K) and it is under-provided if

pj ,t > p̄ a
t (K).
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Under static Bertrand price competition with differentiated products, we expect under-

provision of products given that firms maintain some market power, and any restriction on

competition typically exacerbates this inefficiency. However, in dynamic settings subject to

scarcity, inefficient rationing can naturally occur due to over-provision of a product early on.

Bertrand competition tends to exacerbate over-provision, so restricting competition can be wel-

fare improving. We call this observation the Bertrand scarcity trap.

Theorem 2 (The Bertrand Scarcity Trap). Dynamic price competition with scarcity and a dead-

line can entail over-provision of products in some states (K, t ), regardless if products are differ-

entiated or not.

We prove the theorem by constructing two simple examples where the Bertrand scarcity trap

occurs—one with undifferentiated products, and one with differentiated products.

2.6.1 Illustrative Example

The following illustrative example shows that the Bertrand scarcity trap can be so severe that a

single firm may price more efficiently than two competing firms. Consider two undifferentiated

Figure 3: Illustrative example of the Bertrand scarcity trap

s(p)

p

pM2 (2) = 11/16
pC2 (1, 1) = 5/8

1/2

1

0 1
t = 1

w2(p
C
2 (1, 1))

w2(p
M
2 (2))

s(p)

p

pM2 (1) = 3/4

pM2 (2), pC2 (1, 1) = 1/2

1

0 1
t = 2

w2(p
C
2 (1, 1))

w2(p
M
2 (1))

w2(p
M
2 (2))

s(p)

p

pC3 (1, 1) = 0

pM3 (1), pM3 (2) = 1/2

1

0 1
t = 3

w3(p
C
3 (1, 1))

w3(p
M
3 (1))

w3(p
M
3 (2))

Notes: The graph depicts demand curves, single-firm optimal prices, and competitive prices in the three periods. The orange and blue regions
represent per-period welfare given a single firm with two and one unit left, respectively. The grey region represents per-period welfare if two
competing firms are active.

products that are available for sale over three sequential markets, t = 1, 2, 3. In every period t , a

single short-lived consumer with i.i.d. unit demand arrives. If p is the lowest available price, a

consumer in period t buys with probability st (p ) = 2(1−p )1(p > 0.5)+1(p ≤ 0.5) as illustrated

in Figure 3. We compare two market structures. In one market structure, each product is sold by
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competing firms, in the other, a single firm sells both products. We denote per-period welfare

given a price p by wt (p ), continuation welfare for a single merged firm with remaining capacity

K by W M
t (K ), and continuation welfare for two firms with capacity vector (1, 1), by W c

t (1, 1).

Prices are denoted by p M
t (K ) and p c

t (1, 1), analogously. In Figure 3, the per-period welfare is

illustrated by the filled regions under the demand curves.

In the last period (t = 3), the monopoly price is p M
3 (1) =

1
2 , and monopoly profits are 1

2 .

The equilibrium price and profits with Bertrand competition are 0. Total welfare is 0.75 in both

settings. Thus, welfare in the last period is unaffected by market structure and maximized. Note

that if two firms compete, a firm can gain 1
2 in profits if the other firm sells in period 1 or 2.

Period-2 demand is identical to period 3. However, if a single firm has only one unit remain-

ing, the firm sets a higher price equal to p M
2 (1) = 0.75 because it knows that there is another

chance to sell this unit in period 3 yielding expected profits of 1
2 . The constrained-optimal price

is also 0.75, so the single firm is pricing efficiently.13 With K = 2, the price is p M
2 (2) =

1
2 , which

is also constrained optimal as only one unit can be sold in period 3. With competition, prices are

the same, i.e., p c
2 (1, 1) = 1

2 .14 Finally, note that the continuation welfare given the allocation rule

with a single firm and K = 1 is W M
2 (1) = 0.8125, with a single firm and K = 2 is W M

2 (2) = 1.5,

and with competition is W c
2 (1, 1) = 1.5, respectively.

Moving to the first period, one can show that p M
1 (2) = 0.6875 > p c

1 (1, 1) = 0.625. The

constrained-efficient price for both monopoly and the competitive setting is 0.6875. Hence, the

single firm is exactly solving a social planner’s problem as all prices are constrained-efficient,

while a competitive market is over-providing the product at t = 1. Therefore, the equilibrium is

subject to the Bertrand scarcity trap.

2.6.2 Bertrand Scarcity Trap with Logit Demand

Next, we show that the Bertrand scarcity trap can indeed occur within our framework. To do

so, we simulate equilibria using the ODE characterization in Theorem 1. We assume a logit

13This is because p = 0.75 maximizes 2p (1−p ) + (1−p )2+ (1−2(1−p ))0.75.
14Note that firms do not have an incentive to deviate to higher or lower prices. In general, competition with

undifferentiated products can lead to multiplicities and non-existence of symmetric pure-strategy equilibria as also
shown in Talluri and Van Ryzin (2004) and Dudey (1992).
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demand system with time-dependent price sensitivity αt :

s f (p) =
exp

�

1−αt pf

�

1+
∑

f ′∈{1,2}
exp

�

1−αt pf ′
�

.

We simulate equilibrium and constrained-efficient prices for two different sets of parameters:

(a) logit demand that is constant over time, and (b) logit demand with increasing willingness to

pay over time. Figure 18 in Appendix D contains additional examples, including one that as-

sumes nested logit demand. We focus on the simplest case with initial capacities of K0 = (1, 1).

Note that this implies that prices are decreasing over time. The solid lines in Figure 4 repre-

sent equilibrium prices p ∗t (1, 1) and p ∗t (1, 0) = p ∗(0, 1). The dotted lines represent constrained-

efficient prices given Bertrand competition. In panel (a), we only observe under-provision in

all states—competitive prices are too high. In panel (b), we show that with increasing demand

over time, there is over-provision early on and under-provision closer to the deadline for all

capacities. Hence, scenario (b) is subject to the Bertrand scarcity trap.

Figure 4: Equilibrium prices and constrained-efficient prices under Bertrand competition
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(b) Logit demand with increasing αt
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Notes: The simulations assume K= (1, 1), λt ≡ 1, αt = 1+a (T − t ). The parameters are as follows. In panel (a): a = 0; in panel (b): a = 1
100 .

Our simulations indicate that the Bertrand scarcity trap can be more severe when demand

becomes more inelastic over time and when products are closer substitutes. Intuitively, this

occurs because early sellouts are more costly from a welfare perspective.15 However, it is

15Simulations in Figure 18 in Appendix D indicate that stronger competition between the inside goods lead to
more severe over-provision early on.
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not true that the Bertrand scarcity trap always occurs if demand (in terms of arrival rates or

preferences) is “sufficiently increasing” or if products are close substitutes.

Finally, we note that because the Bertrand scarcity trap can result in over-provision early on

and under-provision close to the deadline, efficiency may be improved by “compressing” prices

over time. For this reason, we consider both uniform pricing and the use of pricing heuristics in

our empirical analysis.

3 Data and Descriptive Evidence

We apply our framework to the US airline industry, a significant contributor to US economic

activity, with over 811 million passengers flown, representing $196 billion in revenues for do-

mestic travel in 2019 alone.16 Although numerous insights on airline markets have been derived

from publicly available data published by the Bureau of Transportation Statistics (BTS) (e.g.,

Berry, 1992; Borenstein and Rose, 1994, etc.), a key barrier in studying airline pricing dynam-

ics has been a lack of available data. Publicly available data (such as the BTS DB1B and BTS

T100 tables) are aggregated and are not suited for studying dynamic pricing at high frequencies.

Our study exploits new data provided to us through a research partnership with a large U.S.

airline that enables us to investigate dynamic pricing in markets with competition. We merge

internal data for a single airline with data that our research partner acquires from third parties.

The third-party data has strong parallels with other contributed data sets, such as the the Nielsen

scanner data that is commonly used in retail studies. Firms supply information on core business

activities (such as pricing and demand information) to third parties that then assemble the data

to be used for market intelligence purposes. Our data has all the same features of the Nielsen

data, except that ours are not anonymized.

We first discuss our route selection criteria. We then provide an overview on the specific

data variables that we use in our study before presenting preliminary evidence. Our data cover

the first nine months of departures in 2019.

16Source: https://www.bts.gov/newsroom/2019-annual-and-4th-quarter-us-airline-financial-data and
https://www.bts.gov/newsroom/final-full-year-2019-traffic-data-us-airlines-and-foreign-airlines.
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3.1 Route Selection

We use the publicly available DB1B data to select routes to study. These data contain 10%

of bookings in the US but lack information on the booking date, departure date, and flights in-

volved. Our analysis concentrates on nonstop flight competition. We use the following selection

criteria applied to the 2019 DB1B data:

i) We limit ourselves to routes where nonstop service is provided by exactly two airlines

and remove routes where nonstop service is not provided by our airline partner. For

expositional purposes we always refer to the second airline as “the competitor”;

ii) We eliminate routes where the total number of nonstop quarterly traffic is less than 2,000

and greater than 50,000;

iii) We calculate the fraction of passengers who are not making connections for a given route,

i.e., consumers traveling from A to B who do not make an intermediate connection at C .

We remove routes in which the fraction of nonstop travel is less than 50%.

After imposing these selection criteria, we eliminate routes with incomplete third-party data.

From this final set of over 500 routes, we randomly select 50 routes.17

Figure 5: Summary Analysis from the DB1B Data
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(b) CDF of Passenger-Weighted Fares
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Note: Panel (a) records the PDF of nonstop traffic among local traffic in the DB1B data (orange) and for selected routes (blue). Panel (b) plots
the CDF of prices for selected routes (blue) and all dual-carrier markets (orange). Panel (c) reports the number of aggregate monthly departures
for the routes in our sample.

In Figure 5 we provide summary analysis of the 50 routes in our sample with a comparison

to the DB1B data. In panel (a), we show the distribution of passengers flying nonstop (see
17We obtained data for only these 50 routes.
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Section 3.2.1 for a formal definition). Our sample is skewed to the right on purpose as this

limits the role of connecting options which we do not model. In panel (b) we show that the

distribution of fares for our selected routes is similar to the universe of duopoly routes. Finally,

in panel (c) we use the BTS T100 segment data to plot the total number of monthly departures

for the routes in our sample. Over half of our sample contains routes in which there are fewer

than five daily frequencies across both airlines between the origin and destination. Several

routes feature twice-daily service (one flight per airline). At the other extreme, one route in our

data contains nearly 10 flights per day.

3.2 Data Description

We next describe the novel data that we use in our empirical analysis.

3.2.1 Bookings Data

The bookings data detail flight-level sales counts at a daily frequency. We focus exclusively on

economy-class bookings. We observe separate booking counts for different types of itineraries

booked, but we do not observe the itineraries themselves. For example, consider an origin-

destination pair (OD), or a route, denoted by A → B . We observe the number of passengers

who book nonstop travel for flights on route A → B . We refer to these passengers as local

passengers. Due to data availability, we do not observe booking counts of the form A→C → B .

These are also local passengers who are traveling from A to B , but they make an intermediate

connection at C . As previously stated, our route selection criteria are meant to minimize the

importance of this type of traffic for consumer demand.

Our data also contains flow passenger counts. These are passengers who are traveling on

itineraries such as A→ B → C or C → A→ B . That is, these passengers are either using B as

a connection point between A→C , or, they are using A as a connection point between C → B .

This traffic is important to consider because it affects the overall availability of seats on a flight

from A → B . We again do not observe the exact itineraries booked, so we model flow traffic

as exogenous reductions in remaining capacity. As a robustness check, we subtract all flow

passenger bookings to define an alternative initial capacity condition.
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Table 1: Synthesized Example of Booking Data

Route Airline Flight Num. Dep. Date. Days from Dep. Local Pax. Flow Pax.

A→ B ID 1 FL 1 9/1/2019 90 1 0
A→ B ID 2 FL 2 9/1/2019 90 0 1

...
...

...
...

...
...

...
A→ B ID 1 FL 1 9/1/2019 17 1 2
A→ B ID 2 FL 2 9/1/2019 17 1 0

...
...

...
...

...
...

...
A→ B ID 1 FL 1 9/1/2019 0 2 3
A→ B ID 2 FL 2 9/1/2019 0 3 1

Note: Synthesized data example of the booking data, which is at the route-airline-flight number-departure date-day before departure level. We
observe the number of consumers who book nonstop travel (local pax.) as well as the number of consumers who book connecting itineraries
for the routes we study (flow pax.).

We present a synthesized example of the booking data in Table 1. Our data are at the

route-airline-flight number-departure date-day before departure level. Three other features of

the bookings data are worth noting. First, the booking counts in our sample are complete in

that they contain both tickets purchased directly with the airline and any alternative booking

channel, e.g., an online travel agency.18 Second, because we observe all bookings, we can

construct each flight’s load factor over time (total seats booked / capacity). This is a key state

variable in our study. Third, as previously mentioned, we observe booking counts but not the

associated itineraries themselves. For example, if a consumer purchases a round-trip ticket, we

observe the associated booking counts for the outbound and return legs, but we do not know

that those two “counts” are associated with a single itinerary. This may be a significant concern

if there are significant round-trip discounts. We confirm that this is not the case for the routes

we study because we observe all fares offered in a given market.

3.2.2 Pricing Data

We observe all potential fares consumers may face for the routes in our sample. It is typically

the case that more than one fare may be available for purchase at a given point in time. This is a

consequence of how airlines price, and need not conform to tickets of different qualities, such as

18In the industry, these bookings are often referred to as direct and indirect bookings, respectively.
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first class versus economy tickets. We briefly describe airline pricing practices in Section 3.4.

Each itinerary has a discrete set of potential prices consumers may face over time. We refer

to the set of potential fares as a “fare menu.” Our focus is on nonstop, economy class fare

menus, which we observe for all airlines and routes in our sample. Note that these menus are

never flight-specific, but they may be departure-date-specific. That is, all flights with the same

departure date share the same fare menu. In practice, it is common that many departure dates

share the same menu. We observe fare menus at the daily level and therefore, we observe if any

fare value changes (see below for more details).

Figure 6 contains an example fare menu. The vertical axis denotes a fare level, and the

horizontal axis denotes days from departure (DFD). For this particular airline-route, there are at

most eight unique fares.19 If the fare-DFD is filled in, this means it is possible that consumers

may be offered this fare. Whether a fare is actually offered depends on how the airline’s pricing

heuristic allocates remaining inventory to these fares. The white area in the bottom right denotes

advance purchase (AP) restrictions—it is not possible to book the lowest fares close to departure

and therefore, they will never be available for purchase.

Figure 6: Fare Menu Example

01020304050607080
Days Before Departure

140
160
200
220
260
340
580
940

Fa
re

Note: Example pricing menu over time. Prices rounded to nearest $20.

In addition to the fare menus themselves, we observe the lowest available fare (LAF) that can

be purchased at a given point in time. These data are flight-time specific because they depend on

19Note that within a row, it is possible for the fare level to change by day before departure. This is because each
row corresponds to a fare class and not necessarily a unique fare. We observe whenever this occurs.
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remaining capacity. The LAF for each flight is what we use as “price” in our demand analysis.

We assume that all consumers purchase at the LAF because of recent empirical evidence that

shows that over 91% of consumers purchase the LAF (Hortaçsu et al., 2021b).

3.2.3 Arrivals Data

We do not assume market sizes as is common in empirical studies. Instead, we leverage click-

stream data provided to us by the air carrier. We use these data to construct a measure of arrivals,

e.g., the number of consumers who searched for tickets at the route, departure date, day before

departure level.

Allowing for market size variation is important in our setting because flights are subject to

demand shocks. However, using search data for a single carrier understates true arrivals because

consumers may search and purchase directly with competitor airlines or with online travel agen-

cies. We address this complication by scaling up observed searches using a hyperparameter and

conducting robustness exercises which we describe below.

3.3 Summary Analysis

Table 2: Summary statistics

Data Series Variable Mean Std. Dev. Median 5th pctile 95th pctile

Fares
One-Way Fare ($) 233.7 111.4 218.6 92.1 390.7
Num. Fare Changes 6.4 2.4 6.0 3.0 11.0

Bookings
Booking Rate-local 0.2 0.6 0.0 0.0 1.0
Booking Rate-all 0.5 1.2 0.0 0.0 3.0
Ending LF (%) 72.1 19.8 76.0 32.9 98.0

Note: One-Way fare is for the lowest economy class ticket available for purchase. Number of fare changes records the number of price
adjustments observed for each flight. Booking rate-local excludes flow traffic. Booking rate-all includes both local and flow traffic. Ending
load factor (LF) reports the percentage of seats booked at departure time.

We provide a summary of the main data in Table 2. We limit our analysis to the last 90

days before departure due to overwhelming sparsity in bookings beyond 90 days. Average

fares across airlines in our sample are $234. On average, each flight experiences over six price
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adjustments in 90 days. The average daily booking rate is less than one. Roughly 40% of

observed bookings is local traffic, which is the demand we model in Section 4. The remaining

are flow bookings, which we model using exogenous reductions in remaining capacity over

time. At the departure time, average load factors are 72%. Roughly 3.5% of flights in our

sample eventually sell out. We do not model overbooking but note that this practice may be

welfare improving as it could allow firms to reallocate capacity to consumers with the highest

valuations.

Figure 7: Prices and Bookings by Day Before Departure

(a) Prices over Time
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(b) Bookings per Route-Departure Date over Time

020406080
Days Before Departure

0.0

0.5

1.0

1.5

2.0

2.5

3.0

B
oo

ki
ng

 R
at

e

Mean
25th Pctile
75th Pctile

Note: Panel (a) shows the average and interquartile range of flight prices over time. Panel (b) shows the average and interquartile range of flight
booking rates per route-departure date over time. Greater than 30 days before departure, the 25th and 75th percentiles coincide.

In Figure 7 we plot average fares and flight-level booking rates by day before departure. The

left panel (a) shows that average fares are fairly flat between 90 and 21 days before departure.

The top end of the distribution is decreasing in this time window. There are noticeable “steps” in

the last 21 days before departure which highlights the use of advance purchase (AP) discounts

as described in Section 3.2.2. In our sample, we typically observe AP requirements at 21, 14, 7,

and 3 days before departure. Note that fares increase by over 70% in three months. In the right

panel (b) we highlight that bookings increase as the departure date approaches. This coincides

with increasing prices suggesting that demand becomes more inelastic over time. The booking

rate is greater than one per flight over the last month before departure.

In Figure 8 we compare outcomes across competitors. The left panel (a) provides a scatter

plot of load factors at departure across airlines. The orange squares present route-level averages.
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Note there exists a large mass of points both above and below the 45-degree line. We find that

no airline consistently sells a larger fraction of capacity than the other carrier for all routes. The

blue dots correspond to route-departure date averages by airline. We do observe a few departure

dates in which airlines sell all their inventory. In our empirical analysis, we do not model flights

after sell out. In the right panel (b), we plot the average fare difference across airlines over time

when exactly two flights are offered. Note that fares tend to be similar—the average difference

is less than $10. One airline has relatively higher prices well in advance of departure and

relatively lower prices close to departure. More importantly, we find that prices across airlines

are nearly equal 50% of the time. This is a consequence of airlines having identical prices in

their fare menus.

Figure 8: Load Factor and Price Differences across Carriers

(a) Load Factors
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Note: Panel (a) shows the average load factor (across all flights) at the route-departure date level for both competitors in blue. The orange
squares report average route-level load factors. The diagonal line is the 45-degree line. Panel (b) shows the average and the 25th and 75
percentiles of the difference in prices for markets in which each firm offers exactly one flight.

3.4 Pricing Heuristics

We observe how one airline has designed and operationalized its pricing system. We use this

information to guide our supply-side models. Reviewing the airline’s pricing documentation

and optimization code itself, we find that airline pricing practices differ substantially from our

competitive equilibrium benchmark model in a number of important ways. First, no competi-

tor pricing information enters the pricing algorithm. The algorithm used by our airline is not a
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reinforcement learning algorithm as studied in recent applied theory work. It originated in oper-

ations research to approximate the single-firm optimal control problem solution and focuses on

time-varying opportunity costs due to aggregate demand uncertainty. In addition to not incor-

porating competitor prices, the heuristic does not internalize the existence of any competition,

regardless of market structure. Every flight is optimized in isolation.

How is this consistent with observing identical prices across airlines (Figure 8-b) when the

observed pricing heuristic does not incorporate any competitor information? Price matching is

possible because managers that decide fare menus have matched competitor fares. That is, the

example fare menu shown in Figure 6 for a single airline may partially or completely match the

fare menu chosen by a competitor airline. Hortaçsu et al. (2021b) shows that all major airlines

have teams that monitor competitor fare menus and either initialize or respond to competitor

actions. While fare menus naturally limit which prices consumers may face and enable price

matching, we confirm that this is not strategically chosen by the pricing heuristic.

We do not endogenize the fare menus in our analysis because nearly 40% of prices within a

fare menu do not change within our sample. That is not to say flight prices (LAF) do not change

over time, but rather, the discrete set of fares from which LAF is determined by do not change

across calendar time. We find that 20% of fare menu prices change once. The maximum number

of unique prices across fare menus we observe in the sample is 11; however, this represents only

0.01% of observed fare menus. Studying the strategic implications of designing fare menus is

beyond the scope of this paper.

Given these observations, we design two heuristics for our counterfactual analysis that re-

flect these observed constraints. We refer to the heuristics as the “lagged model” and the “de-

terministic model.” Both heuristics use discrete fare menus and do not internalize competitors

as a strategic player. The heuristics differ in how the single-agent dynamic control problem is

constructed.20 In the lagged model, each firm, having observed its competitor’s last period price

(LAF), assumes that this price will also be charged in the current and all future periods. If that

LAF disappears due to an AP opportunity expiring, the next lowest fare is assumed to be offered

for the remaining time. Each firm then calculates its residual demand curves in all remaining

20We do not consider the pricing heuristic used in Hortaçsu et al. (2021b) due to data availability, e.g., the
demand forecasts used by all airlines.
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periods and solves a single-firm dynamic programming problem. In the deterministic model,

each firm simply assumes its competitor will price at the lowest possible fare on the menu in all

remaining periods. That is, the lagged model relies on LAFs whereas the deterministic model

leverages the fare menu information only. We assume that firms believe their competitor will be

at the minimum fare on the menu because more than 50% of observed prices are at the minimum

value on their respective pricing menus. We assume all firms use the same pricing heuristic.21

4 Demand Model and Estimates

4.1 Empirical Specification

We model nonstop air travel demand using a flexible nested logit demand model. Our approach

differs from some recent empirical work on airlines that assume a mixed-logit specification of

“business” and “leisure” travelers (Lazarev, 2013; Williams, 2022; Aryal et al., 2022; Chen and

Jeziorski, 2023; Hortaçsu et al., 2021b). In these studies, two price sensitivity parameters are

estimated as well as the fractions of arriving consumer types over time. We do not consider

mass-point random coefficients, rather, we allow for time-specific price coefficients. We pur-

sue this approach because it maps to our theoretical model and results in unique equilibrium

price paths. We found that mixed-logit models commonly result in four stage-game equilibria,

requiring both full characterization of stage game equilibria and an equilibrium selection mech-

anism. Our approach allows for a rich demand system and avoids solving stage game equilibria

explicitly due to Theorem 1.

We define a market as an origin-destination (r ), departure date (d ), and day before departure

(t ) combination. Each flight j , leaving on date d , is modeled across time t ∈ {0, ..., T }. The first

period of sale is t = 0, and the flight departs at T . Demand is modeled at the daily level over

a 90-day horizon. Arriving consumers choose a flight that maximizes their individual utilities

from the choice set Jt ,d ,r , or select the outside option, j = 0.

21See Brown and MacKay (2021) on work on pricing algorithm choice.
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We specify consumer arrivals to be

λt ,d ,r = exp
�

τOD
r +τ

DD
d +τ

SD
t ,d + f (t )

�

,

where the τs denote fixed effects for the route (OD), departure date (DD), and search date (SD).

We model f (·) using a polynomial series of degree three. We scale up these estimated arrival

rates using hyperparameters to account for unobserved searches. Smoothness of f (·) allows us

to use our ODE equilibrium characterization.

Conditional on arrival, we specify consumer utilities as

ui , j ,t ,d ,r = x j ,d ,rβ −αt pj ,t ,d ,r +ζi ,J + (1−σ)ϵi , j ,t ,d ,r ,

where ζi ,J + (1−σ)ϵi , j ,t ,d ,r follows a type-1 extreme value distribution, and ζi ,J is an idiosyn-

cratic preference for the inside goods. Products are partitioned into two nests. The outside good

belongs to its own nest, and all inside goods to the second nest. The parameterσ ∈ [0, 1] denotes

correlation in preferences within the nests. We allow the consumer price sensitivity (αt ) to vary

over time using three-day intervals of time; hence, we estimate 30 price sensitivity parameters.

We include a number of covariates in x that are assumed to not vary across t : departure week

of the year, departure day of the week, route, carrier, and departure time fixed effects. In Sec-

tion 4.4, we discuss an extension of this baseline model that includes an additional unobservable

(ξ) that is potentially correlated with price. Arriving consumers solve their utility maximization

problems: consumer i chooses flight j if and only if

ui , j ,t ,d ,r ≥ ui , j ′,d ,t ,r , ∀ j ′ ∈Jt ,d ,r ∪{0}.

We define (dropping the t , d , r subscripts)

DJ :=
∑

j∈J

exp

�

x jβ −αpj

1−σ

�

,
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so that the probability that a consumer purchases j within the set of inside goods is equal to

s j |J :=
exp

�

x jβ−αpj

1−σ

�

DJ
.

It follows that the probability that a consumer purchases any inside good product is equal to

sJ :=
D 1−σ
J

1+D 1−σ
J

.

Overall product shares are equal to s j = s j |J · sJ , which are at the market level (t , d , r ).

Our assumptions imply that demand is distributed Poisson with a flight-level booking rate of

min
�

λt ,d ,r · s j ,t ,d ,r , K j ,t ,d ,r

	

, where K j ,t ,d ,r denotes remaining inventory.

4.2 Estimation Procedure

We estimate the model using a two-step estimation approach. In the first step, we estimate the

arrival process parameters using Poisson regressions. We then estimate preferences of the Pois-

son demand model using maximum likelihood. We estimate standard errors using bootstrap.

We follow Hortaçsu et al. (2021b) in constructing arrivals using clickstream data for one

airline. We count the number of searches corresponding to each market (r, d , t ), and then scale

up estimated arrival rates to account for unobserved searches. We apply the property of Poisson

distributions that the sum of Poisson variables is Poisson with added intensities. We assume

that consumers who search/purchase through alternative platforms (travel agents, other airlines’

websites) have the same underlying preferences. We use the fraction of direct bookings by day

before departure as weights when we scale up the estimated arrival rates. This adjusts arrivals

for a single carrier. In our preferred specification, we then double these arrival rates to account

for competitor indirect and direct searches, both of which are unobserved to us. Our demand

estimates do not vary substantially under alternative scaling parameters (see Section 4.4).
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4.3 Identification

In empirical work, it is customary to treat the market size as given. We use arrivals data to

discipline our demand estimates and recover changes in willingness to pay over time. Without

access to arrivals data, it is difficult to estimate preferences in models with demand uncertainty

because we cannot distinguish between data generated by many arrivals and price sensitive

consumers, or few arrivals and price insensitive consumers (Vulcano et al., 2012). Our arrivals

data estimate that market participation increases over time in all routes studied, which informs

the attractiveness of travel relative to the normalized outside option. For example, if we assumed

market sizes were constant over time when they are actually increasing over time, we would

estimate early demand as being too elastic and late demand as being too inelastic.

Stochastic demand allows us to measure demand response to price changes. In the model,

every booking changes the opportunity cost for the next unit and results in a discontinuous

price jump. This also reflects how the observed pricing system operates: a booking can close

the availability of a given fare on the fare menu at a random time. Our identification of demand

of the baseline model is inspired by the regression discontinuity literature. Within intervals of

time (three day intervals), where αt is fixed and the arrival process has been estimated, bookings

cause jumps in opportunity costs and hence, prices (as well as choice set variation). Over 60%

of observed price changes occur before advance purchase discounts expires. The timing of

advance purchase discounts for a given route does not change over time, and it is uncommon for

fares on the fare menus to change over time (see Section 3.4). Our identification approach relies

on measuring the observed demand response around price jumps. As a result, we can measure

interval-specific price elasticities. A price change for one firm informs substitution patterns to

other products versus the outside good (σ). The fixed effects are identified by booking rate

differences across weeks of the year, route, times of the day, and airlines. In our demand model

extension that allows for an additional unobservable to be correlated with price, we instrument

for demand using cost (scarcity) shifters (see next subsection).
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4.4 Demand Estimates

We summarize our demand estimates in Table 3. The nesting parameter is estimated to be

0.5 implying substantial substitution within inside goods. We estimate a significant change in

consumer price sensitivity over time, which is shown in Figure 9-(a). Almost all of our controls

are significant, with day of the week and week of the year having the strongest influence on

market shares. The competitor FEs are less important in driving variation in shares. We estimate

the average own-price elasticity to be -1.44 (s.d. = 0.81), indicating slightly more elastic demand

than in Hortaçsu et al. (2021b), which uses similar data for single-carrier routes.

Table 3: Demand Estimates Summary Table

Variable Symbol Estimate Std. Error. Range % Sig.

Nesting Parameter σ 0.498 0.010 − −

Price Sensitivity α − − [-0.511,-0.074 ] 100.0

Competitor FE − − − [0.000,0.071 ] 100.0

Day of Week FE − − − [-1.637,-0.961 ] 100.0

Departure Time FE − − − [-0.462,-0.050 ] 100.0

Route FE − − − [-0.177,0.226 ] 94.4

Week FE − − − [-0.953,0.699 ] 86.0

Sample Size N 2,814,686

Average Elasticity e D -1.438

Note: Demand estimates for the 50 routes in our sample. Demand model contains 304 parameters. Standard errors for the two-step estimation
procedure computed using 100 bootstrap samples. Log-likelihood value equal to -1,319,714.4.

In Figure 9-(b), we plot average adjusted arrival rates as well as different percentiles (5%,

25%, 75%, 95%) across markets. For each route, we estimate just a few arrivals 90 days before

departure that rise to over 10 passengers per day close to departure. Note that while the 75th

percentile closely follows the mean, the top part of the distribution is substantially higher, which

corresponds to the routes with a larger number of departures and overall bookings. Empirical

shares are also increasing, with the aggregate inside share peaking at 25% within the last few

days of departure.
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Before turning to counterfactuals, we briefly discuss additional demand results. Our demand

estimates are robust to the choice in scaling factor. We find that average demand elasticities with

scaling parameters between 1.0 and 3.5 are between -1.40 (s.d. = 0.78) and -1.46 (s.d. = 0.82).

We have also estimated a demand model that incorporates an additional unobservable (ξ) that is

potentially correlated with p . We use a 2-step estimation procedure where we first estimate the

arrival process parameters and then use a control function to estimate the demand parameters

using quasi-maximum likelihood estimation. Included in our set of instruments is a polynomial

expansion of remaining inventory, indicators for AP fares, and the number of flights available

for purchase. With this approach, we estimate average demand elasticities to be -1.59, with a

standard deviation of 0.87. These estimates are also robust to the choice in scaling parameter.22

Figure 9: Price Sensitivity and Arrival Rate Parameters

(a) Price Sensitivity Parameters
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(b) Arrival Rates

020406080
Days Before Departure

0

10

20

30

40

50

A
rr

iv
al

 R
at

es

Mean
25%-75%
5%-95%

Note: Panel (a) shows our estimates of the price sensitivity parameters in 3-day groupings. Panel (b) shows fitted values of arrival rates over
time adjusted for unobserved searches. The mean is the average arrival rate across all markets. The percentiles are also over markets.

5 Counterfactual Analysis

With demand estimated, we conduct a series of counterfactual exercises. We first discuss our

counterfactual setup and implementation strategy before presenting our findings.
22We do not use this specification as our baseline model as the pricing equation does not account for the pres-

ence of multiple unobservables in shifting price (Petrin and Train, 2010). Nonetheless, Hortaçsu et al. (2021a)
provide some Monte Carlo evidence that the magnitude of the bias may not be severe in similar data generat-
ing environments. Implementing all counterfactuals using these demand estimates, we find quantitatively similar
effects.
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5.1 Counterfactual Design

Competitive Dynamic Pricing. We approximate the continuous-time model to solve for equi-

librium prices for every route-departure date in our sample. Both firms start with initial ca-

pacities K f and K f ′ , which we take from the data. We apply an ODE solver algorithm to the

system of ODEs derived in Theorem 1. We tune the solver based on estimated arrival rates.

For example, when the daily arrival rate is low, we can approximate the model using a coarse

time interval ∆. When the arrival rate is high, we adjust the interval so that pricing decisions

are at a finer level. Our approximation ensures that the expected number of arrivals within

a time interval is less than one. Within an interval, the ODE system is calculated using a

fourth-order Runge-Kutta (RK4) solver.23 By leveraging our equilibrium characterization, we

avoid explicitly solving the following approximate number of stage games in our non-stationary,

finite-horizon setting:

R
︸︷︷︸

Routes

× D
︸︷︷︸

Dep. Dates

× T
︸︷︷︸

Days From Dep.

×
1

∆
︸︷︷︸

Time Interval

× J × F
︸ ︷︷ ︸

dim(Ω)

× Π f , j K0
︸ ︷︷ ︸

initial capacities

≈ 59 billion.

We store Ωt and pt every 24 hours due to memory constraints (the policy functions alone would

be over 3TB in size). Our implementation of the dynamic competitive equilibrium outcome

sets prices to be constant within a day. This maps well to our empirical setting as prices are

adjusted daily—our airline reopitmizes remaining inventory once a day. To simulate demand

given the policy functions, we use multinomial distributions after drawing arrivals from their

corresponding Poisson distributions. When demand exceeds remaining inventory, we assume

random rationing in all counterfactuals.

Because our equilibrium characterization involves differentiable pricing policies, we verify

that our simulated pricing policies exhibit no jumps. We do not detect multiplicities in solving

the dynamic game for all route-departure date combinations across all counterfactuals.

Uniform Pricing. We begin by comparing the dynamic competitive equilibrium outcome to

23In order to test the accuracy of the RK4 solver for our case, we analytically solve a simple single-firm problem
with constant demand and compared the solver’s performance to using Euler’s method. The relative error of the
Euler method solver was about 10−3, while for the RK4 solver it was 10−9, resulting in a solution 6 orders of
magnitude more accurate.
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another natural benchmark model—uniform pricing. With uniform pricing, firms set a single

price for each route-departure date. To solve for the uniform pricing equilibrium, we use it-

erative best response. Given each competitor price from the last iteration, we simulate 10,000

flights to compute expected revenues. We solve for the optimal price and iterate across best-

response functions until convergence.

Pricing Heuristics. Recall that the two pricing heuristics we describe in Section 3.4 capture

key characteristics of the observed pricing technology for one airline: (i) it does not condition

on competitor scarcity, (ii) it does not consider competition as a strategic player, and (iii) prices

are determined from a discrete set. For the lagged model, we initialize the fare entering residual

demand to be the lowest fare on the competitor’s pricing menu. Expectations of residual demand

adjust after AP fares expire. We use our fare data to construct route-specific fare menus that

firms take as given.

Social Planner and Single-Firm Solutions. We also solve the continuous-time social planner

and single firm problems. For the single-firm scenario, we assume a single firm manages both

flights and jointly maximizes flight revenues. The social planner also manages both flights while

maximizing total welfare. We use the ODE characterization in Lemma 1 for the the simulations

of the single-firm counterfactual. The social planner’s problem can also be characterized by

ODEs (see Appendix A and C).

Additional Implementation Details. To implement all counterfactuals, we conduct 10,000

Monte Carlo experiments for every route, departure date combination. We smooth αt using a

polynomial regression in order to avoid discontinuities in the time derivatives (R 2 = 0.974). We

simulate all counterfactuals twice, once where flow traffic is subtracted from initial observed

capacity in advance, and one where flow traffic is modeled through Poisson processes that

make inventory units disappear independent of the price. We report the latter specification here.

Appendix D contains the former approach. Both the direction and magnitude of all effects are

similar across specifications.

In the main text, we focus on 18 duopoly markets where each airline offers exactly one flight.

In Appendix D, we report results for all routes. The reason we separate the counterfactuals is

that with more than two flights, solving for equilibria of the dynamic pricing game becomes
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computationally challenging even with our characterization. The dimensionality of the state

space and policy functions grows exponentially. For example, consider a route where airlines

operate 100 seat aircraft. Let a :b denote the number of flights operated by airline a and airline

b , respectively. Our main analysis focuses on 1:1 routes. A 2:1 has 150 times more states (13

bil.). A 2:2 route has 20,000 times more states (1.7 tril.). Examining more complex market

structures likely requires state aggregation, which we leave for future research.

In Appendix D, we consider all routes, but we reduce the number of flights studied. To

do this, we adjust the choice set, utilities, and capacities for routes where an airline offers

multiple flights a day. Appendix D contains details of the procedure as well as the counterfactual

results. Both the direction and magnitude of the overall welfare effects for the entire sample are

consistent with the 18 routes reported here.

5.2 Competitive Forces in Dynamic Pricing Games

Before reporting our welfare estimates, we describe the competitive forces present in our es-

timated model. We find both positive and negative scarcity effects. In fact, they vary within

a particular route-departure date (see Figure 19-(a) in Appendix D). However, in general, we

find that scarcity effects tend to not change signs. Checking the cross derivatives of the best re-

sponse, only 0.5% of stage games (5,900,000 games) are not a game of strategic complements.

This is likely also the reason why we do not observe multiplicity of equilibria. Own-scarcity

effects tend to remain positive because own scarcity drives up prices. Similarly, competitor-

scarcity effects tend to remain negative because the sale of a competitor typically increases

future prices. Continuation profits are indeed non-monotonic in own capacity.

We plot average scarcity effects in Figure 10. Own-scarcity effects are largest around three

weeks before departure. This is because selling a unit decreases a firm’s continuation payoff

the most when inventory is sufficiently scarce. However, note that the curves are U-shaped and

start tending toward zero within a few weeks of departure. This occurs because once a firm

sells out, it is not reported in the average, i.e., peak flights with higher scarcity effects drop out

of the sample. Scarcity effects also drop toward zero close to the deadline as there are fewer

opportunities to sell.
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Figure 10: Benchmark Model Scarcity Effects
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Note: Panel (a) reports the own-firm scarcity effect over time for both firms. Panel (b) reports the cross-firm competitor scarcity effect over
time for both firms.

We also find that scarcity effects are asymmetric across airlines due to preferences and ini-

tial capacity differences. Competitor-scarcity effects tend to be larger for our airline research

partner than its competitors. This asymmetry implies that the sale of one airline softens com-

petition more than a sale of the other airline. At the same time, own-scarcity effects tends to

be larger for competitor airlines. This is because competitor airlines typically offer planes with

lower capacities than our research partner.

Finally, we investigate the insights from Proposition 2 in our data in Figure 19 in Appendix

D. We find that the sale from the firm with the minimum inventory remaining results in the

largest price effect. Price increases when the firm with the minimum inventory remaining sells

are over five times ($30) greater than the price increase ($5) if the firm with more seats remain-

ing sells closer to departure.

5.3 Welfare Comparison to Uniform Pricing

We report market outcomes comparing the dynamic competitive outcome to uniform pricing

in Table 4. Average prices in our benchmark simulations ($226) are close to observed prices

($234). Prices are 10% higher under uniform pricing ($250). Although uniform pricing features

higher average prices, revenues are substantially lower for both firms. The revenue effects are
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Table 4: Counterfactual Results for Single Product, Duopoly Routes

Price Firm 1 Rev. Firm 2 Rev. CS Welfare Q LF Sellouts

Dyn. Comp. 225.9 5369.1 5557.1 16104.1 27030.2 19.3 70.7 9.2

Uniform 250.1 4464.3 4756.1 18357.7 27578.1 18.6 69.9 8.0

% Diff. 10.7 -16.9 -14.4 14.0 2.0 -3.8 -0.8 -1.2

Note: Price is the average across routes (r ) after computing the average across firms ( f ), departure dates (DD), days before departure (DFD)
and simulation number (n) within a route. Firm revenues are similarly defined, except aggregated over DFD. CS is the expected consumer
surplus, computed the same way as revenues. Welfare is the sum of revenues and CS. Q is the total number of seats sold. LF is the average
fraction of seats sold (including flow traffic) at the departure time. Sellouts is the fraction of flights sold out.

driven by relatively higher fares for early-arriving, price sensitive customers and relatively lower

fares for late-arriving, price insensitive customers under uniform pricing. Dynamic pricing

expands output due to lower prices early on. This can be seen in Figure 11-(a), which shows

purchase probabilities over time. Figure 20 in Appendix D plots sellouts and load factors.

Figure 11: Competitive Dynamic Pricing and Uniform Pricing
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Note: Panel (a) shows the average shares over time for the benchmark and uniform models. Panel (b) shows the ratio of average cumulative
welfare for the benchmark model with respect to the uniform one.

While we find that total output is higher, total welfare is lower under the dynamic compet-

itive equilibrium. This contrasts with recent empirical studies in the single-firm setting, where

dynamic pricing has been found to increase welfare (Hendel and Nevo, 2013; Castillo, 2022;

Williams, 2022).24 Consumer surplus is 14% higher with uniform pricing, which is larger in

magnitude than the associated revenue losses (between 14-17%) of not adjusting prices based
24Note that in both settings the welfare comparison is theoretically ambiguous.
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on demand and scarcity. The welfare loss is driven by high fares close to the departure date,

when demand intensity and willingness to pay are high. This can be seen in Figure 11-(b),

which plots the ratio of cumulative welfare under dynamic pricing over uniform pricing.

These welfare effects are robust along a number of dimensions. First, at the route level, we

find no routes for which welfare under dynamic pricing is higher than under uniform pricing.

Second, our results are robust to how we handle flow traffic (see Figure 21 and Table 6 in

Appendix D). Finally, our results also hold when we investigate the entire data sample (see

Table 10 in Appendix D).

5.4 Welfare Comparison to Pricing Heuristics

Counterfactual results comparing the dynamic competitive equilibrium outcome to the use of

heuristics appear in Table 5. Figure 12 plots market outcomes over time. We normalize mar-

ket outcomes under the dynamic competitive equilibrium model to 100 and report percentage

differences for the heuristics. At a high level, we find that heuristics: (i) raise prices, (ii) raise

total revenues, (iii) raise consumer surplus, and (iv) result in higher total welfare than under the

dynamic competitive equilibrium. Our results provide a strategic reason for the use of pricing

heuristics—they result in higher total revenues than under dynamic price competition.25 Inter-

estingly, both models result in significant price matching, at the same frequency as observed in

the data (between 58-60%).

Table 5: Heuristic Counterfactuals for Single Product, Duopoly Routes

Price Firm 1 Rev. Firm 2 Rev. CS Welfare Q LF Sellouts

Dyn. Comp. 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Lagged 107.1 104.4 105.1 102.9 103.6 99.4 99.9 98.6

Deterministic 100.6 99.8 100.6 107.8 104.7 103.3 101.1 106.1

Note: Price is the average across routes (r ) after computing the average across firms ( f ), departure dates (DD), days before departure (DFD)
and simulation number (n) within a route. Firm revenues are similarly defined, except aggregated over DFD. CS is the expected consumer
surplus, computed the same way as revenues. Welfare is the sum of revenues and CS. Q is the total number of seats sold. LF is the average
fraction of seats sold (including flow traffic) at the departure time. Sellouts is the fraction of flights sold out.

25We do not study pricing heuristic adoption because of the difficulty in analyzing outcomes if only one firm
uses a heuristic while the other firm solves the full dynamic problem.
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We find that the deterministic model primarily benefits consumers (+8%) because it places

maximal downward pressure on prices—firms believe their competitors will always be capacity

unconstrained and charge the lowest fares on the menu. This expands output on average, in-

creases load factors, and increases the frequency of sell outs. Average prices are slightly higher

than under the competitive equilibrium outcome due to the use of discrete prices. We find that

average prices are within 1% of the competitive equilibrium outcome, and while overall rev-

enues improve, firm 1’s revenues are essentially unchanged (-.2%). Firm 2’s revenues increase

by 0.6%.

Figure 12: Competitive Dynamic Pricing and Pricing Heuristics
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(c) Cumulative CS Comparison
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Note: (a) Product shares over time. (b) Cumulative welfare of competitive equilibrium relative to heuristics over time. (c) Cumulative consumer
surplus of competitive equilibrium relative to heuristics over time. (d) Cumulative revenue of competitive equilibrium relative to heuristics over
time.

The lagged pricing model adjusts residual demand outside of predefined advance purchase
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requirements. We find that this heuristic benefits firms and consumers alike, however, it supplies

more benefits to firms (4-5% revenue increase) than to consumers (3% surplus increase). The

reason is that demand shocks tend to raise own-scarcity effects until sufficiently close to the

deadline. This causes a firm to raise its price. Its competitor, having observed the increased

fare, is incentivized to also increase its price. On the flip side, this effect also causes prices to

decrease towards the departure date as scarcity effects tend to decline. Hence, the gap in prices

between the deterministic and lagged models closes.

These findings are also robust across routes and how we handle flow traffic. We find only one

route in which welfare under heuristics is lower than under the dynamic competitive outcome. In

Figure 7 in Appendix D, we show that the revenue and consumer surplus effects under heuristics

with restricted capacities yields similar findings.

5.5 Discussion of Findings

Our framework allows us to uncover why pricing heuristics and uniform pricing increase wel-

fare relative to the competitive equilibrium outcome. We show that some airline markets are

subject to the Bertrand scarcity trap. We calculate the constrained efficient prices (see Defini-

tion 1) and compare it to the competitive equilibrium outcome. Figure 13 shows an example

route that is subject to the Bertrand scarcity trap: in a significant fraction of states we observe

over-provision for at least one firm well before the departure date. More precisely, we calculate

the fraction of states at time t with min j K = K where at least one of the competitive prices is

lower than its corresponding constrained-efficient price. This fraction is represented as a shade

of grey, with white being 100% of states and black being 0% of states. The orange (solid)

line tracks the median flight, and the blue (dotted) lines represent the 10th and 90th percentiles

across simulations. For this route, competitive prices are inefficiently low for the first 30 days

prior to departure. Close to departure, we find that both airlines tend to under-provide.

Across all routes and simulations, we estimate that 3% of posted prices are subject to over-

provision due to the Bertrand scarcity trap.26 Hence, our welfare effects are driven by both over-

provision of products early on and under-provision close to the departure date. In fact, we find

26Figure 24 in Appendix D plots the percentage of flights subject to the Bertrand scarcity trap over time.
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Figure 13: Bertrand Scarcity Trap in Example Route
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Note: The heatmap at (t , K ) represents the fraction of states at time t such that min j K= K that are subject to the Bertrand Scarcity Trap. The
orange (solid) and blue (dotted) lines represent the median and 10th-90th percentiles of minimum capacity observed in simulations, respectively.

that there is under-provision close to the deadline in all counterfactuals performed (competitive

outcome, uniform pricing, heuristics) compared to the social planner’s solution. Under the

dynamic competitive outcome, welfare is 88% of the first-best outcome, and heuristics obtain

92.5% of the first-best (see Tables 8-9 in Appendix D).

Our results also showcase the benefits of price competition in airline markets more generally.

Simulating revenues where both flights are managed by a single firm, we find that welfare

goes down 16% relative to the dynamic competitive equilibrium outcome. That is, while the

competitive outcome involves some inefficiencies due to the Bertrand scarcity trap and from

under-provision close to the departure date, competitive forces have a net positive effect on

welfare and come closer to the efficient outcome.

6 Conclusion

In this paper we introduce a framework to study dynamic pricing of perishable goods in an

oligopoly. We show that dynamic price competition may involve inefficiencies because of a

new competitive force that we call the Bertrand scarcity trap: competition can lead to over-

provision of bookings early on leading to under-provision of bookings close to departure . We
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empirically estimate our model using daily prices and bookings for multiple, competing air-

lines. We compare market outcomes under the competitive equilibrium outcome to a scenario

where airlines do not respond to competitor scarcity and use discrete prices. Our examination

of one airline’s internal pricing systems demonstrates that such constraints exist in its system.

Our main empirical finding is that the adoption of such constraints in the pricing systems soften

competition and allow airlines to avoid under-provision of bookings close to departure when

demand is more price insensitive. In the data, this under-provision is caused in part by the

Bertrand scarcity trap, but also by market power due to product differentiation. Competing

heuristic pricing mechanisms increase both firm revenues and consumer welfare because ca-

pacity is used more effectively.

We see several potential directions for future work. First, it may be possible to examine

dynamic price competition in settings with larger state spaces (more firms and/or products) by

combining aspects of our equilibrium characterization with state aggregation methods. Sec-

ond, we believe relevant extensions of our framework include endogenizing capacity choice,

allowing for dynamic versioning (across cabins or ticket qualities), and examining network ef-

fects across routes. Finally, we consider short-lived buyers. A fruitful area for future research

is to consider dynamic pricing games where buyers may strategically delay their purchasing

decisions. In such a model, overselling and cancellations, can play an important role.
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A Proofs

A.1 Technical results

A.1.1 Continuous time limit

We use the following result for the proofs of Lemma 1 and Theorem 1.

Lemma 2. Consider a continuous price function (Ω,θ ) 7→ p∗(Ω,θ ) = (p ∗j (Ω,θ )) j on a compact

set O , and a bounded and continuous function A :RJ ×RF×J ×T →RF . Let Π f ,t (K;∆), f ∈F ,

be a solution to the difference equations

�

Π f ,t+∆(K;∆)−Π f ,t (K;∆)

∆

�

f

=−λt A
�

p∗
�

Ω(K;∆)),θ t

�

, Ω(K;∆), θ t

�

where Ω(K;∆) = (ω f
j ,t (K;∆)) f , j , ω

f
j ,t (K;∆) := Π f ,t+∆(K;∆)−Π f ,t+∆(K− e j ;∆), with boundary

conditions (i) Π f ,T (K;∆) = 0, (ii) Π f ,t (K;∆) = −∞ if K j < 0 for a j ∈ J f , and (iii) Π f ,t (K−

e j ;∆) =Π f ,t (K;∆) if K j = 0 for a j ̸∈ J f , K j ′ ≥ 0 for all j ′ ∈J f . Then, (Π f ,t (K;∆)) f converges

and any limit (Π f ,t (K)) f satisfies

�

Π̇ f ,t (K)
�

f
=−λt A

�

p∗
�

Ω(K),θ t

�

, Ω(K), θ t

�

,

where Ω(K) = (ω f
j ,t (K)) f , j , ω

f
j ,t (K) := Π f ,t (K) −Π f ,t+∆(K − e j ), with boundary conditions (i)

Π f ,T (K) = 0, (ii) Π f ,t (K; ) =−∞ if K j < 0 for a j ∈J f , and (iii) Π f ,t (K−e j ′) =Π f ,t (K) if K j ′ = 0

for a j ′ ̸∈ J f , K j ≥ 0 for all j ∈J f .

Proof. Since A is bounded, the difference equations show that (Π f (K;∆)) f ∈F ,K≤K0
is equicontin-

uous and equibounded in t as ∆→ 0. Hence, by the Arzela-Ascoli Theorem, there exist limit

points (Π f (K)) f ∈F ,K≤K0
. We claim that

�

Π f ,t (K)
�

f
=

T
∫

t

λu A
�

p∗
�

Ωu (K),θ u

�

, Ωu (K), θ u

�

d u . (5)

To this end, we note that if we let ⌈u ⌉∆ to be the smallest number that is divisible by ∆ and
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larger or equal than u

�

Π f ,t (K;∆)
�

f
=

T
∫

t

λ⌈u ⌉∆ A
�

p∗
�

Ω⌈u ⌉∆(K;∆),θ ⌈u ⌉∆
�

, Ω⌈u ⌉∆(K;∆), θ ⌈u ⌉∆
�

d u . (6)

We take the limit ∆ → 0 on both sides. The left-hand side of (6) converges to the left-hand

side of (5). On the right-hand side, Ω⌈u ⌉∆(K;∆) converges to Ωu (K). Hence, by continuity of

p∗ and A the integrand in (6) converges to the integrand in (5). By the dominated convergence

theorem the right-hand side of (6) converges to the right-hand side of (5). Thus, any limiting

value function exists and must satisfy (5). ■

A.1.2 Continuity of stage game prices

Lemma 3. Let P ⊂ RJ be compact and O a compact set of (Ω,θ ). Further, let g :P ×O →

P , (q;Ω,θ ) 7→ p be (i) continuous in q, (ii) continuous in Ω and θ , (iii) such that it implicitly

defines a unique p∗(Ω,θ ) satisfying g (p∗(Ω,θ );Ω,θ ) = p∗(Ω,θ ) for all (Ω,θ ) ∈O . Then, p∗(Ω,θ )

depends continuously on Ω and θ .

Proof. Consider the graph of p ∗(Ω,θ ): G = {(p,Ω,θ ) : g (p;Ω,θ ) = p}. By the continuity of g ,

G is closed in P ×O . Since p ∗(Ω,θ ) stays in the compact set P and is single-valued, G is

upper hemicontinuous as a correspondence. Hence, p ∗ is continuous as a function.27 ■

A.2 Proofs of Single Firm Model

A.2.1 Proof of Lemma 1

In the following we omit the conditioning argumetA .

Step 1: All profit-maximizing prices pM are interior. First, we show that given ω and θ ,

pM ∈ arg max
q

∑

j∈J

s j (q;θ )(q j −ω j )

27We thank Satoru Takahashi for helping us to simplify this proof.
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is bounded from below by a vector p= (p +ω1, . . . , p +ωJ ), p ∈R. We proceed with a proof by

contradiction. Suppose such a p did not exist. Then, for any p ∈R there exists an optimal price

vector pM and a j such that p M
j −ω j =min j ′(p M

j ′ −ω j ′)< p . At this optimal price pM (which

could include (minus) infinite prices), the derivative of the stage game profit with respect to

any price dimension has to be smaller than or equal to zero by optimality. The derivative with

respect to pj at pM (or as we converge to pM if it includes (minus) infinite prices) is

lim
p→pM

∑

k ̸= j

∂ sk

∂ pj
(p;θ ) (pk −ωk ) + s j (p;θ ) +

∂ s j

∂ pj
(p;θ )(pj −ω j ) ≥

lim
p→pM
−(pj −ω j )

 

�

�

�

�

∂ s j

∂ pj
(p;θ )

�

�

�

�

−
∑

k ̸= j

∂ sk

∂ pj
(p;θ )

!

︸ ︷︷ ︸

= ∂ s0
∂ pj
(p;θ )>0 by Assumption 1-iii)

+s j (p;θ ) ≥

lim
p→pM
−p
∂ s0

∂ pj
(p;θ ) + s j (p;θ )−−−−→

p→−∞
∞ by Assumption 1-iii).

Thus, for sufficiently small p , this yields a contradiction, i.e. any optimal price vector pM is

bounded by a vector p from below.

Next, we show that given ω and θ , any profit maximizing price vector pM is bounded by

a vector p̄ = (p̄ +ω1, . . . , p̄ +ωJ ), p̄ ∈ R. We again proceed with a proof by contradiction.

Suppose such a p̄ did not exist. Then, for any p̄ ∈ R, there exists an optimal price vector pM

and a j such that p M
j −ω j = max j ′

�

p M
j ′ −ω j ′

�

> p̄ . At the optimal price pM (which could

include (minus) infinite prices), the derivative of the stage game profit with respect to any price

dimension has to be greater than or equal to zero by optimality. There exists a constant C > 0

satisfying Assumption 1-iii) as we have established a lower bound p for pM . The derivative
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with respect to pj at pM (or as we converge to pM if it includes (minus) infinite prices) is

lim
p→pM

∑

k ̸= j

∂ sk

∂ pj
(p;θ )

︸ ︷︷ ︸

≥0

(pk −ωk ) + s j (p;θ ) +
∂ s j

∂ pj
(p;θ ) (pj −ω j ) ≤

lim
p→pM

∑

k ̸= j

∂ sk

∂ pj
(p;θ ) (pj −ω j ) +C −1 ∂ s0

∂ pj
(p;θ ) +

∂ s j

∂ pj
(p;θ )(pj −ω j ) =

lim
p→pM

∂ s0

∂ pj
(p;θ )

︸ ︷︷ ︸

>0

(C −1− (pj −ω j ))≤ lim
p→pM

∂ s0

∂ pj
(p;θ )(C −1−p )−−−→

p→∞
−∞ .

by Assumption 1-iii). Thus, for sufficiently large p̄ , this yields a contradiction. Hence, any

optimal price vector pM is bounded by a vector p̄ from above.

Step 2: Uniqueness of profit-maximizing price pM . It follows from Step 1 that any profit-

maximizing price pM of the stage game must satisfy the FOCs of the firm. Assumption 1-

iii) implies that the Jacobian matrix of demand DpA s(pA ;θ ,A ) is diagonally dominant since
∂ s0
∂ pj
(pA ;θ ,A ) =

�

�

∂ s j

∂ pj
(pA ;θ ,A )

�

�−
∑

j ′∈A\{ j }

∂ s j ′

∂ pj
(pA ;θ ,A ) > 0.28 Then, Dps(pA ;θ ,A ) is non-

singular by the Levy-Desplanques Theorem (see, e.g., Theorem 6.1.10. in Horn and Johnson

(2012)). Hence, the FOCs can be written as Equation 2. Because of Assumption 2 there is a

unique solution to this system of equations by Lemma 2 (Kellogg (1976)) in Konovalov and

Sándor (2010).

Step 3: Convergence. We can apply the Implicit Function Theorem to Equation 2 by As-

sumption 2 and it follows that the unique optimal price pM (Ω,θ ) is continuous in Ω and θ .

Convergence to Equation 1 follows by Lemma 2.

A.2.2 Proof of Proposition 1

Proof. i) To see that ΠM ,t (K) is decreasing in t , note that in Equation 1, setting pj > (ΠM ,t (K−

ΠM ,t (K−e j ))) results in a positive stage-game payoff, so Π̇M ,t (K)< 0.

28Consistent with the common convention, the Jacobi matrix of a vector-valued function f (x) ∈ Rn , x ∈ Rn is
Dx f (x) :=

�

∂ fi
∂ x j

�

i , j
, i denoting rows and j columns, and bold vectors x are column vectors.
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Next, we show that ΠM ,t (K)>ΠM ,t (K−e j ) for all j by induction in
∑

j
K j .

Induction start: It is immediate that ΠM ,t (e j )≥ΠM ,t (0) = 0 for all j and t ≤ T .

Induction hypothesis: Assume that ΠM ,t (K)>ΠM ,t (K−e j ) for all K with
∑

j
K j = K̄ and j ∈J .

Induction step: Now, consider a capacity vector K with
∑

j
K j = K̄ + 1. The solution of the

differential equation for the profits is

ΠM ,t (K) =

T
∫

t

λz

∑

j

s j (p
M
z (K)) (p

M
j ,z (K) +ΠM ,z (K−e j )) · e

−
z
∫

t
λu

∑

j ′
s j ′ (pM

u (K))d u

d z .

By sub-optimality of the prices pM
t (K−ek ) given capacity vector K, we have for all k

ΠM ,t

�

K
�

≥
T
∫

t

λz

∑

j

s j

�

pM
z (K−ek )

� �

p M
j ,z (K−ek ) + ΠM ,z (K−e j )

︸ ︷︷ ︸

>ΠM ,z

�

K−ek −e j

�

by induction hypothesis

�

· e
−

z
∫

t
λu

∑

j ′
s j ′ (pM

u (K−ek ))d u

d z

>ΠM ,t

�

K−ek

�

.

ii) Next, we show that ΠM ,t (K)−ΠM ,t (K− e j ) ≤ ΠM ,t (K− e j )−ΠM ,t (K− 2e j ) for all j . To

this end, let

H (x;θ ) =−max
p

∑

j

s j (p;θ )(pj − x j ).

Note that H is concave as a minimum of affine functions, strictly increasing in x. Since H is

concave and continuous, by the Fenchel-Moreau Theorem, it admits the representation

H (x;θ ) = inf
s
(s ·x−H ∗(s;θ ))

where H ∗(s;θ ) = inf
x
(x · s−H (x;θ )) is the concave conjugate of H . Moreover,

Π̇M ,t (K) =λt H (∇Πt (K);θ t )

where∇ΠM ,t (K) =
�

ΠM ,t (K)−ΠM ,t (K−e j )
�

j
. Thus, ΠM ,t (K) is the value function for the optimal
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control problem

ΠM ,t (K) = sup
s∈A
E
�

T
∫

t

λu H ∗(su ;θ u )d u

�

�

�

�

Xs
t =K

�

=: sup
s

Jt (K, s)

where Xa
t is the process which jumps by −e j at rate λt s j ,t and s ∈ A are processes adapted

with respect to the filtration on the probability space supporting Xs, with the property s j ,t = 0

if X s
j ,t = 0 (Theorem 8.1 in Fleming and Soner (2006)). Let s∗K be the optimal control in the

previous equation and s∗K −2 be the optimal control when K is replaced by K−2e j . Then, note that

since s∗K, s∗K−2e j
∈A ,

s∗K+s∗K−2e j

2 ∈A because the process
�

X
s∗K+s∗K−2e f

2
s

�

s
can be chosen as

�

X
s∗K
s +X

s∗K−2e f
s

2

�

s

(“coupling argument”). Hence,

ΠM ,t (K) +ΠM ,t (K−2e j )−2ΠM ,t

�

K−e j

�

≤

Jt (K, s ∗K) + Jt (K−2e j , s ∗K−2e j
)−2 Jt

�

K−e j ,
s∗K+ s∗K−2e j

2

�

≤

E
�

T
∫

t

λu

�

H ∗(s∗K,u ) +H ∗(s∗K−2e j ,u )−2H ∗
�s∗K,u + s∗K−2e f ,u

2

�

�

d u

�

�

�

�

X
s∗K
t =K, X

s∗K−2e j

t =K−2e j ,

�

≤0.

iii) To show that ωM
j ,t∧τ(Kt ) is a submartingale, we show that for any capacity vector K̄ with

K̄ j ≥ 2:

lim
∆→0

E0

�

ωM
j ,t+∆(Kt+∆)−ωM

j ,t (Kt )
�

�Kt = K̄
�

∆
≥ 0.

To this end, first, note that Kt is right-continuous in t . Consider K̄ with K̄ j ≥ 2. Then, we have

that

lim
∆→0

E0

�

ωM
j ,t+∆(Kt+∆)−ωM

j ,t (Kt )|Kt = K̄]

∆
=

lim
∆→0

E0

�

ωM
j ,t+∆(Kt+∆)−ωM

j ,t (Kt+∆)|Kt = K̄]

∆
+ lim
∆→0

E0

�

ωM
j ,t (Kt+∆)−ωM

j ,t (Kt )|Kt = K̄]

∆
=

ω̇M
j ,t (K̄) +λt

∑

j ′

s j ′,t (p
M
t (K̄))

�

ωM
j ,t (K̄−e j ′)−ωM

j ,t (K̄)
�
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by right-continuity of the process Kt . By (1), we can write

ω̇M
j ,t (K̄) = −λt

�

∑

j ′

s j ′,t (p
M
t (K̄))

�

p M
j ′,t (K̄)−ω

M
j ′,t (K̄)

�

− s j ′,t (p
M
t (K̄−e j ))

�

p M
j ′,t (K̄−e j )−ωM

j ′,t (K̄−e j )
�

�

.

and we know that

−ωM
j ′,t (K̄) +ω

M
j ,t (K̄)−ω

M
j ,t (K̄−e j ′) = ΠM (K̄−e j ′)−ΠM (K̄−e j )−ΠM (K̄−e j ′) +Π

M (K̄−e j ′ −e j )

= −ωM
j ′,t (K̄−e j )

Hence, lim
∆→0

E0

�

ωM
j ,t+∆(Kt+∆)−ωM

j ,t (Kt )|Kt=K̄]

∆ is equal to

−λt

�

∑

j ′

s j ′,t

�

pM
t (K̄)

��

p M
j ′,t (K̄)−ω

M
j ′,t (K̄−e j )

�

− s j ′,t

�

pM
t (K̄−e j )

��

p M
j ′,t (K̄−e j )−ωM

j ′,t (K̄−e j )
��

Then, note that by optimality of pM
t (K̄−e j ),

∑

j ′

s j ′,t

�

pM
t (K̄)

��

p M
j ′,t (K̄)−ω

M
j ′,t (K̄−e j )

�

≤
∑

j ′

s j ′,t

�

pM
t (K̄−e j )

��

p M
j ′,t (K̄−e j ))−ωM

j ′,t (K̄−e j ′)
�

.

Hence, lim
∆→0

E0

�

ωM
j ,t+∆(Kt+∆)−ωM

j ,t (Kt )|Kt=K̄]

∆ ≥ 0. ■

A.3 Proofs of Oligopoly Model

A.3.1 Existence, Uniqueness, and Continuity of the Stage Game Equilibrium

In this section we analyze the stage game parameterized by θ and Ω with several lemmata.

Recall we defined in Section 2.3 the function

g f (p,θ ,Ω) :=
� �

Dp f
s f (p;θ )

�⊺ �−1
Dp f

�

s(p;θ )⊺ω f
�⊺

︸ ︷︷ ︸

net opportunity costs
of selling

−
� �

Dp f
s f (p;θ )

�⊺ �−1
s f (p;θ )

︸ ︷︷ ︸

inverse quasi
own-price elasticities

.
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Then, the FOC for firm f ’s stage game payoff maximization problem is g f (p,θ ,Ω) = p f . We

show next that the following conditions on the stage game guarantee uniqueness and existence

of a stage game equilibrium if equilibrium prices are interior.

Assumption 3. The following two conditions hold,

i) det
�

Dp f
g f (p,θ ,Ω)− IJ f

�

̸= 0 for all p and f ;

ii) det

�

Dp

�

g(p,θ ,Ω)
�

− IJ

�

̸= 0 for all p, where g(p,θ ,Ω) :=
�

g f (p,θ ,Ω) : f ∈F
�

∈RJ .

Lemma 4. Given Assumptions 1, 2 and 3, the stage game admits a unique equilibrium. The

equilibrium price vector is finite for all available products.

Proof. Step 1: All equilibrium prices p∗ are interior.

First, we show that for fixed Ω and θ , any equilibrium price vector p∗ is bounded from

below by a vector p̄= ((p̄ +ω f
j ) j∈J f

: f ∈F ), p̄ ∈R. We proceed with a proof by contradiction.

Suppose such a p did not exist. Then, for any p there exists an equilibrium price vector p∗ and

a j such that p ∗j −ω
f
j =min f ′mink∈J f ′

p ∗k −ω
f ′

k < p . Additionally, let k ∗ = argmaxk ̸∈J f
ω

f
k .

At this equilibrium price vector p∗ (which could include (minus) infinite prices), the derivative

of firm f ’s stage game profit with respect to all firm f ’s prices has to be smaller or equal to

zero by optimality. The derivative with respect to pj at p∗ (or as we converge to p∗ if it includes

(minus) infinite prices) is

lim
p→p∗

∂ s j

∂ pj
(p;θ )(pj −ω

f
j ) +

∑

k∈J f \{ j }

∂ sk
∂ pj
(p;θ )(pk −ω

f
k )−

∑

k ̸∈J f

∂ sk
∂ pj
(p;θ )ω f

k + s j (p;θ ) ≥

lim
p→p∗
−













�

�

�

�

∂ s j

∂ pj
(p;θ )

�

�

�

�

−
∑

k∈J f \{ j }

∂ sk

∂ pj
(p;θ )

︸ ︷︷ ︸

≥0 by Assumption 1-iii)

































pj −ω
f
j +

∑

k ̸∈J f

∂ sk
∂ pj
(p;θ )

�

�

�

�

∂ s j

∂ pj
(p;θ )

�

�

�

�

−
∑

k∈J f \{ j }

∂ sk
∂ pj
(p;θ )

︸ ︷︷ ︸

∈(0,1) by Assumption 1-iii)

|ω f
k ∗ |





















+s j (p;θ ) ≥

lim
p→p∗
−

�
�

�

�

�

∂ s j

∂ pj
(p;θ )

�

�

�

�

−
∑

k∈J f \{ j }

∂ sk
∂ pj
(p;θ )

�

�

p + |ω f
k ∗ |
�

+ s j (p;θ )
∞−−−−→

p→−∞
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by Assumption 1-iii). Thus, for sufficiently small p , this yields a contradiction, i.e. any equi-

librium price vector p∗ is bounded by a vector p from below.

Next, we show that for fixed Ω and θ , any equilibrium price vector p∗ is bounded from

above by a vector p̄ = ((p̄ +ω f
j ) j∈J f

: f ∈ F ), p̄ ∈ R, by contradiction. Suppose such a p̄

did not exist. Then, for any p̄ , there exists an equilibrium price vector p∗ and a j such that

p ∗j −ω
f
j = max f ′maxk∈J f ′

p ∗k −ω
f ′

k > p̄ , j ∈ J f . At the equilibrium price p∗ (which could

include (minus) infinite prices), the derivative of firm f ’s stage game profit with respect to all

firm f ’s prices has to be greater or equal to zero by optimality. There exists a constant C > 0

satisfying Assumption 1-iii) as we have established a lower bound p for p∗. Additionally, let

k ∗ = argmaxk ̸∈J f
|C −1+ω f

k |. The derivative of firm f ’s payoff with respect to pj at p∗ (or as we

converge to p∗ if it includes (minus) infinite prices) is

lim
p→p∗

∂ s j

∂ pj
(p;θ )(pj −ω

f
j ) +

∑

k∈J f \{ j }

∂ sk

∂ pj
(p;θ )(pk −ω

f
k )−

∑

k ̸∈J f

∂ sk

∂ pj
(p)ω f

k + s j (p) ≤

lim
p→p∗

 

∂ s j

∂ pj
(p;θ ) +

∑

k∈J f \{ j }

∂ sk

∂ pj
(p;θ )

!

(pj −ω
f
j ) +C −1

 

�

�

�

�

∂ s j

∂ pj
(p;θ )

�

�

�

�

−
∑

k∈J f \{ j }

∂ sk

∂ pj
(p;θ )

!

+
∑

k ̸∈J f

∂ sk

∂ pj
(p)
�

�−C −1−ω f
k

�

� ≤

lim
p→p

 

�

�

�

�

∂ s j

∂ pj
(p;θ )

�

�

�

�

−
∑

k∈J f \{ j }

∂ sk

∂ pj
(p;θ )

!

�

C −1− p̄ +

∑

k ̸∈J f

∂ sk
∂ pj
(p)

�

�

�

�

∂ s j

∂ pj
(p;θ )

�

�

�

�

−
∑

k∈J f \{ j }

∂ sk
∂ pj
(p;θ )

︸ ︷︷ ︸

∈(0,1)

�

�C −1+ω f
k ∗

�

�

�

−−−→
p̄→∞
−∞.

Thus, for sufficiently large p̄ , this yields a contradiction. Hence, any equilibrium price vector

p∗ is bounded by a vector p̄= ((p̄ +ω f
j ) j∈J f

: f ∈F ) from above.

All in all, it follows that the best response of each firm must be within a box with extreme

points p̄ and p.

Step 2: Uniqueness of equilibrium price p∗.

It follows from Step 1 that any equilibrium price p∗ of the stage game is a solution to the
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system of FOCs. Assumption 2 ensures that the Jacobi matrix Dp f s (p f ;θ ) non-singular by the

Levy-Desplanques Theorem (see e.g. Theorem 6.1.10. in Horn and Johnson (2012)). Hence,

the FOCs can be written as g(p) = p where g is as defined in Assumption 3. By Assumption

3-ii), there is a unique solution to this system of equations by Lemma 2 (Kellogg (1976)) in

Konovalov and Sándor (2010). Further, by Assumption 3-i) and Kellogg (1976), there is a

unique solution of the first order condition of each firm’s optimization problem, given by gf(p) =

p f . Thus, for any competitor prices, there exists a unique best response of each firm f , which

solves g f (p) = p f and the unique solution to g(p) = p must be an equilibrium. ■

Lemma 5. Let Assumptions 1, 2 and 3 hold for a compact, path-connected set O of (Ω,θ ). Then

the unique equilibrium price vector p∗ (Ω,θ ) is continuous in (Ω,θ ) on O .

Proof. Let Assumptions 1, 2, and Assumption 3 hold for a compact, path-connected set O of

(Ω,θ ). Then, by Lemma 4, all stage games with parameters (Ω,θ ) ∈O admit a unique and finite

equilibrium that are uniformly bounded on O . Hence, we can apply Lemma 3. ■

A.3.2 Proof of Theorem 1

First, note that by Assumption 3 and smoothness of demand functions, there exists a neigh-

borhood around (0,θ T ) so that the stage game has a unique equilibrium. Let us denote that

neighborhood O .

The discrete-time game can be written as in Lemma 2 where A is negative the expression

in Equation 3 divided by ∆. The corresponding function A is bounded in the neighborhood O

because demand is bounded by 0 and 1. Thus, the discrete time derivatives Π f ,t+∆(K;∆)−Π f ,t (K;∆)
∆

are uniformly bounded and value functions are equicontinuous and equibounded as ∆ → 0.

As a result, ω f
j ,t (K;∆) is equicontinuous and equibounded. Hence, there is a T0(K) so that

all (Ωt (K;∆),θ t ) are in O . If K′ > K, the number of states is simply increasing and hence,

T0(K)> T0(K′).

For this fixed T0(K), the dynamic game for fixed ∆ can be analysed recursively. The bound-

ary condition at the deadline T is given by: Π f ,T (K;∆) = 0 for all K. The resulting scarcity

effects are ω f
j ,T−∆(K;∆) = 0 for all j ∈ J ∩A (K). In period t , given Ωt (K;∆) for all possible
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capacity vectors K, we can recursively define equilibrium prices p ∗t (K;∆) as equilibrium prices

of the stage game where each firm f maximizes

∑

j∈J f ∩A (K)

s j ,t (p)(pj −ω
f
j ,t (K;∆))−

∑

j ′ ̸∈J f ∩A (K)

s j ,t (p)ω
f
j ′,t (K;∆)).

This procedure yields a unique equilibrium as long as all stage games have unique equilibria,

which is guaranteed for sufficiently small ∆ if T < T0(K).

By Lemma 4 and Lemma 5, the stage games for (Ω,θ ) ∈ O have a unique solution p ∗(Ω,θ )

that is also continuous in (Ω,θ ). Then, convergence follows by Lemma 2.

The differential equation for the equilibrium prices follows then immediately from the tak-

ing the time derivative of the system of FOCs g(p∗t (K),θ t ,Ωt (K))−p∗t (K)≡ 0.

A.3.3 Proof of Proposition 2

Let λt = λ, θ t = θ . So, we will drop the parameter θ in the notation in this proof. For t close

to T , we have established in Theorem 1 that the equilibirum of the stage game is unique and the

price vectors p∗t (K) = p∗(Ωt (K)) are implicitly defined by a system of equations given by

�

Dp f
s f

�

p∗t (K)
��⊺

p∗t (K)−
�

Dp f
s(p∗t (K))

�⊺
ω f

t (K) + s f

�

p∗t (K)
�

= 0 ∀ f .

We omit K for readability whenever possible. The only time-dependent variables are then

Ωt = (ω
f
t ) f ∈F . Hence, p∗t and Ωt are continuous in t . Due to the ODE, Ωt is continuously

differentiable, so p∗t is continuously differentiable. Inductively it follows that as we take deriva-

tives of the ordinal differential equation, if Ωt is n times continuously differentiable, then p∗t

is n times continuously differentiable. The n-th time derivative (p ∗t )
(n ) depends on the time

derivatives Ωt , . . . ,Ω(n )t and is well defined because the implicit function is smooth in p and Ω.

We are interested in the limit as t → T . We show by induction in n that if K j > n for all j , then

as t → T , (ω f
j ,t )
(n )(K) = 0 for all f , j which implies the claim by Taylor’s theorem.
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Induction start: First, lim
t→T
Ωt = 0. Furthermore, we can write for all f and j :

ω̇
f
j ,t (K) =Π̇ f ,t (K)− Π̇ f ,t (K−e j )

=−λ
�

s f (p
∗ (Ωt (K)))

⊺p∗f (Ωt (K))− s(p∗ (Ωt (K)))
⊺ω f

t (K)
︸ ︷︷ ︸

=:G 1
f (Ωt (K))

−
�

s f

�

p∗
�

Ωt (K−e j )
��⊺

p∗f
�

Ωt (K−e j )
�

− s
�

p∗
�

Ωt (K−e j )
��⊺
ω f

t (K−e j )
�

︸ ︷︷ ︸

=:G 1
f (Ωt (K−e j ))

�

Thus, as t → T , ω̇ f
j ,t (K) = 0 if K j > 1. If j ∈ J f and K j = 1, then ω̇ f

j ,t (K) < 0. If j ̸∈ J f and

K j = 1, then by the competition effect ω̇ f
j ,t (K) > 0. This implies that ṗ ∗j ,T (K) < 0 if K j = 1 and

ṗ ∗j ,T (K) = 0 otherwise.

Induction assumption: Letting for Ω(m )t (K) be that matrix of m-th derivatives of ω f
j (K), we

can write for all f and j

(ω f
j ,t )
(n−1)(K) =−λ

�

G n−1
f

�

�

Ω(m )t (K)
�n−2

m=0

�

−G n−1
f

��

Ω(m )t (K−e j

��n−2

m=0
)
�

where G n−1
f ((Ω(m )t (K − e j ))n−2

m=0) =
∂ n−2

(∂ t )n−2 G 1
f (Ωt (K)). If K j > n − 1 for all j , then as t → T ,

(ω f
j ,t )
(n−1)(K) = 0 for all f , j .

Induction step: Given the induction assumption, we can also calculate the next order deriva-

tive recursively

(ω f
j ,t )
(n )(K) =−λ

�

G n ((Ω(m )t (K))
n−1
m=0)−G n (Ω(m )t (K−e j ))

n−1
m=0))

�

.

Then, note if min
i

Ki > n , then (ω f
j ,t )
(n )(K) = 0 by the Induction Assumption. If min

i
Ki = n ,

(ω f
j ,t )
(n )(K) =−λ

�

−G n (Ω(m )t (K−e j ))
n−1
m=0))

�

=−λ
∂ n−1

(∂ t )n−1
G 1

f ((K−e j )).
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A.3.4 Welfare Dynamics

Consider a discrete choice model as specified in Section 2.6. Let us denote the per-period

welfare given prices p by wt (p). Further, let us assume that there is a unique solution to the

following maximization problem for all ω= (ω j ) j∈J ∈RJ :

arg max
p

wt (p)−
∑

j∈J

s j (p;θ )ω j (7)

and let us denote the solution for parameters θ and ω by pw (ω,θ ) := (p M
j (ω,θ )) j∈J . Then,

there exists a unique welfare-maximizing price path and corresponding continuation welfare

Wt (K;∆) and an analogous result to Lemma 1 holds.

Lemma 6. Let us assume that there is a unique welfare-maximizing price path. Then, Wt (K) :=

lim∆→0 Wt (K;∆) solves the ordinary differential equation

Ẇt (K) =−λt

�

wt

�

pw (ωw
t (K),θ )

�

−
∑

j∈J

s j (p
w (ωw

t (K),θ );A (K))ω
w
j ,t (K)

�

,

with boundary conditions (i) WT (K) = 0 ∀K and (ii) Wt (K) = −∞ if K j < 0 for a j ∈J , where

ωw
t (K) = (ω

w
j ,t (K)) j∈J with ωw

j ,t (K) :=Wt (K)−Wt (K−e j ).

The proof follows annalogously to the proof of Lemma 1 from Lemma 2. However, in order

to be able to apply this result to our examples and empirical application, we need to show that

the welfare-maximizing price path is unique. To this end, we show that Equation 7 holds for

the specific form of nested logit demand functions that we use in our empricial application in

Section C.

B A Mark-up Formula for IIA Demand

Given the commonly made assumption of “independence of irrelevant alternatives (IIA),” we

can derive a clean explicit mark-up formula for dynamic price competition. The IIA assumption

in our setting can be stated as follows:

63



Assumption 4 (Independence of Irrelevant Alternatives). ∂
∂ pj

s j1 (p)
s j2 (p)

= 0 for j ̸= j1, j2 ∈J ∪{0}.

Given Assumptions 1, 2 and 4, we can show that the game with multi-product firms can be

transformed into a game of single-product firms.

Proposition 3 (Mark-up formula under IIA). Let Assumptions 1, 2 and Assumption 4 hold and

− ∂
∂ pj

s j (p)
∂ s j
∂ pj

̸= 1 for all p. Then, there exists an equilibrium of the stage game for any scarcity

matrix Ω. All equilibrium prices p∗(Ω,θ ) coincide with the equilibrium prices of a game with a

set J of players who each simultaneously choose a price pj maximizing

s j (p)
�

pj − c j

�

p− j ;Ω,θ
��

with a cost function

c j

�

p− j ;Ω,θ
�

:=ω f
j −

∑

j ′∈J f \{ j }

s̃ j , j ′(p− j )(pj ′ −ω
f
j ) +

∑

j ′ ̸∈J f

s̃ j , j ′(p− j )ω
f
j ′ (8)

and s̃ j , j ′(p− j ) :=
s j ′ (p)

1−s j (p)
.

Proof. Let Assumptions 1, 2 and 4 hold. First, note that Assumption 4 implies that for j1, j2 ̸= k

s j1
(p)

s j2
(p)
=

∂ s j1
∂ pk
(p)

∂ s j2
∂ pk
(p)

.

By Step 1 in the proof of Lemma 4 and by Assumption 2, any equilibrium price vector of the

stage game p∗(Ω;θ ) must satisfy for all j ∈J f the FOCs of firm f ’s payoff given by:

pj −ω
f
j +

∑

j ′∈J f \{ j }

∂ s j ′ (p)
∂ pj

∂ s j (p)
∂ pj

(pj ′ −ω
f
j ′)−

∑

j ′ ̸∈J f

s j ′ (p)
∂ pj

∂ s j (p)
∂ pj

ω
f
j ′ =−

s j (p)
∂ s j (p)
∂ pj

.
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Since ∂ s j

∂ pj
(p) =−

∑

k∈J \{ j }

∂ sk
∂ pj
(p)− ∂ s0

∂ pj
, this can be rewritten as

pj −ω
f
j −

∑

j ′∈J f \{ j }

1
∑

k∈J \{ j }

sk (p)
s j ′ (p)
+ s0(p)

s j ′ (p)

(pj ′ −ω
f
j ′) +

∑

j ′ ̸∈J f

1
∑

k∈J \{ j }

sk (p)
s j ′ (p)
+ s0(p)

s j ′ (p)

ω
f
j ′ =−

s j (p)
∂ s j (p)
∂ pj

⇔pj −ω
f
j −

∑

j ′∈J f \{ j }

s j ′(p)

1− s j (p)
(pj ′ −ω

f
j ′) +

∑

j ′ ̸∈J f

s j ′(p)

1− s j (p)
ω

f
j ′ =−

s j (p)
∂ s j (p)
∂ pj

.

By Assumption 4, for j ′ ̸= j , ∂
∂ pj

s j ′ (p)
1−s j (p)

= 0, we can define s̃ j , j ′((pj ′) j ′ ̸= j ) :=
s j ′ (p)

1−s j (p)
and

c ((pj ′) j ′ ̸= j ;Ω) :=ω f
j +

∑

j ′∈J f \{ j }

s̃ j , j ′((pj ′) j ′ ̸= j )(pj ′ −ω
f
j )−

∑

j ′ ̸∈J f

s̃ j , j ′((pj ′) j ′ ̸= j )ω
f
j ′ .

Thus, the FOCs of the stage game are equivalent to the first order conditions of a game with J

players where each player j ’s payoff is given by

s j (p)
�

pj − c ((pj ′) j ′ ̸= j ;Ω)
�

.

We call this game the “auxiliary game with J players.” Note that the derivative of player j ’s

payoff is greater or equal than zero if and only if

∂ s j (p)

∂ pj

�

pj − c
�

(pj ′) j ′ ̸= j ;Ω
��

+ s j (p)≥ 0.

Hence any equilibrium of the stage game is an equilibrium of a game with J players with the

above payoffs and vice versa.

In order to show existence of equilibria of the stage game, it is sufficient to show existence

of equilibria of the auxiliary game with J players and the above payoffs. First, recall that by

Step 1 in the proof of Lemma 4, all best response prices are interior and hence, if an equilibrium

exists, it must satisfy the FOCs. Further, since we assume − ∂
∂ pj

s j (p)
∂ sf
∂ pf

̸= 1 for all p, the first-order

condition has a unique solution which must be a maximizer of player j ’s payoff function. All

in all, the best response function of player j ,R j , maps a compact set of prices q into a compact
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set of prices p. For ε> 0, consider the mapping

Φ : (p, q) 7→
�

pj −ε
�

pj − c j (q− j ;Ω,θ ) +
s j (q− j , pj )
∂ s j (q− j ,pj )
∂ pj

�

�

j∈J

Then DpΦ is a diagonal matrix with diagonal entries

φ j := 1−ε
�

1+
∂

∂ pj

s j (q− j , pj )
∂ s j (q− j ,pj )
∂ pj

︸ ︷︷ ︸

≥0

�

Let ε> 0 be so that φ j > 0 for all j . Then all diagonal entries are in (0, 1−ε) and Φ is Lipschitz

continuous with Lipschitz constant max
j
φ j . Further DqΦ is bounded because it is continuous.

Then, the implicit function theorem in the form of Theorem 1.A.4 in Dontchev and Rockafellar

(2009) implies continuity ofR = ((R j ) j ). Hence, by Brouwer’s fixed-point theoremR = ((R j ) j )

has a fixed point. ■

Proposition 3 implies that even with multiple firms and products, the first-order conditions

(FOCs) that implicitly define the best response functions of the firms, can be written in a markup

formulation for each product, with ε j (p) =
∂ s j (p)
∂ pj

pj

s j (p)
being the elasticity of demand, as

p ∗j (Ω,θ )− c j (p− j ;Ω,θ )

p ∗j (Ω,θ )
=−

1

ε j (p∗(Ω,θ ))
.

C Nested Logit Calculations

Since our empirical application uses a nested logit specification, we verify in the following that

all assumptions made in the model are satisfied for a nested logit demand model given by

s j (p) =
e
δ j −αpj

1−σ

∑

j∈J
e
δ j −αpj

1−σ

︸ ︷︷ ︸

=:s j |J (p)

�

∑

i∈J
e
δi −αpi

1−σ

�1−σ

1+

�

∑

i∈J
e
δi −αpi

1−σ

�1−σ s0(p) =
1

1+

�

∑

i∈J
e
δi −αpi

1−σ

�1−σ .
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Note that the same properties follow for regular logit by setting σ = 0 and replacing α with α
ρ .

To simplify notation, let DJ :=
∑

i∈J
e
δi −αpi

1−σ and G :=σ
1+D 1−σ

J

D 1−σ
J
+1−σ. Then,

∂ s j

∂ pj
=−

α

1−σ
s j

�

1−
�

σs j |J + (1−σ)s j

��

=
α

1−σ
(G s 2

j − s j )

∂ s j

∂ pj ′
=
α

1−σ
s j ′
�

σs j |J + (1−σ)s j

�

=
α

1−σ
G s j ′s j .

It is easy to check that Assumptions 1-i) and ii) are satisfied. We show that Assumption 1-iii) is

satisfied. Letting s 0 ≡ s0

�

p
�

, we can set C =αs 0 > 0 since then

∂ s0

∂ pj
=αs j s0 >C s j .

Then,

(Dps(p;θ ))−1 =−
1

αs0
·















1+σDσ−1
J + (1−σ) s0

s1
1+σDσ−1

J . . . 1+σDσ−1
J

1+σDσ−1
J

... 1+σDσ−1
J

... ... ...

1+σDσ−1
J . . . . . . 1+σDσ−1

J + (1−σ) s0
sJ















(Dps(p;θ ))−1 =−
1−σ
α
·















G+σ+D 1−σ
J

1−σ + 1
s1

G+σ+D 1−σ
J

1−σ . . .
G+σ+D 1−σ

J
1−σ

G+σ+D 1−σ
J

1−σ
... G+σ+D 1−σ

J
1−σ

... ... ...
G+σ+D 1−σ

J
1−σ . . . . . .

G+σ+D 1−σ
J

1−σ + 1
sJ















Hence, ε̂= ((Dp s(p;θ ))⊺)−1s(p;θ ) =− 1
αs0

1 and noting that ∂
∂ pj

�

1
s0

�

=−α s j

s0
,

Dpε̂=









s1
s0

. . . sJ

s0

...
s1
s0

. . . sJ

s0









.
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It follows that Assumption 2 is satisfied:

det
�

−Dpε̂− I
�

= (−1)J
1

s0
̸= 0.

Finally, we show that Equation 7 holds. To this end, note that we can write the static

consumer surplus for our demand specification as

C S =
1

αt
log

�

1+D 1−σ
J

�

=
1

αt
log

 

1+

 

∑

j∈J

exp

�

δ j −αt pj

1−σ

�

!1−σ!

and hence DpC S =−s(p). We can write the per-period welfare as

wt (p) =C S +
∑

j∈J

s j (p;θ )pj .

Then, the objective function in Equation 7 boils down to

C S +
∑

j∈J

s j (p;θ )(pj −ω j ).

The FOC of the optimization problem is then given by p =ω. This implies the uniqueness of

the solution for all ω.

It follows immediately that all properties are satisfied for all subsetsA ⊂J .
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D Additional Tables and Figures

D.1 Simulations

Figure 14: Strategic complements and substitutes in the stage game

(a) Strategic complements
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(b) Strategic substitutes
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Notes: The simulations assume δ = (1, 1), αt ≡ 1 and logit demand with scaling factor ρ = 1, as well as ω1
1 =ω

2
2 = 4. Panel (a) shows both

firms’ best response functions for ω1
2 =ω

2
1 = 4. Panel (b) shows both firms’ best response functions for ω1

2 =ω
2
1 =−4.

Figure 15: Effects of own and competitor scarcity on prices

(a) Exogenous Ω
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(b) Dynamic game Ω
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Notes: The simulations assume δ = (1, 1), αt ≡ 1 and logit demand with scaling factor ρ = 4. Panel (a) shows both firms’ best response
functions for ω1

1 =ω
2
1 = 2 and ω1

2 =ω
2
2 =−6 when no ωs are considered in the profits (orange), when only the own ωs are considered (blue),

and when both ωs are considered (grey). Panel (b) shows an analogous figure for the Ω matrix obtained at t = 0 in the dynamic duopoly game
with T = 2 and λt ≡ 10 at the state K= (20, 1).
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Figure 16: Simulated prices and scarcity effects

K= (5, 4)
(a) Price paths over time
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(b) Own ω over time
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(c) Competitor ω over time
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K= (4, 4)
(d) Price paths over time
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(e) Own ω over time
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(f) Competitor ω over time
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K= (3, 4)
(g) Price paths over time
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(h) Own ω over time
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(i) Competitor ω over time
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Notes: The simulations assume δ= (1, 1), αt ≡ 1 and logit demand with scaling factor ρ = 0.05.
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Figure 17: Price paths for varying levels of capacity

(a) Sale of a product with minimum inventory
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(b) Sale of a product without minimum inventory
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Notes: These simulations correspond to logit demand with parameter values δ j = 1, α = 1, λ = 10 and scale factor ρ = 0.05. Panel (a) shows
both firm’s price paths for K= (3, 5) and K= (2, 5). Panel (b) shows both firm’s price paths for K= (3, 5) and K= (3, 4).

Figure 18: Bertrand scarcity trap for with increasing arrivals and constant nested logit

(a) Constant logit demand with increasing λt
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(b) Constant nested logit demand
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Note: The simulations assume K= (1, 1). Panel (a) uses the same demand system as in Figure 4 with λt = 2 exp (−(T − t )/100); panel (b) uses

constant nested logit demand given by s f (p) =
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D.2 Empirical Evidence of Dynamic Pricing Forces

Figure 19: Example of a negative own Opportunity Costs

(a) Example own Omega over Time
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(c) Average Price Jumps over Time
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Note: Panel (a) shows the own ω over time for a given state in one of our benchmark solutions. Panel (b) shows the log of the absolute value
of the own ω over time for three states in one of our Benchmark solutions. The dotted lines represent the behavior these curves would follow
if the omegas were proportional to |T − t |min(K). Panel (c) shows the price change if the firm with the minimum and maximum capacities sell a
unit.

D.3 Welfare Calculations with Restricted Capacities

Figure 20: Competitive Dynamic Pricing and Uniform Pricing

(a) Load Factors over Time

020406080
Days Before Departure

20

30

40

50

60

70

Lo
ad

 F
ac

to
r

Dyn. Comp.
Uniform

(b) Sellouts over Time
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Note: Panel (a) shows average load factors over time for uniform pricing and dynamic price competition. Panel (b) shows the average sellouts
over time for the same two models.
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Figure 21: Counterfactual Summary Plots, Restricted Capacities

(a) Shares over Time
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(b) Load Factors over Time
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(c) Sellouts over Time
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(d) Cumulative Welfare Comparison
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Note: Panel (a) shows the average shares over time for the benchmark and uniform models. Panel (b) shows the average load factors over
time for the same two models. Panel (c) shows the average sellouts over time for the same two models. Panel (d) shows the ratio of average
cumulative welfare for the benchmark model with respect to the uniform one.

Table 6: Counterfactual Results for Single Product, Duopoly Routes, Restricted Capacities

Price Firm 1 Rev. Firm 2 Rev. CS Welfare Q LF Sellouts

Dyn. Comp. 228.4 5216.1 5535.3 16561.3 27312.8 18.9 70.3 2.2

Uniform 243.7 4362.3 4533.4 18804.3 27700.0 18.5 69.8 4.4

% Diff. 6.7 -16.4 -18.1 13.5 1.4 -2.0 -0.5 2.2

Note: Price is the average across routes (r ) after computing the average across firms ( f ), departure dates (DD), days before departure (DFD)
and simulation number (n) within a route. Firm revenues are similarly defined, except aggregated over DFD. CS is the expected consumer
surplus, computed the same way as revenues. Welfare is the sum of revenues and CS. Q is the total number of seats sold. LF is the average
fraction of seats sold (including flow traffic) at the departure time. Sellouts is the fraction of flights sold out.
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Figure 22: Competitive Dynamic Pricing and Pricing Heuristics, Restricted Capacities

(a) Shares over Time
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(b) Cumulative Welfare Comparison
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Note: (a) shows purchase probabilities for for three models over time. (b) shows the cumulative welfare under dynamic price competition
relative to heuristics over time.

Table 7: Heuristic Counterfactuals for Single Product, Duopoly Routes, Restricted Capacities

Price Firm 1 Rev. Firm 2 Rev. CS Welfare Q LF Sellouts

Dyn. Comp. 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Lagged 105.3 103.0 104.6 103.2 103.5 99.1 99.8 97.8

Deterministic 99.6 99.7 100.2 107.1 104.3 102.4 101.0 123.2

Note: Price is the average across routes (r ) after computing the average across firms ( f ), departure dates (DD), days before departure (DFD)
and simulation number (n) within a route. Firm revenues are similarly defined, except aggregated over DFD. CS is the expected consumer
surplus, computed the same way as revenues. Welfare is the sum of revenues and CS. Q is the total number of seats sold. LF is the average
fraction of seats sold (including flow traffic) at the departure time. Sellouts is the fraction of flights sold out.

Figure 23: Heuristic Counterfactuals Results over Time, Restricted Capacities

(a) Shares over Time
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(b) Cumulative CS Comparison
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(c) Cumulative Rev. Comparison
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Note: Panel (a) shows the average shares over time for the two heuristic models. Panel (b) shows the ratios of cumulative consumer surplus
for the two models with respect to the benchmark. Panel (c) shows the ratios of cumulative revenue for the two models with respect to the
benchmark.
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Figure 24: Bertrand Scarcity Trap over Time
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Note: Plotted is the percentage of simulated observations subject to the Bertrand Scarcity Trap. The percentage is first calculated for a given
route (r ) and days from departure (DFD). The mean and percentiles shown are then taken across routes.

Table 8: Social Planner and Single Firm Counterfactuals for Single Product, Duopoly Routes

Price Firm 1 Rev. Firm 2 Rev. CS Welfare Q LF Sellouts

Dyn. Comp. 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Social Planner 12.0 9.5 20.0 179.9 113.2 171.2 120.7 322.5

Single Firm 151.7 107.5 112.1 70.1 86.2 71.7 91.2 67.1

Note: Price is the average across routes (r ) after computing the average across firms ( f ), departure dates (DD), days before departure (DFD)
and simulation number (n) within a route. Firm revenues are similarly defined, except aggregated over DFD. CS is the expected consumer
surplus, computed the same way as revenues. Welfare is the sum of revenues and CS. Q is the total number of seats sold. LF is the average
fraction of seats sold (including flow traffic) at the departure time. Sellouts is the fraction of flights sold out.

Table 9: Social Planner and Single Firm Counterfactuals for Single Product, Duopoly Routes,
Restricted Capacities

Price Firm 1 Rev. Firm 2 Rev. CS Welfare Q LF Sellouts

Dyn. Comp. 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Social Planner 19.4 13.9 27.9 178.9 116.8 167.9 120.0 413.6

Single Firm 150.9 108.0 110.7 69.4 85.1 71.2 91.1 36.1

Note: Price is the average across routes (r ) after computing the average across firms ( f ), departure dates (DD), days before departure (DFD)
and simulation number (n) within a route. Firm revenues are similarly defined, except aggregated over DFD. CS is the expected consumer
surplus, computed the same way as revenues. Welfare is the sum of revenues and CS. Q is the total number of seats sold. LF is the average
fraction of seats sold (including flow traffic) at the departure time. Sellouts is the fraction of flights sold out.

D.4 Welfare Calculations for Entire Sample

i) In our counterfactuals we consider only two products. In order to include routes that have

more than one flight per carrier per day, we adjust the choice set, utilities, and capacities
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for all routes.

ii) We take the mean utilities (δ) across observed flights for each route-carrier-departure date.

iii) We use the maximum observed capacity for each route-carrier-departure date. Although

it may be natural to sum the capacities when restricting the choice set, we have found that

large capacities presents a significant computational burden.

iv) We use the observed arrival process for each route-departure date. We do not adjust the

estimated arrival processes as the inside good shares tend to be small. That is, because

most consumers choose the outside good, we do not scale down arrival rates to account

for smaller choice sets.

Table 10: Counterfactual Results for Entire Sample

Price Firm 1 Rev. Firm 2 Rev. CS Welfare Q LF Sellouts

Dyn. Comp. 220.4 5489.5 5925.6 16504.4 27919.5 20.1 80.1 20.4

Uniform 261.8 4729.7 5192.9 18711.8 28634.4 18.8 78.6 15.0

% Diff. 18.8 -13.8 -12.4 13.4 2.6 -6.4 -1.5 -5.4

Note: Price is the average across routes (r ) after computing the average across firms ( f ), departure dates (DD), days before departure (DFD)
and simulation number (n) within a route. Firm revenues are similarly defined, except aggregated over DFD. CS is the expected consumer
surplus, computed the same way as revenues. Welfare is the sum of revenues and CS. Q is the total number of seats sold. LF is the average
fraction of seats sold (including flow traffic) at the departure time. Sellouts is the fraction of flights sold out.
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