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This paper derives the limiting distributions of alternative jackknife instrumen-
tal variables (JIV) estimators and gives formulas for accompanying consistent
standard errors in the presence of heteroskedasticity and many instruments. The
asymptotic framework includes the many instrument sequence of Bekker (1994,
Econometrica 62, 657–681) and the many weak instrument sequence of Chao
and Swanson (2005, Econometrica 73, 1673–1691). We show that JIV estimators
are asymptotically normal and that standard errors are consistent provided that√

Kn/rn → 0 as n → ∞, where Kn and rn denote, respectively, the number of
instruments and the concentration parameter. This is in contrast to the asymptotic
behavior of such classical instrumental variables estimators as limited informa-
tion maximum likelihood, bias-corrected two-stage least squares, and two-stage
least squares, all of which are inconsistent in the presence of heteroskedasticity,
unless Kn/rn → 0. We also show that the rate of convergence and the form of the
asymptotic covariance matrix of the JIV estimators will in general depend on the
strength of the instruments as measured by the relative orders of magnitude of rn
and Kn .
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1. INTRODUCTION

It has long been known that the two-stage least squares (2SLS) estimator is biased
with many instruments (see, e.g., Sawa, 1968; Phillips, 1983; and the references
cited therein). In large part because of this problem, various approaches have
been proposed in the literature to reduce the bias of the 2SLS estimator. In recent
years, there has been interest in developing procedures that use “delete-one” fitted
values in lieu of the usual first-stage ordinary least squares fitted values as the in-
struments employed in the second stage of the estimation. A number of different
versions of these estimators, referred to as jackknife instrumental variables (JIV)
estimators, have been proposed and analyzed by Phillips and Hale (1977), An-
grist, Imbens, and Krueger (1999), Blomquist and Dahlberg (1999), Ackerberg
and Devereux (2009), Davidson and MacKinnon (2006), and Hausman, Newey,
Woutersen, Chao, and Swanson (2007).

The JIV estimators are consistent with many instruments and heteroskedasticity
of unknown form, whereas other estimators, including limited information max-
imum likelihood (LIML) and bias-corrected 2SLS (B2SLS) estimators are not
(see, e.g., Bekker and van der Ploeg, 2005; Ackerberg and Devereux, 2009; Chao
and Swanson, 2006; Hausman et al., 2007). The main objective of this paper is
to develop asymptotic theory for the JIV estimators in a setting that includes the
many instrument sequence of Kunitomo (1980), Morimune (1983), and Bekker
(1994) and the many weak instrument sequence of Chao and Swanson (2005). To
be precise, we show that JIV estimators are consistent and asymptotically normal
when

√
Kn/rn → 0 as n → ∞, where Kn and rn denote the number of instruments

and the so-called concentration parameter, respectively. In contrast, consistency
of LIML and B2SLS generally requires that Kn

rn
→ 0 as n → ∞, meaning that the

number of instruments is small relative to the identification strength. We show that
both the rate of convergence of the JIV estimator and the form of its asymptotic
covariance matrix depend on how weak the available instruments are, as measured
by the relative order of magnitude of rn vis-à-vis Kn . We also show consistency
of the standard errors under heteroskedasticity and many instruments.

Hausman et al. (2007) also consider a jackknife form of LIML that is slightly
more difficult to compute but is asymptotically efficient relative to JIV under
many weak instruments and homoskedasticity. With heteroskedasticity, any of
the estimators may outperform the others, as shown by Monte Carlo examples
in Hausman et al. Hausman et al. also propose a jackknife version of the Fuller
(1977) estimator that has fewer outliers.

This paper is a substantially altered and revised version of Chao and Swanson
(2004), in which we now allow for the many instrument sequence of Kunitomo
(1980), Morimune (1983), and Bekker (1994). In the process of showing the
asymptotic normality of JIV, this paper gives a central limit theorem for quadratic
(and, more generally, bilinear) forms associated with an idempotent matrix. This
theorem can be used to study estimators other than JIV. For example, it has already
been used in Hausman et al. (2007) to derive the asymptotic properties of the
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jackknife versions of the LIML and Fuller (1977) estimators and in Chao,
Hausman, Newey, Swanson, and Woutersen (2010) to derive a moment-based
test.

The rest of the paper is organized as follows. Section 2 sets up the model and
describes the estimators and standard errors. Section 3 lays out the framework for
the asymptotic theory and presents the main results of our paper. Section 4 com-
ments on the implications of these results and concludes. All proofs are gathered
in the Appendixes.

2. THE MODEL AND ESTIMATORS

The model we consider is given by

y
n×1

= X
n×G

δ0
G×1

+ ε
n×1

,

X = ϒ +U,

where n is the number of observations, G is the number of right-hand-side vari-
ables, ϒ is the reduced form matrix, and U is the disturbance matrix. For the
asymptotic approximations, the elements of ϒ will implicitly be allowed to
depend on n, although we suppress the dependence of ϒ on n for notational
convenience. Estimation of δ0 will be based on an n × K matrix, Z , of instru-
mental variable observations with rank(Z) = K . Let Z = (ϒ, Z) and assume that
E[ε|Z] = 0 and E[U |Z] = 0.

This model allows for ϒ to be a linear combination of Z (i.e., ϒ = Zπ, for
some K × G matrix π). Furthermore, some columns of X may be exogenous,
with the corresponding column of U being zero. The model also allows for Z
to approximate the reduced form. For example, let X ′

i , ϒ ′
i , and Z ′

i denote the
i th row (observation) for X, ϒ, and Z , respectively. We could let ϒi = f0(wi )
be a vector of unknown functions of a vector wi of underlying instruments and
let Zi = (p1K (wi ), . . . , pK K (wi ))

′ for approximating functions pkK (w), such as
power series or splines. In this case, linear combinations of Zi may approximate
the unknown reduced form (e.g., Newey, 1990).

To describe the estimators, let P = Z(Z ′Z)−1 Z ′ and Pij denote the (i, j)th ele-
ment of P. Additionally, let �̄−i = (Z ′Z − Zi Z ′

i )
−1(Z ′ X − Zi X ′

i ) be the reduced
form coefficients obtained by regressing X on Z using all observations except the
i th. The JIV1 estimator of Phillips and Hale (1977) is obtained as

δ̃ =
(

n

∑
i=1

�̄′−i Zi X ′
i

)−1 n

∑
i=1

�̄′−i Zi yi .

Using standard results on recursive residuals, it follows that

�̄′−i Zi =
(

X ′Z(Z ′Z)−1 Zi − Pii Xi

)/
(1− Pii ) = ∑

j �=i
Pij X j/(1− Pii ).
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Then, we have that

δ̃ = H̃−1 ∑
i �= j

Xi Pij(1− Pj j )
−1 yj , H̃ = ∑

i �= j
Xi Pij(1− Pj j )

−1 X ′
j ,

where �i �= j denotes the double sum ∑i ∑j �=i . The JIV2 estimator proposed by
Angrist et al. (1999), JIVE2, has a similar form, except that �−i = (Z ′Z)−1

(Z ′ X − Zi X ′
i ) is used in place of �̄−i . It is given by

δ̂ = Ĥ−1 ∑
i �= j

Xi Pij yj , Ĥ = ∑
i �= j

Xi Pij X
′
j .

To explain why JIV2 is a consistent estimator, it is helpful to consider JIV2 as
a minimizer of an objective function. As usual, the limit of the minimizer will be
the minimizer of the limit under appropriate regularity conditions. We focus on δ̂
to simplify the discussion. The estimator δ̂ satisfies δ̂ = argminδ Q̂(δ), where

Q̂(δ) = ∑
i �= j

( yi − X ′
iδ)Pij( yj − X ′

jδ).

Note that the difference between the 2SLS objective function ( y − X ′δ)P( y −
X ′δ) and Q̂(δ) is ∑n

i=1 Pii ( yi − X ′
iδ)

2. This is a weighted least squares object
that is a source of bias in 2SLS because its expectation is not minimized at δ0
when Xi and εi are correlated. This object does not vanish asymptotically relative
to E[Q̂(δ)] under many (or many weak) instruments, leading to inconsistency of
2SLS. When observations are mutually independent, the inconsistency is caused
by this term, so removing it to form Q̂(δ) makes δ̂ consistent.

To explain further, consider the JIV2 objective function Q̂(δ). Note that for
Ũi (δ) = εi −U ′

i (δ − δ0)

Q̂(δ) = Q̂1(δ)+ Q̂2(δ)+ Q̂3(δ), Q̂1(δ) = ∑
i �= j

(δ − δ0)
′ϒi Pijϒ

′
j (δ − δ0),

Q̂2(δ) = −2 ∑
i �= j

Ũi (δ)Pijϒ
′
j (δ − δ0), Q̂3(δ) = ∑

i �= j
Ũi (δ)PijŨj (δ).

Then by the assumptions E[Ũi (δ)] = 0 and independence of observations,
we have E[Q̂(δ)|Z] = Q1(δ). Under the regularity conditions in Section 3, ∑i �= j
ϒi Pijϒ

′
j is positive definite asymptotically, so Q1(δ) is minimized at δ0. Thus,

the expectation Q1(δ) of Q̂(δ) is minimized at the true parameter δ0; in the
terminology of Han and Phillips (2006), the many instrument “noise” term in
the expected objective function is identically zero.

For consistency of δ̂, it is also necessary that the stochastic components of Q̂(δ)
do not dominate asymptotically. The size of Q̂1(δ) (for δ �= δ0) is proportional to
the concentration parameter that we denote by rn . It turns out that Q̂2(δ) has size
smaller than Q̂1(δ) asymptotically but Q̂3(δ) is Op(

√
Kn) (Lemma A1 shows that

the variance of Q̂3(δ) is proportional to Kn). Thus, to ensure that the expectation
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of Q̂(δ) dominates the stochastic part of Q̂(δ), it suffices to impose the restriction√
Kn/rn → 0, which we do throughout the asymptotic theory. This condition was

formulated in Chao and Swanson (2005).
The estimators δ̃ and δ̂ are consistent and asymptotically normal with het-

eroskedasticity under the regularity conditions we impose, including
√

Kn/rn →
0. In contrast, consistency of LIML and Fuller (1977) require Kn/rn → 0 when
Pii is asymptotically correlated with E[Xiεi |Z]/E[ε2

i |Z], as discussed in Chao
and Swanson (2004) and Hausman et al. (2007). This condition is also required
for consistency of the bias-corrected 2SLS estimator of Donald and Newey (2001)
when Pii is asymptotically correlated with E[Xiεi |Z], as discussed in Ackerberg
and Devereux (2009). Thus, JIV estimators are robust to heteroskedasticity and
many instruments (when Kn grows as fast as rn), whereas LIML, Fuller (1977),
or B2SLS estimators are not.

Hausman et al. (2007) also consider a JIV form of LIML, which is obtained by
minimizing Q̂(δ)/[( y − Xδ)′( y − Xδ)]. The sum of squared residuals in the de-
nominator makes computation somewhat more complicated; however, like LIML,
it has an explicit form in terms of the smallest eigenvalue of a matrix. This JIV
form of LIML is asymptotically efficient relative to δ̂ and δ̃ under many weak
instruments and homoskedasticity. With heteroskedasticity, δ̂ and δ̃ may perform
better than this estimator, as shown by Monte Carlo examples in Hausman et al.;
they also propose a jackknife version of the Fuller (1977) estimator that has fewer
outliers than the JIV form of LIML.

To motivate the form of the variance estimator for δ̂ and δ̃, note that for ξi =
(1− Pii )

−1εi , substituting yi = X ′
iδ0 + εi in the equation for δ̃ gives

δ̃ = δ0 + H̃−1 ∑
i �= j

Xi Pijξj . (1)

After appropriate normalization, the matrix H̃−1 will converge and a central limit
theorem will apply to ∑i �= j Xi Pijξj ,which leads to a sandwich form for the asymp-

totic variance. Here H̃−1 can be used to estimate the outside terms in the sand-
wich. The inside term, which is the variance of ∑i �= j Xi Pijξj , can be estimated
by dropping terms that are zero from the variance, removing the expectation, and

replacing ξi with an estimate, ξ̃i = (1− Pii )
−1
(

yi − X ′
i δ̃
)

. Using the indepen-

dence of the observations, E[εi |Z] = 0, and the exclusion of the i = j terms in
the double sums, it follows that

E
[
∑
i �= j

Xi Pijξj

(
∑
i �= j

Xi Pijξj

)′|Z
]

= E
[
∑
i, j

∑
k /∈{i, j}

Pik Pjk Xi X ′
jξ

2
k + ∑

i �= j
P2

ij Xiξi X ′
jξj |Z

]
.

Removing the expectation and replacing ξi with ξ̃i gives

�̃ = ∑
i, j

∑
k /∈{i, j}

Pik Pjk Xi X ′
j ξ̃

2
k + ∑

i �= j
P2

ij Xi ξ̃i X ′
j ξ̃j .
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The estimator of the asymptotic variance of δ̃ is then given by

Ṽ = H̃−1�̃ H̃−1′.

This estimator is robust to heteroskedasticity, as it allows Var(ξi |Z) and E[Xiξi |Z]
to vary over i .

A vectorized form of Ṽ is easier to compute. Note that for X̃i = Xi/(1− Pii ),
we have H̃ = X ′ P X̃ − ∑i Xi Pii X̃ ′

i . Also, let X̄ = P X, Z̃ = Z(Z ′Z)−1, and Z ′
i

and Z̃ ′
i equal the i th row of Z and Z̃ , respectively. Then, as shown in the proof of

Theorem 4, we have

�̃ =
n

∑
i=1

(X̄i X̄ ′
i − Xi Pii X̄ ′

i − X̄i Pii X ′
i )ξ̂

2
i

+
K

∑
k=1

K

∑
	=1

(
n

∑
i=1

Z̃ik Z̃i	 Xi ξ̂i

)(
n

∑
j=1

Zjk Z j	 X j ξ̂j

)′
.

This formula can be computed quickly by software with fast vector operations,
even when n is large.

An asymptotic variance estimator for δ̂ can be formed in an analogous way.
Note that Ĥ = X ′ P X −∑i Xi Pii X ′

i . Also for ε̂i = yi − X ′
i δ̂, we can estimate the

middle matrix of the sandwich by

�̂ =
n

∑
i=1

(X̄i X̄ ′
i − Xi Pii X̄ ′

i − X̄i Pii X ′
i )ε̂

2
i

+
K

∑
k=1

K

∑
	=1

(
n

∑
i=1

Z̃ik Z̃i	 Xi ε̂i

)(
n

∑
j=1

Zjk Z j	 X j ε̂j

)′
.

The variance estimator for δ̂ is then given by

V̂ = Ĥ−1�̂ Ĥ−1.

Here Ĥ is symmetric because P is symmetric, so a transpose is not needed for
the third matrix in V̂ .

3. MANY INSTRUMENT ASYMPTOTICS

Our asymptotic theory combines the many instrument asymptotics of Kunitomo
(1980), Morimune (1983), and Bekker (1994) with the many weak instrument
asymptotics of Chao and Swanson (2005). All of our regularity conditions are
conditional on Z = (ϒ, Z). To state the regularity conditions, let Z ′

i ,εi ,U ′
i , and

ϒ ′
i denote the i th row of Z ,ε,U, and ϒ, respectively. Also let a.s. denote almost

surely (i.e., with probability one) and a.s.n denote a.s. for n large enough (i.e.,
with probability one for all n large enough).
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Assumption 1. K = Kn → ∞, Z includes among its columns a vector of ones,
for some C < 1, rank(Z) = K , and Pii ≤ C, (i = 1, . . . ,n) a.s.n.

In this paper, C is a generic notation for a positive constant that may be bigger
or less than 1. Hence, although in Assumption 1 C is taken to be less than 1,
in other parts of the paper it might not be. The restriction that rank(Z) = K is a
normalization that requires excluding redundant columns from Z . It can be veri-
fied in particular cases. For instance, when wi is a continuously distributed scalar,
Zi = pK (wi ), and pkK (w) = wk−1, it can be shown that Z ′Z is nonsingular with
probability one for K < n.1 The condition Pii ≤ C < 1 implies that K/n ≤ C
because K/n = ∑n

i=1 Pii/n ≤ C.
Now, let λmin(A) denote the smallest eigenvalue of a symmetric matrix A and

for any matrix B, let ‖B‖ = √
tr(B ′B).

Assumption 2. ϒi = Snzi/
√

n where Sn = S̃n diag(μ1n, . . . ,μGn), S̃n is G ×G
and bounded, and the smallest eigenvalue of S̃n S̃′

n is bounded away from zero.

Also, for each j, either μjn = √
n or μjn/

√
n → 0, rn =

(
min

1≤ j≤G
μjn

)2 →
∞, and

√
K/rn → 0. Also, there is C > 0 such that

∥∥∑n
i=1 zi z′

i/n
∥∥ ≤ C and

λmin
(
∑n

i=1 zi z′
i/n

)≥ 1/C a.s.n.

This condition is similar to Assumption 2 of Hansen, Hausman, and Newey
(2008). It accommodates linear models where included instruments (e.g., a
constant) have fixed reduced form coefficients and excluded instruments have co-
efficients that can shrink as the sample size grows. A leading example of such a
model is a linear structural equation with one endogenous variable of the form

yi = Z ′
i1δ01 + δ0G XiG + εi , (2)

where Zi1 is a G1 × 1 vector of included instruments (e.g., including a constant)
and XiG is an endogenous variable. Here the number of right-hand-side variables
is G1 +1 = G. Let the reduced form be partitioned conformably with δ, as ϒi =
(Z ′

i1,ϒiG)′ and Ui = (0,UiG)′. Here the disturbances for the reduced form for
Zi1 are zero because Zi1 is taken to be exogenous. Suppose that the reduced form
for XiG depends linearly on the included instrumental variables Zi1 and on an
excluded instrument ziG as in

XiG = ϒiG +UiG, ϒiG = π1 Zi1 +
(√

rn/n
)

ziG.

Here we normalize ziG so that rn determines how strongly δG is identified, and
we absorb into ziG any other terms, such as unknown coefficients. For Assump-
tion 2, we let zi = (Z ′

i1, ziG)′ and require that the second moment matrix of zi is
bounded and bounded away from zero. This normalization allows rn to determine
the strength of identification of δG . For example, if rn = n, then the coefficient on
ziG does not shrink, which corresponds to strong identification of δG . If rn grows
more slowly than n, then δG will be more weakly identified. Indeed, 1/

√
rn will
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be the convergence rate for estimators of δG . We require rn → ∞ to avoid the
weak instrument setting of Staiger and Stock (1997), where δG is not asymptoti-
cally identified.

For this model, the reduced form is

ϒi =
[

Zi1
π1 Zi1 +√

rn/nziG

]
=
[

I 0
π1 1

][
I 0
0

√
rn/n

](
Zi1
ziG

)
.

This reduced form is as specified in Assumption 2 with

S̃n =
[

I 0
π1 1

]
, μjn = √

n, 1 ≤ j ≤ G1, μGn = √
rn .

Note how this somewhat complicated specification is needed to accommodate
fixed reduced form coefficients for included instrumental variables and excluded
instruments with identifying power that depend on n. We have been unable to
simplify Assumption 2 while maintaining the generality needed for such important
cases.

We will not require that ziG be known, only that it be approximated by a lin-
ear combination of the instrumental variables Zi = (Z ′

i1, Z ′
i2)

′. Implicitly, Zi1
and ziG are allowed to depend on n. One important case is where the excluded
instrument ziG is an unknown linear combination of the instrumental variables
Zi = (Z ′

i1, Z ′
i2)

′. For example, the many weak instrument setting of Chao and
Swanson (2005) is one where the reduced form is given by

ϒiG = π1 Zi1 + (π2/
√

n)′Zi2

for a K − G1 dimensional vector Zi2 of excluded instrumental variables. This
model can be folded into our framework by specifying that

ziG = π ′
2 Zi2

/√
K − G1, rn = K − G1.

Assumption 2 will then require that

∑
i

z2
iG/n = (K − G1)

−1 ∑
i
(π ′

2 Zi2)
2
/

n

is bounded and bounded away from zero. Thus, the second moment ∑i (π
′
2 Zi2)

2/n
of the term in the reduced form that identifies δ0G must grow linearly in K , just
as in Chao and Swanson (2005), leading to a convergence rate of 1/

√
K − G1 =

1/
√

rn .
In another important case, the excluded instrument ziG could be an unknown

function that can be approximated by a linear combination of Zi . For instance,
suppose that ziG = f0(wi ) for an unknown function f0(wi ) of variables wi . In this

case, the instrumental variables could include a vector pK (wi )
def= (p1K (wi ), . . . ,

pK−G1,K (wi ))
′ of approximating functions, such as polynomials or splines. Here
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the vector of instrumental variables would be Zi = (Z ′
i1, pK (wi )

′)′. For rn = n,
this example is like Newey (1990) where Zi includes approximating functions for
the reduced form but the number of instruments can grow as fast as the sample
size. Alternatively, if rn/n → 0, it is a modified version where δG is more weakly
identified.

Assumption 2 also allows for multiple endogenous variables with a different
strength of identification for each one, i.e., for different convergence rates. In the
preceding example, we maintained the scalar endogenous variable for simplicity.

The rn can be thought of as a version of the concentration parameter; it
determines the convergence rate of estimators of δ0G just as the concentration
parameter does in other settings. For rn = n, the convergence rate will be

√
n

where Assumptions 1 and 2 permit K to grow as fast as the sample size. This cor-
responds to a many instrument asymptotic approximation like Kunitomo (1980),
Morimune (1983), and Bekker (1994). For rn growing more slowly than n, the
convergence rate will be slower than 1/

√
n, which leads to an asymptotic approx-

imation like that of Chao and Swanson (2005).

Assumption 3. There is a constant, C, such that conditional on Z = (ϒ, Z),
the observations (ε1,U1), . . . , (εn,Un) are independent, with E[εi |Z] = 0 for all
i, E[Ui |Z] = 0 for all i , supi E[ε2

i |Z] < C , and supi E[‖Ui‖2|Z] ≤ C, a.s.

In other words, Assumption 3 requires the second conditional moments of the
disturbances to be bounded.

Assumption 4. There is a πK such that ∑n
i=1 ‖zi −πK Zi‖2 /n → 0 a.s.

This condition allows an unknown reduced form that is approximated by a
linear combination of the instrumental variables. These four assumptions give the
consistency result presented in Theorem 1.

THEOREM 1. Suppose that Assumptions 1–4 are satisfied. Then, r−1/2
n S′

n(δ̃ −
δ0)

p→ 0, δ̃
p→ δ0, r−1/2

n S′
n(δ̂ − δ0)

p→ 0, and δ̂
p→ δ0.

The following additional condition is useful for establishing asymptotic nor-
mality and the consistency of the asymptotic variance.

Assumption 5. There is a constant, C > 0, such that ∑n
i=1 ‖zi‖4 /n2 → 0,

supi E[ε4
i |Z] < C , and supi E[‖Ui‖4|Z] ≤ C a.s.

To give asymptotic normality results, we need to describe the asymptotic vari-
ances. We will outline results that do not depend on the convergence of various
moment matrices, so we write the asymptotic variances as a function of n (rather
than as a limit). Let σ 2

i = E
[
ε2

i |Z] where, for notational simplicity, we have
suppressed the possible dependence of σ 2

i on Z . Moreover, let

H̄n =
n

∑
i=1

zi z
′
i/n, �̄n =

n

∑
i=1

zi z
′
iσ

2
i /n,
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̄n = S−1
n ∑

i �= j
P2

ij

(
E[UiU

′
i |Z]σ 2

j (1− Pj j )
−2

+ E[Uiεi |Z](1− Pii )
−1E[εjU

′
j |Z](1− Pj j )

−1
)

S−1′
n ,

Hn =
n

∑
i=1

(1− Pii )zi z
′
i/n, �n =

n

∑
i=1

(1− Pii )
2zi z

′
iσ

2
i /n,

n = S−1
n ∑

i �= j
P2

ij

(
E[UiU

′
i |Z]σ 2

j +E[Uiεi |Z]E[εjU
′
j |Z]

)
S−1′

n .

When K/rn is bounded, the conditional asymptotic variance givenZ of S′
n(δ̃−δ0)

is

V̄n = H̄−1
n (�̄n + ̄n)H̄−1

n ,

and the conditional asymptotic variance of S′
n(δ̂ − δ0) is

Vn = H−1
n (�n +n)H−1

n .

To state our asymptotic normality results, let A1/2 denote a square root matrix
for a positive semidefinite matrix A, satisfying A1/2 A1/2′ = A. Also, for nonsin-
gular A, let A−1/2 = (A1/2)−1.

THEOREM 2. Suppose that Assumptions 1–5 are satisfied, σ 2
i ≥ C > 0 a.s.,

and K/rn is bounded. Then V̄n and Vn are nonsingular a.s.n, and

V̄ −1/2
n S′

n(δ̃ − δ0)
d→ N (0, IG), V −1/2

n S′
n(δ̂ − δ0)

d→ N (0, IG).

The entire Sn matrix in Assumption 2 determines the convergence rate of the
estimators, where

S′
n(δ̂ − δ0) = diag(μ1n, . . . ,μGn) S̃′

n(δ̂ − δ0)

is asymptotically normal. The convergence rate of the linear combination e′
j S̃′

n(δ̂−
δ0) will be 1/μjn , where ej is the j th unit vector. Note that

yi = X ′
iδ0 +ui = z′

i diag(μ1n, . . . ,μGn) S̃′
nδ0 +U ′

i δ0 + εi .

The expression following the second equality is the reduced form for yi . Thus,
the linear combination of structural parameters e′

j S̃′
nδ0 is the j th reduced form

coefficient for yi that corresponds to the variable
(
μjn/

√
n
)

zij. This reduced form

coefficient is estimated at the rate 1/μjn by the linear combination e′
j S̃′

n δ̂ of the

instrumental variables (IV) estimator δ̂. The minimum rate is 1/
√

rn, which is the
inverse square root of the rate of growth of the concentration parameter. These
rates will change when K grows faster than rn .
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The rate of convergence in Theorem 2 corresponds to the rate found by Stock
and Yogo (2005) for LIML, Fuller’s modified LIML, and B2SLS when rn grows
at the same rate as K and more slowly than n under homoskedasticity.

The term ̄n in the asymptotic variance of δ̃ and the term n in the asymptotic
variance of δ̂ account for the presence of many instruments. The order of these
terms is K/rn , so if K/rn → 0, dropping these terms does not affect the asymp-
totic variance. When K/rn is bounded but does not go to zero, these terms have
the same order as the other terms, and it is important to account for their presence
in the standard errors. If K/rn → ∞, then these terms dominate and slow down
the convergence rate of the estimators. In this case, the conditional asymptotic
variance given Z of

√
rn/K S′

n(δ̃ − δ0) is

V̄ ∗
n = H̄−1

n (rn/K )̄n H̄−1
n ,

and the conditional asymptotic variance of
√

rn/K S′
n(δ̂ − δ0) is

V ∗
n = H−1

n (rn/K )n H−1
n .

When K/rn → ∞, the (conditional) asymptotic variance matrices, V̄ ∗
n and V ∗

n ,
may be singular, especially when some components of Xi are exogenous or when
different identification strengths are present. To allow for this singularity, our
asymptotic normality results are stated in terms of a linear combination of the
estimator. Let Ln be a sequence of 	× G matrices.

THEOREM 3. Suppose that Assumptions 1–5 are satisfied and K/rn → ∞.
If Ln is bounded and there is a C > 0 such that λmin

(
Ln V̄ ∗

n L ′
n

) ≥ C a.s.n
then(

Ln V̄ ∗
n L ′

n

)−1/2
Ln
√

rn/K S′
n(δ̃ − δ0)

d→ N (0, I ).

Also, if there is a C > 0 such that λmin
(

Ln V ∗
n L ′

n

)≥ C a.s.n, then

(
Ln V ∗

n L ′
n

)−1/2
Ln
√

rn/K S′
n(δ̂ − δ0)

d→ N (0, I ).

Here the convergence rate is related to the size of
(√

rn/K
)

Sn . In the simple
case where δ is a scalar, we can take Sn = √

rn , which gives a convergence rate of√
K/rn . Then the theorem states that

(
rn/

√
K
)
(δ̃−δ0) is asymptotically normal.

It is interesting that
√

K/rn → 0 is a condition for consistency in this setting and
also in the context of Theorem 1.

From Theorems 2 and 3, it is clear that the rates of convergence of both JIV
estimators depend in general on the strength of the available instruments relative
to their number, as reflected in the relative orders of magnitude of rn vis-à-vis K .
Note also that, whenever rn grows at a slower rate than n, the rate of convergence
is slower than the conventional

√
n rate of convergence. In this case, the available
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instruments are weaker than assumed in the conventional strongly identified case,
where the concentration parameter is taken to grow at the rate n.

When Pii = Z ′
i (Z ′Z)−1 Zi goes to zero uniformly in i , the asymptotic variances

of the two JIV estimators will get close in large samples. Because ∑n
i=1 Pii =

tr(P) = K , Pii goes to zero when K grows more slowly than n, though precise
conditions for this convergence depend on the nature of Zi . As a practical matter,
Pii will generally be very close to zero in applications where K is very small
relative to n, making the jackknife estimators very close to each other.

Under homoskedasticity, we can compare the asymptotic variances of the two
JIV estimators. In this case, the asymptotic variance of δ̃ is

V̄n = V̄ 1
n + V̄ 2

n , V̄ 1
n = σ 2 H̄−1

n ,

V̄ 2
n = S−1

n σ 2E[UiU
′
i ] ∑

i �= j
P2

ij /(1−Pj j )
2S−1

n

+ S−1
n E[Uiεi ]E[U ′

i εi ]S−1′
n ∑

i �= j
P2

ij (1− Pii )
−1(1− Pj j )

−1.

Also, the asymptotic variance of δ̂ is

Vn = V 1
n + V 2

n , V 1
n = σ 2 H−1

n

[
n

∑
i=1

(1− Pii )
2zi z

′
i/n

]
H−1

n ,

V 2
n = S−1

n

(
σ 2E[UiU

′
i ]+E[Uiεi ]E[U ′

i εi ]
)

S−1′
n ∑

i �= j
P2

ij .

By the fact that (1 − Pii )
−1 > 1, we have that V̄ 2

n ≥ V 2
n in the positive semidefi-

nite sense. Also, note that V 1
n is the variance of an IV estimator with instruments

zi (1− Pii ) whereas V̄ 1
n is the variance of the corresponding least squares estima-

tor, so V̄ 1
n ≤ V 1

n . Thus, it appears that in general we cannot rank the asymptotic
variances of the two estimators.

Next, we turn to results pertaining to the consistency of the asymptotic variance
estimators and to the use of these estimators in hypothesis testing. We impose the
following additional conditions.

Assumption 6. There exist πn and C > 0 such that a.s. maxi≤n ‖zi −πn Zi‖→ 0
and supi ‖zi‖ ≤ C .

The next result shows that our estimators of the asymptotic variance are
consistent after normalization.

THEOREM 4. Suppose that Assumptions 1–6 are satisfied. If K/rn is bounded,

then S′
n Ṽ Sn − V̄n

p→ 0 and S′
n V̂ Sn − Vn

p→ 0. Also, if K/rn → ∞, then

rn S′
n Ṽ Sn/K − V̄ ∗

n
p→ 0 and rn S′

n V̂ Sn/K − V ∗
n

p→ 0.

A primary use of asymptotic variance estimators is conducting approximate
inference concerning coefficients. To that end, we introduce Theorem 5.
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THEOREM 5. Suppose that Assumptions 1–6 are satisfied and that a(δ) is an
	×1 vector of functions such that

(i) a(δ) is continuously differentiable in a neighborhood of δ0;

(ii) there is a square matrix, Bn, such that for A = ∂a(δ0)/∂δ′, Bn AS−1′
n is

bounded; and

(iii) for any δ̄k
p→ δ0, (k = 1, . . . ,	) and Ā = [∂a1(δ̄)/∂δ, . . . ,∂a	(δ̄)/∂δ]′, we

have Bn( Ā − A)S−1′
n

p→ 0.

Also suppose that there is C > 0 such that λmin(Bn AS−1′
n V̄n S−1

n A′ B ′
n) ≥ C

if K/rnis bounded or λmin(Bn AS−1′
n V̄ ∗

n S−1
n A′ B ′

n) ≥ C if K/rn → ∞ a.s.n. Then
for Ã = ∂a(δ̃)/∂δ,

( ÃṼ Ã′)−1/2
[
a(δ̃)−a(δ0)

]
d→ N (0, I ).

If there is C ≥ 0 such that λmin(Bn AS−1′
n V̄n S−1

n A′B ′
n) ≥ C if K/rn is bounded or

λmin(Bn AS−1′
n V̄ ∗

n S−1
n A′ B ′

n) ≥ C if K/rn → ∞ a.s.n, then for Â = ∂a(δ̂)/∂δ,

( ÂV̂ Â′)−1/2
[
a(δ̂)−a(δ0)

]
d→ N (0, I ).

Perhaps the most important special case of this result is a single linear combi-
nation. This case will lead to t-statistics based on the consistent variance estimator
having the usual standard normal limiting distribution. The following result con-
siders such a case.

COROLLARY 1. Suppose that Assumptions 1–6 are satisfied and c and bn are
such that bnc′S−1′

n is bounded. If there is a C > 0 such that b2
nc′S−1′

n V̄n S−1
n c ≥ C

if K/rn is bounded or b2
nc′S−1′

n V̄ ∗
n S−1

n c ≥ C if K/rn → ∞ a.s.n, then

c′(δ̃ − δ0)√
c′Ṽ c

d→ N (0,1).

Also if there is a C ≥ 0 such that b2
nc′S−1′

n Vn S−1
n c ≥ C if K/rn is bounded or

b2
nc′S−1′

n V ∗
n S−1

n c ≥ C if K/rn → ∞ a.s.n, then

c′(δ̂ − δ0)√
c′V̂ c

d→ N (0,1).

To show how the conditions of this result can be checked, we return to the
previous example with one right-hand-side endogenous variable. The following
result gives primitive conditions in that example for the conclusion of Corollary
1, i.e., for the asymptotic normality of a t-ratio.

COROLLARY 2. If equation (2) holds, Assumptions 1–6 are satisfied for zi =
(Z ′

i1, ziG), c �= 0 is a constant vector, either
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(i) rn = n or

(ii) K/rn is bounded and (−π1,1)c �= 0 or

(iii) K/rn → ∞, (−π1,1)c �= 0, E[U 2
iG|Z] is bounded away from zero, and the

sign of E[εiUiG|Z] is constant a.s., then

c′(δ̃ − δ0)√
c′Ṽ c

d→ N (0,1),
c′(δ̂ − δ0)√

c′V̂ c

d→ N (0,1).

The proof of this result shows how the hypotheses concerning bn in Corollary 1
can be checked. The conditions of Corollary 2 are quite primitive. We have pre-
viously described how Assumption 2 is satisfied in the model of equation (2).
Assumptions 1 and 3–6 are also quite primitive.

This result can be applied to show that t-ratios are asymptotically correct when
the many instrument robust variance estimators are used. For the coefficient δG

of the endogenous variable, note that c = eG , so (−π1,1)c = 1 �= 0. Therefore,
if E[U 2

iG|Z] is bounded away from zero and the sign of E[εiUiG|Z] is constant, it
follows from Corollary 2 that

δ̂G − δ0G√
V̂GG

d→ N (0,1).

Thus, the t-ratio for the coefficient of the endogenous variable is asymptotically
correct across a wide range of different growth rates for rn and K . The analogous
result holds for each coefficient δj , j ≤ G1, of an included instrument as long
as π1 j �= 0 is not zero. If π1 j = 0, then the asymptotics are more complicated.
For brevity, we will not discuss this unusual case here. The analogous results also
hold for δ̃G .

4. CONCLUDING REMARKS

In this paper, we derived limiting distribution results for two alternative JIV es-
timators. These estimators are both consistent and asymptotically normal in the
presence of many instruments under heteroskedasticity of unknown form. In the
same setup, LIML, 2SLS, and B2SLS are inconsistent. In the process of show-
ing the asymptotic normality of JIV, this paper gives a central limit theorem
for quadratic (and, more generally, bilinear) forms associated with an idempo-
tent matrix. This central limit theorem has already been used in Hausman et al.
(2007) to derive the asymptotic properties of the jackknife versions of the LIML
and Fuller (1977) estimators and in Chao et al. (2010) to derive a moment-based
test that allows for heteroskedasticity and many instruments. Moreover, this new
central limit theorem is potentially useful for other analyses involving many
instruments.
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NOTE

1. The observations w1, . . . ,wn are distinct with probability one and therefore, by K < n, cannot
all be roots of a K th degree polynomial. It follows that for any nonzero a there must be some i with
a′ Zi = a′ pK (wi ) �= 0, implying a′ Z ′ Za > 0.
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APPENDIX A: Proofs of Theorems

We define a number of notations and abbreviations that will be used in Appendixes A
and B. Let C denote a generic positive constant and let M, CS, and T denote the Markov
inequality, the Cauchy–Schwarz inequality, and the triangle inequality, respectively. Also,
for random variables Wi , Yi , and ηi and forZ = (ϒ, Z), let w̄i = E[Wi |Z], W̃i = Wi −w̄i ,
ȳi = E[Yi |Z], Ỹi = Yi − ȳi , η̄i = E[ηi |Z], η̃i = ηi − η̄i , ȳ = (ȳ1, . . . ., ȳn)′ , w̄ =
(w̄1, . . . , w̄n)′ ,

μ̄W = max
1≤i≤n

|w̄i | , μ̄Y = max
1≤i≤n

|ȳi | , μ̄η = max
1≤i≤n

|η̄i | ,

σ̄ 2
W = max

i ≤ n
Var

[
Wi |Z

]
, σ̄ 2

Y = max
i ≤ n

Var
[
Yi |Z

]
, and σ̄ 2

η = max
i ≤ n

Var
[
ηi |Z

]
,

where, to simplify notation, we have suppressed dependence on Z for the various quanti-
ties (w̄i , W̃i , ȳi , Ỹi , η̄i , η̃i , μ̄W , μ̄Y , μ̄η, σ̄ 2

W , σ̄ 2
Y , and σ̄ 2

η ) defined previously. Furthermore,

for random variable X , define ‖X‖L2,Z =
√

E
[
X2|Z].

We first give four lemmas that are useful in the proofs of consistency, asymptotic nor-
mality, and consistency of the asymptotic variance estimator. We group them together here
for ease of reference because they are also used in Hausman et al. (2007).

LEMMA A1. If, conditional on Z = (ϒ, Z), (Wi ,Yi )(i = 1, . . . ,n) are independent
a.s., Wi and Yi are scalars, and P is a symmetric, idempotent matrix of rank K , then
for w̄ = E

[
(W1, . . . ,Wn)′|Z], ȳ = E

[
(Y1, . . . ,Yn)′|Z], σ̄Wn = maxi≤n Var(Wi |Z)1/2,

σ̄Yn = maxi≤n Var(Yi |Z)1/2, and Dn = K σ̄ 2
Wn

σ̄ 2
Yn

+ σ̄ 2
Wn

ȳ′ ȳ + σ̄ 2
Yn

w̄′w̄, there exists a
positive constant C such that

∥∥∥∥∥∑
i �= j

PijWi Yj − ∑
i �= j

Pijw̄i ȳj

∥∥∥∥∥
2

L2,Z
≤ C Dn a.s.

Proof. Let W̃i = Wi − w̄i and Ỹi = Yi − ȳi . Note that

∑
i �= j

PijWi Yj − ∑
i �= j

Pijw̄i ȳj = ∑
i �= j

PijW̃i Ỹj + ∑
i �= j

PijW̃i ȳj + ∑
i �= j

Pijw̄i Ỹj .
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Let D1n = σ̄ 2
Wn

σ̄ 2
Yn

. Note that for i �= j and k �= 	, E
[
W̃i Ỹj W̃k Ỹ	|Z

]
is zero unless i = k

and j = 	 or i = 	 and j = k. Then by CS and ∑j P2
ij = Pii ,

E

[(
∑i �= j PijỸi W̃j

)2 |Z
]

= ∑
i �= j

∑
k �=	

Pij Pk	E
[
W̃i Ỹj W̃k Ỹ	|Z

]

= ∑
i �= j

P2
ij

(
E[W̃ 2

i |Z]E[Ỹ 2
j |Z]+E[W̃i Ỹi |Z]E[W̃j Ỹj |Z]

)

≤ 2D1n ∑
i �= j

P2
ij ≤ 2D1n ∑

i
Pii = 2D1n K .

Also, for W̃ = (W̃1, . . . , W̃n)′, we have ∑i �= j PijW̃i ȳj = W̃ P ȳ − ∑i Pii ȳi W̃i . By

independence across i conditional on Z , we have E
[
W̃ W̃ ′|Z

]
≤ σ̄ 2

Wn
In a.s., so

E[(ȳ′ PW̃ )2|Z] = ȳ′ P E[W̃ W̃ ′|Z]P ȳ ≤ σ̄ 2
Wn

ȳ′ P ȳ ≤ σ̄ 2
Wn

ȳ′ ȳ,

E

[(
∑i Pii ȳi W̃i

)2 |Z
]

= ∑
i

P2
i i E[W̃ 2

i |Z]ȳ2
i ≤ σ̄ 2

Wn
ȳ′ ȳ.

Then by T we have∥∥∥∑i �= j PijW̃i ȳj

∥∥∥2

L2,Z
≤
∥∥∥ȳ′ PW̃

∥∥∥2

L2,Z
+
∥∥∥∑i Pii ȳi W̃i

∥∥∥2

L2,Z
≤ C σ̄ 2

Wn
ȳ′ ȳ a.s. PZ .

Interchanging the roles of Yi and Wi gives
∥∥∥∑i �= j Pijw̄i Ỹj

∥∥∥2

L2,Z
≤ C σ̄ 2

Yn
w̄′w̄ a.s. The

conclusion then follows by T. n

LEMMA A2. Suppose that, conditional on Z , the following conditions hold a.s.:

(i) P = P(Z) is a symmetric, idempotent matrix with rank(P) = K and Pii ≤ C < 1;

(ii) (W1n,U1,ε1), . . . , (Wnn,Un,εn) are independent, and Dn = ∑n
i=1 E

[
Win W ′

in |Z]
satisfies ‖Dn‖ ≤ C a.s.n;

(iii) E
[
W ′

in |Z]= 0, E[Ui |Z] = 0, E[εi |Z] = 0, and there exists a constant C such that

E[‖Ui ‖4 |Z] ≤ C and E[ε4
i |Z] ≤ C;

(iv) ∑n
i=1 E

[
‖Win‖4 |Z

]
a.s.→ 0; and

(v) K → ∞ as n → ∞.

Then for

�̄n
def= ∑

i �= j
P2

ij

(
E[Ui U

′
i |Z]E[ε2

j |Z]+E[Ui εi |Z]E[εj U
′
j |Z]

)
/K

and any sequences c1n and c2n depending on Z of conformable vectors with ‖c1n‖ ≤ C,
‖c2n‖ ≤ C, and �n = c′

1n Dnc1n + c′
2n�̄nc2n > 1/C a.s.n, it follows that

Yn = �
−1/2
n

(
c′

1n

n

∑
i=1

Win + c′
2n ∑

i �= j
Ui Pijεj

/√
K

)
d→ N (0,1) , a.s.;

i.e., Pr(Yn ≤ y|Z)
a.s.→ �( y) for all y.



JIVE WITH HETEROSKEDASTICITY 59

Proof. The proof of Lemma A2 is long and is deferred to Appendix B.

The next two results are helpful in proving consistency of the variance estimator. They
use the same notation as Lemma A1.

LEMMA A3. If, conditional on Z , (Wi ,Yi )(i = 1, . . . ,n) are independent and Wi and
Yi are scalars, then there exists a positive constant C such that

∥∥∥∑i �= j P2
ij Wi Yj −E

[
∑i �= j P2

ij Wi Yj |Z
]∥∥∥2

L2,Z
≤ C Bn a.s.,

where Bn = K
{
σ̄ 2

W σ̄ 2
Y + σ̄ 2

W μ̄2
Y + μ̄2

W σ̄ 2
Y

}
.

Proof. Using the notation of the proof of Lemma A1, we have

∑
i �= j

P2
ij Wi Yj − ∑

i �= j
P2

ij w̄i ȳj = ∑
i �= j

P2
ij W̃i Ỹj + ∑

i �= j
P2

ij W̃i ȳj + ∑
i �= j

P2
ij w̄i Ỹj .

As before, for i �= j and k �= 	, E
[
W̃i Ỹj W̃k Ỹ	|Z

]
is zero unless i = k and j = 	 or i = 	

and j = k. Also,
∣∣Pij

∣∣≤ Pii < 1 by CS and Assumption 1, so P4
ij ≤ P2

ij . Also, ∑j P2
ij = Pii ,

so

E

[(
∑i �= j P2

ij W̃i Ỹj

)2 |Z
]

= ∑
i �= j

∑
k �=	

P2
ij P2

k	E
[
W̃i Ỹj W̃k Ỹ	|Z

]

= ∑
i �= j

P4
ij

(
E
[
W̃ 2

i |Z
]

E
[
Ỹ 2

j |Z
]
+E

[
W̃i Ỹi |Z

]
E
[
W̃j Ỹj |Z

])

≤ 2σ̄ 2
W σ̄ 2

Y ∑
i �= j

P4
ij ≤ 2K σ̄ 2

W σ̄ 2
Y a.s.

Also, ∑i �= j P2
ij W̃i ȳj = W̃ ′ P̃ ȳ − ∑i P2

i i ȳi W̃i where P̃ij = P2
ij . By independence across i

conditional on Z , we have E[W̃ W̃ ′|Z] ≤ σ̄ 2
W n In , so

E[(ȳ′ P̃W̃ )2|Z] = ȳ′ P̃E[W̃ W̃ ′|Z]P̃ ȳ ≤ σ̄ 2
Wn

ȳ′ P̃2 ȳ

= σ̄ 2
Wn ∑

i, j,k
ȳi P2

ik P2
kj ȳj ≤ σ̄ 2

W μ̄2
Y ∑

i, j,k
P2

ik P2
kj

= σ̄ 2
W μ̄2

Y ∑
k

(
∑
i

P2
ik

)(
∑
j

P2
kj

)
= σ̄ 2

W μ̄2
Y ∑

k
P2

kk ≤ K σ̄ 2
W μ̄2

Y a.s.,

E

[(
∑i P2

i i ȳi W̃i

)2 |Z
]
=∑

i
P4

i i E[W̃ 2
i |Z]ȳ2

i ≤ K σ̄ 2
W μ̄2

Y a.s.

Then by T, we have
∥∥∥∑i �= j P2

ij W̃i ȳj

∥∥∥2

L2,Z
≤

∥∥∥W̃ ′ P̃ ȳ
∥∥∥2

L2,Z
+
∥∥∥∑i P2

i i ȳi W̃i

∥∥∥2

L2,Z
≤ C K σ̄ 2

W μ̄2
Y a.s. Interchanging the roles of Yi and Wi gives

∥∥∥∑i �= j P2
ij w̄i Ỹj

∥∥∥2

L2,Z
≤ C K μ̄2

W σ̄ 2
Y a.s. The conclusion then follows by T. n

As a notational convention, let ∑i �= j �=k denote ∑i ∑j �=i ∑k /∈{i, j}.
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LEMMA A4. Suppose that there is C > 0 such that, conditional onZ ,(W1,Y1,η1) , . . . ,

(Wn,Yn,ηn) are independent with E[Wi |Z] = ai /
√

n, E[Yi |Z] = bi /
√

n, |ai | ≤ C, |bi | ≤
C, E[η2

i |Z] ≤ C, Var(Wi |Z) ≤ C/rn, and Var(Yi |Z) ≤ C/rn and there exists πn such

that maxi≤n
∣∣ai − Z ′

i πn
∣∣ a.s.→ 0 and

√
K/rn → 0. Then

An = E

[
∑

i �= j �=k
Wi Pikηk PkjYj |Z

]
= Op(1), ∑

i �= j �=k
Wi Pikηk PkjYj − An

p→ 0.

Proof. Given in Appendix B. n

LEMMA A5. If Assumptions 1–3 are satisfied, then

(i) S−1
n H̃ S−1′

n = ∑
i �= j

zi Pij(1− Pj j )
−1z′

j /n +op(1),

(ii) S−1
n ∑

i �= j
Xi Pij(1− Pj j )

−1εj = Op(1+√
K/rn),

(iii) S−1
n Ĥ S−1′

n = ∑
i �= j

zi Pijz
′
j /n +op(1),

(iv) S−1
n ∑

i �= j
Xi Pijεj = Op(1+√

K/rn).

Proof. Let ek denote the kth unit vector and apply Lemma A1 with Yi = e′
k S−1

n Xi =
zik/

√
n + e′

k S−1
n Ui and Wi = e′

	S−1
n Xi (1− Pii )

−1 for some k and 	. By Assumption 2,

λmin(Sn) ≥ C
√

rn , implying
∥∥∥S−1

n

∥∥∥≤ C/
√

rn . Therefore a.s.

E[Yi |Z] = zik/
√

n, Var(Yi |Z) ≤ C/rn,

E[Wi |Z] = zi	/
√

n(1− Pii ), Var(Wi |Z) ≤ C/rn .

Note that a.s.
√

K σ̄Wn σ̄Yn ≤ C
√

K/rn → 0, σ̄Wn

√
ȳ′ ȳ ≤ Cr−1/2

n

√
∑
i

z2
ik/n → 0,

σ̄Yn

√
w̄′w̄ ≤ Cr−1/2

n

√
∑
i

z2
i	(1−Pii )−2/n ≤Cr−1/2

n (1−max
i

Pii )
−2
√

∑
i

z2
i	/n →0.

Because e′
k S−1

n H̃ S−1′
n e	 = e′

k S−1
n ∑i �= j Xi Pij X ′

j S−1′
n e	/(1 − Pj j ) = ∑i �= j Yi PijWj and

Pijw̄i ȳj = Pijzikzj	/n(1 − Pj j ), applying Lemma A1 and the conditional version of M,

we deduce that for any υ > 0 and An =
{∣∣e′

k S−1
n H̃ S−1′

n e	 − ∑i �= j e′
k zi Pij(1 − Pj j )

−1

z′
j e	/n

∣∣ ≥ υ
}
, P (An |Z)

a.s.→ 0. By the dominated convergence theorem, P (An) =
E[P (An |Z)] → 0. The preceding argument establishes the first conclusion for the (k,	)th
element. Doing this for every element completes the proof of the first conclusion.

For the second conclusion, apply Lemma A1 with Yi = e′
k S−1

n Xi as before and Wi =
εi /(1− Pii ). Note that w̄i = 0 and σ̄Wn ≤ C . Then by Lemma A1,

E[{e′
k S−1

n ∑
i �= j

Xi Pij(1− Pj j )
−1εj }2|Z] ≤ C K/rn +C.

The conclusion then follows from the fact that E[An |Z] ≤ C implies An = Op(1).



JIVE WITH HETEROSKEDASTICITY 61

For the third conclusion, apply Lemma A1 with Yi = e′
k S−1

n Xi as before and Wi =
e′
	S−1

n Xi , so a.s.

√
K σ̄Wn σ̄Yn ≤ C

√
K/rn → 0, σ̄Wn

√
ȳ′ ȳ ≤ Cr−1/2

n

√
∑ z2

ik/n → 0, σ̄Yn

√
w̄′w̄ → 0.

The fourth conclusion follows similarly to the second conclusion. n

Let H̄n = ∑i zi z′
i /n and Hn = ∑i (1− Pii )zi z′

i /n.

LEMMA A6. If Assumptions 1–4 are satisfied, then

S−1
n H̃ S−1′

n = H̄n +op(1), S−1
n Ĥ S−1′

n = Hn +op(1).

Proof. We use Lemma A5 and approximate the right-hand-side terms in Lemma A5 by
H̄n and Hn . Let z̄i = ∑n

j=1 Pijzj be the i th element of Pz and note that

n

∑
i=1

‖zi − z̄i ‖2/n = ‖(I −P)z‖2/n = tr(z′(I − P)z/n)= tr[(z−Zπ ′
K n)′(I − P)(z − Zπ ′

K n)/n]

≤ tr[(z − Zπ ′
K n)′(z − Zπ ′

K n)/n] =
n

∑
i=1

‖zi −πK n Zi ‖2 /n → 0 a.s. PZ .

It follows that a.s.∥∥∥∥∥∑i (z̄i − zi )(1− Pii )
−1z′

i /n

∥∥∥∥∥≤ ∑
i

‖z̄i − zi ‖
∥∥∥(1− Pii )

−1z′
i

∥∥∥/n

≤
√

∑
i

‖z̄i − zi ‖2 /n

√
∑
i

∥∥(1− Pii )−1zi
∥∥2

/n → 0.

Then

∑
i �= j

zi Pij(1− Pj j )
−1z′

j /n = ∑
i, j

zi Pij(1− Pj j )
−1z′

j /n −∑
i

zi Pii (1− Pii )
−1z′

i /n

= ∑
i

z̄i (1− Pii )
−1z′

i /n −∑
i

zi Pii (1− Pii )
−1z′

i /n

= H̄n +∑
i

(z̄i − zi )(1− Pii )
−1z′

i /n = H̄n +oa.s.(1).

The first conclusion then follows from Lemma A5 and T. Also, as in the last equation, we
have

∑
i �= j

zi Pijz
′
j /n = ∑

i, j
zi Pijz

′
j /n −∑

i
Pii zi z′

i /n = ∑
i

z̄i z′
i /n −∑

i
Pii zi z′

i /n

= Hn +∑
i

(z̄i − zi )z
′
i /n = Hn +oa.s.(1),

so the second conclusion follows similarly to the first. n

Proof of Theorem 1. First, note that by λmin
(

Sn S′
n/rn

)≥ λmin

(
S̃ S̃′)≥ C, we have

∥∥∥S′
n(δ̃ − δ0)/

√
rn

∥∥∥≥ λmin(Sn S′
n/rn)1/2

∥∥∥δ̃ − δ0

∥∥∥≥ C
∥∥∥δ̃ − δ0

∥∥∥ .
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Therefore, S′
n(δ̃ − δ0)/

√
rn

p→ 0 implies δ̃
p→ δ0. Note that by Assumption 2, H̄n is

bounded and λmin(H̄n) ≥ C a.s.n. For H̃ from Section 2, it follows from Lemma A6 and
Assumption 2 that with probability approaching one λmin(S−1

n H̃ S−1′
n ) ≥ C as the sample

size grows. Hence
(

S−1
n H̃ S−1′

n

)−1 = Op(1). By equation (1) and Lemma A5,

r−1/2
n S′

n(δ̃ − δ0) = (S−1
n H̃ S−1′

n )−1S−1
n ∑

i �= j
Xi Pijξj /

√
rn = Op(1)op(1)

p→ 0.

All of the previous statements are conditional on Z = (ϒ, Z) for a given sample size n,

so for the random variable Rn = r−1/2
n S′

n(δ̃−δ0), we have shown that for any constant v >
0, a.s. Pr(‖Rn‖ ≥ v|Z) → 0. Then by the dominated convergence theorem, Pr(‖Rn‖ ≥
v) = E[Pr(‖Rn‖ ≥ v|Z)] → 0. Therefore, because v is arbitrary, it follows that Rn =
r−1/2
n S′

n(δ̃ − δ0)
p→ 0.

Next note that Pii ≤ C < 1, so in the positive semidefinite sense in large enough samples
a.s.,

Hn = ∑(1− Pii )zi z′
i /n ≥ (1−C) H̄n .

Thus, by Assumption 2, Hn is bounded and bounded away from singularity a.s.n. Then the
rest of the conclusion follows analogously with δ̂ replacing δ̃ and Hn replacing H̄n . n

We now turn to the asymptotic normality results. In what follows, let ξi = εi when
considering the JIV2 estimator and let ξi = εi /(1− Pii ) when considering JIV1.

Proof of Theorem 2. Define

Yn = ∑
i

zi (1− Pii )ξi

/√
n + S−1

n ∑
i �= j

Ui Pijξj .

By Assumptions 2–4,

E

[∥∥∥∑n
i=1 (zi − z̄i )ξi /

√
n
∥∥∥2 |Z

]

= ∑n
i=1 ‖zi − z̄i ‖2 E

[
ξ2
i |Z

]/
n ≤ C ∑n

i=1 ‖zi − z̄i ‖2 /n
a.s.→ 0.

Therefore, by M,

S−1
n ∑

i �= j
Xi Pijξj −Yn =

n

∑
i=1

(zi − z̄i )ξi /
√

n
p→ 0.

We now apply Lemma A2 to establish asymptotic normality of Yn conditional on Z . Let
�n = Var(Yn |Z), so

�n =
n

∑
i=1

zi z′
i (1− Pii )

2E[ξ2
i |Z]/n + S−1

n ∑
i �= j

P2
ij

×
(

E[Ui U
′
i |Z]E[ξ2

j |Z]+E[Ui ξi |Z]E[U ′
j ξj |Z]

)
S−1′

n .
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Note that
√

rn S−1
n is bounded by Assumption 2 and that ∑i �= j P2

ij /K ≤ 1, so by bounded-

ness of K/rn and Assumption 3, it follows that ‖�n‖ ≤ C a.s.n. Also, E[ξ2
i |Z] ≥ C > 0,

so

�n ≥
n

∑
i=1

zi z′
i (1− Pii )

2E[ξ2
i |Z]/n ≥ C

n

∑
i=1

zi z′
i /n.

Therefore, by Assumption 2, λmin(�n) ≥ C > 0 a.s.n (for generic C that may be different

from before). It follows that
∥∥∥�−1

n

∥∥∥≤ C a.s.n.

Let α be a G × 1 nonzero vector. Let Ui be defined as in Lemma A2 and ξi be

defined as εi in Lemma A2. In addition, let Win = zi (1 − Pii )ξi /
√

n, c1n = �
−1/2
n α,

and c2n = √
K S−1

n �
−1/2
n α. Note that condition (i) of Lemma A2 is satisfied. Also, by

the boundedness of ∑i zi z′
i /n and E[ξ2

i |Z] a.s.n, condition (ii) of Lemma A2 is sat-

isfied; condition (iii) is satisfied by Assumptions 3 and 5. Also, by (1 − Pii )
−1 ≤ C

and Assumption 5, ∑n
i=1 E

[
‖Win‖4 |Z

]
≤ C ∑n

i=1 ‖zi ‖4 /n2 a.s.→ 0, so condition (iv) is

satisfied. Finally, condition (v) is satisfied by hypothesis. Note also that c1n = �
−1/2
n α and

c2n = (√
K/rn

)√
rn S−1

n �
−1/2
n α satisfy ‖c1n‖ ≤ C and ‖c2n‖ ≤ C a.s.n. This follows

from the boundedness of
√

K/rn ,
√

rn S−1
n , and �−1

n . Moreover, the �n of Lemma A2 is

�n = Var(c′
1n

n

∑
i=1

Win + c′
2n ∑

i �= j
Ui Pijξj /

√
K |Z) = Var(α′�−1/2′

n Yn |Z) = α′α

by construction. Then, applying Lemma A2, we have

(
α′α

)−1/2
α′�−1/2

n Yn = �
−1/2
n

(
n

∑
i=1

c′
1n Win + c′

2n ∑
i �= j

Ui Pijξj /
√

K

)
d→ N (0,1) a.s.

It follows that α′�−1/2
n Yn

d→ N
(
0,α′α

)
a.s., so by the Cramér–Wold device, �

−1/2
n

Yn
d→ N (0, IG) a.s.

Consider now the JIV1 estimator where ξi = εi /(1 − Pii ). Plugging this into the ex-
pression for �n , we find �n = �̄n + ̄n for �̄n and ̄n defined according to Assumption

5. Let V̄n also be as defined following Assumption 5 and note that Bn = V̄ −1/2
n H̄−1

n �
1/2
n

is an orthogonal matrix because Bn B′
n = V̄ −1/2

n V̄n V̄ −1/2′
n = I. Also, Bn is a function of

only Z ,
∥∥∥V̄ −1/2

n

∥∥∥ ≤ C a.s.n because λmin(V̄n) ≥ C > 0 a.s.n, and
∥∥∥�1/2

n

∥∥∥ ≤ C a.s.n.

By Lemma A6, (S−1
n H̃ S−1′

n )−1 = H̄−1
n + op(1). Note that if a random variable Wn sat-

isfies ‖Wn‖ ≤ C a.s.n, then Wn = Op(1) (note that 1(‖Wn‖ > C)
a.s.→ 0 implies that

E[1(‖Wn‖ > C)] = Pr(‖Wn‖ > C) → 0). Therefore, we have

V̄ −1/2
n (S−1

n H̃ S−1′
n )−1�

1/2
n = V̄ −1/2

n (H̄−1
n +op(1))�

1/2
n = Bn +op(1).

Note that because �
−1/2
n Yn

d→ N (0, IG) a.s. and Bn is orthogonal to and a function

only of Z , we have Bn�
−1/2
n Yn

d→ N (0, IG). Then by the Slutsky lemma and δ̃ = δ0 +



64 JOHN C. CHAO ET AL.

H̃−1 ∑i �= j Xi Pijξj , for ξj = (1− Pj j )
−1εj , we have

V̄ −1/2
n S′

n(δ̃ − δ0) = V̄ −1/2
n (S−1

n H̃−1S−1′
n )−1S−1

n ∑
i �= j

Xi Pijξj

= V̄ −1/2
n (S−1

n H̃ S−1′
n )−1[Yn +op(1)]

= [Bn +op(1)][�−1/2
n Yn+op(1)] = Bn�

−1/2
n Yn+op(1)

d→ N (0, IG),

which gives the first conclusion. The conclusion for JIV2 follows by a similar argument
for ξi = εi . n

Proof of Theorem 3. Under the hypotheses of Theorem 3, rn/K → 0, so following

the proof of Theorem 2, we have
√

rn/K ∑n
i=1 zi (1 − Pii )ξi /

√
n

p→ 0. Then similar to

the proof of Theorem 2, for Yn = √
rn S−1

n ∑i �= j Ui Pijξj /
√

K , we have
√

rn/K S−1
n ∑i �= j

Xi Pijξj = Yn +op(1). Here let

�n =Var(Yn |Z)= rn S−1
n ∑

i �= j
P2

ij

(
E[Ui U

′
i |Z]E[ξ2

j |Z]+E[Ui ξi |Z]E[U ′
j ξj |Z]

)
S−1′

n /K .

Note that by Assumptions 2 and 3, ‖�n‖ ≤ C a.s.n. Let L̄n be any sequence of bounded

matrices with λmin(L̄n�n L̄ ′
n) ≥ C > 0 a.s.n and let Ȳn = (

L̄n�n L̄ ′
n
)−1/2

L̄nYn . Now
let α be a nonzero vector and apply Lemma A2 with Win = 0, εi = ξi , c1n = 0, and

c2n = α′ (L̄n�n L̄ ′
n
)−1/2

L̄n
√

rn S−1
n . We have Var

(
c′

2n ∑i �= j Ui Pijξj /
√

K |Z
)

= α′α > 0

by construction, and the other hypotheses of Lemma A2 can be verified as in the proof of

Theorem 2. Then by the conclusion of Lemma A2, it follows that α′Ȳn
d→ N (0,α′α) a.s.

By the Cramér–Wold device, a.s. Ȳn
d→ N (0, I ).

Consider now the JIV1 estimator and let Ln be specified as in the statement of the result
such that λmin

(
Ln V̄ ∗

n L ′
n
) ≥ C > 0 a.s.n. Let L̄n = Ln H̄−1

n , so Ln V̄ ∗
n L ′

n = L̄n�n L̄ ′
n .

Note that
∥∥∥(L̄n�n L̄ ′

n
)−1/2

∥∥∥≤ C and
∥∥∥�1/2

n

∥∥∥≤ C a.s.n. By Lemma A6, (S−1
n H̃ S−1′

n )−1 =
H̄−1

n +op(1). Therefore, we have

(
L̄n�n L̄ ′

n
)−1/2

Ln(S−1
n H̃ S−1′

n )−1 = (
L̄n�n L̄ ′

n
)−1/2

Ln(H̄−1
n +op(1))

= (
L̄n�n L̄ ′

n
)−1/2

L̄n +op(1).

Note also that
√

rn/K S−1
n ∑i �= j Xi Pij(1− Pj j )

−1εj = Op(1). Then we have

(
Ln V̄ ∗

n L ′
n
)−1/2

Ln
√

rn/K S′
n(δ̃ − δ0)

= (
L̄n�n L̄ ′

n
)−1/2

Ln(S−1
n H̃ S−1′

n )−1
√

rn/K S−1
n ∑

i �= j
Xi Pij(1− Pj j )

−1εj

=
[(

L̄n�n L̄ ′
n
)−1/2

L̄n +op(1)
]

[Yn +op(1)] = Ȳn +op(1)
d→ N (0, I	) .

The conclusion for JIV2 follows by a similar argument for ξi = εi . n
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Next, we turn to the proof of Theorem 4. Let ξ̃i = ( yi − X ′
i δ̃)/(1 − Pii )and ξi = εi /

(1− Pii ) for JIV1 and ξ̂i = yi − X ′
i δ̂ and ξi = εi for JIV2. Also, let

Ẋi = S−1
n Xi , �̂1 = ∑

i �= j �=k
Ẋi Pikξ̂

2
k Pkj Ẋ ′

j , �̂2 = ∑
i �= j

P2
ij

(
Ẋi Ẋ ′

i ξ̂
2
j + Ẋi ξ̂i ξ̂j Ẋ ′

j

)
,

�̇1 = ∑
i �= j �=k

Ẋi Pikξ
2
k Pkj Ẋ ′

j , �̇2 = ∑
i �= j

P2
ij

(
Ẋi Ẋ ′

i ξ
2
j + Ẋi ξi ξj Ẋ ′

j

)
.

LEMMA A7. If Assumptions 1–6 are satisfied, then �̂1 − �̇1 = op(1) and �̂2 − �̇2 =
op(K/rn).

Proof. To show the first conclusion, we use Lemma A4. Note that for δ̇ = δ̂ and X P
i =

Xi /(1 − Pii ) for JIV1 and δ̇ = δ̃ and X P
i = Xi for JIV2, we have δ̇

p→ δ0 and ξ̂2
i − ξ2

i =
−2ξi X P ′

i (δ̇−δ0)+
[

X P ′
i (δ̇ − δ0)

]2
. Let ηi be any element of −2ξi X P ′

i or X P
i X P ′

i . Note

that Sn/
√

n is bounded, so by CS, ‖ϒi ‖ = ∥∥Snzi /
√

n
∥∥≤ C. Then

E[η2
i |Z] ≤ C E[ξ2

i |Z]+C E[‖Xi ‖2 |Z] ≤ C +C ‖ϒi ‖2 +C E[‖Ui ‖2 |Z] ≤ C.

Let �̂n denote a sequence of random variables converging to zero in probability. By
Lemma A4,

�̂ ∑
i �= j �=k

Ẋi Pikηk Pkj Ẋ ′
j = op(1)Op(1)

p→ 0.

From the preceding expression for ξ̂2
i − ξ2

i , we see that �̂1 − �̇1 is a sum of terms of the
form

�̂∑i �= j �=k Ẋi Pikηk Pkj Ẋ ′
j , so T, �̂1 − �̇1

p→ 0.

Let di = C +|εi |+‖Ui ‖, Â = (1+
∥∥∥δ̂∥∥∥) for JIV1, Â = (1+

∥∥∥δ̃∥∥∥) for JIV2, B̂ =
∥∥∥δ̂ − δ0

∥∥∥
for JIV1, and B̂ =

∥∥∥δ̃ − δ0

∥∥∥ for JIV2. By the conclusion of Theorem 1, we have Â = Op(1)

and B̂
p→ 0. Also, because Pii is bounded away from 1, (1 − Pii )

−1 ≤ C a.s. Hence, for
both JIV1 and JIV2,

‖Xi ‖ ≤ C +‖Ui ‖ ≤ di ,
∥∥Ẋi

∥∥≤ Cr−1/2
n di ,

∣∣∣ξ̂i − ξi

∣∣∣≤ C
∣∣∣X ′

i (δ̂ − δ0)
∣∣∣≤Cdi B̂,∣∣∣ξ̂i

∣∣∣≤ C
∣∣∣X ′

i (δ0 − δ̂)
∣∣∣+|ξi | ≤ Cdi Â,∣∣∣ξ̂2

i − ξ2
i

∣∣∣≤ (
|ξi |+

∣∣∣ξ̂i

∣∣∣)∣∣∣ξ̂i − ξi

∣∣∣≤ Cdi (1+ Â)di B̂ ≤ Cd2
i Â B̂,∥∥∥Ẋi

(
ξ̂i − ξi

)∥∥∥≤ Cμ−1
n d2

i B̂,
∥∥∥Ẋi ξ̂i

∥∥∥≤ Cr−1/2
n d2

i Â,
∥∥Ẋi ξi

∥∥≤ Cr−1/2
n d2

i .

Also note that because E[d2
i |Z] ≤ C ,

E

[
∑
i �= j

P2
ij d2

i d2
j r−1

n | Z
]

≤ Cr−1
n ∑

i, j
P2

ij = Cr−1
n ∑

i
Pii = C K/rn,
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so ∑i �= j P2
ij d2

i d2
j r−1

n = Op(K/rn) by M. Then it follows that∥∥∥∥∥∑
i �= j

P2
ij

(
Ẋi Ẋ ′

i

(
ξ̂2

j − ξ2
j

))∥∥∥∥∥≤ ∑
i �= j

P2
ij
∥∥Ẋi

∥∥2
∣∣∣ξ̂2

j − ξ2
j

∣∣∣
≤ Cr−1

n ∑
i �= j

P2
ij d2

i d2
j Â B̂ = op (K/rn) .

We also have∥∥∥∥∥∑
i �= j

P2
ij

(
Ẋi ξ̂i ξ̂j Ẋ ′

j − Ẋi ξi ξj Ẋ j

)∥∥∥∥∥≤ ∑
i �= j

P2
ij

(∥∥∥Ẋi ξ̂i

∥∥∥∥∥∥Ẋ j

(
ξ̂j − ξj

)∥∥∥
+∥∥Ẋ j ξj

∥∥∥∥∥X̆i

(
ξ̂i − ξi

)∥∥∥)
≤ Cr−1

n ∑
i �= j

P2
ij d2

i d2
j Â B̂ = op

(
K

rn

)
.

The second conclusion then follows from T. n

LEMMA A8. If Assumptions 1–6 are satisfied, then

�̇1 = ∑
i �= j �=k

zi PikE[ξ2
k |Z]Pkjz

′
j /n +op(1),

�̇2 = ∑
i �= j

P2
ij zi z′

i E[ξ2
j |Z]/n + S−1

n ∑
i �= j

P2
ij
(
E[Ui U

′
i |Z]E[ξ2

j |Z]

+ E[Ui ξi |Z]E[ξj U
′
j |Z]

)
S−1′

n +op(K/rn).

Proof. To prove the first conclusion, apply Lemma A4 with Wi equal to an element of
Ẋi , Yj equal to an element of Ẋ j , and ηk = ξ2

k .

Next, we use Lemma A3. Note that Var(ξ2
i |Z) ≤ C and rn ≤ Cn, so for uki = e′

k S−1
n Ui ,

E[(Ẋik Ẋi	)
2|Z] ≤ C E[Ẋ4

ik + Ẋ4
i	|Z]

≤ C
{

z4
ik/n2 +E

[
u4

ki |Z
]+ z4

i	/n2 +E
[
u4
	i |Z

]}≤ C/r2
n ,

E[(Ẋikξi )
2|Z] ≤ C E

[(
z2

ikξ
2
i /n +u2

ki ξ
2
i
)|Z]≤ C/n +C/rn ≤ C/rn .

Also, if �i = E[Ui U
′
i |Z], then E[Ẋi Ẋ ′

i |Z] = zi z′
i /n + S−1

n �i S−1′
n and E[Ẋi ξi |Z] =

S−1
n E[Ui ξi |Z]. Next let Wi be Ẋik Ẋi	 for some k and 	, so

E[Wi |Z] = e′
k S−1

n �i S−1′
n e	 + zikzi	/n, |E[Wi |Z]| ≤ C/rn,

Var(Wi |Z) ≤ E[(Ẋik Ẋi	)
2|Z] ≤ C/r2

n .

Also let Yi = ξ2
i and note that |E[Yi |Z]| ≤ C and Var(Wi |Z) ≤ C . Then in the notation of

Lemma A3,
√

K (σ̄Wn σ̄Yn + σ̄Wn μ̄Yn + μ̄Wn σ̄Yn ) ≤ √
K (C/rn +C/rn +C/rn) ≤ C

√
K/rn .

By the conclusion of Lemma A3, for this Wi and Yi we have

∑
i �= j

P2
ij Ẋik Ẋ ′

i	ξ
2
j = e′

k ∑
i �= j

P2
ij

(
zi z′

i /n + S−1
n �i S−1′

n

)
e	E[ξ2

j |Z]+ Op(
√

K/rn).
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Consider also Lemma A3 with Wi and Yi equal to Ẋikξi and Ẋi	ξi , respectively, so
σ̄Wn σ̄Yn + σ̄Wn μ̄Yn + μ̄Wn σ̄Yn ≤ C/rn . Then, applying Lemma A3, we have

∑
i �= j

P2
ij Ẋikξi ξj Ẋ j	 = e′

k S−1
n ∑

i �= j
P2

ij E[Ui ξi |Z]E[ξj U
′
j |Z]S−1′

n e	 + Op(
√

K/rn).

Also, because K → ∞, we have Op(
√

K/rn) = op(K/rn). The second conclusion then
follows by T. n

Proof of Theorem 4. Note that X̄i = ∑n
j=1 Pij X j , so

n

∑
i=1

(X̄i X̄ ′
i − Xi Pii X̄ ′

i − X̄i Pii X ′
i )ξ̂

2
i

=
n

∑
i, j,k=1

Pik Pkj Xi X ′
j ξ̂

2
k −

n

∑
i, j=1

Pii Pij Xi X ′
j ξ̂

2
i −

n

∑
i, j=1

Pij Pj j Xi X ′
j ξ̂

2
j

=
n

∑
i, j,k=1

Pik Pkj Xi X ′
j ξ̂

2
k − ∑

i �= j
Pii Pij Xi X ′

j ξ̂
2
i − ∑

i �= j
Pij Pj j Xi X ′

j ξ̂
2
j −2

n

∑
i=1

P2
i i Xi X ′

i ξ̂
2
i

= ∑
i, j,k /∈{i, j}

Pik Pkj Xi X ′
j ξ̂

2
k −

n

∑
i=1

P2
i i Xi X ′

i ξ̂
2
i

= ∑
i �= j �=k

Pik Pkj Xi X ′
j ξ̂

2
k +

n

∑
i �= j

P2
ij Xi X ′

i ξ̂
2
j −

n

∑
i=1

P2
i i Xi X ′

i ξ̂
2
i .

Also, for Z ′
i and Z̃ ′

i equal to the i th row of Z and Z̃ = Z(Z ′Z)−1, we have

K

∑
k=1

K

∑
	=1

(
n

∑
i=1

Z̃ik Z̃i	Xi ξ̂i

)(
n

∑
j=1

Zjk Z j	X j ξ̂j

)′

=
n

∑
i, j=1

(
K

∑
k=1

K

∑
	=1

Z̃ik Zjk Z̃i	Zj	

)
Xi ξ̂i ξ̂j X ′

j =
n

∑
i, j=1

(
K

∑
k=1

Z̃ik Zjk

)2

Xi ξ̂i ξ̂j X ′
j

=
n

∑
i, j=1

(Z̃ ′
i Z j )

2 Xi ξ̂i ξ̂j X ′
j =

n

∑
i, j=1

P2
ij Xi ξ̂i ξ̂j X ′

j .

Adding this equation to the previous one gives

�̂ = ∑
i �= j �=k

Pik Pkj Xi X ′
j ξ̂

2
k + ∑

i �= j
P2

ij Xi X ′
i ξ̂

2
j −

n

∑
i=1

P2
i i Xi X ′

i ξ̂
2
i +

n

∑
i, j=1

P2
ij Xi ξ̂i ξ̂j X ′

j

= ∑
i �= j �=k

Pik Pkj Xi X ′
j ξ̂

2
k + ∑

i �= j
P2

ij (Xi X ′
i ξ̂

2
j + Xi ξ̂i ξ̂j X ′

j ),

which yields the equality in Section 2.

Let σ̇ 2
i = E

[
ξ2
i |Z

]
and z̄i = ∑j Pijzj = e′

i Pz. Then following the same line of argument

as at the beginning of this proof, with zi replacing Xi and σ̇ 2
k replacing ξ̂2

k ,

∑
i �= j �=k

zi Pikσ̇
2
k Pkjz

′
j /n =∑

i
σ̇ 2

i

(
z̄i z̄′

i −Pii zi z̄′
i −Pii z̄i z′

i + P2
i i zi z′

i

)/
n − ∑

i �= j
P2

ij zi z′
i σ̇

2
j /n.
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Also, as shown previously, Assumption 4 implies that ∑i ‖zi − z̄i ‖2 /n ≤ z′(I − P)z/n →
0 a.s. Then by σ̇ 2

i and Pii bounded a.s. PZ , we have a.s.∥∥∥∥∥∑i σ̇ 2
i (z̄i z̄′

i − zi z′
i )/n

∥∥∥∥∥≤ ∑
i

σ̇ 2
i (2‖zi ‖‖zi − z̄i ‖+‖zi − z̄i ‖2)/n

≤ C

(
∑
i

‖zi ‖2 /n

)1/2(
∑
i

‖zi − z̄i ‖2 /n

)1/2

+C ∑
i

‖zi − z̄i ‖2 /n → 0,

∥∥∥∥∥∑i σ̇ 2
i Pii (zi z̄′

i − zi z′
i )/n

∥∥∥∥∥≤
(

∑
i

σ̇ 4
i P2

i i ‖zi ‖2 /n

)1/2(
∑
i

‖zi − z̄i ‖2 /n

)1/2

→ 0.

It follows that

∑
i �= j �=k

zi Pikσ̇
2
k Pkjz

′
j /n = ∑

i
σ̇ 2

i (1− Pii )
2zi z′

i /n − ∑
i �= j

P2
ij zi z′

i σ̇
2
j /n +oa.s.(1).

It then follows from Lemmas A7 and A8 and T that

�̂1 + �̂2 = ∑
i �= j �=k

zi Pikσ̇
2
k Pkjz

′
j /n + ∑

i �= j
P2

ij zi z′
i σ̇

2
j /n

+ S−1
n ∑

i �= j
P2

ij

(
E[Ui U

′
i |Z]σ̇ 2

j +E[Ui ξi |Z]E[ξj U
′
j |Z]

)
S−1′

n

+op(1)+op (K/rn)

= ∑
i

σ̇ 2
i (1− Pii )

2zi z′
i /n

+ S−1
n ∑

i �= j
P2

ij

(
E[Ui U

′
i |Z]σ̇ 2

j +E[Ui ξi |Z]E[ξj U
′
j |Z]

)
S−1′

n

+op(1)+op (K/rn)

because εn → 0. Then for JIV1, where ξi = εi /(1− Pii ) and σ̇ 2
i = σ 2

i /(1− Pii )
2, we have

�̂1 + �̂2 = �̄n + ̄n +op(1)+op(K/rn).

For JIV2, where ξi = εi and σ̇ 2
i = σ 2

i , we have

�̂1 + �̂2 = �n +n +op(1)+op(K/rn).

Consider the case where K/rn is bounded, implying op(K/rn) = op(1). Then, because
H̄−1

n , �̄n + ̄n, H−1
n , and �n +n are all bounded a.s.n, Lemma A6 implies

S′
n Ṽ Sn =

(
S−1

n H̃ S−1′
n

)−1(
�̂1 + �̂2

)(
S−1

n H̃ ′S−1′
n

)−1

=
(

H̄−1
n +op(1)

)(
�̄n + ̄n +op(1)

)(
H̄−1

n +op(1)
)

= V̄n +op(1),

S′
n V̂ Sn = Vn +op(1),

which gives the first conclusion.
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For the second result, consider the case where K/rn → ∞. Then for JIV1, where ξi =
εi /(1− Pii ) and σ̇ 2

i = σ 2
i /(1− Pii )

2, the almost sure boundedness of �̄n for n sufficiently
large implies that we have

(rn/K )
(
�̂1 + �̂2

)
=(rn/K )�̄n +(rn/K )̄n +(rn/K )op(1)+op(1)=(rn/K )̄n +op(1).

For JIV2, where ξi = εi and σ̇ 2
i = σ 2

i , we have

(rn/K )
(
�̂1 + �̂2

)
=(rn/K )�n +(rn/K )n +(rn/K )op(1)+op(1)=(rn/K )n +op(1).

Then by the fact that H̄−1
n , (r/Kn)̄n, H−1

n , and (r/Kn)nare all bounded a.s.n and by
Lemma A6,

S′
n Ṽ Sn =

(
S−1

n H̃ S−1′
n

)−1(
�̂1 + �̂2

)(
S−1

n H̃ ′S−1′
n

)−1

=
(

H̄−1
n +op(1)

)(
rn̄n/Kn +op(1)

)(
H̄−1

n +op(1)
)

= V̄ ∗
n +op(1).

Similarly, S′
n V̂ Sn = V ∗

n +op(1), which gives the second conclusion. n

Proof of Theorem 5. An expansion gives

a(δ̂)−a(δ0) = Ā(δ̂ − δ0)

for Ā = ∂a(δ̄)/∂δ where δ̄ lies on the line joining δ̂ and δ0 and actually differs element by

element from a(δ). It follows from δ̂
p→ δ0 that δ̄

p→ δ0, so by condition (iii), Bn ÂS−1′
n =

Bn AS−1′
n +op(1). Then multiplying by Bn and using Theorem 4, we have(

ÂV̂ Â′)−1/2 [
a(δ̂)−a(δ0)

]
=
(

Bn ÂS−1′
n S′

n V̂ Sn S−1
n Â′B′

n

)−1/2
Bn ĀS−1′

n S′
n

(
δ̂ − δ0

)
=
[(

Bn AS−1
n +op(1)

)(
V̄n +op(1)

)(
S−1′

n AB′
n +op(1)

)]−1/2

×
(

Bn AS−1′
n +op(1)

)
S′

n

(
δ̂ − δ0

)
=
(

Bn AS−1
n V̄n S−1′

n A′B′
n

)−1/2
Bn AS−1′

n S′
n

(
δ̂ − δ0

)
+op(1)

=
(

Bn AS−1
n V̄n S−1′

n A′B′
n

)−1/2
Bn AS−1

n V̄ 1/2
n V̄ −1/2

n S′
n

(
δ̂ − δ0

)
+ op(1) = (

Fn F ′
n
)−1/2 FnȲn +op(1)

for Fn = Bn AS−1
n V̄ 1/2

n and Ȳn = V̄ −1/2
n S′

n (δ − δ0), where the third equality in the pre-
ceding display follows from the Slutsky theorem given the continuity of the square root

matrix. By Theorem 2, Ȳn
d→ N (0, IG). Also, from the proof of Theorem 2, it follows

that this convergence is a.s. conditional on Z . Then because Ln = (Fn F ′
n)−1/2 Fn satisfies

Ln L ′
n = I , it follows from the Slutsky theorem and standard convergence in distribution

results that(
ÂV̂ Â

)−1/2 [
a(δ̂)−a(δ0)

]
= LnȲn +op(1)

d→ N (0, I ),

giving the conclusion. n
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Proof of Corollary 1. Let a(δ) = c′δ, so Ā = A = c′. Note that condition (i) of Theo-
rem 5 is satisfied. Let Bn = bn . Then Bn AS−1′

n = bnc′S−1′
n is bounded by hypothesis so

condition (ii) of Theorem 5 is satisfied. Also, Bn( Ā− A)S−1′
n = 0, so condition (iii) of The-

orem 5 is satisfied. If K/rn is bounded, then by hypothesis, λmin(Bn AS−1′
n V̄n S−1

n A′B′
n) =

b2
nc′S−1′

n V̄n S−1
n c ≥ C ; or if K/rn → ∞, then λmin(Bn AS−1′

n V̄ ∗
n S−1

n A′B′
n) = b2

nc′
S−1′

n V̄ ∗
n S−1

n c ≥ C, which gives the first conclusion. The second conclusion follows
similarly. n

Proof of Corollary 2. We will show the result for δ̂; the result for δ̃ follows analogously.
Let γ = limn→∞(rn/n), so γ exists and γ ∈ {0,1} by Assumption 2. Also,

√
rn S−1′

n = √
rn S̃−1′

n diag
(
1/

√
n, . . . ,1/

√
n,1/

√
rn
)→ R =

[√
γ I −π ′

1
0 1

]
.

Consider first the case where rn = n so that γ = 1. Take bn = √
rn and note that bnc′S−1′

n =
c′(√rn S−1′

n ) is bounded. Also, c′ R �= 0 because R is nonsingular and ‖Vn‖ ≤ C a.s.n
implying that b2

nc′S−1′
n Vn S−1

n c = c′ RVn R′c+oa.s.(1). Also n = S−1
n E[

(
∑i �= j PijUi εj

)(
∑i �= j PijUi εj

)′ |Z]S−1′
n is positive semidefinite, so Vn ≥ H−1

n �n H−1
n . Also, by

Assumptions 2 and 4, there is C > 0 with λmin(H−1
n �n H−1

n ) ≥ C a.s.n. Therefore, a.s.n,

b2
nc′S−1′

n Vn S−1
n c ≥ c′ RH−1

n �n H−1
n R′c +o(1) ≥ C +o(1) ≥ C. (A.1)

The conclusion then follows from Corollary 1.
For γ = 0, let a = (−π1,1)c and note that c′ R = (0,a) �= 0. If K/rn is bounded, let bn =√
rn . Then, as before, bnc′S−1′

n is bounded and equation (A.1) is satisfied, and the conclu-
sion follows. If K/rn → ∞, let bn = rn/

√
K . Note that bnc′S−1′

n = √
rn/K c′(√rn S−1′

n )

→ 0, so bnc′S−1′
n is bounded. Also, note that

√
rn S−1

n eG = diag(
√

rn/n, . . . ,
√

rn/n,1)

[
I 0

−π1 1

]
eG = eG .

Furthermore, a constant sign of E[εi UiG|Z ] implies E[εi UiG|Z ]E[εj UjG|Z ] ≥ 0, so by
Pii ≤ C < 1,

∑
i �= j

P2
ij

(
E[U2

iG|Z]σ 2
j +E[εi UiG|Z]E[εj UjG|Z]

)/
K ≥ ∑

i �= j
P2

ij E[U2
iG|Z]σ 2

j /K

≥ C ∑
i �= j

P2
ij /K =C

(
∑
i, j

P2
ij −∑

i
P2

i i

)/
K =C

(
1−∑ P2

i i /K
)

≥C.

Therefore, we have, a.s.,

(rn/K )n = √
rn S−1

n eG

[
∑
i �= j

P2
ij

(
E[U2

iG|Z]σ 2
j

+ E[εi UiG|Z]E[εj UjG|Z]
)
/K

]
e′

G
√

rn S−1′
n

≥ CeGe′
G .
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Also, Hn is a.s. bounded so that λmin(H−1
n ) = 1/λmax(Hn) ≥ C +oa.s.(1). It then follows

from c′ R = ae′
G that

b2
nc′S−1′

n V̄ ∗
n S−1

n c = rnc′S−1′
n H−1

n (rn/K )n H−1
n S−1

n c ≥ Crnc′S−1′
n H−1

n eGe′
G H−1

n S−1
n c

= a2C(e′
G H−1

n eG)2 +oa.s.(1) ≥ C +oa.s.(1).

The conclusion then follows from Corollary 1. n

APPENDIX B: Proofs of Lemmas A2 and A4

We first give a series of lemmas that will be useful for the proofs of Lemmas A2 and A4.

LEMMA B1. Under Assumption 1 and for any subset I2 of the set
{
(i, j)n

i, j=1

}
and

any subset I3 of
{
(i, j,k)n

i, j,k=1

}
, (i) ∑

I2

P4
ij ≤ K ; (ii) ∑

I3

P2
ij P2

jk ≤ K ; and

(iii) ∑
I3

∣∣∣P2
ij Pik Pjk

∣∣∣≤ K , a.s.n.

Proof. By Assumption 1, Z ′Z is nonsingular a.s.n. Also, because P is idempotent,

rank(P) = tr(P) = K , 0 ≤ Pii ≤ 1, and
n
∑

j=1
P2

ij = Pii . Therefore, a.s.n,

∑
I2

P4
ij ≤

n

∑
i, j=1

P2
ij =

n

∑
i=1

Pii = K ,

∑
I3

P2
ij P2

jk ≤
n

∑
j=1

(
n

∑
i=1

P2
ij

)(
n

∑
k=1

P2
jk

)
=

n

∑
j=1

P2
j j ≤

n

∑
j=1

Pj j = K ,

∑
I3

∣∣∣P2
ij Pik Pjk

∣∣∣≤ ∑
i, j

P2
ij ∑

k

∣∣Pik Pjk
∣∣≤ ∑

i, j
P2

ij

√
∑
k

P2
ik

√
∑
k

P2
jk

≤ ∑
i, j

P2
ij

√
Pii Pj j ≤ ∑

i, j
P2

ij = K . �

For the next result, let Sn = ∑
i<j<k<l

(
Pik Pjk Pil Pjl + Pij Pjk Pil Pkl + Pij Pik Pjl Pkl

)
.

LEMMA B2. If Assumption 2 is satisfied, then a.s.n (i) tr
[
(P − D)4

]
≤ C K ;

(ii)

∣∣∣∣∣ ∑
i< j<k<l

Pik Pjk Pil Pjl

∣∣∣∣∣ ≤ C K ; and (iii) |Sn | ≤ C K , where D = diag(P11, . . . , Pnn).

Proof. To show part (i), note that

(P − D)4 = (P −PD−DP+ D2)2 = P −PD−PDP+PD2 −PDP+PDPD+PD2 P

−PD3 −DP+DPD+DPDP−DPD2 + D2 P − D2PD-D3 P + D4.

Note that tr(A′) = tr(A) and tr(AB) = tr(BA) for any square matrices A and B. Then,
tr
[
(P − D)4] = tr(P) − 4tr(PD) + 4tr(PD2) + 2tr(PDPD) − 4tr(PD3) + tr(D4). By 0 ≤
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Pii ≤ 1 we have D j ≤ I for any positive integer j and tr(PD j ) = tr(PD j P) ≤ tr(P) = K
a.s.n. Also, a.s.n, tr(PDPD) = tr(PDPDP) ≤ tr(PD2 P) ≤ tr(P) = K and tr(D4) = ∑i P4

i i ≤
K . Therefore, by T we have

∣∣tr[(P − D)4]∣∣≤ 16K , giving conclusion (i).
Next, let L be the lower triangular matrix with Lij = Pij1(i > j). Then P = L + L ′ + D,

so

(P − D)4 = (L + L ′)4 = (L2 +LL′ + L ′L + L ′2)2

= L4 + L2LL′ + L2L ′L + L2L ′2 +LL′L2 +LL′LL′ +LL′L ′L +LL′3

+ L ′LL2 + L ′LLL′ + L ′LL′L + L ′LL′2 + L ′2L2 + L ′2LL′ + L ′2L ′L + L ′4.

Note that for positive integer j, [(L ′) j ]′ = L j . Then using tr(AB) = tr(B A) and tr(A′) =
tr(A),

tr((P − D)4) = 2tr(L4)+8tr(L3L ′)+4tr(L2L ′2)+2tr(L ′LL′L).

Next, compute each of the terms. Note that

tr(L4) = ∑
i, j,k,	

Pij1(i > j)Pjk1( j > k)Pk	1(k > 	)P	i 1(	 > i) = 0,

tr(L3L ′) = ∑
i, j,k,	

Pij1(i > j)Pjk1( j >k)Pk	1(k >	)P	i 1(i >	)

= ∑
i> j>k>	

Pij Pjk Pk	 P	i = ∑
	<k< j<i

Pij Pjk Pk	 P	i

= ∑
i< j<k<	

P	k Pkj Pji Pi	 = ∑
i< j<k<	

Pij Pjk Pk	 P	i ,

tr
(

L2L ′2)= ∑
i, j,k,	

Pij1(i > j)Pjk1( j > k)Pk	1(	 > k)P	i 1(i > 	)

= ∑
i> j>k,i>	>k

Pij Pjk Pk	 P	i

= ∑
i> j=	>k

Pij Pjk Pk	 P	i + ∑
i> j>	>k

Pij Pjk Pk	 P	i + ∑
i>	> j>k

Pij Pjk Pk	 P	i

= ∑
i> j>k

Pij Pjk Pkj Pji + ∑
i< j<k<	

(
P	k Pki Pij Pj	 + P	j Pji Pik Pk	

)

= ∑
i< j<k

P2
ij P2

jk +2 ∑
i< j<k<	

Pik Pk	 P	j Pji ,

and

tr(L L ′L L ′) = ∑
i, j,k,	

Pij1(i > j)Pjk(k > j)Pk	1(k > 	)P	i 1(i > 	)

= ∑
j<i

Pij Pji Pij Pji + ∑
j<k<i

Pij Pjk Pkj Pji
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+ ∑
j<i<k

Pij Pjk Pkj Pji + ∑
j<	<i

Pij Pji Pi	 P	i

+ ∑
	< j<i

Pij Pji Pi	 P	i +
(

∑
	< j<k<i

+ ∑
j<	<k<i

+ ∑
	< j<i<k

+ ∑
j<	<i<k

)

×Pij Pjk Pk	 P	i

= ∑
i< j

P4
ij +2 ∑

i<j<k

(
P2

ij P2
ik + P2

ik P2
jk

)
+4 ∑

i< j<k<	

Pik Pkj Pj	 P	i .

Summing up gives the result tr((P − D)4) = 2∑i< j P4
i j + 4∑i< j<k (P2

ij P2
jk + P2

ik P2
jk +

P2
ij P2

ik)+8Sn . Then by T and Lemma B1, we have

|Sn | ≤ (1/4) ∑
i<j

P4
ij +1/2 ∑

i<j<k
(P2

ij P2
jk + P2

ik P2
jk + P2

ij P2
ik)+ (1/8) tr((P − D)4) ≤ C K ,

a.s.n, thus giving part (iii). That is, Sn= Oa.s.(K ).
To show part (ii), take {εi } to be a sequence of independent and identically distributed

random variables with mean 0 and variance 1 and where εi and Z are independent for all i
and n. Define the random quantities

�1 = ∑
i<j<k

[
Pij Pikεj εk + Pij Pjkεi εk + Pik Pjkεi εj

]
,

�2 = ∑
i<j<k

[
Pij Pikεj εk + Pij Pjkεi εk

]
, �3 = ∑

i<j<k
Pik Pjkεi εj .

Note that by Lemma A1,

E
[
�2

3|Z
]

= E
[
∑i<j<k Pik Pjkεi εj ∑	<m<q P	q Pmqε	εm |Z

]

= ∑
i<j<{k,	}

Pik Pjk Pi	 Pj	 = ∑
i<j<k

(Pik)
2 (Pjk

)2+2 ∑
i<j<k<	

Pik Pjk Pi	 Pj	

= Oa.s.(K )+2 ∑
i<j<k<	

Pik Pjk Pi	 Pj	.

Also, note that

E
[
�2�3|Z]= E

[
∑ i<j<k

(
Pij Pikεj εk + Pij Pjkεi εk

)
∑	<m<q P	q Pmqε	εm |Z

]
= ∑

i<j<k<	

Pij Pik Pj	 Pk	 + ∑
i<j<k<	

Pij Pjk Pi	 Pk	

and

E
[
�2

2|Z
]

= E
[(

∑i<j<k Pij Pikεj εk + Pij Pjkεi εk

)
×
(
∑ 	<m<q P	m P	qεmεq + P	m Pmqε	εq

)
|Z
]
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= ∑
{i,	}<j<k

Pij Pik P	j P	k + ∑
i<{j,m}<k

Pij Pjk Pim Pmk

+ ∑
i<j<m<k

Pij Pik Pjm Pmk + ∑
	<i<j<k

Pij Pjk P	i P	k

= ∑
i<j<k

P2
ij P2

ik + ∑
i<j<k

P2
ij P2

jk +2 ∑
i<	<j<k

Pij Pik P	j P	k

+2 ∑
i<j<m<k

Pij Pjk Pim Pmk

+ ∑
i<j<k<	

Pij Pi	 Pjk Pk	 + ∑
i<j<k<	

Pjk Pk	 Pij Pi	

= ∑
i<j<k

P2
ij P2

ik + ∑
i<j<k

P2
ij P2

jk +2Sn = Oa.s.(K ).

Because �1 = �2 + �3, it follows that E
[
�2

1|Z
]
= E

[
�2

2|Z
]
+ E

[
�2

3|Z
]
+ 2E[

�2�3|Z] = Oa.s.(K )+2Sn= Oa.s.(K ). Therefore, by T, the expression for E
[
�2

3|Z
]

given previously, and �3 = �1 −�2,∣∣∣∣∣ ∑
i<j<k<	

Pik Pjk Pi	 Pj	

∣∣∣∣∣≤ E
[
�2

3|Z
]
+ Oa.s.(K ) ≤ E

[
(�1 −�2)2|Z

]
+ Oa.s.(K )

≤ 2E
[
�2

1|Z
]
+2E

[
�2

2|Z
]
+ Oa.s.(K ) ≤ Oa.s.(K ). �

LEMMA B3. Let L be the lower triangular matrix with Lij = Pij1(i > j). Then, under

Assumption 2,
∥∥LL′∥∥≤ C

√
K a.s.n, where ‖A‖ = [

Tr
(

A′ A
)]1/2

.

Proof. From the proof of Lemma B2 and by Lemma B1 and Lemma B2(ii), we have
a.s.n∥∥LL′∥∥2 = tr(LL′LL′) = ∑

i<j
P4

ij +2 ∑
i<j<k

(
P2

ij P2
ik + P2

ik P2
jk

)
+4 ∑

i<j<k<	

Pik Pkj Pj	 P	i

≤ C

(
K +

∣∣∣∣∣ ∑
i<j<k<	

Pik Pkj Pj	 P	i

∣∣∣∣∣
)

≤ CK.

Taking square roots gives the answer. n

For Lemma B4, which follows, let φi = φi (Z) (i = 1, . . . ,n) denote some sequence
of measurable functions. In applications of this lemma, we will take φi (Z) to be either
conditional variances or conditional covariances given Z . Also, to set some notation, let
σ 2

i = σ 2
i (Z) = E[ε2

i |Z], ω2
i = ω2

in (Z) = E[u2
i |Z], and γi = γin (Z) = E[ui εi |Z], where

to simplify notation we suppress the dependence of σ 2
i on Z and of ω2

i and γi on Z and
n. Let the following results apply.

LEMMA B4. Suppose that (a) P is a symmetric, idempotent matrix with rank (P) =
K and Pii ≤ C < 1; (b) (u1,ε1) , . . . ., (un,εn) are independent conditional on Z; (c)

there exists a constant C such that, a.s., supi E
(

u4
i |Z

)
≤ C, supi E

(
ε4

i |Z
)

≤ C, and

supi |φi | = supi |φi (Z)| ≤ C. Then, a.s.,
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(i) E

[(
1
K ∑ i<k P2

ki φk (ui εi −γi )
)2 |Z

]
→ 0

(ii) E

[(
1
K ∑i<k P2

ki φk

(
ε 2

j − σ 2
j

))2 |Z
]

→ 0 ;

(iii) E

[(
1
K ∑i<k P2

ki φk

(
u 2

j − ω 2
j

))2 |Z
]

→ 0

(iv) E

[(
1
K ∑i< j<k Pki Pkjφk

(
ui εj +uj εi

))2 | Z
]

→ 0;

(v) E

[(
1
K ∑i< j<k Pki Pkjφkεi εj

)2 |Z
]

→ 0;

(vi) E

[(
1
K ∑i< j<k Pki Pkjφkui uj

)2 |Z
]

→ 0.

Proof. To show part (i), note that

E

[(
1

K ∑ i<k≤ n P2
ki φkui εi −γi

)2
|Z
]

= 1

K 2 ∑i<k≤ n P4
ki φ

2
k

{
E
(

u2
i ε2

i |Z
)

−γ 2
i

}

+ 2

K 2 ∑1≤ i<k<l≤n P2
ki P2

li φkφl

{
E
(

u2
i ε2

i |Z
)

−γ 2
i

}

≤ 1

K 2 ∑1≤i<k≤n P4
ki φ

2
k

{√
E
(

u4
i |Z

)
E
(
ε4

i |Z
)

+E
(

u2
i |Z

)
E
(
ε2

i |Z
)}

+ 2

K 2 ∑1≤i<k<l≤n P2
ki P2

li |φk | |φl |
{√

E
(

u4
i |Z

)
E
(
ε4

i |Z
)
+E

(
u2

i |Z
)

E
(
ε2

i |Z
)}

≤ C

{
1

K 2 ∑1≤i<k≤n P4
ki + 2

K 2 ∑1≤ i<k<l≤n P2
ki P2

li

}
→ 0,

where the first inequality is the result of applying T and a conditional version of CS, the
second inequality follows by hypothesis, and the convergence to zero a.s. follows from
applying Lemma B1(i) and (ii). Parts (ii) and (iii) can be proved in essentially the same
way as part (i); hence, to avoid redundancy, we do not give detailed arguments for these
parts.

To show part (iv), first let L be a lower triangular matrix with (i, j)th element Lij =
Pij1(i > j) as in Lemma B3 and define Dγ = diag(γ1, . . . ,γn), Dφ = diag(φ1, . . . ,φn),
u = (u1, . . . ,un)′ , and ε = (ε1, . . . ,εn)′. It then follows by direct multiplication that

ε′L ′Dφ Lu − tr
{

L ′Dφ L Dγ
}= ∑

1≤i<k≤n
P2

ki φk (ui εi −γi )

+ ∑
1≤i< j<k ≤ n

Pki Pkjφk
(
ui εj +uj εi

)
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so that, by making use of Loève’s cr inequality, we have that

1

K 2 E

[(
∑ 1≤i<j<k≤n Pki Pk j φk

(
ui εj +uj εi

))2 | Z
]

≤ 2
1

K 2 E
[(

u′L ′Dφ Lε − tr
{

L ′DφLDγ
})2 |Z

]

+ 2
1

K 2 E

[(
∑ 1≤i<k≤n P2

ki φk
(

ui εi −γ i
))2 |Z

]
. (B.1)

It has already been shown in the proof of part (i) that ( 1/K 2) E
[(

∑ 1≤i<k≤n

P2
ki φk

(
ui εi −γ i

))2 |Z] → 0 a.s. PZ , so what remains to be shown is that
(
1/K 2)

E
[(

u′L ′Dφ Lε − tr
{

L ′Dφ L Dγ
})2 |Z]→ 0 a.s. PZ . To show the latter, note first that,

by straightforward calculations, we have

1

K 2 E
[(

u′L ′Dφ Lε − tr
{

L ′Dφ L Dγ
})2 | Z

]
= 1

K 2 tr
{(

L ′Dφ L ⊗ L ′Dφ L
)

E
[
εu′ ⊗ εu′|Z]}− 1

K 2

[
tr
{

L ′Dφ L Dγ
}]2

. (B.2)

Next, note that, by straightforward calculation, we have

E
[
εu′ ⊗ εu′|Z]

=

⎛
⎜⎜⎜⎜⎜⎝

σ 2
1 ω2

1e1e′
1 σ 2

1 ω2
2e1e′

2 · · · σ 2
1 ω2

ne1e′
n

σ 2
2 ω2

1e2e′
1 σ 2

2 ω2
2e2e′

2 · · · σ 2
2 ω2

ne2e′
n

...
...

. . .
...

σ 2
n ω2

1ene′
1 σ 2

n ω2
2ene′

2 · · · σ 2
n ω2

nene′
n

⎞
⎟⎟⎟⎟⎟⎠+

⎛
⎜⎜⎜⎜⎜⎝

γ 2
1 e1e′

1 γ1γ2e2e′
1 · · · γ1γnene′

1

γ2γ1e1e′
2 γ 2

2 e2e′
2 · · · γ2γnene′

2
...

...
. . .

...

γnγ1e1e′
n γnγ2e2e′

n · · · γ 2
n ene′

n

⎞
⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎝

ϑ1e1e′
1 0

n×n
· · · 0

n×n
0

n×n
ϑ2e2e′

2 · · · 0
n×n

...
...

. . .
...

0
n×n

0
n×n

· · · ϑnene′
n

⎞
⎟⎟⎟⎟⎟⎠+

⎛
⎜⎜⎜⎜⎜⎝

γ1 ⊗ Dγ 0
n×n

· · · 0
n×n

0
n×n

γ2 ⊗ Dγ · · · 0
n×n

...
...

. . .
...

0
n×n

0
n×n

· · · γn ⊗ Dγ

⎞
⎟⎟⎟⎟⎟⎠

= (Dσ ⊗ In)vec(In)vec(In)′ (Dω ⊗ In)

+(
Dγ ⊗ In

)
K nn

(
Dγ ⊗ In

)+E′DϑE+ (
Dγ ⊗ Dγ

)
, (B.3)

where K nn is an n2 × n2 commutation matrix such that, for any n × n matrix A, K nn
vec(A) = vec

(
A′). (See Magnus and Neudecker, 1988, pp. 46–48, for more on commuta-

tion matrices.) Also, here, Dγ = diag(γ1, . . . .,γn), Dσ = diag
(
σ 2

1 , . . . .,σ 2
n

)
,

Dω = diag
(
ω2

1, . . . .,ω2
n

)
, Dϑ = diag(ϑ1, . . . ,ϑn) with ϑi = E

[
ε2

i u2
i |Z

]
−σ 2

i ω2
i − 2γ 2

i

for i = 1, . . . .,n, E = (
e1 ⊗ e1

...e2 ⊗ e2
... · · · ...en ⊗ en

)′, and ei is the i th column of an
n ×n identity matrix. It follows from (B.2) and (B.3) and by straightforward calculations
that
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1

K 2 E
[(

u′L ′Dφ Lε − tr
{

L ′Dφ L Dγ
})2 | Z

]
= 1

K 2 tr
{(

L ′Dφ L ⊗ L ′Dφ L
)

E
[
εu′ ⊗ εu′|Z]}− 1

K 2

[
tr
{

L ′Dφ L Dγ
}]2

= 1

K 2 vec(In)′
(

DωL ′Dφ L Dσ ⊗ L ′Dφ L
)

vec(In)

+ 1

K 2 tr
{(

Dγ L ′Dφ L Dγ ⊗ L ′Dφ L
)

K nn
}

+ 1

K 2 tr
{(

L ′Dφ L ⊗ L ′Dφ L
)

E′DϑE
}+ 1

K 2 tr
{(

L ′Dφ L Dγ ⊗ L ′Dφ L Dγ
)}

− 1

K 2

[
tr
{

L ′Dφ L Dγ
}]2

= 1

K 2 tr
{

L ′Dφ L DωL ′Dφ L Dσ
}+ 1

K 2 tr
{(

Dγ L ′Dφ L Dγ ⊗ L ′Dφ L
)

K nn
}

+ 1

K 2 tr
{(

L ′Dφ L ⊗ L ′Dφ L
)

E′DϑE
}

. (B.4)

Focusing first on the first term of (B.4), and letting ω2 = max1≤i≤n ω2
i , σ 2 =

max1≤i≤n σ 2
i , and φ

2 = max1≤i≤n φ2
i , we get

1

K 2 tr
{

L ′DφLDωL ′DφLDσ
}≤ ω2σ 2 φ

2 1

K 2 tr
{

L ′LL′L
}

≤ C
1

K 2 tr
{

L ′LL′L
}= C

K 2

∥∥L L ′∥∥2 a.s. PZ , (B.5)

where the first inequality follows by repeated application of CS and of the simple inequality

tr
{

A′�A
}≤ max

1≤ i ≤ n
λi tr

(
A′ A

)
, (B.6)

which holds for n ×n matrices A and � = diag (λ1, . . . ,λn) such that λi ≥ 0 for all i ,
and where the second inequality follows in light of the assumptions of the lemma.

Turning our attention now to the second term of (B.4), we make use of the fact that,
for n ×n matrices A and B, tr

{
( A ⊗ B) K nn

} = tr{ AB} (a specialization of the

result given by Abadir and Magnus, 2005, p. 304) to obtain K −2tr
{(

Dγ L ′ D φ LDγ ⊗
L ′ D φ L

)
K nn

} = K − 2tr
{

L ′ D φ LDγ L ′ D φ LD γ
}

. As in (B.5), by repeated use
of CS and the inequality (B.6), we obtain

1

K 2 tr
{(

Dγ L ′DφLDγ ⊗ L ′Dφ L
)

K nn
}≤ C

K 2

∥∥L L ′∥∥2 a.s. PZ . (B.7)
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Finally, to analyze the third term of (B.4), we note that

1

K 2

∣∣tr{(L ′Dφ L ⊗ L ′Dφ L
)

E′DϑE
}∣∣

≤ 1

K 2

n

∑
i=1

|ϑi |
(
e′

i L ′Dφ Lei
)2 ≤ 1

K 2

n

∑
i=1

|ϑi |
(

e′
i L ′D2

φ Lei

)(
e′

i L ′Lei
)

≤ φ
2 1

K 2

n

∑
i=1

|ϑi |
(
e′

i L ′Lei
)2

≤ C
1

K 2

n

∑
i=1

(
e′

i L ′Lei
)2 ≤ C

1

K 2

n

∑
i=1

(
e′

i P ′ Pei
)2 = C

1

K 2

n

∑
i=1

P2
i i

≤ C
1

K 2

n

∑
i=1

Pii = C

K
a.s. PZ , (B.8)

where the first inequality follows from T, the second inequality follows from CS, the third
inequality makes use of (B.6), the fourth inequality uses CS and T and follows in light of
the assumptions of the lemma, and the last inequality holds because Pii < 1.

In light of (B.4), it follows from (B.5), (B.7), and (B.8) and Lemma B3 that (1/K 2)

E[(u′L ′Dφ Lε − tr
{

L ′Dφ L Dγ
}
)2 | Z] ≤ 2C

(
1/K 2)∥∥ LL ′∥∥2 +C ( 1/ K )≤ C/K a.s.

PZ , which shows part (iv).
It is easily seen that parts (v) and (vi) can be proved in essentially the same way as part

(iv) (by taking ui = εi ); hence, to avoid redundancy, we do not give detailed arguments
for these parts. n

Proof of Lemma A2. Let b1n = c1n�n
−1/2 and b2n = c2n�n

−1/2 and note that these
are bounded in n because �n is bounded away from zero by hypothesis. Let win = b′

1n Win
and ui = b′

2nUi , where we suppress the n subscript on ui for notational convenience. Then,

Yn = w1n + ∑n
i=2 yin, yin = win + ȳin, ȳin = ∑j<i (uj Pijεi + ui Pijεj )/

√
K .

Also, E
[‖w1n‖4 |Z]≤ ∑i E

[‖win‖4 |Z]≤ C ∑i E
[‖Win‖4 |Z]→ 0 a.s., so by a con-

ditional version of M, we deduce that for any υ > 0, P (|w1n | ≥ υ | Z) → 0. More-
over, note that supn E

[ |P (|w1n | ≥ υ | Z)|2 ] < ∞. It follows that, by Theorem 25.12
of Billingsley (1986), P (|w1n | ≥ υ) = E

[
P (|w1n | ≥ υ | Z)

] → 0 as n → ∞; i.e., w1n
p→ 0 unconditionally. Hence, Yn = ∑n

i=2 yin +op(1).

Now, we will show that Yn
d→ N (0,1) by first showing that, conditional on Z , ∑n

i=2

yin
d→ N (0,1), a.s. To proceed, let Xi = (W ′

in,U ′
i ,εi )

′ for i = 1, . . . ,n. Define the
σ -fields Fi,n = σ (X1, . . . .,Xi ) for i = 1, . . . .,n. Note that, by construction, Fi−1,n ⊆
Fi,n . Moreover, it is straightforward to verify that, conditional on Z , {yin,Fi,n,1 ≤ i ≤
n,n ≥ 2} is a martingale difference array, and we can apply the martingale central limit
theorem. As before, let σ 2

i = E[ε2
i |Z], ω2

i = ω2
in (Z) = E[u2

i |Z], and γi = γin (Z) =
E[ui εi |Z], where to simplify notation we suppress the dependence of σ 2

i on Z and of ω2
i

and γi on Z and n. Now, note that E[win ȳjn |Z] = 0 for all i and j and that
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E
[
(ȳin)2 |Z

]
= ∑

j<i
∑
k<i

E
[
(uj Pijεi +ui Pijεj )(uk Pikεi +ui Pikεk)|Z]/K

= ∑
j<i

P2
ij

[
ω2

j σ
2
i +ω2

i σ 2
j +2γi γj

]/
K .

Thus,

s2
n (Z) = E

[(
∑n

i=2 yin

)2 |Z
]

=
n

∑
i=2

(
E
[
w2

in |Z
]
+E

[
ȳ2

in |Z
])

= b′
1n Dnb1n −E

[
w2

1n |Z
]
+ ∑

i �= j
P2

ij

[
ω2

j σ
2
i +ω2

i σ 2
j +2γi γj

]/
K

= b′
1n Dnb1n +b′

2n�̄nb2n +oa.s.(1)

= �
−1/2
n

(
c′

1n Dnc1n + c′
2n�̄nc2n

)
�

−1/2
n +oa.s.(1)

= �
−1/2
n � n �

−1/2
n +oa.s.(1) = 1+oa.s.(1) → 1 a.s.,

where Dn = Dn (Z) = ∑n
i=1 E

[
Win W ′

in |Z] and

�̄n = �̄n (Z) = ∑
i �= j

P2
ij

(
E[Ui U

′
i |Z]E[ε2

j |Z]+E[Ui εi |Z]E[εj U
′
j |Z]

)/
K .

Thus, s2
n (Z) is bounded and bounded away from zero a.s. Also, ∑i=2 E

[
y4

in |Z
]
≤ C ∑n

i=2

E
[
‖Win‖4 |Z

]
+C ∑n

i=2 E
[

ȳ4
in |Z

]
. By condition (iv), ∑n

i=2 E
[
‖Win‖4 |Z

]
→ 0. Let ȳε

in =
∑j<i u j Pijεi /

√
K and ȳu

in = ∑j<i ui Pijεj /
√

K . By
∣∣Pij

∣∣ < 1 and ∑j P2
ij = Pii , we have

that a.s.

n

∑
i=2

E
[(

ȳε
in
)4 |Z

]
≤ C

K 2

n

∑
i=2

∑
j,k,	,m<i

Pij Pik Pi	 PimE
[
ε4

i |Z
]

E
[
uj uku	um |Z]

≤ C

K 2

n

∑
i=2

(
∑
j<i

P4
ij + ∑

j,k<i
P2

ij P2
ik

)
≤ C K/K 2 → 0.

Similarly, ∑n
i=2 E

[(
ȳu

in

)4 |Z
]

→ 0 a.s., so that

n

∑
i=2

E
[

ȳ4
in |Z

]
≤ C

n

∑
i=2

{
E
[(

ȳε
in
)4 |Z

]
+E

[(
ȳu

in
)4 |Z

]}
→ 0

Then by T we have ∑n
i=2 E

[
y4

in |Z
]

→ 0 a.s.

Conditional on Z , to apply the martingale central limit theorem, it suffices to show that
for any ε > 0

P
(∣∣∣∑n

i=2 E
[

y2
in |X1, . . . ,Xi−1,Z

]
− s2

n (Z)
∣∣∣≥ ε | Z

)
→ 0. (B.9)
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Now note that E
[
win ȳin |Z]= 0 a.s. and thus we can write

n

∑
i=2

E
[

y2
in |X1, . . . ,Xi−1,Z

]
− s2

n (Z) =
n

∑
i=2

(
E[w2

in |X1, . . . ,Xi−1,Z]−E[w2
in |Z]

)

+
n

∑
i=2

E
[
win ȳin |X1, . . . ,Xi−1,Z]+ n

∑
i=2

(
E[ȳ2

in |X1, . . . ,Xi−1,Z]−E[ȳ2
in |Z]

)
.

(B.10)

We will show that each term on the right-hand side of (B.10) converges to zero a.s. To pro-
ceed, note first that by independence of W1n, . . . ,Wnn conditional on Z , E[w2

in |X1, . . . ,

Xi−1,Z] = E[w2
in |Z] a.s. Next, note that E

[
win ȳin |X1, . . . ,Xi−1,Z] = E[winui |Z]

∑j<i Pijεj /
√

K + E[winεi |Z]∑j<i Piju j /
√

K . Let δi = δi (Z) = E[winui |Z] and con-

sider the first term, δi ∑j<i Pijεj /
√

K . Let P̄ be the upper triangular matrix with
P̄ij = Pij for j > i and P̄ij = 0, j ≤ i , and let δ = (δ1, . . . ,δn). Then, ∑n

i=2 ∑j<i δi Pijεj /√
K = δ′ P̄ ′ε/

√
K . By CS, δ′δ = ∑n

i=1
(
E
[
winui |Z

])2 ≤ ∑n
i=1 E[w2

in |Z]E[u2
i |Z] ≤ C

a.s. By Lemma B3,
∥∥P̄ ′ P̄

∥∥≤ C
√

K a.s., which in turn implies that λmax
(

P̄ ′ P̄
)≤ C

√
K

a.s. It then follows given E
[
u2

j |Z
]

≤ C a.s. that E[(δ′ P̄ ′ε/
√

K )2|Z] ≤ Cδ′ P̄ ′ P̄δ/K ≤
C ‖δ‖2 /

√
K ≤ C/

√
K → 0 a.s., so that by M we have for any ε > 0, P

(∣∣δ (Z)′ P̄ ′ε/√
K
∣∣∣≥ ε|Z

)
→ 0 a.s. Similarly, we have ∑n

i=2 E
[
winεi |Z

]
∑j<i Piju j /

√
K → 0 a.s.

Therefore, it follows by T that, for any ε > 0, P
(∣∣∑n

i=2 E
[
win ȳin |X1, . . . ,Xi−1,Z]∣∣

≥ ε|Z)→ 0 a.s.
To finish showing that equation (B.9) is satisfied, it only remains to show that, for any

ε > 0,

P
(∣∣∣∑n

i=2

(
E
[

ȳ2
in |X1, . . . ,Xi−1,Z

]
−E[ȳ2

in |]Z
)∣∣∣≥ ε|Z

)
→ 0 a.s. (B.11)

Now, write

n

∑
i=2

E
([

ȳ2
in |X1, . . . ,Xi−1,Z

]
−E[ȳ2

in |Z]
)

= ∑
j<i

ω2
i P2

ij

(
ε2

j −σ 2
j

)/
K +2 ∑

j<k<i
ω2

i Pij Pikεj εk/K

+ ∑
j<i

σ 2
i P2

ij

(
u2

j −ω2
j

)/
K +2 ∑

j<k<i
σ 2

i Pij Pikuj uk/K

+2 ∑
j<i

γi P2
ij
(
uj εj −γj

)/
K +2 ∑

j<k<i
γi Pij Pik(uj εk +ukεj )/K . (B.12)

By applying parts (i)–(iii) of Lemma B4 with φi = γi , ω2
i , and σ 2

i , respectively, we

obtain, a.s., E
[(

∑j<i γi P2
ij
[
uj εj − γ j

]
/K

)2|Z]→0, E
[(

∑j<i ω2
i P2

ij
[
ε2

j − σ 2
j

]
/K

)2| Z]
→ 0, and E

[(
∑j<i σ 2

i P2
ij
[
u2

j − ω2
j

]
/K

)2| Z] → 0. Moreover, applying part (iv) of

Lemma B4 with φi = γi , we obtain E
[(

∑ j<k<i γi Pi j Pik
[
uj εk + ukεi

]
/K

)2 | Z
]

→ 0

a.s. PZ . Similarly, conditional onZ , all of the remaining terms in equation (B.12) converge
in mean square to zero a.s. by parts (v) and (vi) of Lemma B4.
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The preceding argument shows that as n → ∞, P (Yn≤ y|Z)→ �(y) a.s. PZ , for every
real number y, where �(y) denotes the cumulative distribution function of a standard nor-
mal distribution. Moreover, it is clear that, for some ε > 0, sup

n
E
[ |P (Yn ≤ y|Z)|1+ε

]
< ∞

(take, e.g., ε = 1 ). Hence, by a version of the dominated convergence theorem, as given by
Theorem 25.12 of Billingsley (1986), we deduce that P (Yn ≤ y)= E[P (Yn ≤ y| Z)]→
E[�(y)]= �(y) , which gives the desired conclusion. n

Proof of Lemma A4. Let w̄i = E[Wi |Z], W̃i = Wi − w̄i , ȳi = E[Yi |Z], Ỹi = Yi − ȳi ,
η̄i = E[ηi |Z], η̃i = ηi − η̄i ,

μ̄2
W = max

i≤n
w̄2

i ≤ C/n, μ̄2
Y = max

i≤n
ȳ2

i ≤ C/n, μ̄2
η = max

i≤n
η̄2

i ≤ C,

σ̄ 2
W = max

i≤n
Var(Wi |Z) ≤ C/rn, σ̄ 2

Y = max
i ≤ n

Var(Yi |Z) ≤ C/rn,

σ̄ 2
η = max

i≤n
Var(ηi |Z) ≤ C.

Also, let y̆i = ∑j Pij ȳj , w̆i = ∑j Pijw̄j , be predicted values from projecting ȳ and w̄ on
P and note that

∑
i

y̆2
i ≤ ∑

i
ȳ2

i ≤ C,∑
i

w̆2
i ≤ ∑

i
w̄2

i ≤ C.

By adding and subtracting terms similar to the beginning of the proof of Theorem 4,

An = ∑
i �= j

∑
k /∈{i, j}

w̄i Pikη̄k Pkj ȳj

= ∑
i

η̄i

(
w̆i y̆i − Pii w̄i y̆i − Pii w̆i ȳi +2P2

i i w̄i ȳi

)/
n −∑

i, j
w̄i ȳi P2

ij η̄j .

By T, CS, and η̄k ≤ C,∣∣∣∣∣∑k w̆k η̄k y̆k

∣∣∣∣∣≤ C
√

∑
k

w̆2
k

√
∑
k

y̆2
k ≤ C,

∣∣∣∣∣∑i w̄i Pii η̄i y̆i

∣∣∣∣∣≤
√

∑
i

w̄2
i P2

i i η̄
2
i

√
∑
i

y̆2
i ≤ C,

and it follows similarly that ∑i w̆i Pii η̄i ȳi is bounded. By Lemma B1,
∣∣∣∑i,k w̄i ȳi P2

ikη̄k

∣∣∣
≤ Cn−1

∣∣∣∑i,k P2
ik

∣∣∣≤ C K/n ≤ C. Also,
∣∣∣∑i w̄i ȳi P2

i i η̄i

∣∣∣≤ Cn/n = C. Thus, |An | ≤ C holds

by T.
For the remainder of this proof we let E[•] denote the conditional expectation given Z .

Note that

Wi Pikηk PkjYj = W̃i Pikηk PkjYj + w̄i Pikηk PkjYj

= W̃i Pikη̃k PkjYj + W̃i Pikη̄k PkjYj + w̄i Pikη̃k PkjYj + w̄i Pikη̄k PkjYj

= W̃i Pikη̃k PkjỸj + W̃i Pikη̃k Pkj ȳj + W̃i Pikη̄k PkjỸj + W̃i Pikη̄k Pkj ȳj

+ w̄i Pikη̃k PkjỸj + w̄i Pikη̃k Pkj ȳj + w̄i Pikη̄k PkjỸj + w̄i Pikη̄k Pkj ȳj .
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Summing and subtracting the last term gives

∑
i �= j �=k

Wi Pikηk PkjYj − An =
7

∑
r=1

ψ̂r ,

where

ψ̂1 = ∑
i �= j �=k

W̃i Pikη̃k PkjỸj , ψ̂2 = ∑
i �= j �=k

W̃i Pikη̃k Pkj ȳj , ψ̂3 = ∑
i �= j �=k

W̃i Pikη̄k PkjỸj ,

ψ̂4 = ∑
i �= j �=k

W̃i Pikη̄k Pkj ȳj , ψ̂5 = ∑
i �= j �=k

w̄i Pikη̃k PkjỸj , ψ̂6 = ∑
i �= j �=k

w̄i Pikη̃k Pkj ȳj ,

and ψ̂7 = ∑i �= j �=k w̄i Pikη̄k PkjỸj . By T, the second conclusion will follow from ψ̂r
p→ 0

for r = 1, . . . ,7. Also, note that ψ̂7 is the same as ψ̂4 and ψ̂5, which is the same as ψ̂2
with the random variables W and Y interchanged. Because the conditions on W and Y are

symmetric, it suffices to show that ψ̂r
p→ 0 for r ∈ {1,2,3,4,6}.

Consider now ψ̂1. Note that for i �= j �= k and r �= s �= t, we have E[W̃i Pikη̃k PkjỸj W̃r

Prs η̃s Pst Ỹt ] = 0, except for when each of the three indexes i, j,k is equal to one of the
three indexes r,s, t . There are six ways this can happen, leading to six terms in

E[ψ̂2
1 ] = ∑

i �= j �=k
∑

r �=s �=t
E[W̃i Pikη̃k PkjỸj W̃r Prs η̃s Pst Ỹt ] =

6

∑
q=1

τ̂q .

Note that by hypothesis, σ̄ 2
W σ̄ 2

η σ̄ 2
Y K ≤ Cr−2

n K → 0. By Lemma B1, we have

∣∣τ̂1
∣∣= ∑

i �= j �=k
E[(W̃i Pikη̃k PkjỸj )

2]= ∑
i �= j �=k

E[W̃ 2
i ]P2

ikE[η̃2
k ]P2

kjE[Ỹ 2
j ] ≤ σ̄ 2

W σ̄ 2
η σ̄ 2

Y K → 0.

Similarly, by CS,

∣∣τ̂3
∣∣=

∣∣∣∣∣ ∑
i �= j �=k

E[(W̃i Pikη̃k PkjỸj )(W̃j Pjkη̃k Pki Ỹi )]

∣∣∣∣∣
=
∣∣∣∣∣ ∑
i �= j �=k

E[W̃i Ỹi ]E[W̃j Ỹj ]E[η̃2
k ]P2

ik P2
kj

∣∣∣∣∣
≤ σ 2

W σ̄ 2
η σ̄ 2

Y K → 0.

Next, by Lemma B1 and CS

∣∣τ̂2
∣∣=

∣∣∣∣∣ ∑
i �= j �=k

E[(W̃i Pikη̃k PkjỸj )(W̃i Pijη̃j PjkỸk)]

∣∣∣∣∣
=
∣∣∣∣∣ ∑
i �= j �=k

E[W̃ 2
i ]E[η̃k Ỹk ]E[η̃j Ỹj ]Pik Pij P2

jk

∣∣∣∣∣
≤ σ̄ 2

W σ̄ 2
η σ̄ 2

Y K → 0.
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Similarly,

∣∣τ̂4
∣∣=

∣∣∣∣∣ ∑
i �= j �=k

E[(W̃i Pikη̃k PkjỸj )(W̃j Pji η̃i PikỸk)]

∣∣∣∣∣
=
∣∣∣∣∣ ∑
i �= j �=k

E[W̃i η̃i ]E[W̃j Ỹj ]E[η̃k Ỹk ]P2
ik Pkj Pji

∣∣∣∣∣
≤ σ̄ 2

W σ̄ 2
η σ̄ 2

Y K → 0,

∣∣τ̂5
∣∣=

∣∣∣∣∣ ∑
i �= j �=k

E[(W̃i Pikη̃k PkjỸj )(W̃k Pki η̃i PijỸj )]

∣∣∣∣∣
=
∣∣∣∣∣ ∑
i �= j �=k

E[W̃i η̃i ]E[Ỹ 2
j ]E[W̃k η̃k ]P2

ik Pkj Pji

∣∣∣∣∣
≤ σ̄ 2

W σ̄ 2
η σ̄ 2

Y K → 0,

∣∣τ̂6
∣∣=

∣∣∣∣∣ ∑
i �= j �=k

E[(W̃i Pikη̃k PkjỸj )(W̃k Pkjη̃j Pji Ỹi )]

∣∣∣∣∣
=
∣∣∣∣∣ ∑
i �= j �=k

E[W̃i Ỹi ]E[η̃j Ỹj ]E[W̃k η̃k ]P2
jk Pij Pik

∣∣∣∣∣
≤ σ̄ 2

W σ̄ 2
η σ̄ 2

Y K → 0.

T then gives E[ψ̂2
1 ] → 0, so ψ̂2

1
p→ 0 holds by M.

Consider now ψ̂2. Note that for i �= j �= k and r �= s �= t, we have E[W̃i Pikη̃k Pkj ȳj W̃r
Prs η̃s Pst ȳt ] = 0, except when i = r and j = s or i = s and j = r. Then by (A +
B +C)2 ≤ 3(A2 + B2 +C2) and for fixed k, ∑i �=k P2

ik ≤ Pkk , ∑i �=k P4
ik ≤ Pkk , it follows

that

∑
i �=k

P2
ik

(
∑

j /∈{i,k}
Pkj ȳj

)2

≤ 3 ∑
i �=k

P2
ik

(
y̆2

k + P2
ki ȳ2

i + P2
kk ȳ2

k

)

≤ 3

(
∑
k

Pkk

(
y̆2

k +2ȳ2
k

))
≤ 3

(
∑
k

y̆2
k +2∑

k
ȳ2

k

)
≤ 9nμ̄2

Y ≤ C.
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It follows by |AB| ≤
(

A2 + B2
)/

2, CS, and Pik = Pki that

E[ψ̂2
2 ] = ∑

i �=k
E[W̃ 2

i ]P2
ikE[η̃2

k ]

(
∑

j /∈{i,k}
Pkj ȳj

)2

+ ∑
i �=k

E[W̃i η̃i ]P2
ikE[W̃k η̃k ]

(
∑

j /∈{i,k}
Pkj ȳj

)(
∑

j /∈{i,k}
Pij ȳj

)

≤ 2σ̄ 2
W σ̄ 2

η ∑
i �=k

P2
ik

(
∑

j /∈{i,k}
Pkj ȳj

)2

≤ C/rn → 0.

Then ψ̂2
p→ 0 holds by M.

Consider ψ̂3. Note that for i �= j �= k and r �= s �= t, we have E[W̃i Pikη̄k PkjỸj W̃r Prs η̄s

Pst Ỹt ] = 0, except when i = r and j = t or i = t and j = r. Thus,

E[ψ̂2
3 ] = ∑

i �= j

(
E[W̃ 2

i ]E[Ỹ 2
j ]+E[W̃i Ỹi ]E[W̃j Ỹj ]

)(
∑

k /∈{i, j}
Pikη̄k Pkj

)2

≤ 2σ̄ 2
W σ̄ 2

Y ∑
i �= j

(
∑

k /∈{i, j}
Pikη̄k Pkj

)2

.

Note that for i �= j, ∑k /∈{i, j} Pik Pkjη̄k = ∑k Pik Pkjη̄k − Pij Pii η̄i − Pij Pj j η̄j . Note also that

∑
i

(
∑
k

P2
ikη̄k

)2

= ∑
i,k,	

P2
ik P2

i	η̄k η̄	 ≤ μ̄2
η ∑

i,k,	

P2
ik P2

i	 = μ̄2
η ∑

i
P2

i i ≤ μ̄2
η K ,

∑
i, j

(
∑
k

Pikη̄k Pkj

)2

= ∑
i, j,k,	

Pikη̄k Pjk Pi	η̄	 Pj	 = ∑
k,	

η̄k η̄	

(
∑
i

Pik Pi	

)(
∑
j

Pjk Pj	

)

= ∑
k,	

η̄k η̄	 P2
k	 ≤ μ̄2

η ∑
k,	

P2
k	 = μ̄2

η K .

It therefore follows that

∑
i �= j

(
∑
k

Pikη̄k Pkj

)2

= ∑
i, j

(
∑
k

Pikη̄k Pkj

)2

−∑
i

(
∑
k

Pikη̄k Pki

)2

≤ 2μ̄2
η K .

Also, by Lemma B1, ∑i �= j P2
ij P2

j j η̄
2
j ≤ μ̄2

η ∑i �= j P2
ij ≤ μ̄2

η K , so that

∑
i �= j

(
∑

k /∈{i, j}
Pikη̄k Pkj

)2

≤ 3 ∑
i �= j

⎧⎨
⎩
(

∑
k

Pikη̄k Pkj

)2

+ P2
ij P2

i i η̄
2
i + P2

ij P2
j j η̄

2
j

⎫⎬
⎭≤ 6μ̄2

η K .

From the previous expression for E[ψ̂2
3 ], we then have E[ψ̂2

3 ] ≤ C σ̄ 2
W σ̄ 2

Y μ̄2
η K ≤ Cr−2

n

K → 0. Then ψ̂3
p→ 0 by M.



JIVE WITH HETEROSKEDASTICITY 85

Next, consider ψ̂4. Note that for i �= j �= k and r �= s �= t, we have E[W̃i Pikη̄k Pkj ȳj W̃r
Prs η̄s Pst ȳt ] = 0, except when i = r. Thus,

E[ψ̂2
4 ] = ∑

i
E[W̃ 2

i ]

(
∑
j �=i

∑
k /∈{i, j}

Pikη̄k Pkj ȳj

)2

≤ σ̄ 2
W ∑

i

(
∑
j �=i

∑
k /∈{i, j}

Pikη̄k Pkj ȳj

)2

.

Note that for i �= j ,

∑
k /∈{i, j}

Pikη̄k Pkj ȳj = ∑
k

Pikη̄k Pkj ȳj − Pii η̄i Pij ȳj − Pijη̄j Pj j ȳj .

Therefore, for fixed i,

∑
j �=i

∑
k /∈{i, j}

Pikη̄k Pkj ȳj = ∑
j �=i

(
∑
k

Pikη̄k Pkj ȳj − Pii η̄i Pij ȳj − Pijη̄j Pj j ȳj

)

= ∑
k

Pikη̄k y̆k −∑
k

P2
ikη̄k ȳi − Pii η̄i y̆i −∑

j
Pijη̄j Pj j ȳj +2P2

i i η̄i ȳi .

Note that because P is idempotent, we have ∑j ∑k Pjkη̄j y̆j η̄k y̆k ≤ ∑j η̄2
j y̆2

j ≤ μ̄2
η ∑j y̆2

j ≤
μ̄2

η ∑j ȳ2
j ≤ nμ̄2

ημ̄2
Y ≤ C. Then it follows that

∑
i

{∑
k

Pikη̄k y̆k}2 = ∑
i

∑
j

∑
k

Pijη̄j y̆j Pikη̄k y̆k = ∑
j

∑
k

η̄j y̆j η̄k y̆k ∑
i

Pij Pik

= ∑
j

∑
k

Pjkη̄j y̆j η̄k y̆k ≤ C.

Also, using similar reasoning,

∑
i

(Pii η̄i y̆i )
2 ≤ ∑

i
η̄2

i y̆2
i ≤ nμ̄2

ημ̄2
Y ≤ C,

∑
i

(
∑
j

Pijη̄j Pj j ȳj

)2

≤ ∑
i

η̄2
i P2

i i ȳ2
i ≤ ∑

i
η̄2

i ȳ2
i ≤ C,

∑
i

(
ȳi ∑

k
P2

ikη̄k

)2

≤ μ̄2
Y ∑

i,k,	

P2
ik P2

i	η̄k η̄	 ≤ μ̄2
Y μ̄2

η ∑
i,k,	

P2
ik P2

i	 ≤ K μ̄2
ημ̄2

Y ≤ C,

∑
i

P4
i i η̄

2
i ȳ2

i ≤ nμ̄2
ημ̄2

Y ≤ C.

Then using the fact that (∑5
r=1 Ar )2 ≤ 5∑5

r=1 A2
r , it follows that E[ψ̂2

4 ] ≤ σ̄ 2
W C ≤ C/rn

→ 0, so ψ̂4
p→ 0 by M.

Next, consider ψ̂6. Note that for i �= k, ∑j /∈{i,k} w̄i Pik Pkj ȳj = w̄i Pik y̆k − w̄i P2
ik ȳi −

w̄i Pik Pkk ȳk . Then for fixed k,

∑
i �=k

∑
j /∈{i,k}

w̄i Pik Pkj ȳj = ∑
i

(
w̄i Pik y̆k−w̄i P2

ik ȳi −w̄i Pik Pkk ȳk

)
− w̄k Pkk y̆k +2w̄k P2

kk ȳk

= w̆k y̆k −∑
i

w̄i P2
ik ȳi − w̆i Pkk ȳk − w̄k Pkk y̆k +2w̄k P2

kk ȳk .
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Then using the fact that (∑5
r=1 Ar )2 ≤ 5∑5

r=1 A2
r we have

E[ψ̂2
6 ] = ∑

k
E[η̃2

k ]( ∑
i �=k

∑
j /∈{i,k}

w̄i Pik Pkj ȳj )
2

≤ 5σ̄ 2
η ∑

k

(
w̆2

k y̆2
k +∑

i, j
P2

kj P2
ki w̄i ȳi w̄j ȳj + w̆2

k P2
kk ȳ2

k + w̄2
k P2

kk y̆2
k +4w̄2

k P4
kk ȳ2

k

)

≤ 5σ̄ 2
η

(
∑
k

w̆2
k y̆2

k + μ̄2
W μ̄2

Y ∑
i, j,k

P2
kj P2

ki + μ̄2
Y ∑

k
w̆2

k + μ̄2
W ∑

k
y̆2

k +n4μ̄2
W μ̄2

Y

)

≤ 5σ̄ 2
η

(
∑
k

w̆2
k y̆2

k +7nμ̄2
W μ̄2

Y

)
≤ C ∑

k
w̆2

k y̆2
k +Cn/n2 ≤ C ∑

k
w̆2

k y̆2
k +o(1).

Now let πn be such that �n = maxi |ai − Z ′
i πn | → 0, let αn = πn/

√
n, and note that

maxi≤n
∣∣w̄i − Z ′

i αn
∣∣= �n/

√
n. Let w̄ = (w̄1, . . . , w̄n)′. Then

|w̄i − w̆i | =
∣∣∣w̄i − Z ′

i (Z ′Z)−1 Z ′w̄
∣∣∣= ∣∣∣w̄i − Z ′

i αn − Z ′
i (Z ′Z)−1 Z ′(w̄ − Zαn)

∣∣∣
≤ �n/

√
n +

(
∑
j

P2
ij

)1/2(
∑
j

[
w̄j − Z ′

j αn

]2
)1/2

≤ �n + P1/2
i i

√
n max

i≤n

∣∣w̄i − Z ′
i αn

∣∣= �n + P1/2
i i �n ≤ C�n .

Then by T, maxi≤n |w̆i | ≤ maxi≤n |w̄i |+�n → 0, so that

∑
k

w̆2
k y̆2

k ≤
(

max
i≤n

|w̆i |
)2

∑
k

y̆2
k = o(1)∑

k
ȳ2

k → 0.

Then we have E[ψ̂2
6 ] → 0, so by M, ψ̂6

p→ 0. The conclusion then follows by T. n


