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This paper derives the limiting distributions of alternative jackknife instrumen-
tal variables (JIV) estimators and gives formulas for accompanying consistent
standard errors in the presence of heteroskedasticity and many instruments. The
asymptotic framework includes the many instrument sequence of Bekker (1994,
Econometrica 62, 657-681) and the many weak instrument sequence of Chao
and Swanson (2005, Econometrica 73, 1673—-1691). We show that JIV estimators
are asymptotically normal and that standard errors are consistent provided that
Kn/rn = 0 as n = oo, where K,, and r, denote, respectively, the number of
instruments and the concentration parameter. This is in contrast to the asymptotic
behavior of such classical instrumental variables estimators as limited informa-
tion maximum likelihood, bias-corrected two-stage least squares, and two-stage
least squares, all of which are inconsistent in the presence of heteroskedasticity,
unless K, /r, — 0. We also show that the rate of convergence and the form of the
asymptotic covariance matrix of the JIV estimators will in general depend on the
strength of the instruments as measured by the relative orders of magnitude of ry,
and K;,.
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1. INTRODUCTION

It has long been known that the two-stage least squares (2SLS) estimator is biased
with many instruments (see, e.g., Sawa, 1968; Phillips, 1983; and the references
cited therein). In large part because of this problem, various approaches have
been proposed in the literature to reduce the bias of the 2SLS estimator. In recent
years, there has been interest in developing procedures that use “delete-one” fitted
values in lieu of the usual first-stage ordinary least squares fitted values as the in-
struments employed in the second stage of the estimation. A number of different
versions of these estimators, referred to as jackknife instrumental variables (JIV)
estimators, have been proposed and analyzed by Phillips and Hale (1977), An-
grist, Imbens, and Krueger (1999), Blomquist and Dahlberg (1999), Ackerberg
and Devereux (2009), Davidson and MacKinnon (2006), and Hausman, Newey,
Woutersen, Chao, and Swanson (2007).

The JIV estimators are consistent with many instruments and heteroskedasticity
of unknown form, whereas other estimators, including limited information max-
imum likelihood (LIML) and bias-corrected 2SLS (B2SLS) estimators are not
(see, e.g., Bekker and van der Ploeg, 2005; Ackerberg and Devereux, 2009; Chao
and Swanson, 2006; Hausman et al., 2007). The main objective of this paper is
to develop asymptotic theory for the JIV estimators in a setting that includes the
many instrument sequence of Kunitomo (1980), Morimune (1983), and Bekker
(1994) and the many weak instrument sequence of Chao and Swanson (2005). To
be precise, we show that JIV estimators are consistent and asymptotically normal
when /K, /r, = 0as n — oo, where K, and r,, denote the number of instruments
and the so-called concentration parameter, respectively In contrast, consistency
of LIML and B2SLS generally requires that 2 — 0 asn — oo, meaning that the
number of instruments is small relative to the 1dent1ﬁcat10n strength. We show that
both the rate of convergence of the JIV estimator and the form of its asymptotic
covariance matrix depend on how weak the available instruments are, as measured
by the relative order of magnitude of r, vis-a-vis K,,. We also show consistency
of the standard errors under heteroskedasticity and many instruments.

Hausman et al. (2007) also consider a jackknife form of LIML that is slightly
more difficult to compute but is asymptotically efficient relative to JIV under
many weak instruments and homoskedasticity. With heteroskedasticity, any of
the estimators may outperform the others, as shown by Monte Carlo examples
in Hausman et al. Hausman et al. also propose a jackknife version of the Fuller
(1977) estimator that has fewer outliers.

This paper is a substantially altered and revised version of Chao and Swanson
(2004), in which we now allow for the many instrument sequence of Kunitomo
(1980), Morimune (1983), and Bekker (1994). In the process of showing the
asymptotic normality of JIV, this paper gives a central limit theorem for quadratic
(and, more generally, bilinear) forms associated with an idempotent matrix. This
theorem can be used to study estimators other than JIV. For example, it has already
been used in Hausman et al. (2007) to derive the asymptotic properties of the
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jackknife versions of the LIML and Fuller (1977) estimators and in Chao,
Hausman, Newey, Swanson, and Woutersen (2010) to derive a moment-based
test.

The rest of the paper is organized as follows. Section 2 sets up the model and
describes the estimators and standard errors. Section 3 lays out the framework for
the asymptotic theory and presents the main results of our paper. Section 4 com-
ments on the implications of these results and concludes. All proofs are gathered
in the Appendixes.

2. THE MODEL AND ESTIMATORS

The model we consider is given by

=X d) + ¢,
nxl nxXG Gx1 nxl
X=Y+U,

where n is the number of observations, G is the number of right-hand-side vari-
ables, Y is the reduced form matrix, and U is the disturbance matrix. For the
asymptotic approximations, the elements of Y will implicitly be allowed to
depend on n, although we suppress the dependence of Y on n for notational
convenience. Estimation of dy will be based on an n x K matrix, Z, of instru-
mental variable observations with rank(Z) = K. Let Z = (T, Z) and assume that
E[¢|Z]=0and E[U|Z] =0.

This model allows for Y to be a linear combination of Z (i.e., Y = Zx, for
some K x G matrix x). Furthermore, some columns of X may be exogenous,
with the corresponding column of U being zero. The model also allows for Z
to approximate the reduced form. For example, let X/, Y/, and Z; denote the
ith row (observation) for X, T, and Z, respectively. We could let Y; = fo(w;)
be a vector of unknown functions of a vector w; of underlying instruments and
let Z; = (p1x (w;), ..., prx (w;))’ for approximating functions pyg (w), such as
power series or splines. In this case, linear combinations of Z; may approximate
the unknown reduced form (e.g., Newey, 1990).

To describe the estimators, let P = Z(Z'Z)~!Z’ and P;; denote the (i, j)th ele-
ment of P. Additionally, let [T_; = (Z'Z — Z; Z;)_1 (Z'X —Z; X}) be the reduced
form coefficients obtained by regressing X on Z using all observations except the
ith. The JIVI estimator of Phillips and Hale (1977) is obtained as

-

Using standard results on recursive residuals, it follows that

M=

-1
n
ﬁ/_iZin{> Zﬁ’_iZ,-yi.
1 i=1

n.,z = (X/Z(Z/Z)_lzi - PiiXi> /(1 —Pi) =Y PjX;/(1—Py).
i
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Then, we have that

5: I:I_l z X,'Pl'j(l - ij)_lyj, ﬁ = Z X,‘ Pl'j(l - ij)_IX/-,
i#] i#]
where Z;; denotes the double sum 3; 3;; . The JIV2 estimator proposed by

Angrist et al. (1999), JIVE2, has_a similar form, except that IT_; = (Z’ Z)_1
(Z'X — Z; X)) is used in place of I1_;. It is given by

S=H'Y XiPjy;, H=Y X;PjX].
i#] i#]
To explain why JIV2 is a consistent estimator, it is helpful to consider JIV2 as
a minimizer of an objective function. As usual, the limit of the minimizer will be

the minimizer of the limit under appropriate regularity conditions. We focus on )
to simplify the discussion. The estimator J satisfies & = argming Q(9), where

Q) =Y, (yi — X{0) Py(yj — X}0).
i#]

Note that the difference between the 2SLS objective function (y=X'o)P(y—
X'0) and Q) is X, Pi(yi— X ;5)2. This is a weighted least squares object
that is a source of bias in 2SLS because its expectation is not minimized at dg
when X; and ¢; are correlated. This object does not vanish asymptotically relative
to E[Q(J)] under many (or many weak) instruments, leading to inconsistency of
2SLS. When observations are mutually independent, the inconsistency is caused
by this term, so removing it to form Q(é) makes J consistent.

_ To explain further, consider the JIV2 objective function Q(&). Note that for
Ui(0) =& —U/(0—do)

00) =010+ 0200+ 03(),  01(0) = . (3— ) i P Y}(6— o),
i#]
0:00) ==2Y U;(®)PyYj(0—=d0),  03(0) = Y. U;(6)P;U; ().
i#] i#]

Then by the assumptions E[U;(d)] = 0 and independence of observations,
we have E[Q(é)IZ] = ©1(9). Under the regularity conditions in Section 3, ¥, ;
;i P,-jij is positive definite asymptotically, so Q1(d) is minimized at dg. Thus,
the expectation Q;(J) of Q(é) is minimized at the true parameter dp; in the
terminology of Han and Phillips (2006), the many instrument “noise” term in
the expected objective function is identically zero.

For consistency of 4, it is also necessary that the stochastic components of Q(é)
do not dominate asymptotically. The size of Q1(6) (for 6 # &) is proportional to
the concentration parameter that we denote by r,,. It turns out that Qz(é) has size
smaller than O (d) asymptotically but Q3(5) is O, (v/K,) (Lemma A1 shows that
the variance of Q3(5) is proportional to K,,). Thus, to ensure that the expectation
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of Q(é) dominates the stochastic part of Q(&), it suffices to impose the restriction
VK, /r» = 0, which we do throughout the asymptotic theory. This condition was
formulated in Chao and Swanson (2005).

The estimators & and & are consistent and asymptotically normal with het-

eroskedasticity under the regularity conditions we impose, including /K, /r,, —
0. In contrast, consistency of LIML and Fuller (1977) require K, /r, — 0 when
P;; is asymptotically correlated with E[X;¢;| Z] /E[s?lZ], as discussed in Chao
and Swanson (2004) and Hausman et al. (2007). This condition is also required
for consistency of the bias-corrected 2SLS estimator of Donald and Newey (2001)
when P;; is asymptotically correlated with E[X;&;|Z], as discussed in Ackerberg
and Devereux (2009). Thus, JIV estimators are robust to heteroskedasticity and
many instruments (when K, grows as fast as r,), whereas LIML, Fuller (1977),
or B2SLS estimators are not.

Hausman et al. (2007) also consider a JIV form of LIML, which is obtained by
minimizing Q(é) /[(y — X6)'(y — X0)]. The sum of squared residuals in the de-
nominator makes computation somewhat more complicated; however, like LIML,
it has an explicit form in terms of the smallest eigenvalue of a matrix. This JIV
form of LIML is asymptotically efficient relative to 5 and & under many weak
instruments and homoskedasticity. With heteroskedasticity, dand d may perform
better than this estimator, as shown by Monte Carlo examples in Hausman et al.;
they also propose a jackknife version of the Fuller (1977) estimator that has fewer
outliers than the JIV form of LIML.

To motivate the form of the variance estimator for d and J, note that for &=
(1= P;;)~ e, substituting y; = X!+ ¢; in the equation for 5 gives
d=d+H Y X P& (1)

i#]j
After appropriate normalization, the matrix H~! will converge and a central limit
theorem will apply to 2175 j Xi Pi¢j,which leads to a sandwich form for the asymp-

totic variance. Here H~! can be used to estimate the outside terms in the sand-
wich. The inside term, which is the variance of izj Xi P;i&;, can be estimated
by dropping terms that are zero from the variance, removing the expectation, and

replacing & with an estimate, &E=(01- P,~1-)_1 (y,- -X ;5) Using the indepen-
dence of the observations, E[¢;| Z] = 0, and the exclusion of the i = j terms in
the double sums, it follows that

[ZXPUGKJ(ZXPU@) |Z}

i#j
=E[Y ¥ PuPRXiXjZ+ X PIXiGiXj12).
i,j ke, j} i#]
Removing the expectation and replacing & with & gives

S=% Y PuPuXiXj&+ Y PIXiEX)E
i, keli.j} iZ)
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The estimator of the asymptotic variance of J is then given by

V=H'SA7V

This estimator is robust to heteroskedasticity, as it allows Var(&;| 2) and E[ X ;& | Z]
to vary over i.

A vectorized form of V is easier to compute. Note that for X i=X;/(1=Py),
we have H = X'PX =3, X; Pi; X|. Also, let X = PX, Z = Z(Z'Z)"", and Z}
and Zl’ equal the ith row of Z and Z, respectively. Then, as shown in the proof of
Theorem 4, we have

n
=Y (XiX]— X; P, X] — X; Pii X))&

K K n n !
+3 ) (Z Zikzifxi§i> (Z ijZjKXjé%j) -
i=1 j=1
This formula can be computed quickly by software with fast vector operations,
even when n is large.

An asymptotic variance estimator for & can be formed in an analogous way.
Note that H = X’PX — Y Xi P X;. Also for & = y; — X;S, we can estimate the
middle matrix of the sandwich by

K n n !
+> ) (2 zikz,-fx,-é,) (2 ijzjng§j> .

i=1 j=1

The variance estimator for 4 is then given by

A~ A A

V=H'SA "

Here H is symmetric because P is symmetric, so a transpose is not needed for
the third matrix in V.

3. MANY INSTRUMENT ASYMPTOTICS

Our asymptotic theory combines the many instrument asymptotics of Kunitomo
(1980), Morimune (1983), and Bekker (1994) with the many weak instrument
asymptotics of Chao and Swanson (2005). All of our regularity conditions are
conditional on Z = (Y, Z). To state the regularity conditions, let Zlf, &, Ui’ , and
Y/ denote the ith row of Z, &, U, and Y, respectively. Also let a.s. denote almost
surely (i.e., with probability one) and a.s.n denote a.s. for n large enough (i.e.,
with probability one for all n large enough).
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Assumption 1. K = K,, — oo, Z includes among its columns a vector of ones,
for some C < 1, rank(Z) =K, and P;; <C, (i =1,...,n) a.s.n.

In this paper, C is a generic notation for a positive constant that may be bigger
or less than 1. Hence, although in Assumption 1 C is taken to be less than 1,
in other parts of the paper it might not be. The restriction that rank(Z) = K is a
normalization that requires excluding redundant columns from Z. It can be veri-
fied in particular cases. For instance, when w; is a continuously distributed scalar,
Z; = pX(w;), and prg (w) = w*~!, it can be shown that Z’Z is nonsingular with
probability one for K < n.! The condition P;; < C < 1 implies that K/n < C
because K/n=3"_| P;i/n <C.

Now, let Apyin(A) denote the smallest eigenvalue of a symmetric matrix A and
for any matrix B, let | B|| = /tr(B’B).

Assumption 2. Y; = S,,z; //n where S, = S’Q djag (Uins- s UGn)s S’n isGxG
and bounded, and the smallest eigenvalue of S, S, is bounded away from zero.

2
Also, for each j, either uj, = /n or ujn//n = 0, r, = <1minG,ujn) -
<js

00, and \/?/rn — 0. Also, there is C > 0 such that ||Z;’zlzizg/n|| < C and
Amin (X1 ziz}/n) = 1/C as.n.

This condition is similar to Assumption 2 of Hansen, Hausman, and Newey
(2008). It accommodates linear models where included instruments (e.g., a
constant) have fixed reduced form coefficients and excluded instruments have co-
efficients that can shrink as the sample size grows. A leading example of such a
model is a linear structural equation with one endogenous variable of the form

yi = Zj1001 + doG Xic + &i, 2

where Z;1 is a G1 x 1 vector of included instruments (e.g., including a constant)
and X;; is an endogenous variable. Here the number of right-hand-side variables
is G1 + 1 = G. Let the reduced form be partitioned conformably with J, as Y; =
(Z},,Yig) and U; = (0, U;g)". Here the disturbances for the reduced form for
Z;1 are zero because Z; is taken to be exogenous. Suppose that the reduced form
for X;c depends linearly on the included instrumental variables Z;; and on an
excluded instrument z;; as in

Xic =Yic+ Ui, TiG:7TIZi1+<\/rn/n> ZiG-

Here we normalize z;; so that r, determines how strongly J¢ is identified, and
we absorb into z;g any other terms, such as unknown coefficients. For Assump-
tion 2, we let z; = (Z],, zig)' and require that the second moment matrix of z; is
bounded and bounded away from zero. This normalization allows 7, to determine
the strength of identification of dg. For example, if r, = n, then the coefficient on
zic does not shrink, which corresponds to strong identification of dg. If r;,, grows

more slowly than 7, then g will be more weakly identified. Indeed, 1/./r, will
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be the convergence rate for estimators of dg. We require r, — oo to avoid the
weak instrument setting of Staiger and Stock (1997), where d¢ is not asymptoti-
cally identified.

For this model, the reduced form is

T__' Zi _[ro][1 o Zi
" mZa+ra/nzic| T (m 1] [0r/n] \zic )’

This reduced form is as specified in Assumption 2 with

< |10

Sy = n_ll:|a ﬂjnzﬁ, ISjSGI; /‘anm~

Note how this somewhat complicated specification is needed to accommodate
fixed reduced form coefficients for included instrumental variables and excluded
instruments with identifying power that depend on n. We have been unable to
simplify Assumption 2 while maintaining the generality needed for such important
cases.

We will not require that z;G be known, only that it be approximated by a lin-
ear combination of the instrumental variables Z; = (Z/,, Z;,)’. Implicitly, Z;
and z;c are allowed to depend on n. One important case is where the excluded
instrument z; is an unknown linear combination of the instrumental variables
Z; = (Z},,Z],). For example, the many weak instrument setting of Chao and

1
Swanson (2005) is one where the reduced form is given by

Yic = m1Zi1 + (m2//n) Zin

for a K — G| dimensional vector Z;; of excluded instrumental variables. This
model can be folded into our framework by specifying that

ZiG=7rﬁZi2/\/K—G1, rm=K-—Gj.

Assumption 2 will then require that
Y cda/n=(K =G~ T w3z [n
i i

is bounded and bounded away from zero. Thus, the second moment Y, (75 Z )% /n
of the term in the reduced form that identifies dpg must grow linearly in K, just
as in Chao and Swanson (2005), leading to a convergence rate of 1/,/K — G| =
1//Tu.

In another important case, the excluded instrument z;g could be an unknown
function that can be approximated by a linear combination of Z;. For instance,
suppose that z;g = fo(w;) for an unknown function fj(w;) of variables w;. In this

. . . def
case, the instrumental variables could include a vector pX (w;) = (p1x (wi),...,
PKk—G,.k (w;)) of approximating functions, such as polynomials or splines. Here
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the vector of instrumental variables would be Z; = (Z],, pX(w;)). Forr, =n,
this example is like Newey (1990) where Z; includes approximating functions for
the reduced form but the number of instruments can grow as fast as the sample
size. Alternatively, if r,/n — 0, it is a modified version where d¢ is more weakly
identified.

Assumption 2 also allows for multiple endogenous variables with a different
strength of identification for each one, i.e., for different convergence rates. In the
preceding example, we maintained the scalar endogenous variable for simplicity.

The r, can be thought of as a version of the concentration parameter; it
determines the convergence rate of estimators of dgg just as the concentration
parameter does in other settings. For r, = n, the convergence rate will be /n
where Assumptions 1 and 2 permit K to grow as fast as the sample size. This cor-
responds to a many instrument asymptotic approximation like Kunitomo (1980),
Morimune (1983), and Bekker (1994). For r,, growing more slowly than n, the
convergence rate will be slower than 1/./n, which leads to an asymptotic approx-
imation like that of Chao and Swanson (2005).

Assumption 3. There is a constant, C, such that conditional on Z = (Y, Z),
the observations (g1, Uy), ..., (¢4, U,) are independent, with E[e;|Z] = O for all
i, B[U;| 2] =0 for all i, sup; E[¢?| 2] < C, and sup; E[||U;|*| 2] < C, a.s.

In other words, Assumption 3 requires the second conditional moments of the
disturbances to be bounded.

0

Assumption 4. There is a 7k such that ¥7_, lz; —7g Z; ||2/n — O as.

This condition allows an unknown reduced form that is approximated by a
linear combination of the instrumental variables. These four assumptions give the
consistency result presented in Theorem 1.

THEOREM 1. Suppose that Assumptions 1-4 are satisfied. Then, r, 12 S -

50) 50,85 5, 1?8 (5=00) B0, and 5§ B 5.
The following additional condition is useful for establishing asymptotic nor-
mality and the consistency of the asymptotic variance.

Assumption 5. There is a constant, C > 0, such that Y, ||zl-||4/n2 — 0,
sup; E[¢#| 2] < C, and sup;, E[|U;||*| 2] < C ass.

To give asymptotic normality results, we need to describe the asymptotic vari-
ances. We will outline results that do not depend on the convergence of various
moment matrices, so we write the asymptotic variances as a function of n (rather
than as a limit). Let aiz =E [sle] where, for notational simplicity, we have
suppressed the possible dependence of aiz on Z. Moreover, let

n n

3 ® 2

Hn:zZiZ;/n’ QVL: ZZiZ;Ui /l/l,
i=1 i=1
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¥,=57'Y P2 <E[U,~ Ul 216} (1 - Py)~>

i#]

+ B0 210 = P) ' Elg U/ 211 - Py~ ) 57,
n n
H, =Y (1= Pizzj/n, Q=Y (—Pi) zzjo’/n,
i=1 i=l

¥, =Y P2 <E[U,- U/|Z10? +ElUisi| Z]Ele; U] |Z]) s

i#j
When K /r, is bounded, the conditional asymptotic variance given Z of S, (6—0d0)
is
‘_/n = I:In_l(g_zn +qln)1:ln_ls
and the conditional asymptotic variance of S, (3 —dp) is

Vo =H '(Q,+¥)H "

To state our asymptotic normality results, let A'/2 denote a square root matrix
for a positive semidefinite matrix A, satisfying A!/?A1/% = A. Also, for nonsin-
gular A, let A™1/2 = (A1/2)~1,

THEOREM 2. Suppose that Assumptions 1-5 are satisfied, aiz >C >0a.s.,
and K /r, is bounded. Then V,, and V, are nonsingular a.s.n, and

Vo128, (5-60) S N0, Io), V2816 —00) 5 N, 1),

The entire S,, matrix in Assumption 2 determines the convergence rate of the
estimators, where

S35 — o) = diag (i 1n» ... ttGn) S, (6 — &)

is asymptotically normal. The convergence rate of the linear combination e} 5;, (o—
do) will be 1/u,, where e; is the jth unit vector. Note that

yi = X[do+u; = zidiag (1n, - .., ftGn) Sydo + Uldo +&i.

The expression following the second equality is the reduced form for y;. Thus,
the linear combination of structural parameters e;- S/ o is the jth reduced form

coefficient for y; that corresponds to the variable ( Wjn/ ﬁ) z;j. This reduced form
coefficient is estimated at the rate 1/4;, by the linear combination e; S’;ﬁ of the
instrumental variables (IV) estimator 5. The minimum rate is 1 //Tn, which is the

inverse square root of the rate of growth of the concentration parameter. These
rates will change when K grows faster than r,,.
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The rate of convergence in Theorem 2 corresponds to the rate found by Stock
and Yogo (2005) for LIML, Fuller’s modified LIML, and B2SLS when r,, grows
at the same rate as K and more slowly than n under homoskedasticity.

The term P, in the asymptotic variance of 6 and the term ¥, in the asymptotic
variance of & account for the presence of many instruments. The order of these
terms is K /ry, so if K/r, — 0, dropping these terms does not affect the asymp-
totic variance. When K /r, is bounded but does not go to zero, these terms have
the same order as the other terms, and it is important to account for their presence
in the standard errors. If K /r, — oo, then these terms dominate and slow down
the convergence rate of the estimators. In this case, the conditional asymptotic
variance given Z of /r, /K S, (5 — do) is

‘_/n* = I:In_l(rn/K)kPnI:In_la
and the conditional asymptotic variance of \/r,,/K S}, (3 —dp) is
vV =H '(r,/K)¥Y,H "

When K /r, = 00, the (conditional) asymptotic variance matrices, \_/n* and V',
may be singular, especially when some components of X; are exogenous or when
different identification strengths are present. To allow for this singularity, our
asymptotic normality results are stated in terms of a linear combination of the
estimator. Let L, be a sequence of £ x G matrices.

THEOREM 3. Suppose that Assumptions 1-5 are satisfied and K /ry, — o0.
If L, is bounded and there is a C > 0 such that Amin (Ln Vn*le) > C as.n
then

(L VL) ™2 Lon/ra K SL(5—0) 5 N(O, 1)

Also, if there is a C > 0 such that Amin (Ln Vn*L;) > C a.s.n, then

(L VL) ™2 Lon/ra K SL (5= 0) 5 N(O, 1)

Here the convergence rate is related to the size of (v/r,/K)S,. In the simple
case where ¢ is a scalar, we can take S, = ﬁ , which gives a convergence rate of
VK /ry. Then the theorem states that (r” / VK ) (5 — dp) is asymptotically normal.
It is interesting that /K /r, — 0 is a condition for consistency in this setting and
also in the context of Theorem 1.

From Theorems 2 and 3, it is clear that the rates of convergence of both JIV
estimators depend in general on the strength of the available instruments relative
to their number, as reflected in the relative orders of magnitude of r,, vis-a-vis K.
Note also that, whenever r,, grows at a slower rate than n, the rate of convergence
is slower than the conventional /7 rate of convergence. In this case, the available
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instruments are weaker than assumed in the conventional strongly identified case,
where the concentration parameter is taken to grow at the rate n.

When P;; = Z;(Z' 7)~1Z; goes to zero uniformly in i, the asymptotic variances
of the two JIV estimators will get close in large samples. Because Y | P;; =
tr(P) = K, P;; goes to zero when K grows more slowly than 7, though precise
conditions for this convergence depend on the nature of Z;. As a practical matter,
P;; will generally be very close to zero in applications where K is very small
relative to n, making the jackknife estimators very close to each other.

Under homoskedasticity, we can compare the asymptotic variances of the two
JIV estimators. In this case, the asymptotic variance of 0 is

Vn:‘_/nl‘l"?nzs ‘_/111:0-2[:]"_1’
V=870 U U)LY, PR/ (1= P;j)2s; !
i#]
+ 8, 'ElUieELU]ei1S, " 3, Pi(1=Pi)~ (1= P;)~".

=y

Also, the asymptotic variance of dis

n
Vo=Vl4+v:  vli=¢?H! [2(1 - P,-,-)Zziz;/n] H!,
i=1
v2=s;" (Bl U/ +ElU & ELU211) S7 3, PR
i#]

By the fact that (1 — P,-,')_1 > 1, we have that (;nz > Vn2 in the positive semidefi-
nite sense. Also, note that V! is the variance of an IV estimator with instruments
zi (1 — P;;) whereas \_/nl is the variance of the corresponding least squares estima-
tor, so \7,11 < an. Thus, it appears that in general we cannot rank the asymptotic
variances of the two estimators.

Next, we turn to results pertaining to the consistency of the asymptotic variance
estimators and to the use of these estimators in hypothesis testing. We impose the
following additional conditions.

Assumption 6. There exist &, and C > 0 such that a.s. max;<p |zi —7, Zil|— 0
and sup; |1zl < C.

The next result shows that our estimators of the asymptotic variance are
consistent after normalization.

THEOREM 4. Suppose that Assumptions 1-6 are satisfied. If K / r;, is bounded,
then S\VS, —V, 5 0 and S,VS, — V, 5 0. Also, if K/r, — oo, then
raSLV Sy /K =V 0andr,S\VS, /K -V o.

A primary use of asymptotic variance estimators is conducting approximate
inference concerning coefficients. To that end, we introduce Theorem 5.
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THEOREM 5. Suppose that Assumptions 1-6 are satisfied and that a(0) is an
€ x 1 vector of functions such that

(i) a(9) is continuously differentiable in a neighborhood of dy;
(ii) there is a square matrix, By, such that for A = da(dy)/8d', B,AS;V is
bounded; and
(iii) for any 8 5 &, (k=1,...,€) and A = [0a,(3)/9,....,0ar(5)/d5Y, we
have B,(A—A)S;V 5 0.
Also suppose that there is C > 0 such that Amin(BnASTVV,STIA'B!) > C
if K /ryis bounded or lmin(BnASn_”Vn*Sn_lA/B,’l) >CifK/r, — oo a.s.n. Then
for A= 8a(5)/85,

(AVAH)~1? [a(é‘) —a(ao)] 4 N, T).

If there is C > O such that Jmin(B,AS; 'V, S A'B!) > C if K /ry is bounded or

n

Amnin(BpASTVV*STVA'B!) > C if K /rp — 00 a.s.n, then for A = 0a(5)/d9,
(AVAH~1/2 [a(é) —a(ao)} 4 N, ).

Perhaps the most important special case of this result is a single linear combi-
nation. This case will lead to ¢-statistics based on the consistent variance estimator
having the usual standard normal limiting distribution. The following result con-
siders such a case.

COROLLARY 1. Suppose that Assumptions 1-6 are satisfied and ¢ and b, are
such that byc' SV is bounded. If there is a C > 0 such that bic' Sy V'V, S7le > €
if K /ry is bounded or b2c'S; V'V STle > C if K /ry — 00 a.s.n, then

c'(0 —~50) 4
Vc'Ve

Also if there is a C > 0 such that b2c'S; V'V, S ¢ > C if K/ry is bounded or
b2’ S;VVEST e > Cif K /ry — 00 a.s.n, then

N(O, 1).

"(5— 6
c-%) AO)i>N(O,1).
Vc'Ve

To show how the conditions of this result can be checked, we return to the
previous example with one right-hand-side endogenous variable. The following
result gives primitive conditions in that example for the conclusion of Corollary
1, i.e., for the asymptotic normality of a ¢-ratio.

COROLLARY 2. If equation (2) holds, Assumptions 1-6 are satisfied for z; =
(Z},,zi6), ¢ # 0 is a constant vector, either
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(i) rp,=nor
(ii) K /ry is bounded and (—m,1)c #0 or
(iii) K/rp, — oo, (=71, 1)c #0, E[UZ.ZG|Z] is bounded away from zero, and the
sign of Ele;Uig|Z] is constant a.s., then

@G =%) 4 d—=%) 4

— N(,1), — N(,1).
Vc'Ve V'Ve

The proof of this result shows how the hypotheses concerning b, in Corollary 1
can be checked. The conditions of Corollary 2 are quite primitive. We have pre-
viously described how Assumption 2 is satisfied in the model of equation (2).
Assumptions 1 and 3—-6 are also quite primitive.

This result can be applied to show that ¢-ratios are asymptotically correct when
the many instrument robust variance estimators are used. For the coefficient Jdg
of the endogenous variable, note that ¢ = eg, so (—z1, 1)c = 1 # 0. Therefore,
if E[Ul%|Z] is bounded away from zero and the sign of E[¢; U;g| Z] is constant, it
follows from Corollary 2 that

dG — &
96— N6 4 N(o,1).
\/ Ve

Thus, the ¢-ratio for the coefficient of the endogenous variable is asymptotically
correct across a wide range of different growth rates for r, and K. The analogous
result holds for each coefficient J;, j < G, of an included instrument as long
as m1; # 0 is not zero. If 71; = 0, then the asymptotics are more complicated.
For brevity, we will not discuss this unusual case here. The analogous results also
hold for dg.

4. CONCLUDING REMARKS

In this paper, we derived limiting distribution results for two alternative JIV es-
timators. These estimators are both consistent and asymptotically normal in the
presence of many instruments under heteroskedasticity of unknown form. In the
same setup, LIML, 2SLS, and B2SLS are inconsistent. In the process of show-
ing the asymptotic normality of JIV, this paper gives a central limit theorem
for quadratic (and, more generally, bilinear) forms associated with an idempo-
tent matrix. This central limit theorem has already been used in Hausman et al.
(2007) to derive the asymptotic properties of the jackknife versions of the LIML
and Fuller (1977) estimators and in Chao et al. (2010) to derive a moment-based
test that allows for heteroskedasticity and many instruments. Moreover, this new
central limit theorem is potentially useful for other analyses involving many
instruments.
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NOTE

1. The observations wy, ..., wy, are distinct with probability one and therefore, by K < n, cannot
all be roots of a K'th degree polynomial. It follows that for any nonzero a there must be some i with
a'Zi = a’ pK(w;) #0, implying a’Z' Za > 0.
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APPENDIX A: Proofs of Theorems

We define a number of notations and abbreviations that will be used in Appendixes A
and B. Let C denote a generic positive constant and let M, CS, and T denote the Markov
inequality, the Cauchy—Schwarz inequality, and the triangle inequality, respectively Also,
for random variables W;, ¥;, and ; and for Z = (Y, Z), let w; =E[W;|Z], W; = W; —w;,
yi =EW|Z], Yi=Yi—yi, ni =Eml|Zl, ni=ni—n, y= (yla”'wyn) , W=
(lf)],...,ﬁ)n)/,

aw = max |w;|, uy= max |y;|, ugy= max |7;],
1<i<n 1<i<n 1<i<n

=2 _ . =2 =2 _ .

oy = max Var [W,|Z] , 0y = max Var [Y |Z] and G, = max Var [;1, |Z} ,
i<n i<n i<n

where, to s1mp11fy notation, we have suppressed dependence on Z for the various quanti-
ties (w;, W,, Vis Y,, Ni> Nis BW» Ly s Hy, O’%V, oy, and o oy )deﬁned previously. Furthermore,
for random variable X, define || X||;, z = [X2|Z}.

We first give four lemmas that are useful in the proofs of consistency, asymptotic nor-

mality, and consistency of the asymptotic variance estimator. We group them together here
for ease of reference because they are also used in Hausman et al. (2007).

LEMMA Al. If, conditional on Z = (Y, Z), (W;,Y;)(i = 1,...,n) are independent

s., Wi and Y; are scalars, and P is a symmetric, idempotent matrix of rank K, then
for ® =E[(Wy,...,W,)|Z], 5§ =E[(Y1,....Yx)|Z], Gw, = max;<, Var(W;|2)!/2,
Oy, = max; <, Var(Yi|Z)1/2, and D, = K&%V &% +5%, y’y+&§ w'w, there exists a
positive constant C such that o ! !

2
<CD, a.s.
L), Z

2 PWi¥j = 3, P;jivi§j
=y =y

Proof. Let W; = W; —w; and ¥; = ¥; — j;. Note that

S PiWiYj = Y Py = Y, PiWiYi+ Y, PiWiyi+ Y, Pyjiv; ¥
i) i#] i#j i#] i#]
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Let Dy, = &‘%Vn&}%n. Note that fori # j andk #(,E [Wl 17]- Wk?AZ] is zerounless i = k
and j =¢ ori={ and j = k. Then by CS and 3; PI-J2-:P”~,

E {(z:;ﬁ/ Pjj ? W) |Z] = 2 Z Pij PrcE [Wif’jka’ﬂZ]

oy Py
=Y P (E[Wi2|Z]E[)7j2|Z]+E[Wi Y| ZIE[W; ?j|Z])
i#j
<2Dy, Y, P < 2D1,,ZP” =2D,K
i#]

Also, for W = (Wl,.. Wn)/, we have ¥ Pl'jW,')_I,' = WP}_I—Z,- P,',')_),'W,'. By

independence across i conditional on Z, we have E | W W’ |Z] < O'%Vn Iy as., so
E[(y PW)?|2]1 =y PEIWW'|21P§ < G, 3/ P§ < &7, 37,

~\2
E[(Z,-Pl-,-yiw,-) |Z]:2P,~2,-E[w2|21y, <af 55
i

Then by T we have

D) , 2 L
HZ# PijWinHLZ,Z < ‘ L2,Z+H2i Pijyi Wi 125 < CaW 7'y as.Pz.
Interchanging the roles of ¥; and W; gives HZ,# PleY H C&% w'w a.s. The

conclusion then follows by T.

LEMMA A2. Suppose that, conditional on Z, the following conditions hold a.s.:

(i) P = P(2) isasymmetric, idempotent matrix with rank(P) = K and P;; < C < 1;
(ii) Wi, Ur,€1)s .., Wan, Un, &n) are independent, and D, = 1—1 [Win Wlfn|Z]
satisfies || Dy < C a.s.n;
(iii) E [Wiln |Z} =0, E[U;|Z] =0, E[¢;|Z] =0, and there exists a constant C such that
E[|U;1*12] < C and E[}| 2] < C;
(iv) T E[IWinl*12] 5 0; and
(v) K—> ocoasn— 0.

Then for

- d
5,9y P} (E[Ui U{|Z]E[g}|2]+E[Ul~e,~|Z]E[ajUjf|Z]) /K
=y

and any sequences c1, and cy, depending on Z of conformable vectors with |c1,|l < C,
lleanll < C, and E, = Cl]nDncln +c’2n Sncon > 1/C as.n, it follows that

Yp =g 2 (Cln S Wi +ch, 3 U Pl,a]/f> ANO), as;
i=l i#j

ie, Pr(Y, <y|2) 5 D(y) forall y.
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Proof. The proof of Lemma A2 is long and is deferred to Appendix B.

The next two results are helpful in proving consistency of the variance estimator. They
use the same notation as Lemma Al.

LEMMA A3. If, conditional on Z, (W;,Y;)(i =1,...,n) are independent and W; and
Y; are scalars, then there exists a positive constant C such that

P2W,;Y; —E Pwyizll©  <cs
s PiWiYi —E |, PiWiYjl Lz SCBn as.

where By = K {53,6% +53 i + i, 57 }.
Proof. Using the notation of the proof of Lemma A1, we have

Zpijz.w,-y S P} HOSTE ZPWY+ZPle]+Z

i#] i#]j i#] i#]j i#]j

As before, fori # jand k # ¢, E [Wil?jka’ng} iszerounlessi =kand j=Cfori="{¢

and j =k. P,-j‘ < P;; <1by CS and Assumption 1, so Plj < P2 Also, 3; P =P,
S0

2p2 V.V.W.V
E {(Z#] P2W, Y) |z] =i§}k§€Piij[E [WinWkYt’lZ}

=Y p (E [vi/,.2|z} E [?ﬂz] +E [Wi Yi|z] E [Wj ~j|z])
i#j
<236y Y, Pf <2Kaj67  as.
i#]
Also, ¥j4; Pijz' W,- Vi = W’I;)‘z - Pizl- Vi W,- where 13,-]- = Pijz-. By independence across i
conditional on Z, we have E[WW’lZ] < 5‘%,,1 I, so

E[(7 PW)*| 2] =5 PEIWW'|21P§ < 5§, §

"By

=53 2 2 p2 0' 2 2 P2~

=0y, 2 YiPiPyyj < owhy k" kj
i,j,k i,j.k

-2 2 2 -2 -2 2 -2 -2
Y%(ZP”‘)(ZPk]):UW/‘Y%PkkSKUW/‘Y as.,
i j
~\2
E{(ZiPﬁiiWi) |Z]=2 PAEIW2|2)52 < K602 as.
i

Then by T, we have HZ,#P W,y]H < HW PyH

HZ;P i Wi ILZ,Z

L), 2 Ly, Z
_2 - . -

< CKO'WﬂY a.s. Interchanging the roles of Y; and W; gives Hzl'?éj Pij injHLz

<CK ﬁ%&% a.s. The conclusion then follows by T. n

As a notational convention, let 3¢ j_; denote ¥; ¥+ Yke(i, j)-
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LEMMA A4. Suppose that there is C > 0 such that, conditional on Z, (W1,Y1,11),---,
(Wn, Yy, nn) are independent with E[|W;|Z] = a; /+/n, BLY;| 21 =b; //n, |a;| < C, |b;| <
C, E[nl-z|Z] < C, Var(W;|2) < C/ry, and Var(Y;|Z) < C/ry and there exists &, such

that max; <, |a; — Zlmy| 230 and VK /rn — 0. Then

)
A, =E 2 WiPikﬂkijYﬂZ = Op(l), 2 W,'PikﬂkijYj—An — 0.
i#j#k i#j#k
Proof. Given in Appendix B. |
LEMMA AS. If Assumptions 1-3 are satisfied, then

(i) Sy lHS_l’ 2 7 P(1— /A/)_lz}/n—i—op(l),
#Jj

(i) ;! _E_xip,-j(l =P lej = 0p(1+ VK rn),
S
(iii) Sy HSTY = 3 2 Pyzi /n+op(1),
i#]

(iv) S ‘;zé‘xip,»jej = 0p(1+/K/rn).
i#]j

Proof. Let ek denote the kth unit vector and apply Lemma Al with ¥; = ekS 1X =
Z,k/f—}—ekSn U; and Wl = eg ]X a1- P”)_1 for some k£ and £. By Assumption 2,

Amin(Sn) = C /1, i H < C/./rn. Therefore a.s.

E[Y;|1Z] = zix//n, Var(Y;|2) < C/ry,
E[W;|Z] =zj¢//n(1—P;;), Var(W;|2) < C/ry.

Note that a.s.

VKaw, 5y, < CVK/ra =0, Gw, /75 <Cry'? [S22 /-0,
i

Gy, N < Cry 7?3 2 (1—-Py)"2/n SCrn_l/z(]—miax P2 |3 22 /n 0.
i i

Because ¢ S, H S Ver = e Sy Sioe X PyX}SV eg /(1 = Pjj) = Siej i PjWj and
Pijw;y; = ,lekz]g/n(l — Pjj), applying Lemma Al and the conditional version of M,
we deduce that for any » > 0 and A, = {’el’cSn_] HS; Ve, — Yitjepzi Pij(1— ij)_1
z}e{;/n| > v}, P (A,2) 0. By the dominated convergence theorem, P (A;) =
E[P (Ay]|2)] — 0. The preceding argument establishes the first conclusion for the (k, £)th
element. Doing this for every element completes the proof of the first conclusion.

For the second conclusion, apply Lemma A1l with ¥; = ekS 1X as before and W; =
&; /(1 — P;;). Note that w; =0 and oW, < C. Then by Lemma Al,

Elfe; S, Y Xi (1= Pjj)"'e)2121 < CK /ry +C.
i#]
The conclusion then follows from the fact that E[A;|Z] < C implies A, = Op(1).
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For the third conclusion, apply Lemma Al with Y¥; = e,’(Sn_ Ix; as before and W; =
e;Sy1X;, soas.

VEKaw,ay, < CVK[ra =0, Gw,/7y < Cry /Y2 /m—0, &y,vo'v— 0.
The fourth conclusion follows similarly to the second conclusion. u
Let Hy, =¥, z;i2;/n and H, =¥, (1 — P;)z; 2} /n.
LEMMA A6. If Assumptions 1-4 are satisfied, then
SyYASTY = Hy+op(1), STYASTY = Hy+op(1).

Proof. We use Lemma A5 and approximate the right-hand-side terms in Lemma AS by

H, and H,,. Let Zi = Z;lzl Pijzj be the ith element of Pz and note that

3 llzi —zill*/n = (I=P)zlI*/n = w(z' (I — P)z/n)=te{(z— Zr,) (I — P)(z — Zx},)/n]

i=1

n
<tl(z—Zrg,) = Zrk,)/nl= Y llzi—7ka Zil* /n >0 as.Pz.

i=1

It follows that a.s.

/n

Gi—z)(1 =P~ /n
2 l

<Yzl |- P!
< leii -z ||2/"\/ZH(1 - Pii)_lzi||2/” - 0.
Then

2 7 Pij(1— ij)_]z;-/n = ZZZ' Py(1— ij)_lz}/n —ZZi Pii(1— P,-i)_lz;/n
i#j i,j i

=Y z(0-P) =Yz Pi(1 = Pi) "2/
i i

= Hp+ @ —2) (1= Pi)™'2}/n = Hy +0as.(1).

1

The first conclusion then follows from Lemma AS and T. Also, as in the last equation, we
have

D wi Pz /n= Y zi Pyzi/n— Y Pizizi/n =Y Zizi/n— Y, Piizizi/n
i£j ij i i i
= Hy +2(Zi _Zi)zl/‘/” = Hp+0as.(1),
i

so the second conclusion follows similarly to the first. n

Proof of Theorem 1. First, note that by A, (Sn S,Q/rn) > Amin (55") > C, we have

S (6—00)/v/Tn

|

> Zmin(SnS! /rn) /2 HS—&OH > cHS—aOH.
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Therefore, S}, (6 — o)/ N Lo implies & LA do. Note that by Assumption 2, Hy, is
bounded and A (Hy) > C a.s.n. For H from Section 2, it follows from Lemma A6 and
Assumption 2 that with probability approaching one Ami, (S, 'q S, 1y > C asthe sample

~ -1
size grows. Hence (Sn_1 HSn_]’) = 0,(1). By equation (1) and Lemma A5,

281G —00) = (S HST Y TSNS X, P /e = 0p(Dop(1) B 0.

i#]

All of the previous statements are conditional on Z = (Y, Z) for a given sample size n,
so for the random variable R, =y, —l/ 2S’ b6- dp), we have shown that for any constant o >

0, as. Pr(||R;|| = v|Z) — 0. Then by the dominated convergence theorem, Pr(|| R, | >
v) = E[Pr(||R,|| = v|2)] = 0. Therefore, because v is arbitrary, it follows that R, =

—1/2 k3 P
22816 —00) B 0.
Nextnote that P;; < C < 1, soin the positive semidefinite sense in large enough samples
a.s.,

Hy 22(1 _Pii)ZiZ;/n > (1 _C)I:In-

Thus, by Assumption 2, H is bounded and bounded away from singularity a.s.n. Then the
rest of the conclusion follows analogously with 6 replacing d and H,, replacing H,. W

We now turn to the asymptotic normality results. In what follows, let & =¢; when
considering the JIV2 estimator and let & = ¢; /(1 — P;;) when considering JIV1.

Proof of Theorem 2. Define

Yn—zzl(l Pzz)ét/[+s_1 ZUZ Uf]
i#]

By Assumptions 24,
n B 2
B2 @—za/val 12

=0 Iz —EHIPE[QIZ] /n< C XL Iz =212 /n %S 0.
Therefore, by M,
1 < p
SN Xi Pyl —Ya =Y, (2 —Z)& /= 0.
i) i=1

We now apply Lemma A2 to establish asymptotic normality of ¥,, conditional on Z. Let
I'y = Var (Y| 2), so

I, = 2112 (1= Pi)EIE |21 /n+ 5,1 Y P;
i=1 i#]

x (ELU; U)\ZIEIEH 21+ ELU G | ZIELU}S 1 21) 57
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Note that /7, S, 1'is bounded by Assumption 2 and that Yitj Pl-jz /K <1, soby bounded-

ness of K /r, and Assumption 3, it follows that ||[I';|| < C a.s.n. Also, E[§IZ|Z] >C>0,
SO

n n
Tn> ¥ ziz{(1= Py)’BIE7|121/n = C ¥, 7} /n.
i=1 i=1
Therefore, by Assumption 2, A in (I';) > C > 0 a.s.n (for generic C that may be different
from before). It follows that Hl"n_l H <Casn.

Let @ be a G x 1 nonzero vector. Let U; be defined as in Lemma A2 and & be
defined as ¢; in Lemma A2. In addition, let W;, = z; (1 — P;;)& //n, c1n = F,,_l 2
and ¢y, = VK KS,; Ir, 1/24. Note that condition (1) of Lemma A2 is satisfied. Also, by
the boundedness of Y; ziz;/ n and E[Kfi2|Z] a.s.n, condition (ii) of Lemma A2 is sat-
isfied; condition (iii) is satisfied by Assumptions 3 and 5. Also, by (1 — P,',-)_1 <C
and Assumption 5, 3| E [llW,-n 14 |z} < CY, llzilI*/n? 23 0, so condition (iv) is

satisfied. Finally, condition (v) is satisfied by hypothesis. Note also that ¢y, = I, v 2(1 and

con = (VK/rn) ﬁS;lf;l/za satisty |c1,ll < C and |[cp,]l < C a.s.n. This follows
from the boundedness of /K /rn, \/Tn S, 1, and I,/ L Moreover, the =, of Lemma A2 is
—_ —1/2
Ep = Var(c}, 2 Win +chy 3 Ui Py /NK|Z) = Var(a'T;, /¥
i=1 i#]

Ypl2)=0da
by construction. Then, applying Lemma A2, we have

(o) o' r Py, = 5, 1/2(2 o Win+ch, 3 Ui Pl,fj/«7> A N@O,1) as.
i=1 i#j

It follows that oIy /%Y, 4 N (0,a’a) as., so by the Cramér-Wold device, r; /2

Yo 5 N, 1) as.
Consider now the JIV1 estimator where &; = ¢; /(1 — P;;). Plugging this into the ex-
pression for I'y;, we find I'; = Q,+V¥, forQ, and P, defined according to Assumptlon

5.Let V,, also be as defined following Assumption 5 and note that B, = V,; 1/ 2 ,11/ 2

1/2 V _1/2/ =1. Also, B, is a functlon of

is an orthogonal matrix because B, B, = Via
Vn_l/zH < C as.n because /lmin(Vn
By Lemma A6, (S, ]HS 1/) = 1 +0p(1). Note that if a random variable W, sat-

isfies |Wy|l < C as.n, then W, = 0p(1) (note that 1(||W,|| > C) %0 implies that
E[1(|W,| > C)] =Pr(]| Wy || > C) = 0). Therefore, we have

only Z,

12
/H<C a.s.n.

172 172 _ =172

(ST ASTY I =V V2T o, ()TN = By +0,p(1).

Note that because I',; 1/ 2Yn —d> N(0,I;) as.and By, is orthogonal to and a function
only of Z, we have B, l"n_l/zYn £> N (0, Ig). Then by the Slutsky lemma and & = dy +
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1:1_121';&]' X; P&, for & = (1—P;;)"'e;, wehave

g2

S, G —00) =V AT AT IS YIS TS X P
i#]
=V, (ST ST T Y 4 0p(1)]

r-l2

=By +0p IV +0p(1)] = BaT /Y40, (1) N (0, 1),

which gives the first conclusion. The conclusion for JIV2 follows by a similar argument
for tf i =¢&;. n

Proof of Theorem 3. Under the hypotheses of Theorem 3, r,/K — 0, so following
the proof of Theorem 2, we have 4/rn/K >zl = P& //n 2 0. Then similar to

the proof of Theorem 2, for Y;, = /7 S, Z,¢jUP,]§J/«/E we have /rn /K S;! Sitj
X; Pji¢j = Yn+op(1). Here let

Fu=Var (1| 2)=ra ;' ¥ P (ELU U/ ZIEIG 21+ ELUGIZIELU) 1 21) 87 K.
i#]

Note that by Assumptions 2 and 3, ||I';|| < C a.s.n. Let L, be any sequence of bounded
matrices with Ayin(LnTnL)) > C > 0 as.n andlet Y, = (L T, L))" 127 LnYy. Now
let o be a nonzero vector and apply Lemma A2 with W;, =0, ¢; =¢&;, ¢y, =0, and
con =0 (EnTnL) ™" Ly /rnS;!. We have Var (c2n it Ui Pl,cf,/f|z) —aa>0
by construction, and the other hypotheses of Lemma A2 can be verified as in the proof of
Theorem 2. Then by the conclusion of Lemma A2, it follows that a’¥,, g N(0,a’a) as.

By the Cramér—Wold device, a.s. ¥y, ﬁ> N(,1).
Consider now the_J IV1 estimator and let L, be_speciﬁed as in the statement of t_he res_ult
such that Apin (an L)) >C>0 asn. Let Ly =LyH; ', so L,V}L) = L,TyL},.

Note that H LaTall, 1/2H <Cand Hl“,l,/ZH < Casn.ByLemmaA6, (5, A1)~ =
H +op(1) Therefore, we have

= =/\—1/2 17 a—1/— = =/\—1/2 -
(LaTul) ™ Lo (S ST = (DT L) ™2 Lo (7 40, (1))

_ —~1/2 -
= (LaTnLl) ™" Ly +op(1).

Note also that v/ /K S;! Yitj XiPi(1— ij)_lej = Op(1). Then we have

(La VL) ™2 Lon/rn K S} (5= 00)

v s\—1/2 —1 75 a—1/1n— — —
= (LT l) P La(Sy ST ra /K ST S X Py(1 = Pij) e
i)

_ [(inrnig)‘“ziﬁo,,(l)] Yo +0p(1)] = Tn +0,(1) S N (0, 17).

The conclusion for JIV2 follows by a similar argument for & = ¢;. n
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Next, we turn to the proof of Theorem 4. Let & = (y; — X;S)/(l — P;pand & =¢;/
(1—P;;) for IVl and & = y; — X/d and & = ¢; for JIV2. Also, let

Xi=8"'X;, S1= Y XiPu&PyXj, =Y P; (Xixf§f+Xi$i§jX;),
i#j#k i#]
21 = 2 X,‘Pl'kf]ngjX]/-, 22 = 2 szz' (Xle/sz-i-lelf]Xj/)
iF#jFk i#]

LEMMA A7. If Assumptions 1-6 are satisfied, then ﬁl -3 = op(1) and ﬁlz -3, =
OP(K/rn)-

Proof. To show the first conclusion, we use Lemma A4. Note that for § = dand X I.P =
X; /(1= P;) for JIV1 and § = § and X = X; for JIV2, we have § 5 & and &2 —¢? =

. . 2

—2§l~Xl.P’(5—50)+ [Xf’(é—éo)} . Let %; be any element of —2§[X1.P’ or Xl.PXl-P’. Note
that S, //n is bounded, so by CS, ||} || = ||Sazi/+/n|| < C. Then
E[n71Z] < CEIEI1Z1+ CElIX; |*12] < C+C i |I> + CEIU; |7 12] < C.

Let A, denote a sequence of random variables converging to zero in probability. By
Lemma A4,

~ . . p
A Y, XiPyniPiX; = op(1)Op(1) = 0.
i#j#k
From the preceding expression for 31-2 — 51-2, we see that il — il is a sum of terms of the
form

A . . - . p
A¥ititk XiPik’?kijX;'9 soT, 2 — X1 > 0.

Letd; = C+ei |+ Ui ll, A= (1+ Hé”) for JIV1, A= (1+ HSH) for JIV2, B = HS—&OH
for JIV1,and B = H5 - §0H for JIV2. By the conclusion of Theorem 1, we have A= Op(1)

and B 5 0. Also, because P;; is bounded away from 1, (1 — Pii)_l < C a.s. Hence, for
both JIV1 and JIV2,

IXill < C+IUill <di || Xi|| < Crp'2ad;, & =6

< C|xié-on|=ca;B,

&= c|xio -+ < cdid,
&-¢ )

HX,' (éz —é)H <Cuy'd?B, Hxi&'

&) & —¢&| < cdi(1+A)d; B < Cd}AB,

< (Iél+

<Cry'?a?A, || Xi& < o 'RdR

Also note that because E[di2 |1Z]<C,

E [ Pididiry | 2
i#]

<Cr' Y Pi=Crt Y P =CK/m,
i i
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0%z P d2d ry ! = 0,(K /ry) by M. Then it follows that

=i
HZ’””@Z )) 3 rlsl?
—1 2 Pid}d? AB =0, (K /rn).

ij “i

P 2
J 51"

We also have

% (5 -4)]
i G-a))
cry! _2 Pid}d} AB =0, (rf) :

The second conclusion then follows from T. |

> Pijz (Xié%igj).(//' _Xifi'fjxj)
i#]

SN

+|| X<

LEMMA AS8. If Assumptions 1-6 are satisfied, then
i= Y ou PikE[sz|Z]ijz}/n +op(1),

i;e#k
$y = Y PRgEIEZ)/n+ S;1 Y PR(EIVU]|ZIEED 2]
i#j i#]

+EUGIZIEIG U Z1) SV +0p(K /).

Proof. To prove the first conclusion, apply Lemma A4 with W; equal to an element of
Xi, Y; equal to an element of X;, and ; = 4‘,?.
Next, we use Lemma A3. Note that Var(f?lZ) <Candr, <Cn,soforuy = e,,’< Sn_1 U;,

E[(Xllef) |Z] < CE[X +X14€|Z
= C{Zik/” +E[uf;1 2] +Z?¢>/"2+E[’4?f|3}} <C/ry,
E[(X3&) 2|21 < CE (387 /n+ug;&7)12] < C/n+C/ry < Crp.

Also, if Q; = E[U;U/|Z], then E[X;X/|Z] = z;z}/n+ S;'Q; S,V and E[X;&|2] =
Sn_lE[U,-fi|Z]. Next let W; be X3 X; for some k and £, so

E[W;1Z] = ¢, S Q7 Ve +zzie/n, [E[W; | Z]| < C/rn,
Var(W;|Z) < E[(XuXir)?|1 21 < C/r2.

Also let Y; = 51-2 and note that |E[Y;|Z]| < C and Var(W;|Z) < C. Then in the notation of
Lemma A3,

VK @Gw, 5y, + 6w, iy, + iw,5y,) < VK(C/rn+C/rn+C/ra) < CVK /1y

By the conclusion of Lemma A3, for this W; and Y; we have

Y, PiXpXi i =et Y, Pj (z,-z;/n+s;19,-s;1’) e(EIE 121+ 0p (VK /).
i#] i#]
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Consider also Lemma A3 with W; and Y; equal to X,-kfi and X;z&, respectively, so
ow,0y, +ow, 1y, + iw,0y,< C/r,. Then, applying Lemma A3, we have

Y PiXu&i&iXje=ei Syt Y, PIEIUG|ZIEIG US| 218, Ve + 0p (VK /).

i#j i#j

Also, because K — oo, we have Op WK /rn) = 0p(K/rn). The second conclusion then

follows by T. n
Proof of Theorem 4. Note that X; = 27:1 PiiX;, so

n
S (X X! - X; Py X, — X; P X))E?
i=1

n
PaPyXiXi&— Y, PiPyX;Xj& - 2 PP X X[&}
1 i,j=1 i,j=1

N

>¢-
I

L],

N

n

122 122 122 2 122

Py PiiXi XiCo— Y, P PyXi Xici =, PP XiXjci =2 Y, P Xi X(¢;
i#] i=1

i,j,k=1 i#]
= Y  PaPyXiX; fk Z PiX; X[ &
ijkeli.j)
n
= Y PyPyX;X| 5k + 2 Xixgéjz— > PAX;X[E.
l;éj;ék i=1

Also, for Z] and Zl’ equal to the ith row of Z and Z = Z(Z'Z)~!, we have
K K no_ R n R !
22\ X ZuZieXic | | X ZuZjeX)¢
“ =
K K . 2
2 Z wZixZieZje | Xi&i& X = z Z ZuZy | Xi&&X,
i,j=1

(Z}2))*X:&i& X = 2 FXi&E X
1 i,j=1

Adding this equation to the previous one gives

n n
= 3 PuPyX;X/ &+ 2 FXiXiEF =Y PIXiX[E+ Y, PiXi&&X]

l#/;ék i=1 i,j=1
= Y PuPyXiXj&+ 2 T X[ &+ X:E8 X)),
l#ﬁék i#j

which yields the equality in Section 2.
Let c}'l.z =E [51.2 |Z] andz; =3 Pjjzj = e; Pz. Then following the same line of argument

as at the beginning of this proof, with z; replacing X; and (rkz replacing é’]?,

Y, 2 Pad} Pz /n—ZU (Zi2§—PiiZiZ,’~ P;iziz} + PAziz] )/n—z 72210
ik
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Also, as shown previously, Assumption 4 implies that ¥; |z; — Z; K /n<7(I—P)z/n—
0 a.s. Then by (fiz and P;; bounded a.s. Pz, we have a.s.

25,3 /
2,67 iz —zizp)/n
i

<Y 6 @llzillllzi —Zill + llzi =% 1%)/n
i
1/2 1/2
<C (2||Zi||2/n) <2||zl~ —zi||2/n> +C Y llzi —Zil1* /n =0,
i i i
1/2 1/2

< (Zd;‘P,% ||zl~||2/n> (2 lzi — % ||2/n> 0.

i i

-2 =/ /
Y 67 Pii(ziZ; —ziz))/n
;

It follows that

Y ziPuof Pidi/n =367 (1= P2z /n— Y, Pizizjo} /n+oas.(1).
i#j7k i i#j

It then follows from Lemmas A7 and A8 and T that

il +2r= z Zl'Pikd'/ngjZ}/n-l- z Pl-JZZiZ;d'jz/n
i#]j#k i#]

+571 3 P} (B, V12107 + ELUGIZIEIG UJI21) 85
i#j
+0p(1)+0p (K/rn)
= Zd'iz(l - Pii)2ZiZ;/n
i
+571 % P} (B U/IZ107 + ELUGIZIEIG UJI21) 5,
i#j
+op(1)+op (K /ry)
because ¢, — 0. Then for JIV1, where & =¢; /(1 — P;;) and [riz = aiz/(l — P;;)2, we have
f:1 + ﬁl2 = Qn +q"n +0p(1)+0p(K/rn)~
For JIV2, where & = ¢; and d'iz = ol-z, we have
S+ =Qu+ W to0p(1)+0p(K/ry).
Consider the case where K /1, is bounded, implying o, (K /rn) = 0p(1). Then, because
I-_In_ 1, Q.+ V¥, H,; 1, and Q; + ¥, are all bounded a.s.n, Lemma A6 implies
! Y7 R P $ —1gre=17\"
S/ VS, = (S,, as; ) (21 + 22) (S,, a's; )
= (A" +0p(M) (G + T t0p(D) (A" +0p(D) = Va+0p (1),
SpVSu=Va+op(l),

which gives the first conclusion.
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For the second result, consider the case where K /r, — co. Then f(zr JIV1, where & =
gi/(1—P;;)and diz = ‘71’2 /(1= P;;)2, the almost sure boundedness of €, for n sufficiently
large implies that we have

(rn/ K)(£1 4 £2) = 0/ KO0+ 0/ K) B+ (/K o (1D 0 (D= (/K ) B+ 0 (1),

For JIV2, where & = ¢; and diz = aiz, we have

(/)14 £2) =0/ K)Qu+ (0 / K) Wi+ (/K)o (D) 0 (D =1/ K) ¥ +-0p (1),

Then by the fact that I-_]n_l, (r/Kn)¥y, Hn_l, and (r/K,)¥,are all bounded a.s.n and by
Lemma A6,

S8 = (s sy (814 8) (s s

= (A" +0p() (' Pa/Kn+0p(D) (A +0p(D) = Vi +0p(1).

Similarly, S, VS, = V¥ +0p(1), which gives the second conclusion. |
Proof of Theorem 5. An expansion gives

a(d) —a(dy) = A~ d)

for A = 8a(5)/00 where ¢ lies on the line joining dand Jp and actually differs element by

element from a(J). It follows from 58 do that & LA dp, so by condition (iii), BnAS; Ir—
BnAS, Iy 0p(1). Then multiplying by B;, and using Theorem 4, we have

(A M’) 12 [a(é) —a(ao)]
- (BnAS;"S;,VS,,S,,—‘A’B;,)_l/z BuASTVS! (3—50)
- [(BnAS;l +op(1)) (Vo +0p(1)) (sn—l/AB;, +o,,(1))]_1/2
x (B,,AS,,—‘/+0,,(1)) s! (3—50)
= (Buas;! VnS;‘/A/B;,)_l/Z BaAS;'S) (5= ) +0p(1)

i} —12 i .
= (BaAST Vs VA'B,) T BaasT 0202 (- a0)

-1/2

+op() = (FaFy) ™ /" FaYn+0p(1)

for Fy = ByAS;! \_/nl/z and ¥, = ‘7,,_1/25;1 (6—dp), where the third equality in the pre-
ceding display follows from the Slutsky theorem given the continuity of the square root
matrix. By Theorem 2, ¥, g N(0, Ig). Also, from the proof of Theorem 2, it follows
that this convergence is a.s. conditional on Z. Then because L,, = (Fj, F,’l)_l/ 2 F;, satisfies
L, L; = [, it follows from the Slutsky theorem and standard convergence in distribution
results that

AR [a@) = a)] = LuTn +0,(1) S NO. D).
(4va) ] v

giving the conclusion. n
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Proof of Corollary 1. Let a(d) = ¢’5, so A = A = ¢’. Note that condition (i) of Theo-
rem 5 is satisfied. Let B,, = b,,. Then BnASn_l’ = byc’S;7 is bounded by hypothesis so
condition (ii) of Theorem 5 is satisfied. Also, B, (A — A)S, —17— 0, so condition (iii) of The-
orem 5 is satlsﬁed If K /ry is bounded, then by hypothesis, A1in (Bn AS_l’ VS, La’B! ) =
b2c' STV VST e > C; or if K /ry — o0, then Apmin(BnAS, VVESyT AR/ /) = b2 !
Sn_]’ ‘_/n* Sy 1c > C, which gives the first conclusion. The second conclusion follows
similarly. n

Proof of Corollary 2. We will show the result for d; the result for & follows analogously.
Let y =limu— 00 (rn/n), so y exists and y € {0, 1} by Assumption 2. Also,

STV = Sy Vdiag (1//n, ..., 1//n, 1/ ) = R = [«fgl —i’i]_

Consider first the case where 1, =n so that y = 1. Take b, = /1, and note that bnc/Sn_l’ =
c (fS_l’) is bounded. Also, ¢’R # 0 because R is nonsingular and | V,|| < C a.s.n
implying that b2¢’ SV V, Sy le = ¢/ RV R ¢+ 045.(1). Also W, = S, VBL(Z2) PijUie))
(2175] iiUj s]) |Z]S_1/ is positive semidefinite, so V, > H,~ 1Q,lH_ . Also, by
Assumptlons 2 and 4, there is C > 0 with A (H,,” lQn 1) > C a.s.n. Therefore, a.s.n,

b2 ST VST e = ¢ RHTQuHT R'e+0(1) = C+o(1) > C. (AD)
The conclusion then follows from Corollary 1.

Fory =0, leta = (—x1, 1)c and note that ¢’ R = (0, @) # 0. If K /r,, is bounded, let b;,, =
«/Tn - Then, as before, bnc'S, ~1/ is bounded and equation (A.1) is satisfied, and the conclu-

sion follows. If K /ry — 00, let by = rn/~/K. Note that byc’ S,V = /rn /K¢’ Sy )
— 0, so by’ Sn_l’ is bounded. Also, note that

_ . I 0
VSl = diag(\/rn/n, ..., \/rn/n,1) [_m J eG =eG-

Furthermore, a constant sign of E[e; U;|Z] implies Ele; U;g|Z]Ele; Uil Z] > 0, so by
P <C <1,

Y, P} (EUGIZ107 + Elei UiGI ZIEL; UiG| 21) /K = 3, PREIUIZ107 /K
i#j i#]

>cz P2/K = c(z Zpi%)/K:c(l—ZP,%/K)zc

Therefore, we have, a.s.,

(rn/ K)¥n =V S7 e { Y P} (EWw1210]
i#j
+ Ele; UiGl ZElz; UjG|Z])/K:| eGNnSy "

> Ce(;e/G.
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Also, H,, is a.s. bounded so that A i (Hn_l) =1/Amax(Hy) > C +04.5.(1). It then follows
from ¢'R = ae’G that

b2 STVVEST e = 1y STV H N/ K) Y Hy S e > Cry ! STV H egelg HY ST e
=a’ClegHy ' e6)? +0as.(1) = C+o045.(1).

The conclusion then follows from Corollary 1. n

APPENDIX B: Proofs of Lemmas A2 and A4

We first give a series of lemmas that will be useful for the proofs of Lemmas A2 and A4.

LEMMA B1. Under Assumption 1 and for any subset I of the set {(i j)?j=1 } and

any subset Iy of {(i,j,k)ﬁj,kzl}, (i) %Pl.j! < K: (i) zpjpﬁ( < K: and
2

2
i ikij‘ <K, a.s.n.

Proof. By Assumption 1, Z'Z is nonsingular a.s.n. Also, because P is idempotent,

rank(P) =tr(P) =K,0< P;; <1, and Z P = P;;. Therefore, a.s.n,
n n
YPi< Y Pi=Y Pi=K,
yo) i=
2 S 2 S
%P"P 2(2 )(2 )zZPJv'SZPJ'J:K’

j=1 \i=l1 k=1
EE Pii Pig
I3

ij‘SZP52|Pikij|sziJz' z 2P
ij k i.j k
<377/ Piibis < Lrj=K .
i,j

For the nextresult, let S, = ¥ (Py P Pis Pj; + Pjj Pk Pi1 Piy + Pij Pi Py Pry) -
i<j<k<l
LEMMA B2. If Assumption 2 is satisfied, then a.s.n (i) tr [(P—D)4] < CK;

(ii) < CK; and (iii) |Sy| < CK, where D = diag(P11, ..., Pan)-

X PPiPi Py
i<j<k<l

Proof. To show part (i), note that
(P —D)* = (P—-PD—DP+ D*? = P —PD—PDP+PD*— PDP+ PDPD + PD*P
—PD?® —DP+DPD+DPDP —DPD? + D*P — D*PD-D3P + D*.

Note that tr(A”) = tr(A) and tr(AB) = tr(BA) for any square matrices A and B. Then,
tr[(P — D)*] = tr(P) — 4tr(PD) + 4tr(PD?) + 2tr(PDPD) — 4tr(PD3) + tr(D*). By 0 <
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P;; < 1wehave D/ < for any positive integer j and tr(PD/) = tr(PD/ P) < tr(P) = K
a.s.n. Also, a.s.n, tf(PDPD) = tr(PDPDP) < tr(PD*P) < tr(P) = K and (D) = 3; P <
K. Therefore, by T we have |tr[(P - D)ﬂ | < 16K, giving conclusion (i).

Next, let L be the lower triangular matrix with L;; = P;j1(i > j). Then P = L + L'+D,
o)

(P=D)=(L+L)=L*+LL +L'L+L"?%?
=L+ L°LU + L°L'L+ L*L? + LU L? + LL/LL +LL'L'L + LL"
A LLEA 4 VLD + VL L+ U L2+ L2 12 U200 + 120 L+ 1L,

Note that for positive integer j, [(L’)/] = LJ. Then using tr(AB) = tr(BA) and tr(A’) =
tr(A),

tr((P — D)*) = 2tr(L*) + 8tr(L3L') + 4tr(L*L"?) + 2t (L'LL'L).
Next, compute each of the terms. Note that

w(LYh= 3 Pl > j)Prl(j > k)Peel(k > O) P 1(6 > i) =0,
i,j,k,l

w3y =Y Pyl > j)Pyl(j> k) Peel (k> O) Py 1G> 0)

i,J,k,€

= Y PiPaxPuPri= Y, PjPyPicPu
i>j>k>( (<k<j<i

= Y PaPyPiPiu= )  PjPxPiPu,
i<j<k<( i<j<k<l

o (LZL/Z) = Y Pl > )HPrI( > k)Pl (€ > K P10 > )
i,j,k,l
= D PiPuPucP

i>j>k,i>t>k

= Y PjPyPuPri+ Y, PjPxPuPri+ Y, PyiPuPuPr
i>j=l0>k i>j>0>k i>{>j>k

= Y PjPiPyPji+ Y, (PePuiPijPje+ PejPji PixPrr)

i>j>k i<j<k<t

2 p2
= Y PiPi+2 Y PuPuPriPii,

i<j<k i<j<k<l
and

tw(LL'LLy= 7 Pyl(i > j)Pplk > j)Prel(k > ) Pri1(i > €)
i,j,k,0

= PyPiiPiPji+ 2. PijPicPiiPji

j<i Jj<k<i
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+ 2 Pij Pix Py Pji + 2 Pij Pji Pi¢ Pgi

Jj<i<k j<t<i

+ X Pij”ji”w”fi+< DE DL D Y ) )

<j<i (<j<k<i j<t<k<i {€<j<i<k j<l<i<k
X Pijj Pj P Pri
=Y Pi+2 Y (PiPi+PiPR)+4 Y PuPiPiePu
it ik” jk + tkUCkj e i
i<j i<j<k i<j<k<C

Summing up gives the result tr((P — D)4) =23 P —|— 4%i<j<k (PU ikt P2P]k +
PzP%() +8S5,,. Then by T and Lemma B1, we have

ISl < (1/9) Y, Pf+1/2 3, (PgP+PiPi+ PP+ (1/8) u((P—D)*) < CK,
i<j i<j<k
a.s.n, thus giving part (iii). That is, S;,= Oa5.(K).
To show part (ii), take {¢;} to be a sequence of independent and identically distributed

random variables with mean O and variance 1 and where ¢; and Z are independent for all
and n. Define the random quantities

Ay = Z [PijPikgjgk+Pleij8i8k+PtkPkgth]

i<j<k

AZ: 2 I:P[/P[kt(]Fk+ jkf‘lék] A3= 2 PlkP/kSl(O]
i<j<k i<j<k

Note that by Lemma A1,

2
E [A3|Z} =E [2i<j<k Pikpjkgigj 2€<m <q qu qu€€8m|2]

= Y PaPpPuPie= Y (P> (Pi)’+2 Y PaPuPiPy
i<j<{k,l} i<j<k i<j<k<t

=Oas.(K)+2 Y, PgPyPi¢Pj.
i<j<k<t

Also, note that

E[A28312] =E[T ;i (PyPuejon + PyPicion) Xy Peg Pugocem) 2
= Y PjPgPiePr+ Y, PijPiPicPi
i<j<k<t i<j<k<t

and

E[a312] =B [(Z.; o PyPucejon + PyPeien )

X (Z t<m<q Pem Pegemeg + mequat’Sq) |Z}
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= Y PjPyPPu+ Y, PjPiPinPuk
{i,0)<j<k i<{j,m}<k

+ Y, PjPuPjmPuc+ Y, PiPuPriPr

i<j<m<k l<i<j<k

Z %c+ Z PUP/i'FZ 2 PUszPKJPEk

i<j<k i<j<k i<t<j<k
+2 X PiPiPinPuk

i<j<m<k

Y PjPiPaPu+ Y, PiPrcPiiPic
i<j<k<[ i<j<k<t

Y, PiPi+ Y, PiPi+2Sy=04s.(K).

i<j<k i<j<k
Because A = A, + Az, it follows that E[A%lz]:E[A%lZ]+E[A%|Z]+2E

[A2A312] = Oqs.(K) +28,= O (K). Therefore, by T, the expression for E [A§|z}
given previously, and A3 = A1 — Ay,

z PlkP/kPl€Pj€

i<j<k<t

<E[A}1Z] + 0us.(K) <E[(A1 = 82)? Z] + Ous. (K)

ng[ |Z]+2E[A |Z]+0as(1<)<0as(1<) n

LEMMA B3. Let L be the lower triangular matrix with Lij = Py1(i > j). Then, under
H < CVK a.s.n, where | Al = [Tr(A’A)} 17z

Proof. From the proof of Lemma B2 and by Lemma B1 and Lemma B2(ii), we have

a.s.n
2
[P =wariy = pie2 S (r2rReried)+a S mangBirs
i<j i<j<k i<j<k<t
<C <K+ Y. PuPyiPjcPri ) < CK.
i<j<k<t
Taking square roots gives the answer. n

For Lemma B4, which follows, let ¢; = ¢; (£) (i =1,...,n) denote some sequence
of measurable functions. In applications of this lemma, we will take ¢; (Z£) to be either
conditional variances or conditional covariances given Z. Also, to set some notation, let
cr = 02 2) —E[82|Z], w = a) n (2) = E[ul-z|Z], and y; = yin (£) =Elu;¢;| Z], where
to simplify notation we suppress the dependence of al-z

n. Let the following results apply.

on Z and of wlz and y; on Z and

LEMMA B4. Suppose that (a) P is a symmetric, idempotent matrix with rank (P) =
Kand P;; <C < 1; (b) (u1,€1),....,(Un,&n) are independent conditional on Z; (c)

there exists a constant C such that, a.s., sup; E (ule) < C, sup;E (e?lZ) < C, and
sup; |¢;| = sup; |¢; (2)| < C. Then, a.s.,
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. [ 1 2 2
() E|(# i<k PR iei =) 12| - 0

2
(i) B| (% Sick PRox (o= 0 7)) |Z}+o;

—_

2
(iv) E | % Zi<j<k Pri Prjdk (ui8j+uj8,-)) |Z] - 0;

(

(

(iii) E (%zkk P2 ¢y (ujZ— wjz))2|Z] -0
(

v) E (

2
%Zi<j<k Pkiij¢k8i?j) IZ} - 0;

2
(vi) E (%2i<j<k Pkiij¢k“i’4j) IZ} - 0.

Proof. To show part (i), note that

E

2
1
(§ Sk Pl =) 12

1 4 2 2.2 2
= 2 Zick< n Piiti {E (”i & |Z) — Vi }
2 2 p2 22 2
T2 i< ickeizn Pii Pkl {E (“i & |Z) =i }

< %2151‘4@, Pl?iff’/%{\/E (M?IZ) E (efIZ) +E u-2|Z) E (gl.2|Z)}

2 2 p2 4 4 2 2
o3 Diciker<n Pl Pi 6] |¢,|{ E(u12)E (:412) +E (u212)E(712)
<cl{ly . PEPEY >0
= K2 &l<i<k<n ki K2 ~l<i<k<<n ki *li >

where the first inequality is the result of applying T and a conditional version of CS, the
second inequality follows by hypothesis, and the convergence to zero a.s. follows from
applying Lemma B1(i) and (ii). Parts (ii) and (iii) can be proved in essentially the same
way as part (i); hence, to avoid redundancy, we do not give detailed arguments for these
parts.

To show part (iv), first let L be a lower triangular matrix with (i, j)th element L;; =
Pij1 (i > j) asin Lemma B3 and define Dy = diag(yy,...,yn), Dy = diag(¢y,...,Pn),
u=(uy,...,up)’, and ¢ = (¢1,...,¢&,)". It then follows by direct multiplication that

¢'L'DyLu—uw{L'DyLDy}y = Y Phoy (wisi —7:)
1<i<k<n

+ Y Py Pijpy (ujej +uje;)

I<i<j<k<n
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so that, by making use of Loeve’s ¢, inequality, we have that

1 2
—2 E [(Z tcicjaken Pl Pl 91 (wiej ujei) )| Z}

1 2
<2—E (L' DyLe—te{L/DyLD, })? |Z]
1 2
+2-E {(2 1<t cken PR $1 (i i =) |z} ‘ (B.1)

It has already been shown in the proof of part (i) that (1/K 2)E[(X 1<i<k<n
P%iqﬁk (uiei—v;) )2 |Z] > 0 as. Pz, so what remains to be shown is that (1/K2)

E [ (u’L/D(;ng —tr {L’D¢LDV })2 |Z] — 0 a.s. Pz. To show the latter, note first that,
by straightforward calculations, we have

%E (L' DyLe {1/ DyL D, })? | 2]
1 1
=t {(L'DyL@L'DyL)E e’ @ eu'| 2]} — — [0 {L' Dy LD, 12 B2

Next, note that, by straightforward calculation, we have

E [su’ ® au/|Z]

‘712“’%@1@/1 012‘03919/2 '71260%6192 712616/1 Y172€2€] -+ Y1Vnene]
giwlere| ciwserey - aiwlese), " yayieres yFeses - yaynentl
spwene| ofwlendy - oiwiene), ynv1€1e) Tny2e2en Y 2ene)
diere, 0 - 0 y1®Dy 0 o 0
nxn nxn nxn nxn
/
ngn 1926262 ngn ngn y2®Dy ngn
+ +
0 0 - pene, 0 0 -+ yp ® D,
nxn nxn nxn nxn
= (Dg ® In) vec (In) vec (1) (Do ® I)
+(Dy ® In) Ky (Dy ® In) +E'DyE+ (D @ Dy ), (B.3)

where K,,,, is an n? x n? commutation matrix such that, for any n x n matrix A, K. nn
vec (A) = vec (A’ ) (See Magnus and Neudecker, 1988, pp. 4648, for more on commuta-

tion matrices.) Also, here, D, = diag (1s---7n), Dg = diag (012,....,0,%),
D, = diag (cu%, .. .,a),%), Dy =diag(¥,...,9,) with?d; =E [512u12|Z] —aizwiz _27’1'2

fori=1,....,n, E= (e Rerpier®en: - ien ®en)/, and ¢; is the ith column of an

n x n identity matrix. It follows from (B.2) and (B.3) and by straightforward calculations
that
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%E (L' DyLe—tr{L'DyLD, })? | 2]
= %tr{ (L'DgL®L'DgL)E [eu’ @ eu'| 2] } — % [w{L'DyLD, }]*
= %Vec (In) (DwL'Dg LDy ® L' Dy L) vec (1)
+ %tr{ (DyL'DyLDy ® L'DyL) K,
+ étr{ (L'DyL®L'DyL)E DyE} + étr{(L’Dq;LDy ®L'DyLD,)}
~ [ {e'DyLD, )2
= %tr{L’D¢LDwL’D¢LDU F+ %tr{(Dy L'DgLDy @ L'DgL) K, }

+ %tr{(L’D¢L®L’D¢L)E/D19E}. (B.4)

Focusing first on the first term of (B.4), and letting @ = maxj<j<p wlz 72 =

-2
maxj<;<p O'l-z, and ¢ =max|<ij<p </>i2,we get

1 ’ / 2 92 1 Ty
ﬁtr{L DyLDy,L'DyLDy } < @G~ ﬁtr{L LL'L}

soqur)= S asrs @

where the first inequality follows by repeated application of CS and of the simple inequality

tr{A’AA}S max /litr(A/A), (B.6)

1<i<n

which holds for n x n matrices A and A =diag(4{,...,4,) such that 4; >0 for all i,
and where the second inequality follows in light of the assumptions of the lemma.

Turning our attention now to the second term of (B.4), we make use of the fact that,
for n xn matrices A and B, t{(A®B)K ,,} =tr{ AB} (a specialization of the
result given by Abadir and Magnus, 2005, p. 304) to obtain K _ztr{( D, L' D ¢ LDy ®
L'DyL) K} = K- 2w{L D4yLD, L' D 4LD,}. Asin(B.5), by repeated use
of CS and the inequality (B.6), we obtain

1 c 2
ﬁtr{(Dy L'DgLD,y ® L'DyL) K, } < <2 |LL||” as. Pz. (B.7)
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Finally, to analyze the third term of (B.4), we note that
1 / / /
el |tr{(L'DgL®L'DyL)E'DyE}|
[ e 2 [ /72 syl
<= 21 19i1 (¢ DyLei)” < 21 i1 (/L' Dy Le; ) (€L Lei)
1= 1=

_, 1 &
<# 5 Y10l (L Le;)’

i=1

c LS e <L S (P Pe) = S p2
=Ce7 . 1(ei ei)” < ﬁzl(ei ei)" = ﬁzl ii
1= 1= 1=
1 & c
SCF Y P =< as Pz, (B.8)

where the first inequality follows from T, the second inequality follows from CS, the third
inequality makes use of (B.6), the fourth inequality uses CS and T and follows in light of
the assumptions of the lemma, and the last inequality holds because P;; < 1.

In light of (B.4), it follows from (B.5), (B.7), and (B.8) and Lemma B3 that (1/K2)
E[(u/'L'DyLe —tr {L'DyLDy D2 | Z] <2C(1/K?) || LL'|]* +C(1/ K)< C/K as.
P =z, which shows part (iv).

It is easily seen that parts (v) and (vi) can be proved in essentially the same way as part
(iv) (by taking u; = ¢; ); hence, to avoid redundancy, we do not give detailed arguments
for these parts. n

Proof of Lemma A2. Letby, =c1,E, —1/2 and by =2y Ep ~1/2 and note that these
are bounded in n because &, is bounded away from zero by hypothesis. Let w;,, = b’l 2 Win
andu; = b’zn U;, where we suppress the n subscript on u; for notational convenience. Then,
Yo = w1+ X ) Yins Yin = Win + Vin> Vin = Xj <i W Pyje; + u; Pyjej) /N K.

Also, E[llw1, 1*12] < 3 E[lwinll*I1Z] < CZE[IWin*12] > 0 ass., so by a con-
ditional version of M, we deduce that for any » > 0, P (Jwy,|> v | Z) — 0. More-
over, note that suan[lP (Jwipl =0 |Z)|2} < oo. It follows that, by Theorem 25.12
of Billingsley (1986), P (lwi,| > v) =E [P (wiy| > v | Z)] — 0asn — o0; ie., wy,

£ unconditionally. Hence, Y, = 3, yi, +0p(1).
Now, we will show that ¥, —d> N (0,1) by first showing that, conditional on Z, 2?:2

Vin KA N (0,1), as. To proceed, let &; = (W], ,U/, &))" fori =1,...,n. Define the
o-fields F; ;, = o (Xy,....,&;) fori=1,....,n. Note that, by construction, F;_j , C
F; . Moreover, it is straightforward to verify that, conditional on Z, {y;;, Fj 4,1 <i <
n,n > 2} is a martingale difference array, and we can apply the martingale central limit
theorem. As before, let 0? = E[e¢?| 2], 0} = o7, (2) = E[u?|Z], and y; = y;, (Z) =
E[u;&;|Z], where to simplify notation we suppress the dependence of O'l-2 on Z and of colz
and y; on Z and n. Now, note that E[w;;, j,,|£] =0 forall i and j and that
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E[Gin?12] = 3 X E [ Pyei +u; Pye) ux P + i Pacei)| Z) /K

Jj<ik<i
sz [w 0]2+271Vj}/K
j<i
Thus,
2 n
s2(2)=E {(Z?:zyin) |z] =3 (E [u)?,llZ} +E [ﬁntZD
i=2
- [ehi2] + T oo et <]
i#
= bllnDnb]n +b/2n iann +0a5.(1)

——1/2 S =—1/2
= Zn / (C/lnDncln +C/2nZnC2n) =n / +0a5.(1)

;]/2 EpE ;1/2+0a.s.(1) =l+oas(l) > 1 as,

[1]

where D, = Dy (2) =3!_E[W;, W/, |Z] and

i=1

Si=5.(2)= Y P} (E[U,»Ui’|Z]E[s}|Z]+E[U,»s,~|Z]E[ngJf|Z]) /K.

i#]
Thus, s,% (2) is bounded and bounded away from zero a.s. Also, >,;_» E [yfn |Z] <Ccyl,
E [||W,~n ||4|z} +C3_,E [y;‘n|z} By condition (iv), S, E [||W,,,||4|z] - 0. Let j¢, =
Yj<iujPei/VK and 3 =3 < u; Pye;

ij = P;;, we have

that a.s.
n 4 C n 4
YE [(y;n) |Z] <52 Y PiPaPicPuE [6,- |z] E [ujuguesiin| 2]
i=2 i=2 j.k,{,m<i
<C5 S PiP7) <CK/K*—0
DA DY ij Pik | < CK/K=— 0.
i=2 \j< jk<l

similarly, 37, B[ (5%,)* |z} — Oas., so that

-

efihiz] = 3 {e[05)"12] +E[5)"12]} - 0

1

Then by T we have 3! ,E [y;‘n |Z} — 0 as.
Conditional on Z, to apply the martingale central limit theorem, it suffices to show that
forany e > 0

P (‘Z?zzE [yiz,,le,.-.,Xi_l,Z] — sy (Z)’ > €| Z) — 0. (B.9)
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Now note that E [w;, yi»|Z] =0 a.s. and thus we can write

Z 21X X 2] ~s2@) = 3, (Bl ... Xy 21— Bl 21)
i=2 i=2

n n 2 2
+ Y E [windinl ¥, X1, 2]+ Y, (B IX, ., X, 21— EIF,121)

i=2 i=2

(B.10)

We will show that each term on the right-hand side of (B.10) converges to zero a s. To pro-
ceed, note first that by independence of Wy,,, ..., Wy, conditional on Z, E[w |X1, .
X;_1,Z] = E[w?|2] as. Next, note that E[w,nylan],...,Xl_l,Z] = Elw;nu;| Z]
S <i Pijej /VK +Elwine;i| 213, <; Pjuj /K. Let &; = ; (£) = E[w;nui|Z] and con-
sider the first term, d; ZJ <i Pije;j /~K. Let P be the upper triangular matrix with
Pl] = P;j for j > i and P,]_O j<i,andletd = (01,.. »0n). Then, 37, 3 ; J; Pijej/
VK =90Pe/VK. ByCs, do=3]_ (E [winuil2])? < i Elwy, | ZEu7|1Z] < C
K a.s., which in turn implies that Zmax (P’ P) < CVK
a.s. It then follows given E [u%lZ} < C as. that E[(§' P'e/VK)?|Z] < C§ P'PS/K <
Cl6]%/vVK < C/VK — 0 as., so that by M we have for any € > 0, P (|6(2) P'e/
\/f( > e|Z) — 0 as. Similarly, we have S, E [w;,5;12] 5 ; Pyjuj/VK = 0 as.
Therefore, it follows by T that, for any € > 0, P (|2, E [winJinlX1,.... X1, Z]|
>€lZ) >0 as.

To finish showing that equation (B.9) is satisfied, it only remains to show that, for any
€ >0,

P (‘27:2 (E [yfnm,...,x,-_],z} —E[yinnz)’ > elZ) >0 as. (B.11)

Now, write
S 2 2
Y E([5h1%1 0 X, 2| —EL 121)
i=2
= Z wizPi]z- (512 —ajz) /K +2 2 wizP,-jP,-ksjek/K
j<i Jj<k<i

+ 02} (1 —}) [K+2 X ol PyPunju/K

J<i Jj<k<i
+22yl~P,-12~ (ujaj /K+2 z ylP,]P,k(ujak+ukaj)/K (B.12)
Jj<i j<k<i

By applying parts (i)-(iii) of Lemma B4 with ¢; = y;, @ l, and cr , respectively, we
obtain, a.s., E[(¥; y,-Pl.jz.[ujgj - yj}/K) 12]-0, E[(3;<i cosz[ JZ]/K)2| Z]
— 0, and E[(Zj <i O P2[ ]2-}/1() |Z] — 0. Moreover, applying part (iv) of

Lemma B4 with ¢; = y;, we obtain E [(2j<k<i viPij Pik [ujak + uké‘,’] /K)2| Z] -0
a.s. [P z. Similarly, conditional on Z, all of the remaining terms in equation (B.12) converge
in mean square to zero a.s. by parts (v) and (vi) of Lemma B4.



JIVE WITH HETEROSKEDASTICITY 81

The preceding argument shows thatas n — oo, P (Y, < y|Z) = @ (y) a.s. Pz, for every
real number y, where @ (y) denotes the cumulative distribution function of a standard nor-
mal distribution. Moreover, it is clear that, for some € > 0, sup E [ [P (Y, < y|Z)|1+E ] <00

n

(take, e.g., € = 1). Hence, by a version of the dominated convergence theorem, as given by
Theorem 25.12 of Billingsley (1986), we deduce that P (Y, < y)=E[P (Y, < y| Z2)]>
E[® (y)]= @ (y), which gives the desired conclusion. n

Proof of Lemma A4. Let b; = E[W;|Z], W; = W; —;, y; =E[Y;|Z], ¥; = Y; — ¥;,

ni = Elm | Z1, i = ni — ;5

iy =maxdf <C/n, iy =maxj; <C/n,  jiz =maxji} <C,
<n i<n i<n

5% =maxVar(W;|Z) < C/ry, &% = max Var(¥;|Z) < C/rn,
i<n 1 <n

63 =max Var(y;|2) < C.
i<n

Also, let y; =Y i Pijyjs w; = 2 Pijw;, be predicted values from projecting y and w on
P and note that

DI W ) WD Yoy
i i i i
By adding and subtracting terms similar to the beginning of the proof of Theorem 4,
A=Y Y Pyl Py
i#jkeli,j}

=7 (i)iﬁi — Pijw;¥; — Pij; yi +2P,%U_)i)7i) /n_zlbiyipl%ﬁj-
i i,J

By T, CS,and 77 < C,

<c [Sat, SR <c Pt [3 7 <.
1

and it follows similarly that ¥; w; P;;#;y; is bounded. By Lemma B1,

N ik i N w; Piifii ¥i | <
3 i

Sk 0y 5 P

<cn-! ‘zi,k Pl%‘ < CK/n<C.Also, |S; ;5; P2i;| < Cn/n=C. Thus, |A,] < C holds
by T.
For the remainder of this proof we let E[e] denote the conditional expectation given Z.

Note that

Wi Pigni PriYj = Wi Py PyiYj +w; Piny PriY;
= W; Piiik PiiY; + W; Pt PijY; + ; Pigity PigY; + ; Pty Pij Y
= W; Puiix PiiY; + W; Pyt Pij3j + Wi Ptk PiiY'j + Wi Pk iy
+ ; Ptk PiY; + ; Pigity Pijyj + i Ptk PijYj + ; Pikig iy -
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Summing and subtracting the last term gives

z Wi Py PjYj — Ap = Z Yr,

i Tk

where

pi= Y WiPaikPgYj, wa= Y WiPuiiPyjj,
i Tk i£ Tk

ya= Y WiPpiPiyj. ws= . w;PyiikPiiY;,
i ik

Y WiPikﬁkijf’j,
ik

we= 2, ;P Py;,
i##k

and yA/7 = Y+ j+k Wi Pixlik ijf’j. By T, the second conclusion will follow from yA/r Ko

forr =1,...,7. Also, note that yA/7 is the same as 1;/4 and 1/75, which is the same as I/Alz
with the random variables W and Y interchanged. Because the conditions on W and Y are

symmetric, it suffices to show that tf/r 5 0 forr e{l1,2,3,4,6}. ~ o

Consider now /. Note that for i # j # k and r # s # t, we have E[W; Py ijg Py Y; Wy
Pyrgis Psy 171] = 0, except for when each of the three indexes i, j, k is equal to one of the
three indexes r, s, ¢. There are six ways this can happen, leading to six terms in

6
Elpil= Y 3 EIW; Puii Pii¥; W Prsiis P Yil = Y, 74

i jF#k r#£s#t

q=1

Note that by hypothesis, a‘%,a 02K <Cr, 2K — 0. By Lemma B1, we have

2

#1|= X EIWi Puii Pi¥p)*1= Y, EIW1PRELI{IPLEIY] < Gyy6,67K — 0.

i#j#k i#j#k
Similarly, by CS,

%3] =

> E[(WiPikﬁkij?j)(WijkﬁkPkifi)]‘
i#j#k

=Y E[Wi?i]E[vi/j?j]E[ﬁk]Pi%P,fj
i#j#k

2 =2=-2
< O'WﬁnﬂyK - 0.

Next, by Lemma B1 and CS

> ELW; Pt PiY ;) (W; Pyiij Py Vo))
iZi#k

|22

E[W/ELi Yi JEL7; Y; 1Py Py pjg{

i# ]k

=2 =2-2
<oyo,0yK — 0.



JIVE WITH HETEROSKEDASTICITY 83

Similarly,

S EIUW; Ptk PiiY;) (W P i P Yi)]
ik

|4 =

S E[W;iiJEIW; ¥} Eliik V¢ P Py P
ik

-2 -2-2
< awanayK — 0,

75| =

> EUW; Py PijY7) (W Py i sz;'?j)]'
i Tk

Y. ELW;ii IELY FIEIWk ik 1 P P Pji
i#j#k

-2 -2-2
< O'WO'nO'yK — 0,

%6 =

> EU(W; Pyciix PijY;) (W Pyjiij Pj Y)]‘
i

Y. EIW; Vi 1EL#; ¥ IEIW i P Py P
i#j#k

-2 =-2-2
< O'WO'”O'Y{{ — 0.

T then gives E[t//1 1> 0,s0 x//] 20 holds by M.

Consider now . Note that fori # j #k and r # s #t, we have E[W; Pyiix Py W,
PrgiysPS,y,] =0, except wheni =r and j == or i=s and j = r Then by (A +
B+C)? < 3(A2+ B2 +C?) and for fixed k, Y2k P3 < Pik, Yizk Pjj < Pik. it follows
that

2
> Pi Zijyj> 32 P (yk+szyz+Pkkyk)

i#  \jélik) i#k

<3 ( P (7 +2yk)> <3 <2ik +22y£> <9njiy < C.
k k
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It follows by [AB| < (A2+B2) / 2, CS,and Py = P;; that

2
Elp3= Y EIWAPREGH | Y ijij>
i#k j&{i.k}

+ Y EIW i 1PZEWii | Y ijij) > Pijij)
ik j¢{i,k} j ik}

2
< 25%1,53 > pi Q > ijyj) <C/rp— 0.

i#k ik}

Then > 5 0 holds by M. i o
Consider y3. Note that fori # j # k and r # s # t, we have E[W; Py PiiY; Wi Prs s
P Y, 1=0, except wheni =r and j =t ori =t and j =r. Thus,

2
ELy31= z (ELWRIELT?1+ ELW, ¥, IELW; 7)1) <k¢{2ij} Pikiik ij)

2

<26363 Y < S Py ij> .
i#]j \k¢li,j}

Note that for i # j, Yxe(i, jy Pik Prjiik = Zk Pir Pjiik — Pij Pii i — Pij Pjj17;. Note also that

Z(Z k’?k) Z k,g’?k’?€<ﬂn2 ﬂnZ i <K,

2
z<2Pikﬁkij> = Y. Puiik PxPieiie Pi¢c = Y, kil (Zﬂkﬂ‘f) <2ijpj€>
k J

ij ik, ot ;
- - 2 -2 2
=i Py < i3 Y Py = ii2K.
k,t

>

It therefore follows that

2 ’ 5
> (z,Pikﬁkij) = <2Pikﬁkij) =) (ZP,-kﬁkPki> < 2,1%1(.
i#j \ k i,j \k =\ 4
Also, by Lemma B1, Y. P} i ,/’7, <5 Yizj P,-jz- < i3 K, so that

2 2

Z( 2 Pikﬁkpk./) =32 (zPikﬁkij) + PE PR+ PR PR b < 6jiyK
£ \kgIL.j) 2| \%

From the previous expressmn for E[l//3], we then have E[c//3] < Cawoy,uzK < Cr_2
K — 0. Then 1//3—) 0 by M.
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Next, consider l//}4. Note that for i # j # k and r # s # t, we have E[W; Pk Py W,
Prsijs Ps; y1]1 = 0, except when i = r. Thus,

2 2
o) ) S
Ely;1=YEW7 [ Y Y Piknkijyj) A DD zk"lkPk])’j> :
i j#i ke, j} i \j#ik¢li,j}
Note that for i # j,
Y. PudikPyyj = Y, Pixii Pij3; — Piifli Pyjyj — Pijilj Pjj -
ke{i,j} k
Therefore, for fixed i,
> > PriikPyyi= Y, <2Pikﬁkpk/)_’j_ i 1l Pijyj — ijﬁj%‘jij)
JFi ke, j} J#i
—Zsz’Tkyk—z 2k Vi — Piifli i — Y, Pyjilj Pjj3j +2P3 i .
J

Note that because P is idempotent, we have ; ¥ Pixflj Vi ik yk < 2 ;‘7]25;].2 < /_1372]‘ yj? <
ﬂ%Zj ﬁjz < n[z%ﬁ% < C. Then it follows that

z{zpzk’?k)’k} —ZZZPM,yJ ,kﬂkyk—ZZﬂjyﬂkYkZPyPlk

i
=Y Piij ¥k < C.
Jj k
Also, using similar reasoning,

Z(le’hyz) <2’7y <nu %/SC,

1

2<2Pu’7] ]Jy1> <2’71 AHEDW S
J 14

2
2 <yz2 k’7k> < i Z R Pidic < By ity Y, PRPy < Kiiyity < C,
ikl ikt

Z LiPE < niiyity < C.

Then using the fact that (¥>_; A,)? <5%>_, it follows that E[y7] < 53,C < C/ry

— 0, so l/>4£)0 by M.
Next, consider yg. Note that for i # k, ngé{i,k} w; Pikij)_’j = w; Py Y — W; Pl%y,' —
w; Pjy Pxi k- Then for fixed &,

_ - _ o _ 2 - - _ o _ 0 -
Y, 0 PPy =, (wi Pip i —w; Piyi —w; Pig Pk yk) — Wk Pk Yk + 20y P i
i#k j¢lik} i

o _ 2 . - _ o R
= Wy Yk — ., i Pigyi — ; Py Sk — g Pk Ve + 20k PG V-
i



86 JOHN C. CHAO ET AL.
Then using the fact that (Zle Ar)? < 52?21 AZ we have

Elpdl=YERIY Y @ PyxPyi;)?
k iF#kje{i,k}

- 5552(w,%y,%zp,gpﬁ,-mw+wzp,zky,%+wzp,3kyz+4mzpfkyz)
k i,j

-2 C2v2 | -2 - ©2 -2 2 _2 -2
550,7 (%wkyk—{—,uw,u 2 Pk/sz+ %wk+uW%yk+n4yWﬂy)

<557 (%13%}%+7nﬁ%,ﬁ%)§€% +Cn/n? <C2w 32 +0(1).

Now let 7, be such that A, = max; |a; — Zzy| — 0, let ay =y /+/n, and note that
max; <, |0; — Zlan| = An//n. Let® = (y,...,w,) . Then

B; — ib;| = ‘zz)i - Z;(Z/Z)—lz’a)) - ‘w,» — Zlon—Z}(Z'2)"1 Z/ (b — Zan)

1/2 5 1/2
< An/n+ <2P,§-> (2 [zbj —Z}an] )
j j

172

< A+ P2 Vnmax ;= Zjan| = Au+ P/ Ay < CA.
i<n

Then by T, max; <, |0;| < max; <, |0;| + A, — 0, so that
2v2 2 2 2

20 < (maxllM) 2 =025 = 0.

k r=n k k

Then we have E[z// 1= 0,s0by M, y/6 2 0. The conclusion then follows by T.



