
Economics Letters 144 (2016) 33–36
Contents lists available at ScienceDirect

Economics Letters

journal homepage: www.elsevier.com/locate/ecolet

Identification in nonseparable models with measurement errors and
endogeneity✩

Yingyao Hu a, Ji-Liang Shiu b, Tiemen Woutersen c,∗

a Johns Hopkins University, United States
b Renmin University of China, China
c University of Arizona, United States

a r t i c l e i n f o

Article history:
Received 2 August 2015
Received in revised form
13 March 2016
Accepted 10 April 2016
Available online 20 April 2016

JEL classification:
C20
J20
C27

Keywords:
Nonclassical measurement error
Measurement error and endogeneity
Labor supply elasticity

a b s t r a c t

Economic variables are often measured with errors and may be endogenous. This paper extends Chesher
(2003) and gives new identification results for the ratio of partial effects in a class of nonseparable index
models with measurement error and endogeneity. The identification restrictions include a triangular
system and the derivative of some conditional mean functions being nonzero. An example that motivates
the paper is identification of the labor supply elasticity.
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1. Introduction

Economic variables are oftenmeasuredwith errors andmay
be endogenous. For example, when estimating the labor supply
elasticity, it is likely that thewage and the number of hoursworked
are measured with errors.1 In this paper, we use the estimation of
the labor supply elasticity as a leading example, but the estimation
procedure is more general than that. We consider models with
measurement error and endogeneity. In particular, let

y = m(θx∗
+ w,w′, η), (1)

x = x∗
+ ε, (2)

x∗
= g(z, w,w′, u), (3)

where we observe

y, x, z, w,w′


. The model involves a depen-

dent variable y, a true regressor x∗, a mismeasured regressor x, cor-
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1 Borjas (2009) gives an overview of empirical studies that estimate the labor
supply elasticity and also discusses the problems caused by measurement error.
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rectly measured regressors w and w′, and an instrument z, while
the unobservables are η, ε, and u. We do not assume that u and
(z, w) are independent. Moreover we do not impose a restriction
on the dimension of the disturbance η in the regression function
or on w′. The true regressor x∗ is endogenous in the sense that it
is determined by g(z, w,w′, u) while u and η are generally corre-
lated. The measurement error ε may be correlated with η so that
Hu (2008) and Hu and Schennach (2008) do not apply. Three re-
lated papers are Chesher (2003), Abrevaya et al. (2010) andHu et al.
(2015). Our results differ from Chesher (2003) since we allow for
measurement error but we have less to say about quantiles. Abre-
vaya et al. (2010) consider estimation up to scale in the transforma-
tion model in order to test the null hypothesis of no causal effect.
Our work differs from theirs in that we allow the regressors to be
measured with error and the model to be nonseparable and our
identification result immediately implies a test in a more general
framework. Hu et al. (2015) consider a separable model and pro-
vide a literature review. All the identification results in this paper
are constructive in the sense that the results suggest an estimator,
which we demonstrate by doing simulations.

The rest of the paper is organized as follows. In Section 2
we extend the model of Eqs. (1)–(3) with a triangular system
and present the identification result. Section 3 contains results
from Monte Carlo experiments and Section 4 concludes. The
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detailed mathematical proof of the main result is provided in the
Appendix.

2. Identification in nonseparable models containing a triangu-
lar system

We are interested in the parameter θ of the nonseparable
regression model,

y = m(θx∗
+ w,w′, η), (4)

x = x∗
+ ε, (5)

x∗
= g(z, w,w′, u), (6)

where we observe

y, x, z, w,w′


. As discussed in the introduc-

tion, Hu et al. (2015) assume that the observable variables are in-
dependent of all error terms, i.e. (z, w) ⊥ (η, ε, u) in Eqs. (4)–(6).
However, in many cases in economics, establishing the marginal
independence in Eq. (6) such as (z, w) ⊥ u may require undesir-
able strong assumptions.2 Worker’s labor supply function can be
a motivating example of the nonseparable model to illustrate this
case. Suppose worker’s labor supply function can be written as Eq.
(4). Also, the dependent variable y could denote hours worked, x∗

the unobserved true wage rate, and ε the measurement error. In
addition, w could be a measure of worker productivity, z educa-
tion, andw′ a list of covariates such as demographics, housing, etc.
While the error term η can be interpreted as unobserved health
status, the error term u can represent job training possibilities at
firms. Under the empirical setting, the parameter of interest θ is
the ratio of partial effects corresponding to the true wage rate and
ameasure ofworker productivity on hours ofworked.While Eq. (4)
is the hours worked equation, Eq. (6) is the wage equation. In this
case, a potential correlation between education and job training
possibilities or worker productivity and job training possibilities
would violate the marginal independence assumption (z, w) ⊥ u.
To allow (z, w) and u to be correlated we extend the nonsepara-
ble model (4)–(6) with the following marginal independence and
triangular system:

Assumption 2.1. The variables

z, w,w′


are jointly independent

of the error terms (η, ε), i.e.
z, w,w′


⊥ (η, ε).

Each (z, w) contains a continuous element and the functions
m (·, ·, ·), and g (·, . . . , ·), are differentiable. In addition, the
function m (·, ·, ·) is strictly monotone in η and the derivative of
its first argument is nonzero, i.e. ∂m(·,·,·)

∂ψ
≠ 0 where ψ denotes

the first argument of m (·, ·, ·). The function g (·, . . . , ·) is strictly
monotone in u.

These monotonicity conditions can be illustrated by the
motivating example of labor supply and the wage equation. In
particular, holding other factors fixed, good health may increase
the hours worked and job training possibilities may increase the
unobserved true wage rate.

Assumption 2.2. Let v denote an unobservable error term. Let

w = h1(z, w′, u, v), (7)

z = h2(w
′, v), (8)

where h1, and h2 are differentiable, h1 is strictly monotone in its
argument u, and h2 is strictly monotone in its argument v. No
restrictions are imposed on v.

2 For example Newey (2001) argues that independence between z, w and u is a
strong assumption.
If we interpret the unobservable error term v as ability then
the motivating example satisfies these monotonicity assumptions
because ability increases the observable wage rate and education
ceteris paribus. The modeling in Eq. (7) allows for correlation
betweenw and u.

Assumption 2.3. Assume the cumulative distribution functions
FY |Z,W ,W ′(y|z, w,w′) and FX |Z,W ,W ′(x|z, w,w′) are differentiable
with respect to z andw. For some (ȳ, x̄) and (z, w,w′) let

∂FY |Z,W ,W ′(ȳ)
∂z

∂FX |Z,W ,W ′(x̄)
∂w

−
∂FY |Z,W ,W ′(ȳ)

∂w

∂FX |Z,W ,W ′(x̄)
∂z

≠ 0.

Also, at the point at which these derivatives are evaluated,
(z, w,w′), let (i) the density of (z, w,w′) be strictly positive or (ii)
the conditional density of (z, w) given w′ be strictly positive and
P(W ′

= w′) > 0.

Our main result can be stated as follows and we leave the proof
to the Appendix:

Theorem 2.1. Suppose that Assumptions 2.1, 2.2, and 2.3 hold. Then
the parameter of interest θ is identified. In particular, any (ȳ, x̄) and
(z, w,w′)

θ =

∂FY |Z,W ,W ′ (ȳ)
∂z

∂FX |Z,W ,W ′ (x̄)
∂x

∂FY |Z,W ,W ′ (ȳ)
∂z

∂FX |Z,W ,W ′ (x̄)
∂w

−
∂FY |Z,W ,W ′ (ȳ)

∂w

∂FX |Z,W ,W ′ (x̄)
∂z

. (9)

In order to estimate θ we have to use estimators for the
derivatives of the cumulative distribution functions. This would
cause two types of bias to θ , one is the approximation bias for these
derivatives and the other one is ratio bias since the denominator
in Eq. (7) may be close to zero. To mitigate these biases, in the
estimation section, we propose to use a weighted average over
sample points. Also, the condition in Assumption 2.3 is expressed
in terms of distribution functions so the restriction can be tested.
In particular, if Assumption 2.3 holds formore than one value (ȳ, x̄)
then we can compute an empirical estimator for the term θ for
different values of (ȳ, x̄) to test the model.

3. Estimation and simulation

Under the assumptions of Theorem 2.1, the parameter of
interest θ can be identified and written in terms of the first
derivatives of the distribution functions FX |Z,W ,W ′ and FY |Z,W ,W ′ .
From an i.i.d. random sample


yi, xi, zi, wi, w

′

i

n
i=1, the empirical

estimator for FY |Z,W ,W ′ is

F(y|z, w,w′) =
1
n

n
i=1


number of y1, . . . , yn less then y

such that |zi − z| < σ · std(z), |wi − w|

< σ · std(w), |w′

i − w′
| < σ · std(w′)


, (10)

where std(z), std(w), and std(w′) are standard deviations of zi,
wi, and w′

i in the sample respectively and σ is a bandwidth that
converges to zero as the sample size increases. This implies that a
consistent estimator for the derivative of FY |Z,W ,W ′ with respect to
z can be obtained by

∂FY |Z,W ,W ′(y, z, w,w′)

∂z

=
1
2δ

[F(y|z + δ,w,w′)−F(y|z − δ,w,w′)]

using a small value of δ. A similar formula can be applied to
estimate FX |Z,W ,W ′ and its derivatives.
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Table 1
Estimations of single linear index models (n = 1000).

Separable estimator Nonseparable estimator
θ = −1 θ = −1

Simulation I Mean −1.029 −0.987
Median −1.080 −0.960
Std. dev. 0.623 0.351

Simulation II Mean −0.225 −0.979
Median −0.216 −0.932
Std. dev. 0.075 0.183

Simulation III Mean 0.282 −1.062
Median −0.076 −1.060
Std. dev. 4.730 0.433

Simulation IV Mean −0.303 −1.069
Median −0.301 −1.018
Std. dev. 0.195 0.180

Note: Standard deviations of the parameters are computed by the standard
deviation of the estimates across 100 simulations and called (simulation) standard
deviations.While the Separable Estimator indicates the local polynomial regression
method in Hu et al. (2015) the Nonseparable Estimator is the proposed estimator
in Section 3. The abbreviated names reflects whether the function g in Eq. (3) is
nonseparable or not.

Because the formula for θ in Eq. (9) works for the domain of
(y, x, z, w,w′), we can use

θ =


· · ·

 ∂FY |Z,W ,W ′ (y)
∂z

∂FX |Z,W ,W ′ (x)
∂x

∂FY |Z,W ,W ′ (y)
∂z

∂FX |Z,W ,W ′ (x)
∂w

−
∂FY |Z,W ,W ′ (y)

∂w

∂FX |Z,W ,W ′ (x)
∂z

×ω(y, x, z, w,w′)dydxdzdwdw′

where ω(y, x, z, w,w′) is a weighting function that is zero if the
denominator in the last equation is zero. If we use the empirical
distribution of (y, x, z, w,w′) as our weighting function and the
denominator is nonzero, a sample counterpart estimator of θ is
given in Box I. Because the estimator is constructed using empirical
estimators for the distribution functions and their derivatives, the
proposed estimator should be consistent under general conditions
such as those stated by Hu et al. (2015). We illustrate that
the identification results are constructive and investigate the
finite sample properties of an estimator through a Monte Carlo
simulation. In particular, we conducted four sets of simulations. In
these experiments the data generating process (DGP) has that w
and u are correlated. We assume that the variables x, w′, u, v, and
η are generated using a Gaussian process with mean zero and unit
variance. The four sets of simulations for the functionsm, g , h1, and
h2 are given in Box II. These simulations are intended to capture
the different degrees of separability in the functions m, and g . In
Simulation I, m, and g are both separable, g in Simulation II and III
is nonseparable andm, and g are both nonseparable in Simulation
IV. We use 100 replications for each experiment with a sample
size 1000, and report mean, median, and standard deviation for
the Separable Estimator in Hu et al. (2015) and the Nonseparable
Estimator (the estimator suggested by the identification results).

The estimation results are summarized in Table 1 and clearly
show that the Nonseparable Estimator performs well in all
experiments. As expected, the Separable Estimator in Hu et al.
(2015) causes larger bias in Simulations II, III and IV.Whenm and g
are both separable in Simulation I, both estimators have small bias.
However the Nonseparable Estimator suggested in this paper has
a lower standard deviation.

4. Conclusion

Many empirical problems in economics have some variables
that are measured with error and/or are endogenous. This paper
gives new identification results for the ratio of partial effects in a
class of nonseparable index models with measurement error and
endogeneity. The identification restrictions include a triangular
system and the derivative of some conditional mean function be-
ing nonzero. The results are more general than Chesher (2003) in
some aspects sincewe allow formeasurement error but the results
aremore restrictive in other aspects.Measurement error and endo-
geneity are features of many empirical problems andwe discussed
the identification of the labor supply elasticity as an example.

Appendix. Proof of Theorem 2.1

With the help of Eqs. (7)–(8) from Assumption 2.2, the model
(4)–(6) can be divided into two triangular systems, (A) and (B):

y = m(θg(z, w,w′, u)+ w,w′, η) (A)
w = h1(z, w′, u, v)
z = h2(w

′, v),

and

x = g(z, w,w′, u)+ ε (B)
w = h1(z, w′, u, v)
z = h2(w

′, v).

Weapply the identification technique developed in Chesher (2003)
to these triangular systems. Since h2 is strictly monotone in v from
Assumption 2.2, for a given w′ the inverse of h2 exists and is de-
noted by h̃2(w

′, z) = v for a fixed w′ and we call this function the
inverse of h2 conditional on w′. Substituting it in h1, we can have
w = h1(z, w′, u, h̃2(w

′, z)) conditional on z, w′. That h1 is strictly
monotone in u implies that the inverse function h̃1(z, w′, w) =

u exists. Plugging this equation into m, we can have that y =

m(θg(z, w,w′, h̃1(z, w′, w)) + w,w′, η) conditional on z, w, and
w′. Define

n1(z, w,w′, η) = m(θg(z, w,w′, h̃1(z, w′, w))+ w,w′, η).

Taking derivatives with respect to z, w on both sides of the above
equation, and using the independence assumption in Assump-
tion 2.1


z, w,w′


⊥ η, we obtain

∂n1(z, w,w′, η)

∂w
=
∂m(θg(z, w,w′, h̃1(z, w′, w))+ w,w′, η)

∂ψ

×


θ


gw + gu

∂ h̃1

∂w


+ 1


, (11)

∂n1(z, w,w′, η)

∂z
=
∂m(θg(z, w,w′, h̃1(z, w′, w))+ w,w′, η)

∂ψ

×


θ


gz + gu

∂ h̃1

∂z


. (12)

Because ∂m(·,·,·)
∂ψ

≠ 0 from Assumption 2.1, we can cross multiply
the two equations above to obtain

∂n1(z, w,w′, η)

∂w


θ


gz + gu

∂ h̃1

∂z



=
∂n1(z, w,w′, η)

∂z


θ


gw + gu

∂ h̃1

∂w


+ 1


. (13)

Using the independence assumption,

z, w,w′


⊥ η, again,

and using the strictly monotone assumption of n1(z, w,w′, η) in
η from the monotone property ofm in η in Assumption 2.1 yields

Fη(η̄) = Fη|Z,W ,W ′(η̄)

= Pr(η < η̄|Z,W ,W ′)

= Pr(n1(z, w,w′, η) < n1(z, w,w′, η̄)|Z,W ,W ′)
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θ =
1
n


i

∂FY |Z,W ,W ′ (yi,zi,wi,w
′
i )

∂z

∂FX |Z,W ,W ′ (xi,zi,wi,w
′
i )

∂x
∂FY |Z,W ,W ′ (yi,zi,wi,w

′
i )

∂z

∂FX |Z,W ,W ′ (xi,zi,wi,w
′
i )

∂w
−

∂FY |Z,W ,W ′ (yi,zi,wi,w
′
i )

∂w

∂FX |Z,W ,W ′ (xi,zi,wi,w
′
i )

∂z

Box I.
Simulation I : m(θx∗
+ w,w′, η) = 0.1(θx∗

+ w + w′)+ η, g(z, w,w′, u) = 0.1(z + w + w′
+ u)

h1(z, w′, u, v) = z + w′
+ u + v, h2(w

′, v) = 0.1(w′
+ v),

Simulation II : m(θx∗
+ w,w′, η) = 5 exp(θx∗

+ w + w′)+ η, g(z, w,w′, u) = 0.5(z + w + w′)2 · u

h1(z, w′, u, v) = (z + w′)2 + u + v, h2(w
′, v) = 0.5(w′2

+ v),

Simulation III : m(θx∗
+ w,w′, η) = 0.5(θx∗

+ w + w′)3 + η, g(z, w,w′, u) = 0.5 exp(z + w + w′) · u

h1(z, w′, u, v) = 0.5(z + w′)3 + u + v, h2(w
′, v) = 0.1(w′3

+ v),

Simulation IV : m(θx∗
+ w,w′, η) = 0.1(θx∗

+ w + w′)3 · η, g(z, w,w′, u) = 0.5(z + w + w′)2 · u

h1(z, w′, u, v) = (z + w′)2 + u + v, h2(w
′, v) = 0.3(w′2

+ v)

Box II.
= Pr(y < n1(z, w,w′, η̄)|Z,W ,W ′)

= FY |Z,W ,W ′(n1(z, w,w′, η̄)).

Differentiating the above expression with respect tow yields

0 =
∂FY |Z,W ,W ′(ȳ)

∂w
+
∂FY |Z,W ,W ′(ȳ)

∂y
∂n1(z, w,w′, η̄)

∂w
,

where ȳ = n1(z, w,w′, η̄). It follows that

∂n1(z, w,w′, η̄)

∂w
= −


∂FY |Z,W ,W ′(ȳ)

∂y

−1
∂FY |Z,W ,W ′(ȳ)

∂w
. (14)

Similarly, we have

∂n1(z, w,w′, η̄)

∂z
= −


∂FY |Z,W ,W ′(ȳ)

∂y

−1
∂FY |Z,W ,W ′(ȳ)

∂z
. (15)

Hence we can express the derivative terms of n1(z, w,w′, η) in Eq.
(11) in terms of the first derivatives of the cumulative distribution
function FY |Z,W ,W ′ . Next, we apply the above derivation to the
triangular system (B). Denote

n2(z, w,w′, ε) = g(z, w,w′, h̃1(z, w′, w))+ ε.

The derivatives of n2(z, w,w′, ε)with respect to z, w are:

∂n2(z, w,w′, ε)

∂w
= gw + gu

∂ h̃1

∂w
, (16)

∂n2(z, w,w′, ε)

∂z
= gz + gu

∂ h̃1

∂z
. (17)

Applying the similar derivation of Eqs. (12) and (13) in the system
(A) to the system (B), we have

∂n2(z, w,w′, ε̄)

∂w
= −


∂FX |Z,W ,W ′(x̄)

∂x

−1
∂FX |Z,W ,W ′(x̄)

∂w
, (18)

∂n2(z, w,w′, ε̄)

∂z
= −


∂FX |Z,W ,W ′(x̄)

∂x

−1
∂FX |Z,W ,W ′(x̄)

∂z
, (19)
where x̄ = n2(z, w,w′, ε̄). Combining those results and plugging
them into Eq. (11) results in

−


∂FY |Z,W ,W ′ (ȳ)

∂y

−1 ∂FY |Z,W ,W ′ (ȳ)
∂w

−


∂FY |Z,W ,W ′ (ȳ)

∂y

−1 ∂FY |Z,W ,W ′ (ȳ)
∂z

=

θ


−


∂FX |Z,W ,W ′ (x̄)

∂x

−1 ∂FX |Z,W ,W ′ (x̄)
∂w


+ 1

θ


−


∂FX |Z,W ,W ′ (x̄)

∂x

−1 ∂FX |Z,W ,W ′ (x̄)
∂z

 .

This gives our desired identification result,

θ =

∂FY |Z,W ,W ′ (ȳ)
∂z

∂FX |Z,W ,W ′ (x̄)
∂x

∂FY |Z,W ,W ′ (ȳ)
∂z

∂FX |Z,W ,W ′ (x̄)
∂w

−
∂FY |Z,W ,W ′ (ȳ)

∂w

∂FX |Z,W ,W ′ (x̄)
∂z

,

because Assumption 2.3 guarantees that the denominator in the
last expression is nonzero.
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