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1 Introduction

Machine learning is a method that uses a computer’s analytic power to make de-
cisions and predictions from data. Two common machine learning techniques are
Least Absolute Shrinkage and Selection Operator (LASSO) and Ridge regression. In
some cases, these models may be preferable to least squares, and we discuss their
application, implementation, and uses. We use an example to compare least squares,
LASSO, and Ridge regression to demonstrate how machine learning techniques select
the most important regressors for prediction analysis.

Specifically, LASSO and Ridge regression may be preferable to least squares when
the researcher has a dataset with many potential explanatory variables. When the
number of potential explanatory variables is much larger than the number of obser-
vations, Ridge regression or LASSO may perform well, while the least squares esti-
mator cannot be calculated in such a case. An example of such a dataset is the type
of dataset used by financial institutions to predict which potential clients are likely
to make their loan payments. Such datasets include a large number of demographic
variables, but it is not clear ex ante which of these variables are significant predictors
of loan repayment. Further, some of these explanatory variables may be collinear. In
such cases, machine learning techniques are able to select the subset of explanatory
variables that is most important in predicting the outcome variable. In contrast, least
squares uses every explanatory variable to predict the outcome variable.

The reason that researchers may be interested in using only the most important
regressors in prediction analysis is related to the bias-variance trade-off. Specifically,
when a researcher has many potential explanatory variables, a least squares approach
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may result in a model that is overfitted, while a machine learning technique reduces
overfitting by using only the most important regressors. Therefore, machine learning
techniques may outperform least squares in out-of-sample analysis. We discuss this
bias-variance trade-off and its relationship to overfitting further below.

It is notable the machine learning techniques cannot distinguish correlation from
causation any better than least squares can. Machine learning techniques make pre-
dictions from data and do not necessarily identify a causal relationship. A useful
explanation of how machine learning techniques can fit into an economist’s method-
ology is given by Sendhil and Spiess (2017). Taddy (2019) and Taddy, Hendrix, and
Harding (2022) provide a guide to the practical implementation of machine learning
and data science techniques in business, finance, and economemtric settings. We also
discuss how to use machine learning in causal analysis. In particular, we illustrate
how to use Ridge regression and LASSO to predict counterfactuals and improving
the performance of instrumental variable estimators.

2 Bias-Variance Trade-off

Machine learning may have a good bias-variance trade-off. Specifically, minimizing
either the bias or the variance of an estimator may increase the other for the same
estimator. Recall that the bias of an estimator is the difference between the expected
value of the estimator and the true value of the parameter to be estimated. The
variance of an estimator is the expected value of the square of the deviation from
the mean, i.e., V ar(X) = E[(X − µ)2], where X denotes the random variable, and µ
denotes the mean of X. As the bias of the estimator increases, the variance of the
estimator may decrease, and vice versa. A researcher must find the correct balance
between the size of the bias and the size of the variance of an estimator.

The bias-variance trade-off is related to overfitting and underfitting. A model that
generates an estimator with a small bias and a large variance will often be overfitted,
whereas a model that generates an estimator with a large bias and a small variance
will often be underfitted. This relationship occurs because an estimator with a low
bias means that the estimator follows the data generating process closely, but in order
to do so, the estimator exhibits a large variance. Likewise, an estimator with a low
variance is simple and therefore unlikely to follow the data generating process closely.
An extreme example is the estimator X̂ = c, where c is a constant. This estimator
has V ar(c) = 0, but it may not be an accurate estimator of a quadratic function,
such as y = x2 + x, i.e., this estimator would have a large bias. In such a case, the
model would be underfitted.

The bias-variance trade-off illustrates a benefit of machine learning. A model that
uses every explanatory variable from a possible list of 1,000 variables is likely to be
overfitted. In such a case, the model would perform very well in-sample, but it would
perform less well in predicting the same outcome variable out-of-sample. However,
machine learning techinques such as LASSO and Ridge regression can select the most
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important regressors, meaning that these models can work well out-of-sample, as
well as in-sample. The Ridge regression estimator has a lower variance than the
least squares estimator, but the Ridge regression estimator is biased, while the least
squares estimator is unbiased.

To fix ideas, below, we use a simple example to demonstrate how a researcher bal-
ances the trade-off between the bias and the variance of an estimator. A researcher
also uses this same technique in assessing machine learning models, which we dis-
cuss later in the chapter. When we covered machine learning in class, the students
appreciated how simple examples can illustrate abstract concepts.

2.1 Dice Example to Illustrate the Bias-Variance Trade-off

Suppose a researcher is interested in estimating the average roll of a fair dice. Consider
the following two estimators, Ẏ = 4 and Ÿ = Ȳ10, where Ẏ denotes an estimator
equal to 4, and Ÿ denotes an estimator equal to the average of the previous 10
rolls. To assess the bias-variance trade-off, the researcher considers the mean squared
forecasting error (MSFE) of the two estimators in question. The MSFE combines the
bias and variance of an estimator. Therefore, the researcher wants to minimize the
MSFE. Specifically, the researcher compares

MSFE(Ẏ ) = V ar(Y ) +Bias2(Ẏ ) + V ar(Ẏ ) = 2.91 + 0.25 + 0 = 3.160

and

MSFE(Ÿ ) = V ar(Y ) +Bias2(Ÿ ) + V ar(Ÿ ) = 2.91 + 0 +
2.91

10
= 3.201.

The above example illustrates the bias-variance trade-off. The two estimators, Ẏ and
Ÿ , have different biases and different variances. The bias of the estimator Ẏ is 0.5,
while the bias of the estimator Ÿ is 0. The variance of the estimator Ẏ is 0, while
the variance of the estimator Ÿ is 0.291. To balance this bias-variance trade-off,
the researcher must minimize the combination of the bias and the variance of each
estimator using the MSFE.

The second predictor, Ÿ , has a larger MSFE. Therefore, when the sample size
(i.e., the number of previous rolls of the dice) is small, Ẏ does better. As the sample
size increases, V ar(Ÿ ) decreases. Therefore, as the sample size increases, Ÿ becomes
preferable to Ẏ .

Consider a third predictor:
...
Y = Ẏ+Ÿ

2
. The variance of

...
Y is

V ar(
...
Y ) =

1

4

[
V ar(Ẏ ) + V ar(Ÿ )

]
=

1

4

[
0 + 0.29

]
.

To calculate the bias of
...
Y , first calculate the expected value of

...
Y : E

(
Ẏ+Ÿ
2

)
= 4+3.5

2
=
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3.75. Then, the bias of
...
Y is 3.75 - 3.5 = 0.25. Therefore, the MSFE of

...
Y is given by

MSFE(
...
Y ) = V ar(Y )+Bias2(

...
Y )+V ar(

...
Y ) = 2.91+(0.25)2+

0.29

4
= 2.91+0.135 = 3.045.

The predictor
...
Y has smaller MSFE than either Ẏ or Ÿ , making it preferable to both

of those estimators.
This simple example illustrates how averaging estimators can lower the MSFE,

and we will expand on the use of the MSFE to access machine learning techniques in
more complicated settings in section 4.1.

3 Example Comparing Least Squares, Ridge Re-

gression, and LASSO

To demonstrate an advantage of machine learning techniques like LASSO and Ridge
regression over least squares in some situations, we generate estimators to predict
YX=1 from the same initial model, using all three techniques.

The objective of this example is to illustrate shrinkage. Shrinkage is the reduction
of some parameters of a model toward zero in order to limit the effects of sampling
variation. As discussed in section 2, a model may perform with high accuracy on
an initial dataset but perform with less accuracy on another dataset from the same
population because of overfitting. Shrinkage reduces this problem by selecting the
most important regressors.

Model

Y = α + γX + ε

Let X ∈ {0, 1}. Assume that α is known. The researcher is interested in an estimator
for Y when X = 1. We generate this estimator using (i) least squares, (ii) Ridge
regression, and (iii) LASSO to demonstrate the differences in each method.

Least Squares Estimation

γLS = argmin
γ

∑
i

(
Yi − α− γXi

)2
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First order condition: ∑
i

Xi

(
Yi − α− γXi

)
= 0∑

i:Xi=1

(
Yi − α− γ

)
= 0

γLS = ȲX=1 − α

Prediction:

ŶX=1,LS = ȲX=1

A benefit of any least squares estimator is that it is unbiased. However, due to the
bias-variance trade-off, this estimator has a large variance when the sample size is
small. Therefore, the researcher may be concerned about estimation uncertainty when
using the above least squares estimator.

Ridge Regression

γRidge = argmin
γ

∑
i

(
Yi − α− γXi

)2
+ λγ2, λ > 0

The above minimization is the same as for the least squares estimation, except that
Ridge regression includes a penalty parameter λ. In the case of Ridge regression, we
include this penalty term to minimize the weight of some regressors Xi, so that the
most important regressors in predicting Yi are given the most weight. This method
reduces overfitting.

For a known λ, we have the following first order condition:

−2
∑
i

Xi

(
Yi − α− γXi

)
+ 2λγ = 0∑

i:Xi=1

(
Yi − α− γ

)
− λγ = 0

N1(ȲX=1 − α)− (N1 + λ)γ = 0

γRidge =
N1

N1 + λ
ȲX=1 − α︸ ︷︷ ︸

γLS

=
N1

N1 + λ︸ ︷︷ ︸
<1

γLS

N1 denotes the sample size. When the sample size is small, the above estimator
puts more weight on α, and when the sample size is large, the estimator puts more
weight on ŶX=1,LS = ȲX=1. Therefore, when the sample size is large, the Ridge
regression estimator is close to the (unbiased) least squares estimator. Least squares
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performs best when the sample size is large, so a benefit of Ridge regression is that
it approximates least squares when the sample size is large. Meanwhile, when the
sample size is small, the Ridge regression estimator uses relatively more data from
X = 0 (in addition to data from X = 1) in predicting ȲX=1 to make up for the small
sample size.

When using least squares, ŶX=1,LS is solely based on the subset of the data where
X = 1. However, when using Ridge regression, γRidge is a weighted average of 1) the
data when X = 1 and 2) all the data. Further, using Ridge regression, when N1 is
small, more weight is given to the overall average from the full dataset Ȳ . When N1

is large, more weight is given to the specific average ȲX=1.
An important advantage of Ridge regression over least squares (or LASSO, dis-

cussed below), is that Ridge regression can handle perfect collinearity in the potential
regressors, while least squares cannot. Specifically, when Yi = γWi + δWi + εi, least
squares does not have a solution. In such a case, multiple combinations of γ and δ
give the same solution:∑

i

(
Yi − (γ + κ)Wi − (δ − κ)Wi

)2
=
∑
i

(
Yi − γWi − δWi

)2
Least squares relies on the assumption of no perfect collinearity. When this assump-
tion does not hold, as above, γLS and δLS do not exist. There exist many solutions
to the minimization problem. However, Ridge regression can handle such a case, and
it provides stable and feasible estimates: γRidge = δRidge.

LASSO

γLASSO = argmin
γ

∑
i

(
Yi − α− γXi

)2
+ λ|γ|, λ > 0

Like Ridge regression, LASSO includes a penalty parameter λ. LASSO balances the
number of regressors Xi with the power of those regressors to predict Yi by dreopping
the least important regressors. This method reduces overfitting.

First, consider the case where |γ| = γ. In such a case, γLS = ȲX=1 − α is large.
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For a known λ, we have the following first order condition:

−2
∑
i

Xi

(
Yi − α− γXi

)
+ λ = 0

∑
i:Xi=1

(
Yi − α− γ

)
− λ

2
= 0

N1(ȲX=1 − α)− λ

2
−N1γ = 0

γLASSO = ȲX=1 − α− λ

2N1

Now, consider the case where |γ| = −γ. This case results in:

γLASSO = ȲX=1 − α +
λ

2N1

Therefore, LASSO results in the following estimator:

γLASSO =


ȲX=1 − α− λ

2N1
, ȲX=1 − α ≥ λ

2N1

0, − λ
2N1

< ȲX=1 − α < λ
2N1

ȲX=1 − α + λ
2N1

, ȲX=1 − α < − λ
2N1

LASSO and Ridge regression both perform better than least squares when either
(i) the number of potential regressors is greater than the number of observations, or
(ii) the variance of the least squares estimator is large.

While both Ridge regression and LASSO can out-perform least squares in some
situations, Ridge regression may fit some situations better than LASSO and vice
versa. In particular, Ridge regression is preferable to LASSO when the researcher
has a dataset with perfect multicollinearity (or high collinearity) in the potential
explanatory variables. Further, Ridge regression can handle including some regressors
twice. On the other hand, the LASSO estimation results may be easier to explain. In
particular, LASSO selects only some potential explanatory variables and drops the
others, while Ridge regression shrinks all regressors toward zero but does not drop
any. Both methods reduce overfitting, meaning they can perform well out-of-sample,
but the LASSO results may be easier to explain to a non-technical audience because
the number of coefficients will be smaller.

3.1 Motivating Example: Gift Card

In this section, we lay out an empirical example in which a researcher has a question
that can be answered using Ridge regression or LASSO. Consider a situation in which
a company randomly gives some survey participants a 20 dollar gift card. Suppose a
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researcher is interested in the counterfactual situation in which the individuals who
received the gift card did not recieve it.

Formally, let X denote the treatment: Xi = 1 if individual i gets a 20 dollar gift
card, and Xi = 0 if they don’t. In the data, there are 2,000 individuals with X = 1
and millions of individuals with X = 0. Let Y denote the outcome of interest to
the researcher. Let the vector W denote the other regressors, and let K denote the
number of regressors, where K = 100, 000. Because K is large, Ridge regression or
LASSO is preferable to least squares.

Suppose the researcher is interested in the following counterfactual: what would
have happened to the outcome Y for the X = 1 group if the X = 1 group did not
receive a gift card?

To evaluate this counterfactual, use the sample with X = 0 to estimate βRidge from

the model Y = Wβ+ ε. The counterfactual is Ŷi,X=0 = WiβRidge. The researcher can
use this counterfactual to estimate the effect of the gift card with

1

2000

∑
i:Xi=1

(Yi − Ŷi,X=0).

In other words, the effect of the gift card is calculated by the average difference in the
observed outcome (with the gift card) and the predicted outcome (without the gift
card) for only X = 1 individuals. Ridge regression is used to estimate the predicted
outcome without the gift card.

4 Training, Validation, and Testing Samples

To implement machine learning techniques such as Ridge regression and LASSO,
the researcher splits the data into three subsamples. These subsamples are used for
training, validation, and testing. A common split of the data is to use 60% of the
data in the training sample and 20% of the data each in the validation and testing
samples. The reason for splitting the data into subsamples is to assess the fit of the
model. Splitting the data reduces overfitting for better out-of-sample predictions.

First, the training sample is used to initially estimate the parameters of the model,
based solely on the data in this subsample. In this step, the tuning parameter λ is
taken as given. Second, the model that was estimated on the training subsample is
applied to the validation subsample. In this step, the researcher uses the model to
predict the data in the validation subsample, and then compares these predictions to
the actual data in the validation subsample. This step provides the researcher with
information about how accurately the model predicts the data and can also indicate if
the model is overfitted. If the model performs well in the training dataset and poorly
in the validation dataset, that may indicate that the model is overfitted. Finally,
the model is estimated on the testing subsample to generate final estimates from the
model.
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A common question is why the researcher needs to split the data into both training
and validation samples. Note that least squares estimation minimizes the sum of
square residuals, which means that — by construction — least squares is an excellent
in-sample predictor. Therefore, in order to assess the model’s predictive power out-
of-sample, the researcher must use both training and validation samples. Specifically,
the training sample is used to create several different models, the validation sample
is used to choose the best model among those, and the testing sample is used to
generate the final MSFE estimates.

Below, we demonstrate how using this process can select the best penalty param-
eter λ in a Ridge regression model.

4.1 Ridge Regression: Choosing the Penalty Parameter λ

One common use of training, validation, and testing samples in machine learning is
to choose the penalty parameter λ in Ridge regression. The choice of λ determines
the Ridge regression estimator γRidge(λ). Because of the bias-variance trade-off, the
researcher uses the training, validation, and testing samples to select the λ that
minimizes the MSFE for γRidge(λ). The following example illustrates how to choose
λ using this method.

Model

Y = α + γW + ϵ

Let W ∈ {0, 1}, λ > 0, and assume α is known. Suppose the researcher is interested
in estimating ȲX=1. Following section 3, the Ridge estimator, as a function of λ, is
given by

γRidge(λ) = (ȲW=1 − α)
N

N + λ
,

where N is the sample size. Further, as in section 3, the least squares estimator is
γLS = ȲW=1 − α. Then, as in section 3, we can rewrite the Ridge estimator as

γRidge(λ) = ȲW=1 − α︸ ︷︷ ︸
γLS

−(ȲW=1 − α)
λ

N + λ
.

Bias-Variance Trade-off
Recall that the Ridge regression estimator has lower variance than the least squares

estimator, but the Ridge regression estimator is biased, while the least squares esti-
mator is unbiased. The bias and variance of the Ridge regression estimator are given
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by

V ar{γRidge(λ)} =

(
N

N + λ

)2

V ar(γLS) < V ar(γLS)

and

Bias{γRidge(λ)} = γ
λ

N + λ
> 0.

Because of the bias-variance trade-off, a choice of λ that minimizes the bias of
the Ridge regression estimator γRidge(λ) will also increase the variance of the same
estimator, and vice versa. Therefore, the researcher wants to choose λ in order to
generate the γRidge(λ) that has the lowest MSFE. We describe how to choose this λ
below.

Choosing λ
The researcher wants to choose the penalty parameter λ in such a way that it

achieves a good bias-variance trade-off. In other words, the researcher chooses λ
according to minimize the MSFE of γRidge(λ), just as in the dice example in Section
2.1.

In order to use machine learning techniques to choose λ to minimize the MSFE,
the researcher first splits the data in three groups: training sample (60% of the data),
validation sample (20% of the data), and testing sample (20% of the data). Then,
the researcher uses the following steps:

1. Using the training sample: Estimate γRidge(λ) for different values of λ. For
example, estimate γRidge(λ) for λ = 0.5, λ = 1, etc.

2. Using the validation sample: Calculate the MSFE using γRidge(λ = 0.5), γRidge(λ =
1), ... and pick the one with the smallest MSFE.

3. Using the testing sample: Calculate the MSFE using the best γRidge(λ
∗) (the

one with the smallest MSFE) from step 2.

The above example demonstrates why the researcher needs to split the data into
both training and validation samples. Specifically, because least squares estimation
minimizes the sum of square residuals, it results in the best in-sample predictor.
Therefore, setting λ = 0 (i.e, no shrinkage, just using least squares), results in the low-
est MSFE. However, the researcher is interested in out-of-sample prediction. There-
fore, it is necessary to try multiple values for λ and assess the resulting MSFE in
multiple samples.

Rotating the Split of the Data
Above, we provided a simple algorithm to use machine learning techniques to pick

the best penalty parameter λ in a Ridge regression model. This λ minimizes the
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MSFE of the Ridge regression estimator. The following procedure makes a slight
improvement to this algorithm. Instead of splitting the data once, the researcher
rotates the split of the training and the validation samples four times. This method
improves on the above algorithm because it provides a more robust and stable result
due to using multiple combinations of the split of the data.

First, the researcher splits the data in two groups: 80% of the data will rotate
between the training and validation samples, and 20% of the data remains as the
testing sample. For example, using a dataset with N = 100, 000 observations, i =
1, ..., 80, 000 are used for training and validation, and i = 80, 001, ..., 100, 000 are used
for testing. Then, the researcher repeats this split three more times. The following
algorithm illustrates an example of this technique.

1. Take 80% of the data (training sample + validation sample), and split it four
times:

(I) First 20% → Validation sample. In the example, we use i = 1, ..., 20, 000 as the
validation sample and i = 20, 001, ..., 80, 000 as the training sample.

(II) Second 20% → validation sample. We use i = 20, 001, ..., 40, 000 as the vali-
dation sample and i = 1, ..., 20, 000 + i = 40, 001, ..., 100, 000 as the training
sample.

(III) Third 20% → validation sample. We use i = 40, 001, ..., 60, 000 as the validation
sample and i = 1, ..., 40, 000 + i = 60, 001, ..., 100, 000 as the training sample.

(IV) Fourth 20% → validation sample. We use i = 60, 001, ..., 80, 000 as the vali-
dation sample and i = 1, ..., 60, 000 + i = 80, 001, ..., 100, 000 as the training
sample.

2. Follow these steps to select the penalty parameter λ:

1. Using the training sample: Estimate γRidge(λ) for each value of λ four separate
times, i.e., estimate γRidge(λ) using the training samples for I, II, III, IV. For
example, estimate γRidge(λ) for λ = 0.5, λ = 1, etc. in each of the training
samples I, II, III, IV.

2. Using the validation sample: Calculate the the MSFE four times using γRidge(λ),
and use the average MSFE to choose the best value of λ. For example, calculate
the MSFE across all four splits for γRidge(λ = 0.5) in each of the four samples
I, II, III, and IV, and average over all four samples to find the average MSFE
for γRidge(λ = 0.5). Compare this average MSFE to the average MSFE for
γRidge(λ = 1), etc.

3. Using the testing sample: Calculate MSFE using the best γRidge(λ
∗) (the one

with the smallest average MSFE) from step 2.
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5 Ridge Regression Using Matrix Notation

A useful feature of Ridge regression is that it generates an estimate that is an explicit
function of the data. We now demonstrate this feature in a situation in which the
researcher is interested in an outcome vector instead of a single outcome variable.
This situation is a generalization of the Ridge regression example in Section 3. As
in Section 3, we estimate the same initial model using both (i) least squares and (ii)
Ridge regression to demonstrate the differences between the methods. Specifically,
least squares cannot handle perfect collinearity, but the Ridge estimator can.

Consider the following model in matrix notation,

Y = Xβ + ε,

where Y is (N × 1), X is (N ×K) and β is (K × 1). Specifically, the definitions of
X, β, and Y are given below.

X =


1 S1

1 S2
...

...
1 SN

 β =

(
β1

β2

)
Y =


Y1

Y2
...
YN


The researcher observes {Xi, Yi}Ni=1. The residual is e = Y −Xβ.

Least Squares Estimation

βLS = argmin
β

(Y −Xβ)′(Y −Xβ)

= argmin
β

Y ′Y − β′X ′Y − Y ′Xβ + β′X ′Xβ

= argmin
β

Y ′Y − 2β′X ′Y + β′X ′Xβ

First order condition (with respect to β′):

−2X ′Y + 2X ′Xβ = 0

This yields the least squares estimator:

βLS = (X ′X)−1X ′Y

Ridge Regression

12



βRidge = argmin
β

(Y −Xβ)′(Y −Xβ) + λ β′β︸︷︷︸∑
k β2

k

λ > 0

= argmin
β

Y ′Y − β′X ′Y − Y ′Xβ + β′X ′Xβ + λβ′β

= argmin
β

Y ′Y − 2β′X ′Y + β′X ′Xβ + λβ′β

= argmin
β

Y ′Y − 2β′X ′Y + β′(X ′X + λI)β

First order condition (with respect to β′):

−2X ′Y + 2(X ′X + λI)β = 0

−2(X ′X + λI)−1X ′Y + 2(X ′X + λI)−1(X ′X + λI)β = 0

This yields the Ridge regression estimator

βRidge = (X ′X + λI)−1X ′Y,

where λ > 0. In this case, βLS and βRidge are both (K × 1) vectors of parameters.
Given the definitions of X, β, and Y above, X ′Y is equal to

X ′Y =

(
1 1 · · · 1
S1 S2 · · · SN

)
Y1

Y2
...
YN

 =

( ∑
i Yi∑

i SiYi

)
.

Further, differentiation of X ′Y with respect to a vector β′ gives

β′X ′Y =
(
β1

∑
i Yi + β2

∑
i SiYi

)
∂β′X ′X

∂β1

=
∑
i

Yi,
∂β′X ′X

∂β2

=
∑
i

SiYi.

To illustrate a benefit of Ridge regression over least squares, consider a case in
which some of the potential regressors are perfectly collinear. Recall that Ridge
regression can still be used in a situation with perfect collinearity, while least squares
and LASSO cannot.

We first consider the case where Si = 1 for all i. An example of such a case is
universal treatment without a control group. Having only a treatment group means
that one cannot compare the treatment group to a control group. In such a case,
there is no value of the parameter that uniquely minimizes the sum of squared resid-
uals; therefore, the least squares estimator does not exist. Similarly, the LASSO
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estimator does not exist. Intuitively, however, one can still predict the outcome for
the treatment group, and the Ridge regression estimator yields such a prediction.

To demonstrate how Ridge regression and least squares operate in a situation in
which Si = 1 for all i, recall that the least squares estimator is given by

βLS = (X ′X)−1X ′Y.

When Si = 1 for all i, X ′X is a matrix in which all the entries are 1, and (X ′X)−1

does not exist. Therefore, βLS does not exist.
Compare this problem with least squares when Si = 1 for all i to the Ridge

estimator when Si = 1 for all i. Recall that the Ridge regression estimator is given
by

βRidge = (X ′X + λI)−1X ′Y,

where λ > 0. Because of the λI term, βRidge is identified. Specifically, λI =

(
λ 0
0 λ

)
Therefore, when Si = 1 for all i, X ′X + λI is given by(

λ+ 1 1
1 λ+ 1

)
.

This matrix does have a unique inverse, which means that βRidge is identified.

Now consider the more general case of perfect collinearity, in whichX =

S1 W1
...

SN WN


and S = W . To demonstrate how Ridge regression and least squares operate in this
more general version of perfect collinearity, we begin by generating the least squares
estimator for this case. Specifically, recall that the least squares estimator is

βLS = (X ′X)−1X ′Y.

When X =

S1 W1
...

SN WN

 and S = W , then X ′X is

X ′X =

( ∑
i S

2
i

∑
i SiWi∑

i SiWi

∑
iW

2
i

)
=

(∑
i S

2
i

∑
i S

2
i∑

i S
2
i

∑
i S

2
i

)
.

When S = W , X ′X does not have a unique inverse, so the identification of βLS fails.
Conversely, the Ridge estimator is still identified when S = W . We show this

result below. Recall that the Ridge estimator is given by

βRidge = (X ′X + λI)−1X ′Y,
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where λ > 0. The λI term is necessary for identification of βRidge. As in the case of

Si = 1 for all i, λI =

(
λ 0
0 λ

)
, which means that the inverse of (X ′X + λI) is

((∑
i S

2
i

∑
i S

2
i∑

i S
2
i

∑
i S

2
i

)
+

(
λ 0
0 λ

))−1

=
1

(
∑

i S
2
i + λ)2 − (

∑
i Si)2

·
(∑

S2
i + λ −

∑
S2
i

−
∑

S2
i

∑
S2
i + λ

)
.

This matrix has a unique inverse, so βRidge is identified.
These two examples illustrate a benefit of Ridge regression over least squares:

Ridge regression can handle perfect collinearity in the potential regressions, while
least squares cannot.

Earlier, we discussed how Ridge regression and LASSO can be used to predict
counterfactuals using the gift card example. Another important tool to deal with en-
dogeneity is instrumental variables. When using instrumental variables in the linear
model, a researcher replaces the endogenous variables by predictions that are con-
structed using instruments. Using least squares is the most popular way to generate
these predictions. Hausman, Newey, Woutersen, Chao, and Swanson (2012) propose
to use Ridge regression for this prediction instead of least squares. This procedure
allows for perfect multicollinearity of the instruments, just as Ridge regression allows
for perfect multicollinearity in other prediction contexts, as we discussed above.

6 Conclusion

This chapter discusses the uses, application, and implementation of machine learning
techniques like LASSO and Ridge regression and their benefits over least squares in
some situations. A major use of LASSO and Ridge regression is in cases in which
the researcher has a dataset with many more potential explanatory variables than
observations and wants to select the most important explanatory variables, i.e., the
regressors with the most power in predicting the outcome variable Y . Another impor-
tant application of LASSO and Ridge regression is when the number of regressors is
large but smaller than the sample size. In that case, the least squares estimator would
likely overfit the data, and it would not perform well in out-of-sample prediction. In
constrast, a technique such as LASSO or Ridge regression will result in a somewhat
biased estimator, but the estimator uses only the regressors that are most powerful
in predicting the outcome variable. Therefore, such an estimator performs better in
out-of-sample prediction than least squares.

A researcher’s decision to use a technique such as LASSO or Ridge regression is
related to the bias-variance trade-off of an estimator. This trade-off refers to the
fact that minimizing either the bias or the variance of an estimator increases the
other for the same estimator. Because of this trade-off, a researcher minimizes the
MSFE by balancing the bias and the variance of an estimator. Specifically, a least

15



squares estimator will be unbiased, but it may have a high variance. LASSO or Ridge
regression will result in a biased estimator, but the variance may be lower than the
variance of the least squares estimator, meaning that the overall MSFE of the LASSO
or Ridge regression estimator may be lower.

We use an example to compare least squares, Ridge regression, and LASSO. Ridge
regression is preferable to LASSO when the potential explanatory variables have
perfect multicollinearity, whereas LASSO is preferable to Ridge regression when the
researcher wants to drop some potential explanatory variables completely.

To assess the fit of the model, machine learning techniques split the data into
three subsamples: training, validation, and testing. A common split of the data is to
use 60% of the data in the training sample and 20% of the data each in the validation
sample and the testing sample. A useful application of this technique is to choose the
best penalty parameter λ in a Ridge regression or LASSO model. The ideal penalty
term is selected to minimize the MSFE.

We also discuss how to use machine learning in causal analysis. In particular, we
discuss how using Ridge regression and LASSO predicts counterfactuals and improves
the performance of instrumental variable estimators.

7 Sample Questions

1. Let Y ∈ {0, 1} denote the flip of a fair coin. What is the MSFE of a predictor
Ŷ = Ȳ ? What is the MSFE of the predictor Ŷ = 0.4?

2. Follow the example in Section 2.1, does the predictor Ẏ+Ÿ
2

have smaller MSFE

than Ẏ ?

3. Consider the model
Yi = α + γXi + εi

Assume α is known. Predict ŶX=1 using γLS, γLASSO, and γRidge.

4. When do you prefer γLASSO versus γLS? γRidge versus γLS? γRidge versus γLASSO?

5. Let
Yi = α + γWi + εi,

where Wi = 1 for all i. Let Ȳ = 1. What are your estimates for αRidge and γRidge

if λ = 1?

6. Let
Yi = α + γ1W1i + γ2W2,i + ...+ γ1000W1000,i + εi,

where N = 3000.

(a) Explain how you would use LASSO to estimate the parameters.
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(b) What would happen if you used 80% of your sample for training, then
use this 80% again for validation, and finally, use the remaining 20% to
calculate the MSFE?

(c) What would happen if you used 60% of your sample for training, then the
use 40% of your sample for validation and use that same 40% to calculate
the MSFE?
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