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1 Introduction

Economic models can have structural unobserved heterogeneity, as well as other error terms.
For example, Lancaster (1979) introduces a hazard or transition rate model in which the
duration depends on unobserved ability, which is denoted by a structural error term, and also
depends on luck. We use an extension of this model to illustrate the concept of nonparametric
identification.

A nonparametric model can have many parametric models as special cases. For example,
a linear model is a parameterization of the more general model of the relationship between
a regressor, an error term, and an outcome. If such a special case fails to be parametrically
identified, then the nonparametric model fails to be identified as well. In other words, failure
of parametric identification implies failure of nonparametric identification.

An important issue in the analysis of nonparametric identification is that some parametric
special cases may be parametrically identified, even though the model is not nonparamet-
rically identified. We illustrate this type of situation using an example. Such identified
special cases may make it hard to empirically detect failures of nonparametric identification,
which shows the importance of nonparametric identification proofs. Having a nonparametric
identification result means that special cases can be viewed as simplified models. Without
nonparametric identification, a ‘simplifying assumption’ may actually be an ‘identifying as-
sumption’.

While sometimes a special case of a model is parametrically identified even though the
more general model is not nonparametrically identified, in other situations, both parametric
identification and nonparametric identification fail. We illustrate this case with another
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example. An excellent explanation and review of nonparametric identification is given by
Matzkin (2007).

2 Failure of Nonparametric Identification

In this section, we use an example in which we construct several parameterizations of the
same nonparametric model. A nonparametric model can have many parametric models
as special cases. If such a special case fails to be parametrically identified, then the non-
parametric model fails to be identified as well. In our example, three special cases of the
nonparametric model are parametrically identified, but a fourth case is not parametrically
identified. Because parametric identification fails in at least one instance, the nonparametric
model fails to be identified.

For our example, we extend the model in Lancaster (1979). Lancaster (1979) introduces
a hazard model in which the duration depends on unobserved ability, which is denoted by
a structural error term, and also depends on luck. The motivation to have structural error
terms is to make the model more realistic and therefore more interesting. Thus, the reason to
add this unobserved heterogeneity to the model is to account for ability (or other unobserved
factors). Without this structural error term, the unemployment duration would depend only
on luck.

We now describe our nonparametric model. Let T denote the duration, and let v denote
the unobserved ability. Consider the following hazard model,

θ(t|v) = vλ(t),

where v ∼ Gamma(γ, δ) and γ, δ > 0 and λ(t) is the baseline hazard function that depends
on time t. The conditional survival function is given by

F̄ (t|v) = exp{−vΛ(t)},

where Λ(t) =
∫ t

0
λ(s)ds is the integrated baseline hazard function. Further, the condi-

tional survivor function equals one minus the conditional cumulative distribution function.
Researchers can only estimate densities and survivor functions that do not condition on un-
observed error terms. Therefore, we integrate out v. This gives an unconditional survival
function,

F̄ (t) =

∫ t

0

exp{−vΛ(t)} · δγvγ−1 · exp{−δv}
Γ(γ)

=
δγ

{δ + Λ(t)}γ

∫ t

0

(Λ(t) + δ)γ · vγ−1 · exp{−v(δ + Λ(t))}
Γ(γ)

dv

=
δγ

{δ + Λ(t)}γ
.
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The above unconditional survival function gives the following density,

f(t) =
γλ(t)δγ

{δ + Λ(t)}γ−1
.

We can approximate the baseline hazard and integrated baseline hazard by the following
series approximations. These are three special parameterized cases of our nonparametric
model.

Model I: Linear Approximation λ(t) = 1 Λ(t) = t

Model II: Quadratic Approximation λ(t) = 1 + π1t Λ(t) = t+ π1t
2

Model III: Cubic Approximation λ(t) = 1 + π1t+ π2t
2 Λ(t) = t+ π1t

2 + π2t
3

The log likelihood for these models is

L(α|T1, ..., TN) = ln γ +
1

N

∑
i

ln{λ(t)}+ γ ln δ − (γ + 1)
1

N

∑
i

ln{δ + Λ(Ti))},

where the parameter vector α contains all parameters, N is the sample size, and i = 1, ..., N .
Models I through III use different series approximations to the integrated baseline hazard
Λ(t), i.e., they are different parameterizations of our nonparametric model. In our simula-
tion, Ti, i = 1, ..., N, is exponentially distributed with mean 1, and these realizations are
independent of each other. We estimate γ and δ and the other parameters. The mean of the
Gamma distribution is µ = γ

δ
, and the variance is σ2 = γ

δ2
.

In Tables 1, 2 and 3, we report the mean and variance of the Gamma distribution. Table
1 corresponds to Model I above, a linear approximation, Table 2 corresponds to Model II, a
quadratic approximation, and Table 3 corresponds to Model III, a cubic approximation. We
use 10,000 replications to calculate the means and the variances.

Models I through III are all special cases of the model with a nonparametric integrated
baseline hazard Λ(t). All three models are parametrically identified. However, not all the
parameters in Models II and III are precisely estimated. We report the variations1 in Tables
1 through 3.

The simulation results in Tables 1, 2 and 3 show that allowing for duration dependence
(i.e. a non-constant hazard) substantially changes the estimated variation of the Gamma
distribution. In particular, allowing for duration dependence increases the variation of the
unobserved heterogeneity distribution. The variance, σ2, is much smaller in the linear ap-
proximation than in the cubic approximation (0.168 versus 11.446 for N = 800). Further,
Figure 1 shows the distribution of the parameter δ for each series approximation (linear,
quadratic, and cubic) for N = 3200. Both the distribution and the mean of δ vary across
the three series approximations.

1Data generating process: Let U1, ..., UN be independent draws from the uniform distribution with support
[0,1]. Then Ti = − ln(Ui) for i = 1, ..., N, are independent exponentially distributed with mean one.
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Table 1: Model I (Linear Approximation) Mean and Variance

N = 200 N = 800 N = 3200

µ = γ/δ 1.023 1.014 1.005
(0.032) (0.015) (0.004)

σ2 = γ/δ2 0.188 0.168 0.149
(0.012) (0.007) (0.001)

Standard errors in parentheses

Table 2: Model II (Quadratic Approximation) Mean and Variance

N = 200 N = 800 N = 3200

µ = γ/δ 0.967 0.989 0.996
(0.016) (0.001) (0.000)

σ2 = γ/δ2 0.592 0.354 0.318
(1.363) (0.000) (0.003)

π1 0.161 0.076 0.043
(0.031) (0.004) (0.000)

Standard errors in parentheses

Table 3: Model III (Cubic Approximation) Mean and Variance

N = 200 N = 800 N = 3200

µ = γ/δ 0.981 1.059 1.014
(2.277) (0.051) (0.000)

σ2 = γ/δ2 361.889 11.446 0.787
(20,627.429) (14.993) (0.001)

π1 0.041 0.079 0.091
(0.026) (0.004) (0.001)

π2 0.147 0.054 0.027
(0.019) (0.003) (0.000)

Standard errors in parentheses
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Figure 1: Distribution of δ for each series approximation for N = 3200

The reason for the instability of the estimate of σ2, shown across Tables 1, 2 and 3,
is that these three series approximations give different approximations to the Gompertz
hazard function, and the Gompertz hazard function fails to be identified when the unob-
served heterogeneity has a Gamma distribution with δ = 1. The Gompertz hazard model
is a fourth parametrization of our nonparametric model. However, unlike our other three
parametrizations of our nonparametric model, the Gompertz hazard model is not paramet-
rically identified.

The Gompertz hazard function is given by ΛG(t) = exp(−ηt) − 1, λG(t) = η exp{−ηt},
where η > 0. Specifically,

θ(t|v) = vη exp(−ηt), η > 0.

This gives the survival function

F̄ (t|v) = exp[−v{exp(−ηt)− 1}],

where v ∼ Gamma(γ, δ). Further, the unconditional survivor function for δ = 1 is

F̄ (t) =

∫ ∞

0

exp[−v{exp(−ηt)− 1}] · exp{−v}vγ−1

Γ(γ)
dv.

An identification problem arises above because exp[−v{exp(−ηt) − 1}] can be written as
exp{−v exp(−ηt)} · exp v. This exp v cancels with the exp{−v} in the second term of the
above equation. This cancellation yields

F̄ (t) =

∫ ∞

0

vγ−1 · exp{−v exp{−ηt}}
Γ(γ)

dv

=
1

(exp{ηt})γ

∫ ∞

0

exp{ηγt} · vγ−1 · exp{−v exp{−ηt}}
Γ(γ)

dv

=
1

exp{ηγt}
.

The density of T is then given by

f(t) = ηγ exp{−ηγ}.
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Thus, T has an exponential distribution with mean 1
ηγ
. The mean of T is identified, and

so is the product ηγ. However, neither η nor γ are separately identified. Because γ is not
identified, the duration dependence and the variation of the unobserved error term are not
identified in the Gompertz model.

The simulation results in Tables 1 through 3 are easier to interpret when we realize this
failure of identification. In particular, the simulation results show that the standard error
on σ2 is large for Model II for N = 200. For Model III, the standard error on σ2 is large
for N = 200 and N = 800. Models I through III are all parametrically identified, but these
large standard errors show that Model II is not empirically identified for N = 200, and
Model III is not empirically identified for N = 200 and N = 800. The reason for these large
standard errors is that Model II and III approximate the Gompertz hazard model, which is
not parametrically identified.

Models I through III are parametrically identified, but the Gompertz hazard model,
which is also a parametrization of our nonparametric model, is not. Thus, an interpretation
of the simulations is that the different series estimators yield different approximations to the
Gompertz baseline and integrated baseline hazards. While all three models are parametri-
cally identified, Models II and III are close to the Gompertz hazard model, and therefore
they need a large sample size to identify the parameters in practice. N = 800 is not a large
enough sample size to empirically identify the parameters of Model III.

3 Conclusion

Empirical researchers often want to specify a model with structural unobserved heterogeneity,
as well as other error terms. The motivation to have structural heterogeneity is to make
the model more realistic and therefore more interesting. For example, Lancaster (1979)
introduces a hazard or transition rate model in which the duration depends on unobserved
ability, which is denoted by a structural error term, and also depends on luck. We use an
extension of this model to illustrate the concept of nonparametric identification.

A nonparametric model can have many parametric models as special cases. If such a
special case fails to be parametrically identified, then the nonparametric model fails to be
identified as well.

Without nonparametric identification, a ‘simplifying assumption’ may actually be an
‘identifying assumption’. Such parametrically identified special cases may make it hard to
empirically detect failures of nonparametric identification, which shows the importance of
nonparametric identification proofs.
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