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Abstract
I show that persistent underconfidence and overconfidence can each arise from rational
Bayesian learningwhen effort and ability are complementary.Which arises depends on
the decision-making environment, and in particular on the effect that greater effort has
on the variance of outcomes. Agents learn away overconfidence and underconfidence
at asymmetric rates because (i) Bayesian updating requires that their sensitivity to new
information depend on their effort choices and (ii) their effort choices in turn depend
on beliefs about their own ability. As one implication, I show that management can
credibly induce additional effort from employees by designing feedback that generates
average overconfidence through being conditionally vague.
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Shallow men believe in luck, believe in circumstances: It was somebody’s name,
or he happened to be there at the time, or, it was so then, and another day it
would have been otherwise. Strong men believe in cause and effect.

Ralph Waldo Emerson, The Conduct of Life (1860)

1 Introduction

How much should we read into our successes and failures? Can we reduce our expo-
sure to luck by trying harder? Emerson’s “strong men” believe that their efforts have
predictable consequences, but Emerson’s “shallow men” attribute the outcomes of
their efforts to chance. The former learn a lot about themselves by observing the fruits
of their efforts, whereas the latter do not infer as much from these outcomes. I here
show a surprising result: rational Bayesian agents on average misjudge their own abil-
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ity, and whether they become overconfident or underconfident on average depends on
the predictability of their efforts’ consequences.

Overconfidence is now generally recognized as an important factor in many mar-
kets. For instance, overconfidence can explain financial market anomalies (Daniel and
Hirshleifer 2015), the persistence of entrepreneurs (Astebro et al. 2014), and cor-
porate investment and merger decisions (Malmendier and Tate 2005, 2008, 2015).
Experimental evidence suggests that underconfidence is also prevalent (e.g., Kirch-
ler and Maciejovsky 2002; Blavatskyy 2009; Clark and Friesen 2009; Urbig et al.
2009; Larkin and Leider 2012; Murad et al. 2016), and through its link to depression,
underconfidence may be especially important for wellbeing (Beck 2002; Layard and
Clark 2015). Economists have sought to understand how over- and underconfidence
can persist in the face of contrary data.

I propose a unified model in which persistent overconfidence and persistent under-
confidence endogenously emerge fromBayesian updating by rational agents who have
neoclassical utility functions, do not exhibit behavioral biases, never stop learning, and
may or may not initially hold well-calibrated beliefs about their own ability.1 Agents’
rewards depend on effort choices, unknown ability, and unobserved shocks. Effort and
ability are complementary, so agents apply more effort when they think they are of
higher ability. Agents learn about their ability from the rewards they observe. Their
rewards provide signals of their ability that are drawn from a member of an exponen-
tial family of distributions, which encompasses several important named families of
distributions (Barndorff-Nielsen 2006).2 Agents’ effort choices affect how much they
learn from each reward because (i) effort and ability are complementary and (ii) effort
affects the variance of the signals that agents extract from the rewards they observe.3

I define average under- and overconfidence as emergingwhen the average of agents’
posterior estimates differs from the average of agents’ true abilities. I show that which
emerges depends on how agents’ effort choices affect the sensitivity of their pos-
terior beliefs to new signals of their ability and on the tension within those signals
between correcting oldmisperceptions and introducing newnoise.ABayesian’s poste-

1 Previous literature deviates in one or more of these dimensions, as described in Sect. 8. I focus on
overconfidence in the sense ofwhatMoore andHealy (2008) call “overestimation”, reflecting amisjudgment
of absolute ability. A distinct literature considers what Moore and Healy (2008) call “overprecision”, in
which agents underestimate the variance of outcomes (e.g., Daniel et al. 1998; Burnside et al. 2011). And
yet another distinct literature studies overconfidence in the sense of what Moore and Healy (2008) call
“overplacement” and the psychology literature calls the “better-than-average effect”, which refers to the
tendency for a majority of the population to judge their own abilities as being better than a majority of the
population.
2 The critical feature of exponential families is that the posterior mean is a weighted average of the prior
mean and the signal. For example, this is a well-known feature in normal-normal updating models, and
normal distributions are members of an exponential family. The analysis will require that the variance
function be quadratic (Morris 1982; Morris and Lock 2009), which permits the most prominent exponential
families such as the normal, Poisson, binomial, negative binomial, and gamma distributions, with the latter
nesting the exponential and chi-square distributions as special cases.
3 For tractability, I model agents as choosing effort myopically in my primary analysis (e.g., Heidhues
et al. 2018). The critical feature of effort choices is merely that they increase in agents’ expectations of their
own ability. Complementarity will tend to make this true for forward-looking agents as well. Moreover,
forward-looking agents’ effort choices converge to the myopically optimal effort choices as time passes.
The appendix analyzes forward-looking agents.
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rior beliefs are especially sensitive to new signals when the signals have low variance.
The signal of ability is reward per unit effort, and the variance of the signal is equal
to the variance of the unobserved shocks divided by effort squared. Here the variance
of the unobserved shocks potentially depends on effort. Additional effort makes the
signal of ability more precise if the shocks’ variance decreases in effort or is indepen-
dent of effort,4 and it makes that signal less precise if the shocks’ variance increases
sufficiently strongly in effort. Complementarity between effort and ability means that
an agent’s chosen effort increases in her mean belief about her own ability. The pre-
cision of the signal an agent receives about her own ability thus generally depends on
her mean belief, which means that the rate at which she adjusts her posterior towards
a new signal depends on her mean belief.

In the short run, whether under- or overconfidence emerges on average depends on
whether the difference between an agent’s signal andpriormean tends to reflect random
shocks or tends to reflect a correction to mistakenmean beliefs. First consider a case in
which all agents initially happen to have mean beliefs that correspond to their own true
ability: each agent’s beliefs are initially well-calibrated to their own circumstances,
which is one form of rational expectations. In that case, the noisy element to the signals
that agents initially receive tends to make their beliefs miscalibrated. Agents whose
effort choices lead them to learn this noise away faster tend to converge back to their
true beliefs faster. Average misplaced confidence becomes determined by the agents
who have not learned away this noise as quickly. So agents come to display average
underconfidence if high effort makes the signal of their ability more precise (because
they learn away overconfidence relatively quickly), agents come to display average
overconfidence if high effort makes the signal of their ability less precise (because they
learn away underconfidence relatively quickly), and agents display neither average
overconfidence nor average underconfidence in the knife-edge case that the precision
of their signal is independent of their effort choices.

Next consider a case in which all agents initially have the samemean belief but their
true abilities are in fact symmetrically distributed around that mean belief. This case is
an alternate form of rational expectations, in which each agent’s mean belief is well-
calibrated to the population average. Now the signals that agents receive tend to close
the gap between their true abilities and their own expectations of their abilities. If that
effect is sufficiently strong, then averagemisplaced confidence becomes determined by
the agents who move their prior towards their true ability relatively slowly. So agents
come to display average underconfidence if high effort makes the signal of their ability
less precise (because initially overconfident agents reduce their estimates towards their
true ability relatively quickly), agents come to display average overconfidence if high
effort makes the signal of their ability more precise (because initially underconfident
agents increase their estimates towards their true ability relatively quickly), and agents
again display neither average overconfidence nor average underconfidence in the knife-
edge case that the precision of their signal is independent of their effort choices.

As an example, let the variance of rewards be due to mean-zero external shocks
whose symmetric distribution is independent of agents’ effort choices. Like Emerson’s

4 When the shocks’ variance is independent of effort, complementarity between effort and ability means
that an agent obtains a completely uninformative signal as effort approaches zero and a perfectly informative
signal as effort approaches infinity.
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“strongman”, agents understand that their efforts have a consistent effect on outcomes,
with luck playing only a supporting role that is independent of effort. For instance,
running harder improves their times by a consistent amount that depends on their
ability.When agents choose high effort, the observed reward contains a stronger signal
of their true ability: because effort and ability are complementary, high effort increases
the contribution of ability to outcomes. Imagine that agents’ priors are each well-
calibrated at time 0 (i.e., centered around each of their true abilities, as was described
two paragraphs back). For some agents, the unobserved shock happens to take on a
high value at time 0, so that they perceive a surprisingly high reward at time 0. As
a result, they raise their central estimates of their ability and choose greater effort at
time 1. Because they are now overconfident, their time 1 rewards will, on average, be
surprisingly small, leading them to reduce their time 2 ability estimates towards the true
values. Following the average time 1 reward, these agents will still be overconfident
at time 2 but less so than at time 1. Indeed, because their high time 1 effort made their
beliefs especially sensitive to the observed time 1 reward, they will tend to be only
slightly overconfident by time 2.

In contrast, some agents receive an unobserved shock that happens to take on a low
value at time 0. These agents reduce their central estimates of their ability and choose
lower effort at time 1. Because they are now underconfident, their time 1 rewards will,
on average, be surprisingly large, leading them to raise their time 2 ability estimates
towards the true value. Following the average time 1 reward, these agents will still be
underconfident at time 2 but less so than at time 1. Because their low time 1 effort made
their beliefs especially insensitive to the observed time 1 reward, their underconfidence
may still be nearly as severe at time 2 as it was at time 1.

On average, agents still have well-calibrated beliefs at time 1 because they adjust
their beliefs symmetrically in response to high or low time 0 shocks. However, agents
tend to be underconfident at time 2: on average, their central estimates are below their
true abilities because their posterior beliefs are more sensitive to the observed reward
when their effort is high. Agents learn away time 0 shocks especially quickly when
these shocks lead them to raise their central estimates of their own ability, and they
learn away time 0 shocks especially slowly when these shocks lead them to lower their
central estimates of their own ability. I show that this average underconfidence persists
arbitrarily far into the future, vanishing only in the limit as infinite data accumulate.

In many contexts, the role of luck will diminish as agents apply more effort. For
instance, perhaps running harder smooths out variations in tempo that arise due to
distractions or topography.When effort reduces the variance of rewards, agents extract
even more information from observed outcomes under high effort. The asymmetry in
learning speeds described above becomes even more pronounced. By the foregoing
logic, average underconfidence will again endogenously emerge and persist.

Rational updating can also endogenously generate overconfidence. Now let greater
effort increase exposure to luck by enough to increase the variance of the signal that
agents extract from observed outcomes. Like Emerson’s “shallowman”, agents under-
stand that their efforts are largely modulated by circumstance. For example, running
harder here reduces the consistency of their times by increasing the consequences
of each day’s minor variations in weather, fitness, or diet. Agents’ beliefs are espe-
cially sensitive to news following low effort choices. Because they choose low effort
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when they lack confidence in their own ability, they learn away overly low ability
estimates especially rapidly. And they learn away overly high ability estimates only
slowly because their high efforts lead to especially noisy outcomes.When these agents
hold overly high ability estimates, they will tend to receive bad news but attribute any
news more to chance than to their own ability. These agents become overconfident
on average, an effect that persists into future periods and vanishes only in the limit as
infinite data accumulate.

I show that a manager can take advantage of these dynamics to obtain more effort
from employees who are learning about their own ability from feedback. The manager
chooses the precision of the feedback that employees see. By making feedback suffi-
ciently less informative when the manager observes employees choosing high effort,
the manager induces employees to learn away bad shocks faster than good shocks.
Importantly, this feedback rule is credible: it achieves its goal only if employees know
the manager has designed it this way (in contrast to a rule that biased the feedback
sent to employees), as the manager wants them to account for precision when updat-
ing their beliefs. Even though employees know the manager has designed feedback to
induce them to become overconfident on average, they still can do no better than to
update as Bayesians in response to any particular sequence of feedback.

The predicted dynamics of misplaced confidence are consistent with evidence in
Hoffman and Burks (2020). They document that long-haul truckers demonstrate both
overconfidence and underconfidence when predicting the miles they will drive in the
coming week. On average, the truckers are overconfident, and that average overconfi-
dence declines only slowly as truckers gain more experience on the job. The present
model may also explain an apparent irrationality in their structural model of truckers’
beliefs: Hoffman and Burks (2020) estimate that truckers perceive the variance of
their productivity shocks to be greater than the true variance, leading them to update
beliefs about their own productivity only slowly. For truckers to have initially well-
calibrated beliefs yet end up overconfident on average, the present analysis requires
that the variance of their productivity shocks be high when their effort and confidence
are high. Effort is an omitted variable in Hoffman and Burks (2020), as they recog-
nize. Because the perceived variance in Hoffman and Burks (2020) is identified by the
observed speed of learning, most of the identifying variation is likely to come from
truckers who are especially overconfident and thus have more to learn. If unobserved
effort choices endogenously increase variance for those truckers, then a one-size-fits-
all estimate of perceived variance will primarily reflect their high variance and may be
greater than the observed variance of productivity shocks across all truckers. Truckers’
belief updating may yet be rational once we account for effort.5

The next section presents an analytically transparent model with normal distri-
butions. Sections3 and 4 generalize the distributional assumptions and extend the
predictions to infinitely many periods. Section5 contains a numerical example. Sec-

5 The present analysis is consistent with Hoffman and Burks (2020) even if truckers truly do misper-
ceive shocks’ variance: an earlier working paper version showed that the critical determinant of under- or
overconfidence is the perception of the relationship between variance and effort, not the true relationship
between variance and effort. When truckers are overconfident on average, an empirical analysis should
detect truckers as perceiving high variance on average, whether or not the variance is in fact high for any
of them.
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tion6 models a manager designing feedback to obtain more effort from employees.
Section7 relates the theoretical setting to prominent empiricalwork onoverconfidence.
Section8 reviews related literature. Section9 proposes opportunities for further work.
The final section contains additional analysis. The appendix analyzes forward-looking
agents.

2 Closed-form derivation with normal distributions

Begin by considering an example that allows for closed-form solutions and accessible
exposition.

2.1 Preliminaries

There is a continuum of agents, indexed by i and of measure 1. In each period t ≥ 0,
agent i chooses howmuch effort eit to apply to an activity. The agent’s cost of applying
effort is ci (eit ) : R+ → R

+, with ci (·) twice continuously differentiable, c′
i (0) = 0,

and c′′
i (·) > 0. The activity provides reward πi t , which depends on the chosen level

of effort, on the agent’s fixed ability zi , and on a random shock εi t :

πi t = eit zi +√
f (eit ) εi t , (1)

with f (·) ∈ C1 and strictly positive. Effort and ability are complementary.6 The shock
is independent over agents and time, observed only via its effect on payoffs, and, in
this section, normally distributed with mean zero and variance normalized to 1.7

Agents’ true abilities zi are unknown to them. Average ability is strictly positive:∫ 1
0 zi di > 0. Agents update as Bayesians from the observed πi t . In this section, agent

i’s prior beliefs about her ability zi are summarized by a normal distribution with
mean μi0 > 0 and variance �i0 ∈ (0,∞), agents’ prior beliefs are well-calibrated on
average (μi0 = ∫ 1

0 zi di , which impliesμi0 is independent of i), and all agents have the
same prior (i.e.,�i0 is also independent of i).8 These assumptions permit a transparent
derivation that highlights themainmechanisms.At the endof this section, Iwill analyze
a case with heterogeneous priors. In subsequent sections, I will permit the prior to be
non-normal, permit the prior to be heterogeneous, and permit μi0 �= ∫ 1

0 zi di .

6 Bénabou and Tirole (2002) extensively motivate complementarity between effort and ability. In labo-
ratory experiments, Chen and Schildberg-Hörisch (2019) show that higher estimates of one’s own ability
induce additional effort, as implied by the present setting. Effort and ability are also typically presented
as complementary in psychology literature that describes how agents choose effort and infer ability (e.g.,
Nicholls and Miller 1984). However, other work does explore substitutability between effort and ability,
both empirically (Mueller and Dweck 1998) and theoretically (Deimen and Wirtz 2022).
7 Altering the shock’s variance is equivalent to rescaling f (eit ).
8 Rationality requires Bayesian updating but does not pin down agents’ priors, which are always model
primitives. See footnote 1 in van den Steen (2004) and citations therein. The assumption thatμi0 = ∫ 1

0 zi di
is a form of rational expectations assumption that restricts these primitives. Below equation (10), I discuss
two stronger forms of rational expectations: one requires, in addition, that �i0 = Var[zi ], and the other
requires that μi0 = zi .
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The function f (·) determines the role of luck (i.e., the variance of rewards), and
its derivative determines how effort choices affect the role of luck. When f ′(·) = 0,
the role of luck is independent of effort. When f ′(·) > 0, trying harder amplifies
the role of luck. But when f ′(·) < 0, trying harder gives an agent more control over
outcomes.9

Each agent chooses eit to maximize expected period payoffs10:

max
eit ≥0

Eit [πi t − ci (eit )] ,

where Eit [·] denotes expectations conditioned on the mean μi t and variance �i t of
agent i’s beliefs at the beginning of time t , without knowledge of zi or the realizations
of εi t . At an interior optimum, agent i’s optimal choice of effort e∗

i t satisfies the first-
order necessary condition:

c′
i (e

∗
i t ) = Eit

[

zi + 1

2

f ′(e∗
i t )√

f (e∗
i t )

εi t

]

,

which implies that c′
i (e

∗
i t ) = μi t .11 Optimal effort e∗

i t is an increasing function of μi t .
When μi t < c′

i (0), the optimal choice of effort is e∗
i t = 0.

Each agent updates their beliefs about their ability zi upon observing realized
payoffs πi t , with sit � πi t/eit constituting the signal of ability. The combination of
normally distributed beliefs and normally distributed shocks generates a conjugate
Bayesian updating rule:

μi(t+1) =
(

�−1
i t μi t + e2i t

f (eit )
sit

)(

�−1
i t + e2i t

f (eit )

)−1

, (2)

�i(t+1) =
(

�−1
i t + e2i t

f (eit )

)−1

. (3)

Define

w(eit , �i t ) �
e2i t

f (eit )

�−1
i t + e2i t

f (eit )

∈ [0, 1) (4)

9 The case with f ′(·) < 0 can be interpreted as an “internal locus of control”, with f ′(·) ≥ 0 being an
“external locus of control” (see Lybbert and Wydick 2018). See Hestermann and Le Yaouanq (2021) for an
alternate formulation of locus of control.
10 The Appendix shows that the results of the two-period version of this analysis survive when agents
are not myopic. The only difference with forward-looking agents is that they may adjust effort choices to
actively experiment. Intuitively, there is no reason why active experimentation motives should oppose and
overwhelm the mechanisms described here.
11 Convexity of the cost function guarantees that, when it exists, an interior solution is a local maximum.
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as the weight that time t agents place on the time t signal. This weight increases in
the precision of the signal. Writing wi t for short, equation (2) becomes:

μi(t+1) = (1 − wi t )μi t + wi t si t . (5)

Define the elasticity of f (eit ) with respect to eit as χ(eit ) � eit f ′(eit )/ f (eit ).

Lemma 1 (Signal Quality and Effort) Let eit > 0. Then ∂w(eit , �i t )/∂eit > 0 if
χ(eit ) < 2, ∂w(eit , �i t )/∂eit < 0 if χ(eit ) > 2, and ∂w(eit , �i t )/∂eit = 0 if
χ(eit ) = 2.

Proof From (4),

∂w(eit , �i t )

∂eit
= (1 − wi t )

wi t

ei t
[2 − χ(eit )].

	


Additional effort increases themarginal effect of ability on the signal (i.e., the variance
of εi t/eit declines in eit ), which works to increasewi t . But when f ′(·) > 0, additional
effort also increases the variance of the signal, which works to reducewi t . The second
effect dominates if and only if χ(eit ) > 2.12

Define the population-average central estimate μ̄t �
∫ 1
0 μi t di and the population-

average ability z̄ �
∫ 1
0 zi di . In the present example, μ̄0 = z̄. Imagine that a researcher

can measure agents’ average beliefs and average ability, as may be true in an experi-
mental environment or in a large-sample econometric study. That researcher evaluates
agents’ confidence as follows:

Definition 1 Time t agents are overconfident on average if μ̄t > z̄ and are undercon-
fident on average if μ̄t < z̄.

Observe that over- andunderconfidence are definedwith respect to true ability.Because
individual agents do not know their own or others’ true abilities, an individual agent
cannot tell whether she displays over- or underconfidence. Although other definitions
are possible, the above definitions are natural ones that fit many applications.13

12 If eit = 0, then wi t = 0 and the agent is in a zero-effort trap in which they stop learning and thus
maintain eit = 0 forever. This possibility is similar to the bandit-like models reviewed in Sect. 8. Although
interesting for its connection to depression (de Quidt and Haushofer 2017) and to poverty traps (Lybbert
and Wydick 2018), this possibility is not the mechanism of interest here. This possibility does, however,
mean that the present section emphasizes predictions two periods ahead. In subsequent sections, the prior
will make zero-effort traps impossible and will enable predictions arbitrarily many periods ahead.
13 I express the setting in terms of a population of agents and results in terms of population averages,
but one can equivalently interpret the setting as describing an individual j and the results as describing the
expectation ofμ j t conditional on z j . Definition 1 then says that we label the agent as over- or underconfident
on average if a researcherwhoknows the agent’s true ability expects the agent’s posteriormean to be different
from her true ability.
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2.2 Analysis

Consider the population-average central estimate in period 1. From equation (5),

μ̄1 =
∫ 1

0
[(1 − wi0)μi0 + wi0si0] di

=
∫ 1

0

[
μi0 + w(ei0, �i0)[zi − μi0]

]
di +

∫ 1

0
w(ei0, �i0)

√
f (ei0)

ei0
εi0 di .

The second integral is zero because εi0 is mean zero and uncorrelated with either ei0
or �i0 across agents i . We extract wi0 from the first integral because it is independent
of i by homogeneity of the time 0 prior. Therefore,

μ̄1 =
∫ 1

0
μi0 di + wi0

∫ 1

0
[zi − μi0] di .

Because agents’ beliefs are initially well-calibrated on average (i.e., because μ̄0 = z̄),

μ̄1 =z̄. (6)

Agents’ beliefs remain well-calibrated on average in period 1.
The population-average central estimate in period 2 is:

μ̄2 =
∫ 1

0

[
[1 − w(ei1, �i1)]μi1 + w(ei1, �i1)zi

]
di +

∫ 1

0
w(ei1, �i1)

√
f (ei1)

ei1
εi1 di .

The second integral is zero because εi1 is mean zero and uncorrelated with either ei1
or �i1 across agents i . Using that and (6),

μ̄2 =z̄ −
∫ 1

0
w(ei1, �i1) (μi1 − zi ) di . (7)

The covariance between wi1 and period 1 misplaced confidence determines whether
beliefs remain well-calibrated on average in period 2. If wi1 tends to be large when
agents are overconfident but small when agents are underconfident, then agents tend
to learn away overconfidence relatively quickly but not to learn away underconfidence
as quickly. Agents then become underconfident on average in period 2. If, instead,wi1
tends to be small when agents are overconfident but large when agents are undercon-
fident, then agents tend to learn away underconfidence relatively quickly but not to
learn away overconfidence as quickly. Agents then become overconfident on average
in period 2. And if wi1 is uncorrelated with agents’ period 1 confidence, then agents’
beliefs remain well-calibrated on average in period 2.

The population-average central estimate in period t + 1 is:

μ̄t+1 =z̄ −
∫ 1

0
wi t (μi t − zi ) di + (μ̄t − z̄), (8)
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using that εi t is mean-zero and uncorrelated with either eit or �i t across agents i .
The first two terms are familiar from our analysis of μ̄2. The third term appears only
if average misplaced confidence has emerged in period t . It reflects the tendency of
average misplaced confidence to persist. For average misplaced confidence to begin to
disappear, the covariance between wi t and period t misplaced confidence must switch
sign as t increases.14

We now analyze the sign of that covariance. Rewrite the integral from (7):

∫ 1

0
w(ei1, �i1) (μi1 − zi ) di =

∫ 1

0
w(ei1, �i1)(μi1 − z̄) di

−
∫ 1

0
w(ei1, �i1)(zi − z̄) di . (9)

To progress towards an insightful analytic expression, assume either that zi is nor-
mally distributed across agents or that zi is constant across agents. In the former case,
each integral on the right-hand side is the covariance between wi1 and a zero-mean
normal variable, and in the latter case, the first integral on the right-hand side is such
a covariance while the second integral on the right-hand side vanishes. In either case,
use Stein’s Lemma15:

∫ 1

0
w(ei1, �i1) [μi1 − zi ] di

= w2
i0

[
f (ei0)

e2i0
+ Var[zi ]

]∫ 1

0

∂w(ei1, �i1)

∂ei1

dei1(μi1)

dμi1
di

− Var[zi ]
∫ 1

0

∂w(ei1, �i1)

∂ei1

dei1(μi1)

dμi1

dμi1

dzi
di .

Use dμi1/dzi = wi0 from (5):

∫ 1

0
w(ei1, �i1) [μi1 − zi ] di =wi0

[

wi0
f (ei0)

e2i0
− (1 − wi0)Var[zi ]

]

∫ 1

0

∂w(ei1, �i1)

∂ei1

dei1(μi1)

dμi1
di .

Substituting for wi0 from (4), equation (7) becomes:

μ̄2 =z̄ − wi0(1 − wi0)

[
�i0 − Var[zi ]

] ∫ 1

0

∂w(ei1, �i1)

∂ei1

dei1(μi1)

dμi1
di . (10)

14 With normally distributed shocks, agent i has (with probability 1) μi t < c′
i (0) for some t . So with

probability 1, eit = 0 and μ̄t+1 = μ̄t for all t sufficiently large. As a result, the present section does
not contain firm predictions for t > 2. See footnote 12 for more on zero-effort traps, and see subsequent
sections for settings that lack such traps and therefore permit additional analysis of misplaced confidence
for t > 2.
15 From equation (3), �i1 depends only on �i0 and ei0. When μi0 and �i0 are homogeneous, �i1 is
constant over i and not random. In this case, the only random argument of wi1 is ei1.
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Misplaced confidence emerges on average in period 2when the term in square brackets
on the right-hand side is nonzero and the integral is nonzero.16 From Lemma 1, the
sign of ∂wi1/∂ei1 depends on whether the elasticity χ(ei1) is greater or less than 2.

The two forces in square brackets determine the direction of average misplaced
confidence. Begin by considering how potential heterogeneity in zi affects misplaced
confidence. This mechanism reflects the role of zi − μi0 in determining the direction
in which agents update beliefs in response to the initial signal. This mechanism pushes
agents to become underconfident on average in period 2 if and only if

∫ 1

0

∂w(ei1, �i1)

∂ei1

dei1(μi1)

dμi1
di < 0.

It otherwise pushes agents to become overconfident on average in period 2. Agents
who happen to have high ability tend to receive surprisingly positive signals in period
0. A positive signal in period 0 leads them to increase their posterior mean and thus
choose higher effort in period 1. If ∂wi1/∂ei1 < 0, then such agents learn about their
high ability from the period 1 signal only slowly. In contrast, agents with low ability
tend to receive surprisingly negative signals in period 0, which leads them to reduce
their posterior mean and thus choose less effort in period 1. If ∂wi1/∂ei1 < 0, then
such agents learn relatively quickly about their low ability from the period 1 signal.
Heterogeneity in zi therefore leads agents to become underconfident on average when
∂wi1/∂ei1 < 0 for all i . The opposite story holds if ∂wi1/∂ei1 > 0. In either case, the
mechanism is the heterogeneous rates at which agents converge to their true abilities
from initially mistaken priors.

To understand the second force in square brackets, consider a special case in which
Var[zi ] = 0, so that ability is homogeneous and every agent has well-calibrated beliefs
in the initial period. In this case, the only force determining the direction in which
agents update beliefs in period 1 is whether their news shocks εi0 are positive or
negative. Agents become underconfident on average in period 2 if and only if

∫ 1

0

∂w(ei1, �i1)

∂ei1

dei1(μi1)

dμi1
di > 0,

and agents become overconfident on average in period 2 if and only if this inequality is
reversed. A positive εi0 leads agents to become overconfident in period 1 and thereby
to choose high effort in period 1. If ∂wi1/∂ei1 > 0, then such agents learn away the
initial positive shock relatively quickly. In contrast, agents who receive a negative εi0
choose less effort in period 1 and thereby learn away the negative shock relatively
slowly. Heterogeneity in shocks εi0 therefore leads agents to become underconfident
on average when ∂wi1/∂ei1 > 0 for all i . The opposite story holds if ∂wi1/∂ei1 < 0.
In either case, the mechanism is the heterogeneous rates at which agents learn away
shocks.

The two mechanisms oppose each other. When Var[zi ] is large, there is substantial
heterogeneity in ability and thus large scope for the prior mistakes that drive the

16 From agents’ first-order conditions, dei1/dμi1 > 0 if μi1 ≥ c′
i (0) and dei1/dμi1 = 0 otherwise.
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first mechanism. When �i0 is large, prior mistakes are corrected relatively rapidly,
so that most of the variation in beliefs is soon due to the effects of shocks and the
second mechanism tends to be relatively strong. The first mechanism dominates when
agents’ mistakes about their true ability aremore heterogeneous than their prior beliefs
are diffuse (i.e., when Var[zi ] > �i0), and the second mechanism dominates when
agents’ mistakes about their true ability are less heterogeneous than their prior beliefs
are diffuse (i.e., when Var[zi ] < �i0).17

Agents tend to maintain well-calibrated beliefs in period 2 in two cases. First, it
could be that Var[zi ] = �i0, meaning that agents’ prior beliefs match the population
distribution of ability. This is a knife-edge case that could be imposed as a form of
rational expectations. In this special case, the evolution of the population-average
mean belief is equivalent to a Bayesian individual’s expectation of how their own
posterior mean would evolve over time (reinterpreting the i as indexing samples from
an individual’s potential sequences of news shocks rather than indexing individuals).
By the martingale property of beliefs, the individual must not expect their beliefs to
drift in any particular direction. And that is indeed what we see: μ̄2 = z̄, and because
z̄ = μi0 to the best of the agent’s beliefs, μ̄2 = μi0.

Second, it could be that ∂w(ei1, �i1)/∂ei1 = 0. However, from equation (4) and
Lemma 1, this condition is truly a knife-edge case. We would need f (·) to have just
the constant elasticity form in order to have ∂w(ei1, �i1)/∂ei1 constant, and that form
must have an elasticity of exactly 2 for that constant to be zero.

Finally, consider a stronger form of rational expectations in which each agent’s
prior happens to be well-calibrated around their own ability, so that μi0 = zi with zi

normally distributed. In that case, it is easy to see that equations (6) and (7) still hold,
equation (9) becomes

∫ 1

0
w(ei1, �i1) (μi1 − zi ) di =

∫ 1

0
w(ei1, �i1)(μi1 − μi0) di,

and equation (10) becomes

μ̄2 =z̄ − wi0(1 − wi0)�i0

∫ 1

0

∂w(ei1, �i1)

∂ei1

dei1(μi1)

dμi1
di . (11)

The priormistake channel from (10) vanishes, leaving uswith the shock channelwhose
strength grows with the variance of the time 0 prior.

Section 7 relates the setting to prominent empirical work on overconfidence. As
a brief example, consider a student taking a test. The student chooses how much to
focus on each question. Greater focus matters more for students with high ability than
for students with low ability. Upon seeing the results of the test, students update their
beliefs about their own ability, adjusting for how hard they tried on the test. This story
is consistent with evidence from a recent field experiment: Gneezy et al. (2019) show

17 When the first mechanism dominates in (10), the covariance in (11) can flip as t increases because prior
mistakes are eventually narrowed. When the second mechanism dominates in (10), the covariance in (11)
can flip as t increases because the posterior variance falls even as heterogeneity in agents’ mistakes can
increase (owing to heterogeneity in the sequences of shocks that agents receive).
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that incentivizing students to exert more effort on a standardized test does improve
test scores (effort matters for outcomes and responds to incentives) and improves test
scores most strongly for higher-ability students (effort is complementary to ability).
The authors highlight that cross-sectional comparisons of test scores across countries
can mislead policymakers when students’ unobserved effort differs across cultures.
Here, we recognize that the students themselves are likely to account for their own
effort choices when interpreting their own test scores. We see that their average beliefs
will not accurately reflect their own abilities. And the type of inaccuracy depends on
empirically testable phenomena. When they are each especially uncertain about their
own ability but they each have roughly similar abilities, they underestimate ability on
average if trying harder makes tests better signals of ability (as when effort reduces
random mistakes arising from inattention) and they overestimate ability on average if
trying harder increases the chance of randommistakes (as when effort means forsaking
sleep to study longer). These predictions reverse when students have homogeneous,
precise beliefs about their own ability but ability is in fact very heterogeneously dis-
tributed across them.

3 Non-normal shocks and priors from the natural exponential family

The model in Sect. 2 allows for a transparent derivation driven merely by first-order
conditions, Bayes’ Rule, and Stein’s Lemma, but one may wonder whether misplaced
confidence maintains the same sign beyond two periods, whether it arises under non-
normal distributions, andwhether it arises for priors that are not initiallywell-calibrated
on average. Here I obtain concrete predictions for infinitely many periods by elimi-
nating zero-effort traps, relax the distributional assumptions on priors and shocks, and
relax the restriction that the prior mean is well-calibrated on average.

3.1 Preliminaries

Let rewards be πi t = eit zi + λνi t , with the zi strictly positive, the νi t indicating
potentially non-normal shocks that are not directly observed by agents, and λ > 0
a scaling parameter. Conditional on eit , the νi t are identically and independently
distributed over time and agents,withmean zero.18 As inSect. 2, I defineμi t � Eit [zi ],
optimal effort satisfies c′

i (e
∗
i t ) = μi t for μi t > 0, and agent i’s time t signal of her

ability is sit � πi t/eit .
Letting px be the density function of random variable x , I assumed in Sect. 2 that

the likelihood psit (sit |eit , zi ) was a normal density. Here I instead assume that each zi

can be mapped to a θi t � θ(zi ; eit ) such that psit (sit |eit , θi t ) is a member of a regular

18 The case with nonzero means is nested: we could permit the νi t to have nonzero means by subtracting
E[νi t ] from πi t in the definition of sit below.
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natural exponential family (NEF) of distributions (Morris 2006)19:

psit (sit |eit , θi t ) = exp[θi t si t − Mi (θi t ; eit )], (12)

where Mi is continuous in eit and where the θi t for which exp[Mi (θi t ; eit )] < ∞
constitute a nonempty open set in R for all eit > 0. The families of distributions that
satisfy (12) (and hence are NEFs) include the normal, Poisson, binomial, negative
binomial, and gamma distributions, with the latter nesting the exponential and chi-
square distributions as special cases. Mi is known as the “cumulant function” (distinct
from the cumulant-generating function) because its kth derivative is the kth cumulant.
Its form identifies a specific exponential family of distributions (such as the family
of normal distributions used in Sect. 2). And within that specific family, the “natural
parameter” θi t indexes a specificdistribution (as themeandoes for a normal distribution
with known variance).

Because Eit [sit |eit , θi t ] = M ′
i (θi t ; eit ) and zi = Eit [sit |eit , θi t ], we have zi =

M ′
i (θi t ; eit ).20 Therefore μi t = Eit [M ′

i (θi t ; eit )]. As is well known (e.g., Barndorff-
Nielsen 1978; Consonni and Veronese 1992), there is a bijection between θi t and zi

conditional on eit .21 Plugging θ(zi ; eit ) into (12) would yield the likelihood in terms
of zi (i.e., psit (sit |eit , zi )), which is known as the mean parameterization.

Following Morris (1982) and subsequent literature (e.g., Consonni and Veronese
1992; Morris and Lock 2009), the “variance function” for the time t likelihood is

Vi (zi ; eit ) � ∂2Mi (θ(zi ; eit ); eit )

∂θ2
.

The variance function gives the variance of the signal as a function of its conditional
expectation, zi . I restrict attention to distributions with variance functions in an espe-
cially prominent and well-studied class:

Vi (zi ; eit ) = ζi2(eit ) z2i + ζi1(eit ) zi + ζi0(eit ), (13)

with Vi finite and with the coefficients ζi2(eit ), ζi1(eit ), and ζi0(eit ) each a differen-
tiable functionof eit . By satisfying (12) and (13) for given eit , the signal is conditionally
distributed according to a regular natural exponential family with quadratic variance
function (NEF-QVF). Morris (1982) shows that there are six types of NEF-QVFs.
These include the five most important NEFs: the normal, Poisson, gamma, binomial,
and negative binomial families of distributions. As an example, equation (13) was sat-
isfied in Sect. 2, where the variance of sit conditional on eit and zi had ζi0(eit ) = f (eit )

e2i t
,

ζi1(eit ) = 0, and ζi2(eit ) = 0 (the latter two relationships must be true for normal
distributions).

19 Any exponential family can be reparameterized as a natural exponential family (e.g., Gutiérrez-Peña
and Smith 1997). The νi t might not come from the same family as sit .
20 The effect of effort on the mapping from zi to θi t follows from the implicit function theorem.
21 M ′′

i > 0 because it is the variance (i.e., the second cumulant), which implies that zi increases mono-
tonically in θi t for given eit .
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The agent’s time 0 prior over θi0 is the standard conjugate prior, which is also a
member of an exponential family (Diaconis and Ylvisaker 1979):

pθi0(θi0|Ii0) = Ki0 exp [ni0xi0θi0 − ni0Mi (θi0; ei0)] , (14)

with ni0 > ζi2(ei0), xi0 in the convex hull of the support of psi0(·|ei0, θi0), Ki0 > 0
a normalizing constant, and Ii0 indicating agent i’s time 0 information set. Theorem
1 of Diaconis and Ylvisaker (1979) implies Ki0 < ∞. Below Assumption 2, I will
relate the parameter xi0 to the mean of the prior and will interpret the parameter ni0.
Plugging θ(zi ; ei0) into (14) would generate what Consonni andVeronese (1992) label
the D-Y conjugate family of priors over the mean parameter (i.e., the D-Y conjugate
prior over zi ).22 I assume that the true zi is within the support of the D-Y conjugate
prior over zi .

Because the variance function satisfies (13), the prior over zi in (14) is a member
of one of the Pearson families of distributions (Morris 1983). Further, the variance
function for the time 0 prior is (Morris 1983; Morris and Lock 2009):

Ṽi0(μi0) = Vi (μi0; ei0)

ni0 − ζi2(ei0)
. (15)

Requiring ni0 > ζi2(ei0) ensures that the variance of the prior exists and is finite.23

If one were to exogenously increase the variance of the signal, then the endogenous
parameter ni0 must increase in order to hold the variance of the prior fixed. We will
soon see that an increase in ni0 means that the prior is weighted more heavily in
the posterior mean, so increasing the variance of the signal has the intuitive effect of
reducing the posterior mean’s sensitivity to the signal.

I have thus far presented a fairly general framework with conventional groupings of
distributional families. I will also sometimes impose twomore particular assumptions.
The first assumption restricts the distribution of signals (which is determined by the
distribution of the νi t ). If the prior and the set of possible signals permit agents to
believe they have no ability, then all agents eventually fall into a low-confidence trap
inwhich they choose zero effort andnever revise their beliefs further. These trapswould
obscure themechanism of interest here by introducing an additional mechanism closer
to that in bandit models (see Sect. 8). The first assumption will ensure that agents avoid
low-confidence, zero-effort traps24:

Assumption 1 (Positive Signals) psit has support only in the weakly positive numbers.

Most families of distributions that areNEF-QVF satisfy this restriction. The prominent
exception is the family of normal distributions, which I analyze separately in Sect. 4.

The second assumption restricts agents’mean beliefs to initially have error no larger
than δ:

22 Consonni and Veronese (1992) show that the D-Y conjugate prior over zi is conjugate to (12) expressed
in terms of zi when the variance function is quadratic as in (13) but not necessarily otherwise.
23 In Sect. 2, �i0 < ∞ implied ni0 > 0 and, because ζi2(·) = 0 for normal distributions, ni0 > ζi2(ei0).
24 More precisely, Assumption 1 ensures that agents avoid these traps once combined with Assumption 2
below, which ensures that agents do not begin in a trap. See footnote 12 on zero-effort traps.
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Assumption 2 (Priors Not Too Miscalibrated) For all i and for given δ ≥ 0, μi0 > 0
and μi0 ∈ [zi − δ, zi + δ].
This assumption permits the possibility that each prior is calibrated to the true pop-
ulation distribution of ability (the form of rational expectations analyzed in Sect. 2).
This assumption also permits the possibility that each prior is well-calibrated at the
individual level (the stronger form of rational expectations that led to equation (11)).
But it also permits the possibility that agents’ mean beliefs do not match their abilities.
It is important to permit the possibility of well-calibrated priors because any Bayesian
model can generate misplaced confidence if priors are miscalibrated but would not
typically do so when priors are well-calibrated. And it is important to permit the
possibility of miscalibrated priors to highlight that current results are not knife-edge.

Assumption 2 requires that priors not be “too” miscalibrated. We will also be
interested in the implications of relaxing Assumption 2. In that case, we replace it
with the following assumption:

Assumption 2’ (Priors of Positive Ability) For all i , μi0 > 0.

Assumption 2’ requires only that each agent initially believes they have strictly positive
ability. We will see that bounding the degree of initial miscalibration (as in Assump-
tion 2) is essential for predictions about the sign of misplaced confidence in the short
run but not essential for predictions about misplaced confidence in the long run.

3.2 Analysis

FromTheorem2ofDiaconis andYlvisaker (1979), xi0 = Ei0[M ′
i (θi0; ei0)]. Therefore

xi0 = μi0. And from equation (2.10) in Diaconis and Ylvisaker (1979), Bayesian
updating implies

μi1 = ni0

ni0 + 1
μi0 + 1

ni0 + 1
si0

= (1 − wi0)μi0 + wi0si0. (16)

The weight wi0 ∈ (0, 1) that agent i places on the time 0 signal decreases in ni0,
and the weight 1 − wi0 that agent i places on time 0 prior beliefs increases in ni0.
This is why ni0 is commonly thought of as the sample size of the prior (Diaconis and
Ylvisaker 1979). Using conjugacy of the prior and repeating the steps, we find that
the prior at any time t has the form of (14) with Kit < ∞, that its variance function
has the form of (15), and that

μi(t+1) = (1 − wi t )μi t + wi t si t (17)

at any time t > 0, with wi t ∈ (0, 1). Assumptions 1 and 2 imply μi(t+1) > 0. The
linearity of the posterior mean in the prior mean and the signal seen in both (16)
and (17) is the critical feature of exponential families for the present analysis. In
Sect. 2, this same linearity appeared in equation (5) because normal distributions are
members of an exponential family.
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The following proposition shows that average bias can again emerge after period
1, with the direction of average misplaced confidence depending on how effort affects
the variance of the signal:

Proposition 1 (AverageMisplacedConfidence inAll Periods)Let Assumptions 1 and 2
hold. For all t > 1, there exists ψ > 0 such that if δ + λ ≤ ψ , then

i

μ̄t < z̄ if
∂Vi (μi0; ei0)

∂ei0
< 0 and

dζi2

dei0
≤ 0 for all i,

ii

μ̄t > z̄ if
∂Vi (μi0; ei0)

∂ei0
> 0 and

dζi2

dei0
≥ 0 for all i .

Proof The proof is by induction. See Sect. 10.2. 	

Average misplaced confidence emerges after period 1 and persists in later periods,
vanishing only in the limit as agents accumulate infinite data.25 Importantly, average
misplaced confidence emerges even when the deck is most stacked against it, with
agents’ priors all initially well-calibrated (so δ = 0). As in Sect. 2, the direction of
average misplaced confidence depends on the effects of effort on the variance of the
likelihood. From Lemma 2, additional effort increases (decreases) the weight that
agents place on the signal when it decreases (increases) the variance of the likelihood.
Because effort increases in mean beliefs and new signals tend to correct mistaken
beliefs, agents learn away mistaken beliefs faster when they are overconfident (under-
confident), as already described following equation (10). We therefore predict average
underconfidence (overconfidence) when additional effort decreases (increases) the
variance of the likelihood.26

The variance of the time 0 likelihood is 1
e2i0

Vari0[νi0]. This variance decreases in
effort if either the variance of νi0 is independent of effort or the variance of νi0 decreases
in effort. It increases in effort only if the variance of νi0 increases sufficiently strongly
in effort. The variance of the likelihood is independent of effort only in a knife-edge
case in which effort increases the variance of νi0 at just the right rate.27 Proposition 1
therefore formalizes the intuition from the introduction about how the effect of effort
on the variance of the unobserved shocks generates average misplaced confidence by
inducing asymmetric learning speeds.

The following corollary relaxes Assumption 2.

25 The true parameter zi is within the support of the prior, so the agent’s posterior will converge to a point
mass on zi . See, for instance, Diaconis and Freedman (1986).
26 The requirement that μi0 be within δ of zi and that δ not be too large restricts the strength of the
heterogeneous zi term in (10).
27 In addition, if we eliminated complementarity between effort and ability (making effort choices
independent of ability) or eliminated agents’ freedom to choose effort (making effort exogenous), then
deit /dμi t = 0 and the proof shows that we would predict neither underconfidence nor overconfidence.
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Corollary 2 (Average Misplaced Confidence in the Long Run) Let Assumptions 1
and 2’ hold. There exist s ≥ 0 and ψ > 0 such that, for all t ≥ s and λ ≤ ψ ,

i

μ̄t < z̄ if
∂Vi (μis; eis)

∂eis
< 0 and

dζi2

deis
≤ 0 for all i,

ii

μ̄t > z̄ if
∂Vi (μis; eis)

∂eis
> 0 and

dζi2

deis
≥ 0 for all i .

Proof For s sufficiently large, Assumption 2 holds with δ arbitrarily small. The result
then follows from Proposition 1.

	

If we allow initial beliefs to be arbitrarily poorly calibrated, then we can no longer
predict the direction of average misplaced confidence within two periods, but we can
still predict that direction in the long run. It depends on how effort affects the variance
function once beliefs become better calibrated. Intuitively, if initial beliefs display,
for example, arbitrarily severe initial underconfidence on average, then this average
underconfidence may persist for some time, but eventually agents learn away these
initial mistakes and the learning dynamics described previously take over.28

4 Normally distributed shocks with truncated-normal priors

Assumption 1 ruled out normal distributions in order to avoid a zero-effort trap ever
being optimal, but the most closely related empirical work assumes normally dis-
tributed shocks (Hoffman andBurks 2020). I here examine normally distributed shocks
and therefore directly extend the model of Sect. 2 to obtain concrete predictions over
infinitely many periods.

Let the reward πi t be as in equation (1), with zi > 0 and with normally distributed
εi t having mean zero and variance σ 2 > 0. Now let agent i’s time 0 prior for zi be
truncated-normal with support in [ai , bi ], for ai ∈ [0, zi ) and bi ∈ (zi ,∞]. The lower
truncation point rules out the possibility of beliefs justifying the choice of zero effort. A
Bayesian’s posterior is also truncated-normal, with ai and bi still the truncation points.
Use μi t and �i t to denote the mean and variance of the corresponding untruncated
normal distribution. These statisticsmay be heterogeneous across agents. The updating
rules are as in equations (2) and (3) from Sect. 2.29 The rest of the setting is familiar
from previous sections.

Define agent i’smaximum likelihood estimate of zi asφi t � max{ai ,min{bi , μi t }}.
This maximum likelihood estimate is the mean of the corresponding untruncated

28 As beliefs become better calibrated in the long run, the setting starts to look like that which led to
equation (11).
29 Truncation changes the posterior within its support only through the normalization factor.
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distribution and converges to themean of the truncated distribution as themass beyond
the truncation points vanishes. The following proposition describes the evolution of
average overconfidence, here measured as φ̄t − z̄, under the assumption that the mean
of each agent’s initial nontruncated beliefs is approximately well-calibrated30:

Proposition 3 (AverageMisplaced Confidence in All Periods (Normal Distributions))
Let Assumption 2 hold. For all t > 1, there exists ψ > 0 such that if δ + σ ≤ ψ and
each �i0 is sufficiently small, then

i

φ̄t < z̄ if χ(ei0) < 2 for all i,

ii

φ̄t > z̄ if χ(ei0) > 2 for all i .

Proof Equation (3) and the nonoptimality of zero effort choices imply �i0 > �i t for
t > 0.As�i t becomes small, the time t posterior and prior both become approximately
normal, with μi t and φi t converging to Eit [zi ]. The proposition then follows from
Lemma 1 and the proof of Proposition 1, since the family of normal distributions is
NEF-QVF with ζi2(·) = 0. 	

In Sect. 2, average misplaced confidence emerged in period 2. We now learn that this
average misplaced confidence persists in all later periods, vanishing only as agents
accumulate infinite data. Researchers studying this population would detect average
under- or overconfidence almost regardless of which period they happen to sample
from. Proposition 3 relates average overconfidence and underconfidence to model
primitives in a transparent fashion: the sign of χ(ei0)− 2 determines whether average
overconfidence or underconfidence emerges, and that sign depends on observable
characteristics of the decision-making environment captured by f (ei0).

Lemma 1 implies that the variance of the likelihood decreases in effort if and only
if χ(ei0) < 2, so Proposition 3 provides results analogous to those in Proposition 1.
As before, average underconfidence emerges if additional effort reduces the variance
of the likelihood and average overconfidence emerges if additional effort increases
the variance of the likelihood. Therefore we have again formalized the intuition about
effort-dependent variance, asymmetric learning speeds, and average misplaced confi-
dence given in the introduction.

Finally, we can again relax Assumption 2.

Corollary 4 (Average Misplaced Confidence in the Long Run (Normal Distributions))
Let Assumption 2’ hold. There exist s ≥ 0 and ψ > 0 such that, for all t ≥ s and
σ ≤ ψ ,

i

φ̄t < z̄ if χ(eis) < 2 for all i,

30 φi t approaches Eit [zi ] under the conditions of the proposition, so φ̄t approaches μ̄t and the present
measure of overconfidence is in practice similar to the measure used in previous sections.
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ii

φ̄t > z̄ if χ(eis) > 2 for all i .

Proof For s sufficiently large, Assumption 2 holds and �is is small. The result then
follows from Proposition 3.

	


As in Sect. 3, allowing initial beliefs to be arbitrarily poorly calibrated costs us the
ability to predict the direction of average misplaced confidence in the short run but
does not stop us from predicting that direction in the long run.

5 Numerical example

I now consider a numerical example, adapting the setting of Sect. 2. Under the param-
eterization, the results are nearly identical to instead using the truncated-normal prior
from Sect. 4 with ai = 0 and bi = ∞. For all i , let zi = μi0 = 20, �i0 = 16,
f (eit ) = 16 [eit ]α , and ci (eit ) = 10 e2i t . Note that z̄ = zi and χ(eit ) = α. From (4),
observe that ∂wi0/∂ei0 > 0 if and only if α < 2. And in (10), Var[zi ] = 0. I simulate
one million agents.

The top left panel of Fig. 1 shows that, as demonstrated analytically, agents become
overconfident on average for α > 2 and become underconfident on average for α < 2.
The degree of over- or underconfidence is larger when α is farther from 2. As time
passes, agents’ average beliefs converge towards their true ability, but average biases
remain even after 100 periods.

The remaining panels of Fig. 1 fix α = 0, so that the variance of rewards is inde-
pendent of effort in these three panels. The top right panel plots the distribution of μi t

for t ∈ {1, 2, 3, 4, 5, 10}. μi1 is normally distributed but the other distributions are
skewed.31 The distribution ofμi t becomes progressively narrower as data accumulate.

The lower left panel of Fig. 1 shows that μ̄1 equals z̄ but μ̄t drops below z̄ for t > 1.
μ̄t does approach z̄ again as t goes to infinity, but this approach is slow. The maximum
average bias arises in period 4. The average bias is still 78% of this maximum in period
10 and 12% of this maximum in period 100. The circles show that agents’ uncertainty
about their ability does decline quickly as they observe additional data, but their beliefs
nonetheless remain biased on average.

The lower right panel plots Cov[μi t , wi t ] (crosses) as well as the correlation (cir-
cles) between μi t and wi t . The covariance and correlation are positive because agents
with large μi t choose high effort eit and because wi t increases in eit . The covariance
is especially positive in early periods when agents are most uncertain about their own
ability. The covariance approaches zero after the first few periods not because μi t and
wi t become uncorrelated over long horizons (the correlation in fact remains clearly

31 This skew arises because, first, μi(t+1) depends on wi t (which is a nonlinear function of μi t ) and,
second, because the realized signal πi t /eit is a nonlinear function of eit . Both sources of skewness vanish
when f (eit ) = A e2i t for some A > 0.
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Fig. 1 The top left panel varies χ(·) = α. In the top right panel, labels indicate the period t . In the other
panels, χ(·) = α = 0. The dashed horizontal (vertical) line in the top left (right) panel indicates the true
ability zi = z̄ = 20. All plots sample one million trajectories for εi t

positive even at long horizons) but because the variance of each variable declines
strongly as agents become more certain of their ability.

6 Application: conditionally vague feedback frommanagement

Organizations may want to induce overconfidence in their employees (Gibbs 1991;
Gervais and Goldstein 2007; Hoffman and Burks 2020), especially when effort and
ability are complementary. The present analysis suggests a novel way that a principal
can manage an agent’s confidence without deceit. The principal need only commit to
giving the agent more information after low-effort performances than after high-effort
performances. This conditionally vague feedback rule helps the agent to learn away
mistakenly low beliefs about her own ability faster than she learns away mistakenly
high beliefs.

For example, an employer could require one-on-one performance reviews with
underperforming employees but not with overperforming employees. In these reviews,
employees would gain insight into other factors that could have affected performance,
such as broader market conditions. Underperforming employees would quickly learn
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away shocks due to bad luck, but overperforming employees would only slowly learn
away shocks due to good luck.

As a second example, managers who rate their employees’ performance could
finely divide ratings among underperforming employees—highlighting the degree
to which their performance was merely bad luck—while compressing ratings for
highly performing employees. Indeed, Cappelli and Conyon (2018), among others,
find evidence of just such a skew in the distribution of employee ratings.32

These types of interventions do not require the employer to know workers’ true
abilities. Instead, these interventions require the employer to have additional informa-
tion about shocks that affect employees’ outcomes and to commit to rules governing
the detail of feedback given. Because that feedback is honest, employees have no
incentive to alter their behavior based on knowledge of this feedback rule. Employees
who understand the feedback rule may understand that it tends to make employees
overconfident on average, but any individual employee can do no better than to update
as a Bayesian based on the information received and the effort choices made.

To formalize such stories, adopt the setting of Sect. 4, with �i0 small relative to
(bi − ai )

2 and with μi0 = zi (i.e., δ = 0 in Assumption 2). Agent i is an employee
with cost function ci (eit ) = 0.5e2i t , so that the first-order condition implies e∗

i t = μi t .
The manager knows the employee’s true ability zi and observes the employee’s effort.
The manager chooses how the variance of the signal (i.e., of the feedback) that the
employee receives changes with the employee’s effort. In particular, parameterize
f (eit ) = eα

i t (so that χ(eit ) � eit f ′(eit )/ f (eit ) = α) and consider a manager
choosing the parameterα. Themanager pays a costC(α) to deviate from some baseline
feedback level ᾱ, where C(α) = 0.5(α − ᾱ)2.

The manager chooses α before period 0. After the manager chooses α, she
announces it to the employee. The employee proceeds to choose time 0 effort, update
as a Bayesian based on the time 0 signal and the known α, and so on through sub-
sequent periods. The manager seeks to maximize expected period 2 effort, net of the
costs of choosing α33:

max
α

{
E0[e∗

i2(μi2)|zi ] − C(α)
}
.

where μi2 follows (18) and expectations are over the sequences of shocks that the
employee may receive. Taking a first-order approximation to the manager’s objective
around μi2 = zi (which is a good approximation for either �i0 or σ 2 small) and
substituting e∗′

i t = 1, the manager’s problem becomes:

max
α

{E0[μi2 − zi |zi ] − C(α)} .

32 Cappelli and Conyon (2018) also report that ratings vary over time for a given employee, apparently
responding to performance (as required to match the present setting).
33 Observe that the manager has no ability to affect expected effort in period 1 because the linear updating
rule and symmetric shocks imply that E0[μi1] = μi0, as in equation (6).
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For �i0 small, equation (4) approximately holds and so does (11). The manager’s
problem becomes

max
α

{
−wi0(1 − wi0)�i0E0

[
∂w(ei1, �i1)

∂ei1

dei1(μi1)

dμi1

∣∣∣∣ zi

]
− C(α)

}
,

which is equivalent to

max
α

{

−(2 − α)wi0(1 − wi0)�i0E0

[
�−1

i1

�−1
i1 + e2−α

i1

e1−α
i1

�−1
i1 + e2−α

i1

∣∣∣∣∣
zi

]

− C(α)

}

.

The first-order condition is:

α =ᾱ + wi0(1 − wi0)�i0E

[
(1 − wi1)

wi1

ei1

∣∣∣∣ zi

]

− (2 − α)wi0(1 − wi0)�i0E

[
(1 − wi1)

wi1

ei1
ln ei1[2wi1 − 1]

∣∣∣∣ zi

]
.

Let ᾱ = 2, so that a manager who chose not to spend any time or resources to
modify feedback would leave the employee with ∂wi1/∂ei1 = 0 and thus retaining,
in expectation, well-calibrated beliefs in period 2. Using the first-order condition, for
α = 2 to be the manager’s optimal choice, it would have to be the case that

wi0(1 − wi0)�i0E

[
(1 − wi1)

wi1

ei1

∣∣∣∣ zi

]
=0.

But this condition clearly does not hold when�i0, σ
2 > 0. So themanager does spend

resources to choose α∗ that will lead to expected misplaced confidence in period 2.
Will the manager choose to make the employee over- or underconfident in expec-

tation? With ᾱ = 2, the manager’s optimal α∗ satisfies:

α∗ =2 +
wi0(1 − wi0)�i0E

[
(1 − wi1)

wi1
ei1

∣∣∣ zi

]

1 − wi0(1 − wi0)�i0E
[
(1 − wi1)

wi1
ei1

ln ei1[2wi1 − 1]
∣∣∣ zi

] .

For μi0 and zi large and �i0 small, ln ei1 is strictly positive along most trajectories.
And for�i0 small,wi1 < 0.5. In such a case, the denominator on the right-hand side is
strictly positive and themanager choosesα∗ > 2.And per Proposition 3, themanager’s
choice α∗ > 2 induces the employee to become overconfident in expectation.34

This example shows that amanager who understands how employees update beliefs
may choose to manipulate the variance of the feedback that an employee receives in
order to increase the employee’s expected effort. The employee understands that the
manager is choosing α∗ to induce overconfidence on average but can do no better

34 In general, it is ambiguous whether α∗ > 2 or < 2. Future work should analyze the various factors
determining how a manager should condition the variance of feedback on effort choices.
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than to update as a Bayesian given that choice of α∗. Future work could explore
more sophisticated strategies on the part of the manager. For instance, the manager
may choose not to disclose some shocks, may use a different functional form for
disclosure, or may vary the feedback rule over time. In addition, the present example
considers a manager’s ability to induce average overconfidence in a single employee,
where averaging is over states of the world. If we instead consider a manager’s ability
to induce overconfidence among a population of employees, then we would need to
consider the possibility that shocks are correlated across agents. Future work should
explore implications of that correlation.

7 Relation to empirical work on overconfidence

The critical ingredients for rational overconfidence to emerge from well-calibrated
beliefs are that ability and effort be complementary and that additional effort compli-
cate learning about ability from observed payoffs. I now consider how these conditions
fit prominent empirical work on overconfidence.

First, some of the most prominent field evidence for the importance of overconfi-
dence comes fromchief executive officers’ (CEOs’) investment decisions.Malmendier
and Tate (2005, 2015) measure overconfidence from how CEOs exercise the stock
options granted to them. They show that CEOs who are overconfident by this mea-
sure tend to invest more when cash flow is abundant, in accord with predictions. The
primary theoretical explanation for compensating executives (or other employees)
through stock options is that firm owners seek to resolve a principal-agent problem by
aligning owners’ and executives’ incentives but may be constrained from providing
such incentives through salary adjustments or bonuses (Hall and Liebman 1998). In the
benchmark principal-agent framework, the executive’s action space is effort (Murphy
1999), implying stock options may seek to induce additional effort. Stock options are
more commonly granted to executives than to salariedworkers and are least commonly
granted to hourly workers (Hall and Murphy 2002). If we (loosely) take executives as
being of higher ability, then one interpretation of remunerating through stock options
is that principals believe it is especially important to induce effort from high-ability
employees, as when effort and ability are complementary. Further, increasing invest-
ment may increase the marginal effect of ability on firm value even as it increases
exposure to diverse stochastic factors. If the latter effect is sufficiently strong, exec-
utives may have a hard time learning away overconfidence. The critical ingredients
of the present model are in place, making CEOs’ overconfidence plausibly rational.
Future work should examine how overconfidence evolves following the types of high
cash flow events that encourage high investment.

Second, much empirical work considers overconfidence in investors (Daniel and
Hirshleifer 2015). In particular, overconfidence is linked to the volume of trade (e.g.,
Barber and Odean 2001). Barber and Odean (2002) show that investors begin trading
online just after they experience large returns, which the authors interpret as increasing
investors’ estimates of their own ability. Online trading enables greater effort by reduc-
ing frictions and providing more data to analyze. So one interpretation of investors
moving online after experiencing high returns is that they want to apply more effort,
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suggesting that investors view effort and ability as complementary. Graham et al.
(2009) show that investors with higher regard for their own ability tend to invest in
more asset classes (in particular, foreign markets). Investors will perceive unconven-
tional asset classes to be especially noisy if they do not understand them as well. The
critical ingredients of the present model are again in place. Rational investors might
learn away overconfidence relatively slowly, leading researchers to detect average
overconfidence among the population of investors.

Finally, some previous empirical work may not fit the present model. In particular,
Niederle and Vesterlund (2007) explore overconfidence in a laboratory environment.
They show that subjects of both genders perform significantly better on an addition
task when participating in a tournament instead of being paid piece-rate. One of their
explanations is that this improved performance is a response to incentives. If this is
the case, it seems likely that effort would be the mechanism, with effort responding
to incentives and mattering for performance. To learn whether effort and ability are
complementary, wewould like to knowwhether applyingmore effort improves higher-
ability subjects’ performance bymore. Unfortunately, this is difficult to assess from the
reported results. Future laboratory experiments should explore whether their subjects
and schemes are consistent with the present paper’s mechanism.

8 Related literature

The proposed mechanism for generating persistent over- or underconfidence appears
to be novel. A first set of papers describes agents’ motivations to become overcon-
fident, whether because optimism increases utility (Brunnermeier and Parker 2005)
or because confidence helps to overcome the tendency to procrastinate (Bénabou and
Tirole 2002). In contrast, the present setting is neoclassical: agents’ expected payoffs
are maximized when they correctly estimate their own ability.

A second set of papers generates overconfidence by assuming that individuals use a
biased updating process (see Hirshleifer 2001, 2015). For instance, individuals overly
attribute successes to their own ability and failures to chance (e.g., Daniel et al. 1998;
Gervais and Odean 2001), or individuals forget failures more often than successes
(Compte and Postlewaite 2004). The present setting generates persistent overconfi-
dence as a result of rational Bayesian learning.35

A third set of papers studies selection mechanisms that can make the majority of
a population of Bayesian updaters believe that each of their abilities are better than
average (e.g., Zábojník 2004;Köszegi 2006;Krähmer 2007; Jehiel 2018).When agents
choose to stop collecting information once they receive a sufficiently positive signal

35 Moore and Healy (2008) show howBayesian updating can generate overestimation if agents’ beliefs are
not initially well-calibrated. I show overestimation emerging even when prior beliefs do not already demon-
strate overestimation. Benoît and Dubra (2011) show how Bayesian updating can generate the appearance
of overplacement: if an event correlates with ability, then people who observe it conclude that they are
better than average, and if that event is also the most likely outcome for most people, then most people
rationally conclude that they are better than average. In that model, agents do not act on their beliefs about
their abilities, which limits the observable implications of their beliefs, and signals arrive exogenously,
which restricts their opportunities to learn their incorrect beliefs away. In the present model, overconfidence
affects observable effort choices and thereby affects agents’ payoffs and signals.
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about themselves or about the payoffs to some activity, high confidence is an absorbing
state that attracts an ever greater share of the population. These settings have the flavor
of bandit models, as there are actions that do not generate information about the
outcomes of other actions.36 In contrast, agents here never stop updating beliefs about
the payoffs from all possible actions. van den Steen (2004) also considers a selection
mechanism, with “overoptimism” emerging as a type of winner’s curse when agents
choose among a set of actions. Here average overconfidence emerges only over time,
as agents’ updated beliefs lead them to choose actions that have the side effect of
making the speed of learning asymmetric around their true ability.

The proposedmechanism is more closely related to two recent papers.37 First, Silva
(2017) demonstrates how the asymmetric speed at which agents learn following good
and bad shocks can generate systematic overconfidence in a two-period model with
normal distributions. The agent receives outside help following an early signal that
he is of high quality but not after an early signal that he is of low quality. Because
he is aware that he begins receiving help but does not know how good that help
is, an agent who saw a good outcome in the first period will weight that outcome
especially strongly when forming a posterior in period 2. The present paper is similar
in generating overconfidence when asymmetric rates of learning make the time t
posterior more sensitive to high rewards. However, here the mechanism is that agents
themselves affect their ability to learn from signals as a byproduct of their optimal
effort choices. I avoid postulating an additional source of noise that arises only after
certain types of rewards.38

Second, Hestermann and Le Yaouanq (2021) study an agent who is uncertain about
his own fixed ability and also about some feature of the environment. The agent learns
about both from a sequence of binary outcomes. If the agent is initially overconfident,
then he rationally believes that good outcomes reflect his own ability whereas bad
outcomes reflect a harsh environment. In this manner, overconfidence can persist for
some time. We here see how overconfidence and underconfidence can emerge and
persist even when agents’ initial beliefs are well-calibrated and even when agents
correctly understand their environments.39

Finally, some recent work considers how learning may confirm an agent’s over-
confidence. Heidhues et al. (2018) study when the actions chosen under an agent’s

36 A similar mechanism underpins the model of self-control in Ali (2011). Also, Deimen andWirtz (2022)
study a two-armed bandit model in which students who do not observe successes may stop choosing high
effort and thereby become persistently underconfident.
37 The proposed mechanism also shares features with the macro model of uncertainty over the business
cycle in Van Nieuwerburgh and Veldkamp (2006). There, asymmetric learning speeds arise because aggre-
gate production and the (uncertain) level of technology are complementary and chosen production levels
increase in beliefs about technology. That mechanism is a special case of the mechanism studied here.
Whereas asymmetric learning speeds there explain asymmetries over the course of a business cycle, I here
consider a stationary setting and show how asymmetric learning speeds can generate and sustain biased
mean beliefs.
38 On a technical level, the current paper generalizes beyond two periods and beyond normally distributed
shocks. Either generalization prevents closed-form solutions.
39 Hestermann and Le Yaouanq (2021) also analyze asymptotic beliefs when agents can experiment. As
in the third set of papers discussed above, overconfidence can persist due to decisions to stop collecting
information. That overconfidence does not impose costs on agents. In contrast, agents here never stop
experimenting and misplaced confidence is costly.
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permanentlymisspecifiedmodel of his own ability generate signals that do not lead the
agent to question his incorrect beliefs about his own ability.40 Fudenberg et al. (2017)
consider the interaction between learning and a form of misspecification that places
probability zero on the truth. In contrast, here agents have correctly specified models
of the world, long-run limit beliefs converge to the truth, and misplaced confidence
emerges endogenously rather than being imposed ex ante.41,42

9 Further work

We have seen that rational Bayesian agents become, on average, persistently over-
confident when additional effort makes it harder to learn from observed payoffs and
become, on average, persistently underconfident otherwise. The critical element is that
agents who believe themselves to be of high ability choose to exert more effort. These
results call for several further types of investigations. First, empirical research has
detected average overconfidence in several settings (see Sects. 1 and 7). Future work
should test how average misplaced confidence varies across environments based on
the relationships between effort and variance. Second, psychologists have connected
“explanatory styles” to a range of outcomes (Seligman 1991). Future work should test
the connection between explanatory styles and beliefs about how effort affects the
variance of rewards. Third, job search models with learning about ability (e.g., Papa-
georgiou 2014; Groes et al. 2015) should consider the consequences of endogenously
misplaced confidence, especially when the relationship between effort and variance
differs by occupation. Finally, future theoretical work should investigate the dynamics
of actual and estimated ability when ability is itself improved by the accumulation of
effort over time. Overconfidence may then be self-fulfilling: environments that lead
agents to become overconfident on averagemay also lead agents to attain higher ability
on average.

40 Heidhues et al. (2018) allow for learning about one’s own ability in an extension to their primary setting.
There, learning generates overconfidence because they assume that the agent sees a biased signal of his
ability. This extension is closely related to the papers discussed in the second paragraph of this section.
41 An earlier working paper version generalized the setting to allow agents to have misspecified models
of the relationship between variance and effort. It showed that what determines whether underconfidence
or overconfidence emerges is not the true data generating process but agents’ beliefs about that process
(i.e., the stories agents tell themselves about the relationship between effort and variance). The reason is
that beliefs about the data generating process drive agents’ asymmetric rates of learning from good and bad
shocks.
42 Nielsen (2018) considers welfare evaluations in the presence of “rational overconfidence”, which they
define as a case in which agents’ misspecified models of the world each match empirical averages but are,
on average, overly precise. My version of rational overconfidence emerges dynamically from Bayesian
updating and optimized effort choices, as opposed to being postulated directly.
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10 Further analysis

10.1 Useful results for Sect. 3

Working backwards through time,

μi t − zi =wi(t−1)

ei(t−1)
νi(t−1) + (1 − wi(t−1))(μi(t−1) − zi )

=λ

t∑

j=1

⎛

⎝
j−1∏

k=1

(1 − wi(t−k))

⎞

⎠ wi(t− j)

ei(t− j)
νi(t− j)

+
(

t−1∏

k=1

(1 − wi(t−k))

)

(1 − wi0)[μi0 − zi ] (18)

when effort choices are nonzero. From the law of iterated expectations,

∫ 1

0
[μi t − zi ] di =λ

t∑

j=2

∫ 1

0

wi(t− j)

ei(t− j)
Covi(t− j)|zi

⎡

⎣
j−1∏

k=1

(1 − wi(t−k)), νi(t− j)

⎤

⎦ di

+
∫ 1

0

(
t−1∏

k=1

(1 − wi(t−k))

)

(1 − wi0)[μi0 − zi ] di, (19)

where Covi(t− j)|zi is the covariance conditional on zi and on νi(t− j−h), for h ∈
{1, ..., t − j}. Consider a case in which agents’ beliefs are initially well-calibrated,
meaning that μi0 = zi . If the covariance is negative (positive) for all i and j , then
μ̄t < (>) z̄, indicating average underconfidence (overconfidence). A negative covari-
ance means that observing large values of πi t/eit induces agent i to place additional
weight on later periods’ news shocks and less weight on later periods’ priors. Thus,
observing a signal of high ability undercuts itself: by altering later effort choices, it
induces agent i to downweight this same signal when forming later posteriors. Agents’
posteriors end up driven by the more pessimistic signals of ability. Conversely, a posi-
tive covariance means that observing a large value of πi t/eit makes agent i’s posterior
less sensitive to later signals. Agents’ posteriors end up driven by the more optimistic
signals of ability.

It is again true that agents’ beliefs are not biased on average in period 1 if agents’
beliefs are initially well-calibrated:

μ̄1 =
∫ 1

0
[(1 − wi0)μi0 + wi0zi ] di

∈
[

z̄ − δ

∫ 1

0
(1 − wi0) di, z̄ + δ

∫ 1

0
(1 − wi0) di

]
,
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so that μ̄1 = z̄ if μi0 = zi for all i (i.e., if Assumption 2 holds with δ = 0). Now
consider subsequent periods. The following lemma relates effort to the weight placed
on the signal in agents’ updating equations:

Lemma 2 (Updating and Effort) Let Assumptions 1 and 2 hold. Then:

i

dwi0/dei0 > 0 if
∂Vi (μi0; ei0)

∂ei0
< 0 and

dζi2

dei0
≤ 0,

ii

dwi0/dei0 < 0 if
∂Vi (μi0; ei0)

∂ei0
> 0 and

dζi2

dei0
≥ 0

Proof Agents set their priors independently of ei0, so the variance of the prior must
be independent of ei0. Differentiating Ṽi0 with respect to ei0, setting the derivative to
zero, and rearranging, we have, for all ei0 > 0,

dni0

dei0
=∂Vi (μi0; ei0)

∂ei0

ni0 − ζi2(ei0)

Vi (μi0; ei0)
+ dζi2

dei0
.

Under the conditions of part (i), this implies that dni0/dei0 < 0 and, because wi0 �
1/(ni0 + 1) from (16), that dwi0/dei0 > 0. Under the conditions of part (ii), this
implies that dni0/dei0 > 0 and that dwi0/dei0 < 0.

	

As is intuitive, agents’ sensitivity to new information increases in effort (and thus in
confidence) if additional effort reduces the variance of the signal and decreases in
effort if additional effort increases the variance of the signal.

10.2 Proof of Proposition 1

Because an NEF is characterized by its variance function (e.g., Morris 1982),43 we
can write wi t � w(μi t , Ṽi t (μi t )). Fix eit and consider two possible signals s H and sL

received at times t − 1 and t . From equation (2.10) of Diaconis and Ylvisaker (1979),
μi(t+1) does not depend on the order in which the signals were received. Therefore

(1 − wL
it )(1 − wi(t−1))μi(t−1) + (1 − wL

it )wi(t−1)s
L + wL

it s
H

= (1 − wH
it )(1 − wi(t−1))μi(t−1) + (1 − wH

it )wi(t−1)s
H + wH

it sL , (20)

with wk
i t indicating wi t following si(t−1) = sk . This equation defines wL

it as a function
ofwH

it , s
H , and sL . ButwL

it cannot depend on the value of s H becausewL
it is determined

43 Technically, an NEF is characterized by the combination of its variance function and the domain of its
variance function, but we will not be varying the latter.
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before knowing that sit = s H . ThereforewL
it = (1−wH

it )wi(t−1). Substituting in,wH
it

is independent of sL if and only if

wH
it = wi(t−1) − (wi(t−1))

2

1 − (wi(t−1))2
.

In that case, wH
it = wL

it and (20) holds. Therefore wi t does not depend on μi t if eit is
fixed.

Taylor-expanding wi t around μi0 and using the foregoing result, we have

wi t =wi0 + dwi0

dei0

dei0

dμi0
(μi t − μi0) + Rit , (21)

where Rit is a polynomial that is O(μi t − μi0)
2 as (μi t − μi0) → 0 and thus, using

Assumption 2, as (δ + λ) → 0. Observe that:

(μi t − μi0)
2 =[μi t − zi ]2 + [μi0 − zi ]2 − 2[μi t − zi ][μi0 − zi ].

Use (18):

(μi t − μi0)
2 = [μi0 − zi ]2

{
1 − 2

(
t−1∏

k=1

(1 − wi(t−k))

)

(1 − wi0)

+
(

t−1∏

k=1

(1 − wi(t−k))

)2

(1 − wi0)
2
}

+ 2λ[μi0 − zi ]
{(t−1∏

k=1

(1 − wi(t−k))

)

(1 − wi0) − 1

}

t∑

j=1

⎛

⎝
j−1∏

k=1

(1 − wi(t−k))

⎞

⎠ wi(t− j)

ei(t− j)
νi(t− j)

+ λ2
{ t∑

j=1

⎛

⎝
j−1∏

k=1

(1 − wi(t−k))

⎞

⎠ wi(t− j)

ei(t− j)
νi(t− j)

}2
. (22)

The third line is of order λ2. Under Assumption 2, the first line is of order δ2 and
the second line is of order δλ. Then (μi t − μi0)

2 is O((δ + λ)2
)
, and thus Rit is

O((δ + λ)2
)
as (δ + λ) → 0.

I now prove (i) by induction. The proof of (ii) is directly analogous.
Induction step for part (i):
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The induction hypothesis is that
∫ 1
0 [μi N − zi ] di < 0 for some N > 1. Assump-

tions 1 and 2 ensure that μi N > 0 and ei N > 0. From equation (19),

∫ 1

0
[μi(N+1) − zi ] di =λ

N+1∑

j=2

∫ 1

0

[
wi(N+1− j)

ei(N+1− j)
Covi(N+1− j)|zi

⎡

⎣
j−1∏

k=1

(1 − wi(N+1−k)), νi(N+1− j)

⎤

⎦

⎤

⎦ di

+
∫ 1

0

(
N∏

k=1

(1 − wi(N+1−k))

)

(1 − wi0)[μi0 − zi ] di .

Pull 1 − wi N out of the product inside the covariance operator and linearly distribute
the operator:

∫ 1

0
[μi(N+1) − zi ] di = λ

N+1∑

j=2

∫ 1

0

[
wi(N+1− j)

ei(N+1− j)
Covi(N+1− j)|zi

⎡

⎣
j−1∏

k=2

(1 − wi(N+1−k)), νi(N+1− j)

⎤

⎦

⎤

⎦ di

− λ

N+1∑

j=2

∫ 1

0

[
wi(N+1− j)

ei(N+1− j)
Covi(N+1− j)|zi

⎡

⎣wi N

j−1∏

k=2

(1 − wi(N+1−k)), νi(N+1− j)

⎤

⎦

⎤

⎦ di

+
∫ 1

0

(
N∏

k=1

(1 − wi(N+1−k))

)

(1 − wi0)[μi0 − zi ] di .

The summand in the top line is zero for j = 2. Relabel the indices in the top line to
obtain

∫ 1

0
[μi(N+1) − zi ] di = λ

N∑

j=2

∫ 1

0

[
wi(N− j)

ei(N− j)
Covi(N− j)|zi

⎡

⎣
j−1∏

k=1

(1 − wi(N−k)), νi(N− j)

⎤

⎦

⎤

⎦ di

− λ

N+1∑

j=2

∫ 1

0

[
wi(N+1− j)

ei(N+1− j)
Covi(N+1− j)|zi
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⎡

⎣wi N

j−1∏

k=2

(1 − wi(N+1−k)), νi(N+1− j)

⎤

⎦

⎤

⎦ di

+
∫ 1

0

(
N∏

k=1

(1 − wi(N+1−k))

)

(1 − wi0)[μi0 − zi ] di .

Substitute for the top line from (19):

∫ 1

0
[μi(N+1) − zi ] di =

∫ 1

0
[μi N − zi ] di

− λ

N+1∑

j=2

∫ 1

0

wi(N+1− j)

ei(N+1− j)
Covi(N+1− j)|zi

⎡

⎣wi N

j−1∏

k=2

(1 − wi(N+1−k)), νi(N+1− j)

⎤

⎦ di

+
∫ 1

0

(
N∏

k=1

(1 − wi(N+1−k))

)

(1 − wi0)[μi0 − zi ] di

−
∫ 1

0

(
N−1∏

k=1

(1 − wi(N−k))

)

(1 − wi0)[μi0 − zi ] di

=
∫ 1

0
[μi N − zi ] di

− λ

N+1∑

j=2

∫ 1

0

wi(N+1− j)

ei(N+1− j)
Covi(N+1− j)|zi

⎡

⎣wi N

j−1∏

k=2

(1 − wi(N+1−k)), νi(N+1− j)

⎤

⎦ di

+
∫ 1

0

(
N−1∏

k=1

(1 − wi(N−k))

)

(1 − wi N )(1 − wi0)[μi0 − zi ] di

−
∫ 1

0

(
N−1∏

k=1

(1 − wi(N−k))

)

(1 − wi0)[μi0 − zi ] di

=
∫ 1

0
[μi N − zi ] di

− λ

N+1∑

j=2

∫ 1

0

wi(N+1− j)

ei(N+1− j)
Covi(N+1− j)|zi
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⎡

⎣wi N

j−1∏

k=2

(1 − wi(N+1−k)), νi(N+1− j)

⎤

⎦ di

−
∫ 1

0
wi N

(
N−1∏

k=1

(1 − wi(N−k))

)

(1 − wi0)[μi0 − zi ] di .

The induction hypothesis then implies

∫ 1

0
[μi(N+1) − zi ] di < − λ

N+1∑

j=2

∫ 1

0

wi(N+1− j)

ei(N+1− j)
Covi(N+1− j)|zi

⎡

⎣wi N

j−1∏

k=2

(1 − wi(N+1−k)), νi(N+1− j)

⎤

⎦ di

−
∫ 1

0
wi N

(
N−1∏

k=1

(1 − wi(N−k))

)

(1 − wi0)[μi0 − zi ] di .

Substitute for wi N from (21) to obtain:

∫ 1

0
[μi(N+1) − zi ] di

< −λ

N∑

j=1

∫ 1

0

dwi0

dei0

dei0

dμi0

wi(N− j)

ei(N− j)
Covi(N− j)|zi

⎡

⎣(μi N − zi )

j−1∏

k=1

(1 − wi(N−k)), νi(N− j)

⎤

⎦ di

−
∫ 1

0
wi N

(
N−1∏

k=1

(1 − wi(N−k))

)

(1 − wi0)[μi0 − zi ] di

− λ

N∑

j=1

∫ 1

0

wi(N− j)

ei(N− j)
Covi(N− j)|zi

⎡

⎣Ri N

j−1∏

k=1

(1 − wi(N−k)), νi(N− j)

⎤

⎦ di .

Define

Xi(N+1) �
N∑

j=1

∫ 1

0

wi(N− j)

ei(N− j)
Covi(N− j)|zi

⎡

⎣Ri N

j−1∏

k=1

(1 − wi(N−k)), λνi(N− j)

⎤

⎦ di .

From (22) and Assumption 2, Xi(N+1) is O
(
(δ + λ)2

)
as (δ + λ) → 0.
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Use the relationship between covariances and expectations, the fact that the νi t are
mean-zero, and the law of iterated expectations:

∫ 1

0
[μi(N+1) − zi ] di < − λ

∫ 1

0

dwi0

dei0

dei0

dμi0
(μi N − zi )

N∑

j=1

wi(N− j)

ei(N− j)
νi(N− j)

j−1∏

k=1

(1 − wi(N−k)) di

−
∫ 1

0
wi N

(
N−1∏

k=1

(1 − wi(N−k))

)

(1 − wi0)[μi0 − zi ] di

−
∫ 1

0
Xi(N+1) di .

Substitute for the summation on the top line from (18):

∫ 1

0
[μi(N+1) − zi ] di

< −
∫ 1

0

dwi0

dei0

dei0

dμi0
(μi N − zi )

2 di

−
∫ 1

0
wi N

(
N−1∏

k=1

(1 − wi(N−k))

)

(1 − wi0)[μi0 − zi ] di

+
∫ 1

0

dwi0

dei0

dei0

dμi0
(μi N − zi )

(
N−1∏

k=1

(1 − wi(N−k))

)

(1 − wi0)[μi0 − zi ] di

−
∫ 1

0
Xi(N+1) di .

Substitute for wi N from (21):

∫ 1

0
[μi(N+1) − zi ] di +

∫ 1

0
Xi(N+1) di

+
∫ 1

0
Ri N

(
N−1∏

k=1

(1 − wi(N−k))

)

(1 − wi0)[μi0 − zi ] di

< −
∫ 1

0

dwi0

dei0

dei0

dμi0
(μi N − zi )

2 di

−
∫ 1

0
wi0

(
N−1∏

k=1

(1 − wi(N−k))

)

(1 − wi0)[μi0 − zi ] di .

123



Rationally misplaced confidence

The right-hand side is weakly negative. The second and third integrals on the left-hand
side are each O((δ + λ)2

)
as (δ + λ) → 0. So for (δ + λ) sufficiently small,

∫ 1

0
[μi(N+1) − zi ] di < 0.

We have proved the induction step.
Basis step for part (i):
From (17) and properties of νi1,

∫ 1

0
[μi2 − zi ] di =

∫ 1

0

[
(1 − wi1)(μi1 − zi ) + λ

wi1

ei1
νi1

]
di

=
∫ 1

0

[
(1 − wi1)(1 − wi0)(μi0 − zi ) + λ(1 − wi1)

wi0

ei0
νi0 + λ

wi1

ei1
νi1

]
di

=
∫ 1

0

[
(1 − wi1)(1 − wi0)(μi0 − zi ) + λ(1 − wi1)

wi0

ei0
νi0

]
di .

Substitute for wi1 from (21) and use properties of νi0:

∫ 1

0
[μi2 − zi ] di =

∫ 1

0
(1 − wi1)(1 − wi0)(μi0 − zi ) di

− λ

∫ 1

0

dwi0

dei0

dei0

dμi0
(μi1 − zi )

wi0

ei0
νi0 di

− λ

∫ 1

0
Ri1

wi0

ei0
νi0 di .

Use (16) and properties of νi0:

∫ 1

0
[μi2 − zi ] di + λ

∫ 1

0
Ri1

wi0

ei0
νi0 di = − λ2

∫ 1

0

dwi0

dei0

dei0

dμi0

(
wi0

ei0

)2

ν2i0 di

+
∫ 1

0
(1 − wi1)(1 − wi0)(μi0 − zi ) di .

Assumption 2 implies

∫ 1

0
[μi2 − zi ] di + λ

∫ 1

0
Ri1

wi0

ei0
νi0 di < − λ2

∫ 1

0

dwi0

dei0

dei0

dμi0

(
wi0

ei0

)2

ν2i0 di

+ δ

∫ 1

0
(1 − wi1)(1 − wi0) di .

The right-hand side is strictly negative for all δ < δ̂ when δ̂ is defined as

δ̂ �
λ2
∫ 1
0

dwi0
dei0

dei0
dμi0

(
wi0
ei0

)2
ν2i0 di

∫ 1
0 (1 − wi1)(1 − wi0) di

.
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dwi0/dei0 > 0 implies that δ̂ > 0, and Lemma 2 shows that the conditions in part (i)
imply that dwi0/dei0 > 0. The second integral on the left-hand side is O(λ(δ + λ)2

)

as (δ + λ) → 0. So for (δ + λ) sufficiently small, there exists ˆ̂
δ ∈ (0, δ̂) such that,

when the conditions of the proposition and δ ≤ ˆ̂
δ hold,

∫ 1

0
[μi2 − zi ] di < 0.

We have proved the basis step.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s00199-024-01618-0.
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