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Appendix

The first section contains additional analysis. The second section provides details for the
numerical examples. Subsequent sections contain proofs. Throughout, I use ℓ, k, e, r, and
y to denote per-capita variables, I use a ss subscript to denote a steady state, and I use gx
to indicate the instantaneous growth rate of variable x.

A Analysis of deposit-constrained degrowth, for tapped

resources with σ > 1

Consider the setting of Section 5, with σ > 1. When inputs are gross substitutes, the optimal
path may not be interior. Instead, it may be a corner solution in which energy inputs to
deposit-tapping completely crowd out other inputs to deposit-tapping (i.e., LR(t), KR(t) =
0). I analyze these balanced growth paths under log utility:

Proposition A-1 (Deposit-Constrained Degrowth with Tapped Resources). Let Assump-
tions 1 and 3 hold and fix σ > 1. Define ge as the growth rate of energy per capita, gy as
the growth rate of output per capita, gk as the growth rate of capital per capita, and χ as
in Proposition 5. If ρ − Ω is not too large and Ω − gL > ω

1−ω
(λ + gL), then there exists

X ≤ χ such that χ/X is strictly decreasing in σ, limσ→∞X = limσ→∞ χ, and AEQD > X
implies the existence of a balanced growth path with LR(t), KR(t) = 0 and with R(t)/L(t),
ER(t)/L(t), EY (t)/L(t), and Z(t)/L(t) all growing at rate ge ̸= 0. Along this path:

i gy = gk =
αE

αE+αL
ge.

ii ge ∈
(
− (ρ− Ω), 0

)
.

iii ge and Z(t)/ER(t) each decrease in AE and QD.

iv EROI(t) = 1 + AEQDκ
σ

σ−1

E
ge+gL

[ge+gL+λ](Ω−gL−ge)
ω

1−ω
.

Proof. See Appendix K.

When energy resources are sufficiently productive (i.e., AEQD is large), the growth rates
of output and energy are negative (parts i and ii). Reinvesting growing energy stocks in
deposit-tapping at a constant rate eats up the available deposits, as Z(t)/ER(t) falls in the
productivity of energy resources (part iii). The increasing scarcity of deposits restricts the
ability to produce further energy, so the growth rate of energy must also fall until the rate
of energy reinvestment comes into equilibrium with the rate of deposit finds (part iii).

This is a scenario of deposit-constrained degrowth. The economy accumulates a lot of
spare energy. Deposits are scarce relative to energy, so their availability constrains how
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much of the spare energy can be devoted to tapping new deposits. As a result, a large share
of the energy produced is devoted to final good production (eR(t)/e(t) is small) and thus
to consumption. Nonetheless, the available deposits decline over time as they are exploited
via energy inputs faster than they are found. Energy production falls with deposits, and
consumption falls over time as available energy falls, albeit from a potentially high level that
was enabled by the high productivity of energy deposits.

B Numerical Implementation

I implement the model by discretizing the transition equations over a one-year timestep. I
determine the economy’s path over 400 years by solving the social planner’s problem. The
control variables comprise the factor allocations and the state variables, with the transition
and market-clearing equations serving as constraints. I use the Knitro solver’s interior-point
algorithm in Matlab. I provide an analytic gradient and an analytic Hessian.

I fix the annual growth rate of population to gL = 0.01, which is roughly in keeping with
the recent growth rate of world population and only a bit higher than the pre-1900 growth
rate.38 I fix the saving rate to s = 0.25, which is in keeping with the global rate.39 I set
the value share of energy in final good production to αE = 0.05, which is around the value
in the U.S. over the past decades (Hassler et al., 2021; Orak and Çakır Melek, 2021). I
then set αK/(1− αE) = 0.2632 to match the capital share relative to labor in Hassler et al.
(2021), which implies αK = 0.25 and αL = 0.7. Following Hassler et al. (2021), the annual
utility discount rate is ρ = 0.0152 and the annual depreciation rate is δ = 0.05. I normalize
A(t) = 1 and assume log utility.

For the tapped resource, I calibrate the annual discovery rate Ω to the 11% growth in
global probable and proved oil reserves between 2000 and 2007 (Sorrell et al., 2012, 716).
This implies Ω = 0.015. I fix λ = 0.041 to the production-weighted aggregate annual decline
rate of all oil fields (Sorrell et al., 2012, 718). For the manufactured resource, I set λ = 0.005
based on the median annual degradation rate for silicon panels in Jordan and Kurtz (2013)
and Jordan et al. (2016).

For both the tapped and the manufactured resource, I fix κE = 0.5 and κK = 0.9 and I
normalize AE = 1 and ALK = 1. For the tapped resource, I fix ω = 0.5.

I calibrate QD and QS to the EROI of oil and solar resources. First, I fix the EROI
of each resource to an average from Supplementary Table 1 of Slameršak et al. (2022): I
set the EROI of the tapped resource to 10.65 following their analysis of gas-to-electricity,
and I set the EROI of the manufactured resource to 7.75 following their analysis of solar
photovoltaics. Second, I use equation (A-20) to obtain the eRss/ess that must hold in steady

38https://en.wikipedia.org/wiki/Human_population_projections#/media/File:World_

population_growth,_1700-2100,_2022_revision.png
39https://data.worldbank.org/indicator/NE.GDI.FTOT.ZS
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state. Finally, I back out QD or QS from that and (A-34). When exploring values of QD or
QS that do not yield energy-enabled growth, I set the relevant parameter to twice or half of
the boundary value χ, depending on which boundary I want to violate.

I set the initial resource stock to R0 = 100 and the initial deposit stock to Z0 = 1000.
I follow DICE-2016R (Nordhaus, 2017) in setting the initial capital stock to K0 = 223, in
trillion year 2010 dollars.

C Proof of Proposition 1

Equilibrium solves the following maximization problem:

max
LY (·),KY (·),LE(·),KE(·)

∫ ∞

0

e−ρtL(t)u

(
(1− s)A(t)LY (t)

αLKY (t)
αKE(t)αE

L(t)

)
dt

s.t. Ȧ(t) =gAA(t)

L̇(t) =gLL(t)

K̇(t) =sALY (t)
αLKY (t)

αKE(t)αE − δK(t)

E(t) =QHLE(t)
ϕHLKE(t)

ϕHKRϕHR

L(t) =LY (t) + LE(t)

K(t) =KY (t) +KE(t).

Converting to per-capita and substituting, this is equivalent to:

max
ℓY (·),kY (·)

∫ ∞

0

e−(ρ−gL)tu

(
(1− s)A(t)ℓY (t)

αLkY (t)
αK

[
QH [1− ℓY (t)]

ϕHL [k(t)− kY (t)]
ϕHKr(t)ϕHR

]αE
)
dt

s.t. Ȧ(t) =gAA(t)

k̇(t) =sAℓY (t)
αLkY (t)

αK

[
QH [1− ℓY (t)]

ϕHL [k(t)− kY (t)]
ϕHKr(t)ϕHR

]αE

− (δ + gL)k(t)

ṙ(t) =− gLr(t).

The current-value Hamiltonian is:

u

(
(1− s)A(t)ℓY (t)

αLkY (t)
αK

[
QH [1− ℓY (t)]

ϕHL [k(t)− kY (t)]
ϕHKr(t)ϕHR

]αE
)

+ ν(t)

[
sAℓY (t)

αLkY (t)
αK

[
QH [1− ℓY (t)]

ϕHL [k(t)− kY (t)]
ϕHKrϕHR

]αE

− (δ + gL)k(t)

]
− µ(t)gLr(t) + ψ(t)gAA(t).
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The conditions to maximize the Hamiltonian are:

0 =

[
(1− s)u′((1− s)y(t)) + sν(t)

][
αL

ℓY (t)
− αEϕHL

1− ℓY (t)

]
y(t),

0 =

[
(1− s)u′((1− s)y(t)) + sν(t)

][
αK

kY (t)
− αEϕHK

k(t)− kY (t)

]
y(t).

Together, these imply:

ℓY (t) =
αL

αL + αEϕHL

,

kY (t) =
αK

αK + αEϕHK

k(t).

Substituting, we find

E(t) =QH

(
αEϕHL

αL + αEϕHL

L(t)

)ϕHL
(

αEϕKL

αK + αEϕHK

K(t)

)ϕHK

RϕHR

and

Y (t) =A(t)

(
αL

αL + αEϕHL

)αL
(

αK

αK + αEϕHK

)αK

[
QH

(
αEϕHL

αL + αEϕHL

)ϕHL
(

αEϕKL

αK + αEϕHK

)ϕHK

RϕHR

]αE

L(t)αL+αEϕHLK(t)αK+αEϕHK .

Define
AH(t) ≜ A(t)

1
1−αK−αE(ϕHK+ϕHR) .

Defining yH(t) ≜ Y (t)/[AH(t)L(t)] and analogously for the other variables, we find:

yH(t) =

(
αL

αL + αEϕHL

)αL
(

αK

αK + αEϕHK

)αK

[
QH

(
αEϕHL

αL + αEϕHL

)ϕHL
(

αEϕKL

αK + αEϕHK

)ϕHK

rH(t)
ϕHR

]αE

kH(t)
αK+αEϕHK ,

k̇H(t) =syH(t)−
(
δ + gL +

1

1− αK − αE(ϕHK + ϕHR)
gA

)
kH(t),

ṙH(t) =−
(
gL +

1

1− αK − αE(ϕHK + ϕHR)
gA

)
rH(t).

The growth rate of kH(t) is:

k̇H(t)

kH(t)
=sχHQ

αE
H rH(t)

αEϕHRkH(t)
αK+αEϕHK−1 −

(
δ + gL +

1

1− αK − αE(ϕHK + ϕHR)
gA

)
,
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where

χH ≜

(
αL

αL + αEϕHL

)αL
(

αK

αK + αEϕHK

)αK

[(
αEϕHL

αL + αEϕHL

)ϕHL
(

αEϕKL

αK + αEϕHK

)ϕHK

]αE

.

That growth rate is constant if and only if

rH(t)
αEϕHRkH(t)

αK+αEϕHK−1 =
1

sχHQ
αE
H

[
gk + δ + gL +

1

1− αK − αE(ϕHK + ϕHR)
gA

]
(A-1)

is constant. Observe that:

rH(t) = e
−

(
gL+

1
1−αK−αE(ϕHK+ϕHR)

gA

)
t

rH(0).

Substitute into (A-1):

kH(t) =

sχHQ
αE
H

e
−αEϕHR

(
gL+

1
1−αK−αE(ϕHK+ϕHR)

gA

)
t (

R
L(0)AH(0)

)αEϕHR

gk + δ + gL + 1
1−αK−αE(ϕHK+ϕHR)

gA



1
1−αK−αEϕHK

.

And thus:

k̇H(t)

kH(t)
=− αEϕHR

1− αK − αEϕHK

(
gL +

1

1− αK − αE(ϕHK + ϕHR)
gA

)
< 0.

The growth rate of output per capita is:

ẏ(t)

y(t)
=αEϕHR

ṙH(t)

rH(t)
+ [αK + αEϕHK ]

k̇H(t)

kH(t)
+
ȦH(t)

AH(t)

=
gA − αEϕHRgL

αL + αE(ϕHL + ϕHR)
.

The proposition follows.
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D Preliminaries for Propositions 3 and 4

Equilibrium solves the following maximization problem:

max
LY (·),KY (·),EY (·),LE(·),KE(·),LR(·),KR(·),ER(·)

∫ ∞

0

e−ρtL(t)u

(
(1− s)ALY (t)

αLKY (t)
αKEY (t)

αE

L(t)

)
dt

s.t. L̇(t) =gLL(t)

K̇(t) =sALY (t)
αLKY (t)

αKEY (t)
αE − δK(t)

Ż(t) =ΩZ(t)− Z(t)ωF (LR(t), KR(t), ER(t))
1−ω

Ṙ(t) =Z(t)ωF (LR(t), KR(t), ER(t))
1−ω − λR(t)

E(t) =QMLE(t)
ϕMLKE(t)

ϕMKR(t)ϕMR

L(t) =LY (t) + LE(t) + LR(t)

K(t) =KY (t) +KE(t) +KR(t)

E(t) =EY (t) + ER(t).

Converting to per-capita and substituting, this is equivalent to:

max
ℓE(·),kE(·),ℓR(·),kR(·),eR(·)

∫ ∞

0

e−(ρ−gL)tu

(
(1− s)A

[
1− ℓE(t)− ℓR(t)

]αL
[
k(t)− kE(t)− kR(t)

]αK

[
QMℓE(t)

ϕMLkE(t)
ϕMKr(t)ϕMR − eR(t)

]αE
)
dt

s.t. k̇(t) =sA

[
1− ℓE(t)− ℓR(t)

]αL
[
k(t)− kE(t)− kR(t)

]αK

[
QMℓE(t)

ϕMLkE(t)
ϕMKr(t)ϕMR − eR(t)

]αE

− (δ + gL)k(t)

ż(t) =(Ω− gL)z(t)− z(t)ωF (ℓR(t), kR(t), eR(t))
1−ω

ṙ(t) =z(t)ωF (ℓR(t), kR(t), eR(t))
1−ω − (λ+ gL)r(t).

The following lemma establishes that any balanced growth path with interior solutions
must have variables growing at the rate of population:

Lemma A-2. A balanced growth path with LR(t), KR(t), ER(t) > 0 must have all variables
growing at the rate of population.

Proof. Use gx to indicate the instantaneous growth rate of variable x. From the transition
equation for z(t), ż(t)/z(t) is constant if and only if F (ℓR(t), kR(t), eR(t))/z(t) is constant.
From the transition equation for r(t), ṙ(t)/r(t) can be constant with F (ℓR(t), kR(t), eR(t))/z(t)
constant if and only if F (ℓR(t), kR(t), eR(t))/r(t) is constant. Therefore, if gz and gr are each
constant, then gz = gr = gF/L.

A-6



Lemoine Energy and Growth May 2025

If gF/L ̸= 0 and eR and kR grow at constant rates, then ℓR must grow at a constant rate.
The constant growth rate of ℓR cannot be strictly positive because ℓR is bounded above by
1. The constant growth rate of ℓR cannot be strictly negative because the (full employment)
labor constraint implies that ℓY and/or ℓE must grow at a strictly positive rate yet these
variables are each bounded above by 1. Therefore a constant growth rate of ℓR must be zero.
If gF/L, gkR , and geR are also to be constant, then gF/L, gkR , geR = 0. That implies gz, gr = 0.
It follows straightforwardly that the remaining variables (in per capita form) also grow at
rate zero.

So we seek a steady state in per-capita variables. The current-value Hamiltonian is:

u

(
(1− s)A

[
1− ℓE(t)− ℓR(t)

]αL
[
k(t)− kE(t)− kR(t)

]αK
[
QMℓE(t)

ϕMLkE(t)
ϕMKr(t)ϕMR − eR(t)

]αE
)

+ ν(t)

(
sA

[
1− ℓE(t)− ℓR(t)

]αL
[
k(t)− kE(t)− kR(t)

]αK
[
QMℓE(t)

ϕMLkE(t)
ϕMKr(t)ϕMR − eR(t)

]αE

− (δ + gL)k(t)

)
+ γ(t)

[
(Ω− gL)z(t)− z(t)ωF (ℓR(t), kR(t), eR(t))

1−ω

]
+ µ(t)

[
z(t)ωF (ℓR(t), kR(t), eR(t))

1−ω − (λ+ gL)r(t)

]
.

The costate equations are:

(ρ− gL)ν(t)− ν̇(t) =

[
(1− s)u′((1− s)y(t)) + sν(t)

]
αKy(t)

kY (t)
− (δ + gL)ν(t)

⇔ ν̇(t) =−
[
(1− s)u′((1− s)y(t)) + sν(t)

]
αKy(t)

kY (t)
+ (ρ+ δ)ν(t), (A-2)

(ρ− gL)γ(t)− γ̇(t) =γ(t)(Ω− gL) +

[
µ(t)− γ(t)

]
ω

(
F (ℓR(t), kR(t), eR(t))

z(t)

)1−ω

⇔ γ̇(t) =γ(t)(ρ− Ω)−
[
µ(t)− γ(t)

]
ω

(
F (ℓR(t), kR(t), eR(t))

z(t)

)1−ω

, (A-3)

(ρ− gL)µ(t)− µ̇(t) =− µ(t)(λ+ gL) +

[
(1− s)u′((1− s)y(t)) + sν(t)

]
αEϕMRy(t)

eY (t)

e(t)

r(t)

⇔ µ̇(t) =µ(t)(ρ+ λ)−
[
(1− s)u′((1− s)y(t)) + sν(t)

]
αEϕMRy(t)

eY (t)

e(t)

r(t)
. (A-4)
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The conditions to maximize the Hamiltonian are:

0 =

[
(1− s)u′((1− s)y(t)) + sν(t)

][
αEϕML

eY (t)

e(t)

ℓE(t)
− αL

ℓY (t)

]
y(t), (A-5)

0 =

[
(1− s)u′((1− s)y(t)) + sν(t)

][
αEϕMK

eY (t)

e(t)

kE(t)
− αK

kY (t)

]
y(t), (A-6)

0 =− αLy(t)

ℓY (t)

[
(1− s)u′((1− s)y(t)) + sν(t)

]
+

[
µ(t)− γ(t)

]
(1− ω)

(
z(t)

F (ℓR(t), kR(t), eR(t))

)ω
∂F (ℓR(t), kR(t), eR(t))

∂ℓR(t)
, (A-7)

0 =− αKy(t)

kY (t)

[
(1− s)u′((1− s)y(t)) + sν(t)

]
+

[
µ(t)− γ(t)

]
(1− ω)

(
z(t)

F (ℓR(t), kR(t), eR(t))

)ω
∂F (ℓR(t), kR(t), eR(t))

∂kR(t)
, (A-8)

0 =− αEy(t)

eY (t)

[
(1− s)u′((1− s)y(t)) + sν(t)

]
+

[
µ(t)− γ(t)

]
(1− ω)

(
z(t)

F (ℓR(t), kR(t), eR(t))

)ω
∂F (ℓR(t), kR(t), eR(t))

∂eR(t)
. (A-9)

Equations (A-5) and (A-6) imply:

ℓY (t) =
αL

αEϕML

eY (t)

e(t)
ℓE(t), (A-10)

kY (t) =
αK

αEϕMK

eY (t)

e(t)
kE(t). (A-11)

Take ratios of equations (A-7), (A-8), and (A-9), substitute for ℓY (t) and kY (t), and cancel
the eY (t):

1 =
κL
ϕML

1− κE
κE

(
ALK

AE

)σ−1
σ
(
kR(t)

ℓR(t)

)κK
σ−1
σ
(
eR(t)

ℓR(t)

) 1
σ ℓE(t)

e(t)
, (A-12)

1 =
κK
ϕMK

1− κE
κE

(
ALK

AE

)σ−1
σ
(
ℓR(t)

kR(t)

)κL
σ−1
σ
(
eR(t)

kR(t)

) 1
σ kE(t)

e(t)
. (A-13)

Solve (A-12) for kR(t):

kR(t) =

[
κL
ϕML

1− κE
κE

(
ALK

AE

)σ−1
σ
(

1

ℓR(t)

)κK
σ−1
σ
(
eR(t)

ℓR(t)

) 1
σ ℓE(t)

e(t)

]− 1

κK
σ−1
σ

. (A-14)
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Substitute into (A-13) and solve for ℓR(t):

ℓR(t) =

(
κK
ϕMK

)κK(σ−1)(
κL
ϕML

)κL(σ−1)+1(
1− κE
κE

)σ (
ALK

AE

)σ−1

eR(t)

(
kE(t)

e(t)

)κK(σ−1)(
ℓE(t)

e(t)

)κL(σ−1)+1

. (A-15)

Substitute back into (A-14):

kR(t) =

(
κL
ϕML

)κL(σ−1)(
κK
ϕMK

)κK(σ−1)+1(
1− κE
κE

)σ (
ALK

AE

)σ−1

eR(t)

(
ℓE(t)

e(t)

)κL(σ−1)(
kE(t)

e(t)

)κK(σ−1)+1

.

Substitute from (A-10) and (A-15) into the labor resource constraint and solve for ℓE(t):

ℓE(t) =

[
1 +

αL

αEϕML

eY (t)

e(t)

+

(
κK
ϕMK

)κK(σ−1)(
κL
ϕML

)κL(σ−1)+1(
1− κE
κE

)σ (
ALK

AE

)σ−1

eR(t)

e(t)

(
kE(t)

e(t)

)κK(σ−1)(
ℓE(t)

e(t)

)κL(σ−1) ]−1

. (A-16)

Solve for eR(t)/e(t):

eR(t)

e(t)
=

[1− ℓE(t)− αL

αEϕML
ℓE(t)]/ℓE(t)

− αL

αEϕML
+
(

κK

ϕMK

)κK(σ−1) (
κL

ϕML

)κL(σ−1)+1 (
1−κE

κE

)σ (
ALK

AE

)σ−1 (
kE(t)
e(t)

)κK(σ−1) (
ℓE(t)
e(t)

)κL(σ−1)
.

(A-17)

Substitute from (A-11) and (A-14) into the capital constraint:

kE(t)

k(t)
=

[
1 +

αK

αEϕMK

eY (t)

e(t)

+

(
κL
ϕML

)κL(σ−1)(
κK
ϕMK

)κK(σ−1)+1(
1− κE
κE

)σ (
ALK

AE

)σ−1

eR(t)

e(t)

(
ℓE(t)

e(t)

)κL(σ−1)(
kE(t)

e(t)

)κK(σ−1) ]−1

. (A-18)
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Substitute for eR(t)/e(t) from (A-17):

kE(t)

k(t)

=

[
1− αK

αEϕMK

1

ℓE(t)

1− ℓE(t)− ℓE(t)
(

κK

ϕMK

)κK(σ−1) (
κL

ϕML

)κL(σ−1)+1 (
1−κE

κE

)σ (
ALK

AE

)σ−1 (
kE(t)
e(t)

)κK(σ−1) (
ℓE(t)
e(t)

)κL(σ−1)

− αL

αEϕML
+
(

κK

ϕMK

)κK(σ−1) (
κL

ϕML

)κL(σ−1)+1 (
1−κE

κE

)σ (
ALK

AE

)σ−1 (
kE(t)
e(t)

)κK(σ−1) (
ℓE(t)
e(t)

)κL(σ−1)

+

(
κL
ϕML

)κL(σ−1)(
κK
ϕMK

)κK(σ−1)+1(
1− κE
κE

)σ (
ALK

AE

)σ−1(
ℓE(t)

e(t)

)κL(σ−1)(
kE(t)

e(t)

)κK(σ−1)

[1− ℓE(t)− αL

αEϕML
ℓE(t)]/ℓE(t)

− αL

αEϕML
+
(

κK

ϕMK

)κK(σ−1) (
κL

ϕML

)κL(σ−1)+1 (
1−κE

κE

)σ (
ALK

AE

)σ−1 (
kE(t)
e(t)

)κK(σ−1) (
ℓE(t)
e(t)

)κL(σ−1)

]−1

.

(A-19)

Finally, at a steady state, ė(t) = 0 in equation (7). Therefore,

EROIss = 1 +
ess
eRss

gL. (A-20)

E Proof of Proposition 3

Section D contains preliminaries. By Lemma A-2, any interior balanced growth path must
have per-capita variables constant. If σ = 1, we have, from (A-16) and (A-18):

ℓE(t) =

[
1 +

αL

αEϕML

(
1− eR(t)

e(t)

)
+

κL
ϕML

1− κE
κE

eR(t)

e(t)

]−1

,

kE(t)

k(t)
=

[
1 +

αK

αEϕMK

(
1− eR(t)

e(t)

)
+

κK
ϕMK

1− κE
κE

eR(t)

e(t)

]−1

. (A-21)

These are both interior as long as eR(t)/e(t) < 1. With these:

ℓY (t) =
αL

αEϕML

eY (t)

e(t)
ℓE(t),

kY (t)

k(t)
=

αK

αEϕMK

eY (t)

e(t)

kE(t)

k(t)
. (A-22)
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And:

ℓR(t) =
κL
ϕML

1− κE
κE

eR(t)

e(t)
ℓE(t),

kR(t)

k(t)
=
κK
ϕMK

1− κE
κE

eR(t)

e(t)

kE(t)

k(t)
. (A-23)

At a steady state, (A-4) becomes:

yss

[
(1− s)u′((1− s)yss) + sνss

]
= µss(ρ+ λ)

rss
αEϕMR

(
1− eRss

ess

)
.

Substitute into the steady-state version of (A-9):

0 =− 1

ϕMR

µss(ρ+ λ)
rss
ess

+

[
µss − γss

]
(1− ω)

(
zss

F (ℓRss, kRss, eRss)

)ω
Fss

eRss

κE,

where
Fss ≜ F (ℓRss, kRss, eRss).

Solve for γss:

γss =µss

(
1−

1
ϕMR

(ρ+ λ) rss
ess

(1− ω)
(

zss
F (ℓRss,kRss,eRss)

)ω
Fss

eRss
κE

)
.

Substitute into (A-3):

0 =(ρ− Ω)

(
(1− ω)

(
zss

F (ℓRss, kRss, eRss)

)ω
Fss

eRss

κE − 1

ϕMR

(ρ+ λ)
rss
ess

)
− ω

(
F (ℓRss, kRss, eRss)

zss

)1−ω
1

ϕMR

(ρ+ λ)
rss
ess
.

From the transition equation for z(t),

zss
Fss

=(Ω− gL)
− 1

1−ω . (A-24)

Using (A-24) in the expression prior to it yields:

0 =(ρ− Ω)(1− ω) (Ω− gL)
− ω

1−ω κE − [(ρ− Ω) + ω(Ω− gL)]
1

ϕMR

(ρ+ λ)
rss
Fss

eRss

ess
.

The transition equation for r(t) and (A-24) yield:

(λ+ gL)
rss
Fss

=(Ω− gL)
− ω

1−ω . (A-25)
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Substitute into the prior expression:

eRss

ess
=ϕMR(1− ω)κE

ρ− Ω

(ρ− Ω) + ω(Ω− gL)

gL + λ

ρ+ λ
. (A-26)

The right-hand side is strictly positive because ρ > Ω, gL.
It remains to verify that the steady state is feasible. Equation (A-25) shows that a

steady state with other variables strictly positive has rss > 0 if and only if either ω = 0
or Ω > gL. From (A-24), zss > 0 with other variables strictly positive requires Ω > gL.
Because eY ss = ess − eRss, a steady state has strictly positive final good production only if
eRss/ess < 1. Using ρ > gL and κE, ϕMR < 1, it is clear from (A-26) that eRss/ess < 1 when
either ω = 0 or Ω > gL. Finally, from the capital transition equation, yss/kss = (δ + gL)/s,
so kss > 0 if yss > 0, and from the final good production function and (A-22), yss > 0 when
ℓY ss, eY ss > 0 if kss > 0. So it is internally consistent for all variables to be strictly positive
if and only if either ω = 0 or Ω > gL.

The claims about prices are implied by the existence of steady states in per-capita, current
value terms for γ(t) and µ(t). The claim about EROIss follows from (A-20) and (A-26).

Finally, consider the elasticity of yss with respect toQM . From (A-25), (A-23), (A-21), (A-26),
and the transition equation for k(t):

drss
dQM

=(Ω− gL)
− ω

1−ω (λ+ gL)
−1

[
κK(1− κE)

Fss

kRss

dkRss

dkss

s

δ + gL

dyss
dQM

+ κE
Fss

eRss

deRss

dess

dess
dQM

]
.

(A-27)

From (2), (A-21), (A-26), and the transition equation for k(t):

dess
dQM

=
ess
QM

+ ϕMK
ess
kEss

dkEss

dkss

s

δ + gL

dyss
dQM

+ ϕMR
ess
rss

drss
dQM

.

Substitute from (A-27) and solve for dess/dQM :

dess
dQM

=

ess
QM

+ ϕMK
ess
kEss

dkEss

dkss
s

δ+gL

dyss
dQM

+ ϕMR
ess
rss

(Ω− gL)
− ω

1−ω (λ+ gL)
−1κK(1− κE)

Fss

kRss

dkRss

dkss
s

δ+gL

dyss
dQM

1− ϕMR
ess
rss

(Ω− gL)
− ω

1−ω (λ+ gL)−1κE
Fss

eRss

deRss

dess

.

(A-28)

From the final good production function, (A-22), (A-21), (A-26), and the transition equation
for k(t):

dyss
dQM

=αK
yss
kY ss

dkY ss

dkss

s

δ + gL

dyss
dQM

+ αE
yss
eY ss

deY ss

dess

dess
dQM

.
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Substitute from (A-28) and rearrange to solve for dyss/dQM :

dyss
dQM

=

αE
yss
eY ss

deY ss

dess

ess
QM

1−ϕMR
ess
rss

(Ω−gL)
− ω

1−ω (λ+gL)−1κE
Fss
eRss

deRss
dess

1− αK
yss
kY ss

dkY ss

dkss
s

δ+gL
− αE

yss
eY ss

deY ss

dess

ϕMK
ess

kEss

dkEss
dkss

s
δ+gL

+ϕMR
ess
rss

(Ω−gL)
− ω

1−ω (λ+gL)−1κK(1−κE) Fss
kRss

dkRss
dkss

s
δ+gL

1−ϕMR
ess
rss

(Ω−gL)
− ω

1−ω (λ+gL)−1κE
Fss
eRss

deRss
dess

.

Substitute for yss/kss from the transition equation for k(t) and simplify some other terms,
using constancy of shares from (A-21), (A-22), (A-23), and (A-26):

dyss
dQM

=

αEyss
1

QM

1

1−ϕMR(Ω−gL)
− ω

1−ω (λ+gL)−1κE
Fss
rss

1− αK − αE
ϕMK+ϕMR(Ω−gL)

− ω
1−ω (λ+gL)−1(1−κE)κK

Fss
rss

1−ϕMR(Ω−gL)
− ω

1−ω (λ+gL)−1κE
Fss
rss

.

Substitute for Fss/rss from (A-25):

dyss
dQM

QM

yss
=

αE
1

1−ϕMRκE

1− αK − αE
ϕMK+ϕMR(1−κE)κK

ϕMK+ϕML+ϕMR(1−κE)

.

The left-hand side is the elasticity of yss with respect to QM . The right-hand side is constant
in QM and strictly positive. We have established the claim in the proposition about the
elasticity.

F Proof of Proposition 4

Section D contains preliminaries. By Lemma A-2, any interior balanced growth path must
have per-capita variables constant.

Use (A-4) in (A-9) and evaluate at a steady state:

0 =− αE

eY ss

µss(ρ+ λ)
eY ss

αEϕMR

rss
ess

+

[
µss − γss

]
(1− ω)

(
zss
Fss

)ω
∂Fss

∂eRss

,

where
Fss ≜ F (ℓRss, kRss, eRss).

Solve for µss:

µss =
(1− ω)

(
zss
Fss

)ω
∂Fss

∂eRss

(1− ω)
(

zss
Fss

)ω
∂Fss

∂eRss
− (ρ+ λ) 1

ϕMR

rss
ess

γss.
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Substitute into the steady-state version of (A-3):

0 = (ρ− Ω)

[
(1− ω)

(
zss
Fss

)ω
∂Fss

∂eRss

− (ρ+ λ)
1

ϕMR

rss
ess

]
− ω

(
Fss

zss

)1−ω

(ρ+ λ)
1

ϕMR

rss
ess
.

From the transition equation for z(t):

zss
Fss

= (Ω− gL)
− 1

1−ω . (A-29)

Use (A-29) in the prior expression and substitute for the partial derivative of Fss:

0 =(ρ− Ω)(1− ω)(Ω− gL)
− ω

1−ωκEA
σ−1
σ

E −
[
(ρ− Ω) + ω(Ω− gL)

]
(ρ+ λ)

1

ϕMR

rss
Fss

eRss

ess

(
Fss

eRss

)σ−1
σ

.

And use (A-29) in the transition equation for r(t), evaluated at a steady state:

Fss =(Ω− gL)
ω

1−ω (λ+ gL)rss. (A-30)

Substitute that into the prior expression and rearrange:

rss =

(
ϕMRκE
λ+ ρ

(1− ω)(ρ− Ω)

(1− ω)(ρ− Ω) + ω(ρ− gL)
(λ+ gL)

1
σ
ess
eRss

) σ
σ−1

(Ω− gL)
− ω

1−ωAEeRss.

(A-31)

When ω > 0, equation (A-31) shows that a steady state requires Ω > gL. Using σ ̸= 1,
substitute for rss in (A-31) from (A-30), substitute for Fss from (5), and rearrange:

eRss =

(
1− κE
κE

) σ
σ−1 ALK

AE

(
1

λ+gL
λ+ρ

(1−ω)(ρ−Ω)
(1−ω)(ρ−Ω)+ω(ρ−gL)

ϕMR
ess
eRss

− 1

) σ
σ−1

ℓκL
Rssk

κK
Rss. (A-32)

Rearrange (A-12) and (A-13) and evaluate at a steady state:

ℓEss =
ϕML

κL

κE
1− κE

(
ALK

AE

)−σ−1
σ
(
kRss

ℓRss

)−κK
σ−1
σ
(
eRss

ℓRss

)− 1
σ

ess,

kEss =
ϕMK

κK

κE
1− κE

(
ALK

AE

)−σ−1
σ
(
ℓRss

kRss

)−κL
σ−1
σ
(
eRss

kRss

)− 1
σ

ess.

Substitute into the per-capita version of (2) evaluated at the steady state and solve for ess:

eϕMR
ss =QMr

ϕMR
ss

[
ϕML

κL

κE
1− κE

(
ALK

AE

)−σ−1
σ
(
kRss

ℓRss

)−κK
σ−1
σ
(
eRss

ℓRss

)− 1
σ

]ϕML

[
ϕMK

κK

κE
1− κE

(
ALK

AE

)−σ−1
σ
(
ℓRss

kRss

)−κL
σ−1
σ
(
eRss

kRss

)− 1
σ

]ϕMK

.
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Substitute for rss from (A-31):

(
ess
eRss

)ϕMR

=QM

((
ϕMRκE
λ+ ρ

(1− ω)(ρ− Ω)

(1− ω)(ρ− Ω) + ω(ρ− gL)
(λ+ gL)

1
σ
ess
eRss

) σ
σ−1

(Ω− gL)
− ω

1−ωAE

)ϕMR

[
κE

1− κE

(
ALK

AE

)−σ−1
σ

]ϕML+ϕMK [
ϕML

κL

]ϕML
[
ϕMK

κK

]ϕMK

ℓ
κK (σ−1)+1

σ
ϕML−κL

σ−1
σ

ϕMK

Rss k
κL(σ−1)+1

σ
ϕMK−κK

σ−1
σ

ϕML

Rss e
− 1

σ
(ϕML+ϕMK)

Rss .

Substitute for eRss from (A-32) and rearrange to obtain:

ess
eRss

=(Ω− gL)
ω

1−ω
(σ−1)

[
(1− κE)A

σ−1
σ

LK

]σ ϕML+ϕMK
ϕMR

[
κ

σ
σ−1

E AEQM

(
ϕML

κL

)ϕML
(
ϕMK

κK

)ϕMK

ℓκKϕML−κLϕMK

Rss kκLϕMK−κKϕML

Rss

]−(σ−1)
ϕMR

(
1

λ+ ρ
ϕMR

(1− ω)(ρ− Ω)

(1− ω)(ρ− Ω) + ω(ρ− gL)
(λ+ gL)

1
σ

)−σ

[
1

λ+gL
λ+ρ

(1−ω)(ρ−Ω)
(1−ω)(ρ−Ω)+ω(ρ−gL)

ϕMR
ess
eRss

− 1

]ϕML+ϕMK
ϕMR

.

Apply Assumption 2 to eliminate ℓRss and kRss:

ess
eRss

=(Ω− gL)
ω

1−ω
(σ−1)

[
(1− κE)A

σ−1
σ

LK

]σ ϕML+ϕMK
ϕMR

[
κ

σ
σ−1

E AEQM

(
ϕML

κL

)ϕML
(
ϕMK

κK

)ϕMK

]−(σ−1)
ϕMR

(
1

λ+ ρ
ϕMR

(1− ω)(ρ− Ω)

(1− ω)(ρ− Ω) + ω(ρ− gL)
(λ+ gL)

1
σ

)−σ

[
1

λ+gL
λ+ρ

(1−ω)(ρ−Ω)
(1−ω)(ρ−Ω)+ω(ρ−gL)

ϕMR
ess
eRss

− 1

]ϕML+ϕMK
ϕMR

. (A-33)

A strictly positive solution requires either ω = 0 or Ω > gL. If ess/eRss ∈
(
0, λ+ρ

λ+gL

1
ϕMR

(1−ω)(ρ−Ω)+ω(ρ−gL)
(1−ω)(ρ−Ω)

)
,

the left-hand side is strictly positive but the right-hand side is strictly negative, so the equa-
tion cannot hold. For ess/eRss >

λ+ρ
λ+gL

1
ϕMR

(1−ω)(ρ−Ω)+ω(ρ−gL)
(1−ω)(ρ−Ω)

and either ω = 0 or ρ > Ω, the

right-hand side of (A-33) monotonically decreases in ess/eRss, going to 0 as ess/eRss → ∞
and going to infinity as ess/eRss → λ+ρ

λ+gL

1
ϕMR

(1−ω)(ρ−Ω)+ω(ρ−gL)
(1−ω)(ρ−Ω)

from above. The left-hand
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side monotonically increases in ess/eRss and is strictly positive. So when either ω = 0 or
Ω > gL, there is a unique ess/eRss > 0 that solves the equation. That solution has:

ess
eRss

>
λ+ ρ

λ+ gL

1

ϕMR

(1− ω)(ρ− Ω) + ω(ρ− gL)

(1− ω)(ρ− Ω)
.

From (A-31), the steady state has rss > 0 if and only if Ω > gL. Because eY ss = ess − eRss,
the steady state has strictly positive final good production if and only if ess/eRss > 1, which
holds because ρ > Ω, gL. From (A-20), EROI(t) is constant along the balanced growth path
and

EROIss >1 +
λ+ ρ

λ+ gL

1

ϕMR

(1− ω)(ρ− Ω) + ω(ρ− gL)

(1− ω)(ρ− Ω)
gL.

We have proved part i of the proposition.
The right-hand side of equation (A-33) increases in AE and QM if σ < 1 and decreases in

AE and QM if σ > 1. So the ess/eRss that solves (A-33)—and, by (A-20), EROIss—increases
in AE and QM if σ < 1 and decreases in AE and QM if σ > 1. We have proved parts ii and
iii of the proposition.

The claims about prices are implied by the existence of steady states in per-capita, current
value terms for γ(t) and µ(t).

G Proof of Proposition 5

The setting of Proposition 5 matches those of Propositions 3 and 4 as ϕMR → 1 (which implies
ϕML, ϕMK → 0) and with QD in place of QM . Lemma A-2 still applies here. Therefore any
interior balanced growth path must have per-capita variables constant and prices growing
at rate ρ− gL.

The case with σ = 1 (i.e., part i of the proposition) follows from taking the limit as
ϕMR → 1 in the proof of Proposition 3.

Now consider σ ̸= 1. Using ess = QDrss in equation (A-31) and taking ϕMR → 1 (and
ϕML, ϕMK → 0) yields:

ess
eRss

=

(
(λ+ ρ) [(1− ω)(ρ− Ω) + ω(ρ− gL)]

(ρ− Ω)(1− ω)κE

)σ
[AEQD]

1−σ

(λ+ gL)(Ω− gL)
ω

1−ω
(1−σ)

. (A-34)

From (A-30), an interior solution requires either ω = 0 or Ω > gL. In either case, ess/eRss is
interior.

The steady state has strictly positive final good production if and only if ess/eRss > 1.
From (A-34), ess/eRss > 1 if and only if

κ−σ
E [AEQD]

1−σ >(λ+ gL)
1−σ

(
λ+ gL
λ+ ρ

)σ

(Ω− gL)
ω

1−ω
(1−σ)

(
(1− ω)(ρ− Ω)

(1− ω)(ρ− Ω) + ω(ρ− gL)

)σ

.

(A-35)
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For σ < 1, inequality (A-35) holds if and only if

AEQD >(λ+ gL)

(
λ+ ρ

κE(λ+ gL)

) σ
σ−1

(Ω− gL)
ω

1−ω

(
(1− ω)(ρ− Ω) + ω(ρ− gL)

(1− ω)(ρ− Ω)

) σ
σ−1

,

where the right-hand side is χ from the proposition. We have proved part ii of the proposition.
For σ > 1, inequality (A-35) holds if and only if

AEQD <(λ+ gL)

(
λ+ ρ

κE(λ+ gL)

) σ
σ−1

(Ω− gL)
ω

1−ω

(
(1− ω)(ρ− Ω) + ω(ρ− gL)

(1− ω)(ρ− Ω)

) σ
σ−1

,

where the right-hand side is χ from the proposition. We have proved part iii of the proposi-
tion.

EROI(t) along a balanced growth path follows from equations (A-20) and (A-34). We
have proved part iv of the proposition.

H Proof of Proposition 7

Consider a case with ℓR(t), kR(t) = 0 and eR(t) > 0. By labor and capital market-clearing,
ℓY (t) = 1 and kY (t) = k(t). Equilibrium then solves the following maximization problem:

max
EY (·),ER(·)

∫ ∞

0

e−ρtL(t)u

(
(1− s)AL(t)αLK(t)αKEY (t)

αE

L(t)

)
dt

s.t. L̇(t) =gLL(t)

K̇(t) =sAL(t)αLK(t)αKEY (t)
αE − δK(t)

Ṙ(t) =κ
σ

σ−1

E AEER(t)− λR(t)

E(t) =QSR(t)

E(t) =EY (t) + ER(t).

Converting to per-capita and substituting, this is equivalent to:

max
eY (·)

∫ ∞

0

e−(ρ−gL)tu

(
(1− s)A[k(t)]αK [eY (t)]

αE

)
dt

s.t. k̇(t) =sA[k(t)]αK [eY (t)]
αE − (δ + gL)k(t)

ṙ(t) =κ
σ

σ−1

E AE[QSr(t)− eY (t)]− (λ+ gL)r(t).

The current-value Hamiltonian is:

u

(
(1− s)A[k(t)]αK [eY (t)]

αE

)
+ ν(t)

(
sA[k(t)]αK [eY (t)]

αE − (δ + gL)k(t)

)
+ µ(t)

[
κ

σ
σ−1

E AE[QSr(t)− eY (t)]− (λ+ gL)r(t)

]
.
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The costate equations are:

(ρ− gL)ν(t)− ν̇(t) =

[
(1− s)u′((1− s)y(t)) + sν(t)

]
αKy(t)

k(t)
− (δ + gL)ν(t)

⇔ ν̇(t) =−
[
(1− s)u′((1− s)y(t)) + sν(t)

]
αKy(t)

k(t)
+ (ρ+ δ)ν(t), (A-36)

(ρ− gL)µ(t)− µ̇(t) =µ(t)κ
σ

σ−1

E AEQS − µ(t)(λ+ gL)

⇔ µ̇(t) =µ(t)

[
ρ+ λ− κ

σ
σ−1

E AEQS

]
. (A-37)

The condition to maximize the Hamiltonian is:

0 =

[
(1− s)u′((1− s)y(t)) + sν(t)

]
αEy(t)

eY (t)
− µ(t)κ

σ
σ−1

E AE. (A-38)

Substituting into (A-36), we obtain:

ν̇(t) =− µ(t)κ
σ

σ−1

E AE
αKeY (t)

αEk(t)
+ (ρ+ δ)ν(t). (A-39)

Time-differentiating (A-38), we obtain:

0 =

[
(1− s)u′((1− s)y(t)) + sν(t)

]
αE

[
ẏ(t)

eY (t)
− y(t)

eY (t)

ėY (t)

eY (t)

]
+ (1− s)2u′′((1− s)y(t))

αEy(t)

eY (t)
ẏ(t) + sν̇(t)

αEy(t)

eY (t)
− µ̇(t)κ

σ
σ−1

E AE.

Substitute from (A-37), (A-38), and (A-39):

0 =µ(t)κ
σ

σ−1

E AE

[
ẏ(t)

y(t)
− ėY (t)

eY (t)

]
+ αE(1− s)2u′′((1− s)y(t))

y(t)

eY (t)
ẏ(t)

+ sy(t)

[
−αKκ

σ
σ−1

E AE
µ(t)

k(t)
+ αE(ρ+ δ)

ν(t)

eY (t)

]
− µ(t)κ

σ
σ−1

E AE

[
(ρ+ λ)− κ

σ
σ−1

E AEQS

]
.

Time-differentiate the final good production function and substitute for ẏ(t) in the previous
equation:

0 =µ(t)κ
σ

σ−1

E AE

[
ẏ(t)

y(t)
− ėY (t)

eY (t)

]
+ αE(1− s)2u′′((1− s)y(t))

y(t)

eY (t)
y(t)

[
αK

k̇(t)

k(t)
+ αE

ėY (t)

eY (t)

]

+ sy(t)

[
−αKκ

σ
σ−1

E AE
µ(t)

k(t)
+ αE(ρ+ δ)

ν(t)

eY (t)

]
− µ(t)κ

σ
σ−1

E AE

[
(ρ+ λ)− κ

σ
σ−1

E AEQS

]
.
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Use Assumption 3 and rearrange:

0 =µ(t)κ
σ

σ−1

E AE

[
ẏ(t)

y(t)
− ėY (t)

eY (t)
− (ρ+ λ) + κ

σ
σ−1

E AEQS − sαK
y(t)

k(t)

]
− αE

1

eY (t)

[
αK

k̇(t)

k(t)
+ αE

ėY (t)

eY (t)

]
+ ν(t)sαE(ρ+ δ)

y(t)

eY (t)
. (A-40)

Now consider a balanced growth path. k̇(t)/k(t) is constant over time if and only if

y(t)

k(t)
=
gk + δ + gL

s
(A-41)

Therefore gk = gy, which, in the final good production function, implies that

gy =αKgk + αEgeY

⇔ gy =
αE

αE + αL

geY .

The resource transition equation implies:

ṙ(t)

r(t)
=κ

σ
σ−1

E AE

[
QS − eY (t)

r(t)

]
− (λ+ gL).

The growth rate of r is constant if and only if eY (t) grows at gr. The growth rate of r is the
same as the growth rate of e. Therefore eR(t) grows at rate ge and

gy =
αE

αE + αL

ge. (A-42)

Using this and gk = gy in (A-41),

y(t)

k(t)
=

αE

αE+αL
ge + δ + gL

s
(A-43)

Use gk = gy in (A-40) and substitute from (A-42) and (A-43):

0 =µ(t)κ
σ

σ−1

E AE

[
− αL

αE + αL

ge − (ρ+ λ) + κ
σ

σ−1

E AEQS − αK

(
αE

αE + αL

ge + δ + gL

)]
− αE

1

eY (t)

αE

αE + αL

ge + ν(t)sαE(ρ+ δ)
y(t)

eY (t)
.

Multiply through by eY (t) and multiply the final term by k(t)/k(t), again using (A-43):

0 =µ(t)eY (t)κ
σ

σ−1

E AE

[
− αL

αE + αL

ge − (ρ+ λ) + κ
σ

σ−1

E AEQS − αK

(
αE

αE + αL

ge + δ + gL

)]
− αE

αE

αE + αL

ge + ν(t)k(t)αE(ρ+ δ)

(
αE

αE + αL

ge + δ + gL

)
. (A-44)
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ν(t)k(t) is constant if and only if ν̇(t)/ν(t) = −gk. In that case, (A-39) implies

ν(t)k(t) =µ(t)eY (t)κ
σ

σ−1

E AE
αK

αE

1

gk + ρ+ δ
. (A-45)

Substitute into (A-44) and use (A-42):

0 =µ(t)eY (t)κ
σ

σ−1

E AE

[
− αL

αE + αL

ge − (ρ+ λ) + κ
σ

σ−1

E AEQS − αK

αE

αE+αL
ge + gL + δ

αE

αE+αL
ge + ρ+ δ

αE

αE + αL

ge

]
− αE

αE

αE + αL

ge. (A-46)

If ge is constant, so too is µ(t)eY (t). From (A-37), µ(t) grows at rate ρ+ λ− κ
σ

σ−1

E AEQS,
so µ(t)eY (t) constant implies:

ge =κ
σ

σ−1

E AEQS − (ρ+ λ). (A-47)

Substituting into (A-46), we find:

0 =
αE

αE + αL

(
κ

σ
σ−1

E AEQS − (ρ+ λ)
)

{
µ(t)eY (t)κ

σ
σ−1

E AE

1− αK

αE

αE+αL

[
κ

σ
σ−1

E AEQS − (ρ+ λ)
]
+ gL + δ

αE

αE+αL

[
κ

σ
σ−1

E AEQS − (ρ+ λ)
]
+ ρ+ δ

− αE

}
.

This holds if either ge = 0 or

µ(t)eY (t) =
αE

κ
σ

σ−1

E AE

[
1− αK

αE
αE+αL

[
κ

σ
σ−1
E AEQS−(ρ+λ)

]
+gL+δ

αE
αE+αL

[
κ

σ
σ−1
E AEQS−(ρ+λ)

]
+ρ+δ

] .

The right-hand side is strictly positive for ge ̸= 0 if and only if:

1 >αK

αE

αE+αL

[
κ

σ
σ−1

E AEQS − (ρ+ λ)
]
+ gL + δ

αE

αE+αL

[
κ

σ
σ−1

E AEQS − (ρ+ λ)
]
+ ρ+ δ

. (A-48)

Observe that y(t)/k(t) > 0 requires, from (A-43), that the numerator on the right-hand
side of (A-48) be strictly positive and that ν(t)k(t) > 0 requires, from (A-45), that the
denominator on the right-hand side of (A-48) be strictly positive. Using ρ > gL, these two
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conditions are jointly satisfied if and only if the numerator in (A-48) is strictly positive, so
if and only if

κ
σ

σ−1

E AEQS > ρ+ λ− αE + αL

αE

(gL + δ). (A-49)

If this last inequality holds, then inequality (A-48) also holds, because αK < 1. If µ(t)eY (t)
is weakly negative, then (A-48) would not hold and so (A-49) would not hold, which means
that the path is not feasible. So µ(t)eY (t) > 0 on a feasible path, as would be expected.
Finally, observe that r(t) grows at a constant rate if and only if

eR(t)

e(t)
=
ge + λ+ gL

κ
σ

σ−1

E AEQS

. (A-50)

Substituting from (A-47), we have eR(t)/e(t) ∈ (0, 1) if and only if

κ
σ

σ−1

E AEQS − (ρ− gL)

κ
σ

σ−1

E AEQS

∈ (0, 1).

Because ρ > gL, this condition holds if and only if

κ
σ

σ−1

E AEQS > ρ− gL. (A-51)

We have found a feasible path along which ℓR(t), kR(t) = 0 with eR(t) > 0 and all

variables growing at a constant rate. If AEQS > χ, then κ
σ

σ−1

E AEQS > ρ + λ (observing
that (λ + gL)[(λ + ρ)/(λ + gL)]

σ
σ−1 decreases in σ for σ > 1) and thus inequalities (A-49)

and (A-51) hold. Part i of the proposition follows from gy = gk and (A-42). Part ii follows
from (A-47). Part iii follows from (7), (A-47), and (A-50).
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I Proof of Proposition 8

Equilibrium solves the following maximization problem:

max
LY (·),KY (·),EY (·),ER(·),EB(·),BR(·),BB(·)

∫ ∞

0

e−ρtL(t)u

(
(1− s)ALY (t)

αLKY (t)
αKEY (t)

αE

L(t)

)
dt

s.t. L̇(t) =gLL(t)

K̇(t) =sAL(t)αLKY (t)
αKEY (t)

αE − δK(t)

Ṙ(t) =AEBR(t)
κBER(t)

κE − λR(t)

Ḃ(t) =ABBB(t)
βBEB(t)

βE −ΨB(t)

E(t) =QSR(t)

L(t) =LY (t)

K(t) =KY (t)

E(t) =EY (t) + ER(t) + EB(t)

B(t) =BB(t) +BR(t).

Converting to per-capita and substituting, this is equivalent to:

max
eY (·),eR(·),bR(·)

∫ ∞

0

e−(ρ−gL)tu

(
(1− s)A[k(t)]αK [eY (t)]

αE

)
dt

s.t. k̇(t) =sA[k(t)]αK [eY (t)]
αE − (δ + gL)k(t)

ṙ(t) =AEbR(t)
κBeR(t)

κE − (λ+ gL)r(t)

ḃ(t) =AB[b(t)− bR(t)]
βB [QSr(t)− eY (t)− eR(t)]

βE − (Ψ + gL)b(t).

k̇(t)/k(t) is constant over time if and only if y(t)/K(t) is constant over time. Therefore
gk = gy, which, in the final good production function, implies that

gy =αKgk + αEgeY

⇔ gy =
αE

αE + αL

geY .

We have established part i of the proposition.
The current-value Hamiltonian is:

u

(
(1− s)A[k(t)]αK [eY (t)]

αE

)
+ ν(t)

(
sA[k(t)]αK [eY (t)]

αE − (δ + gL)k(t)

)
+ µ(t)

[
AEbR(t)

κBeR(t)
κE − (λ+ gL)r(t)

]
+Υ(t)

[
AB[b(t)− bR(t)]

βB [QSr(t)− eY (t)− eR(t)]
βE − (Ψ + gL)b(t)

]
.
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The costate equations are:

(ρ− gL)ν(t)− ν̇(t) =αK(1− s)u′((1− s)y(t))y(t)/k(t) + αKsν(t)y(t)/k(t)− (δ + gL)ν(t)

⇔ ν̇(t) =− αKy(t)

k(t)
[(1− s)u′((1− s)y(t)) + sν(t)] + (ρ+ δ)ν(t), (A-52)

(ρ− gL)µ(t)− µ̇(t) =QSβE
Υ(t)

eB(t)
ABbB(t)

βBeB(t)
βE − µ(t)(λ+ gL)

⇔ µ̇(t) =−QSβE
Υ(t)

eB(t)
ABbB(t)

βBeB(t)
βE + µ(t)[ρ+ λ], (A-53)

(ρ− gL)Υ(t)− Υ̇(t) =βB
Υ(t)

bB(t)
ABbB(t)

βBeB(t)
βE −Υ(t)(Ψ + gL)

⇔ Υ̇(t) =− βB
Υ(t)

bB(t)
ABbB(t)

βBeB(t)
βE +Υ(t)[ρ+Ψ]. (A-54)

The conditions to maximize the Hamiltonian are:

0 =

[
(1− s)u′((1− s)y(t)) + sν(t)

]
αEy(t)

eY (t)
− βE

Υ(t)

eB(t)
ABbB(t)

βBeB(t)
βE , (A-55)

0 =κE
µ(t)

eR(t)
AEbR(t)

κBeR(t)
κE − βE

Υ(t)

eB(t)
ABbB(t)

βBeB(t)
βE , (A-56)

0 =κB
µ(t)

bR(t)
AEbR(t)

κBeR(t)
κE − βB

Υ(t)

bB(t)
ABbB(t)

βBeB(t)
βE . (A-57)

Equations (A-56) and (A-57) imply:

κEbR(t)

κBeR(t)
=
βEbB(t)

βBeB(t)
. (A-58)

Rearrange equation (A-55):

Υ(t)

eB(t)
ABbB(t)

βBeB(t)
βE =

[
(1− s)u′((1− s)y(t)) + sν(t)

]
αEy(t)

βEeY (t)
. (A-59)

Time-differentiating yields:[
Υ̇(t)

Υ(t)
− ėB(t)

eB(t)
+ βB

ḃB(t)

bB(t)
+ βE

ėB(t)

eB(t)

]
Υ(t)

eB(t)
ABbB(t)

βBeB(t)
βE

=

[
(1− s)2ẏ(t)u′′((1− s)y(t)) + sν̇(t)

]
αEy(t)

βEeY (t)

+

[
(1− s)u′((1− s)y(t)) + sν(t)

]
αEy(t)

βEeY (t)

[
ẏ(t)

y(t)
− ėY (t)

eY (t)

]
.
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Substitute from (A-52), (A-54), and (A-59):

− βBAB

(
eB(t)

bB(t)

)βE

+ ρ+Ψ− ėB(t)

eB(t)
+ βB

ḃB(t)

bB(t)
+ βE

ėB(t)

eB(t)

=
(1− s)2ẏ(t)u′′((1− s)y(t)) + s(ρ+ δ)ν(t)

(1− s)u′((1− s)y(t)) + sν(t)
− s

αKy(t)

k(t)
+
ẏ(t)

y(t)
− ėY (t)

eY (t)
.

Substitute from the transition equation for b(t), for ν(t) from (A-55), and for Υ(t) from (A-56):

−

[
ḃ(t)

b(t)
+ Ψ + gL

]
βB

b(t)

bB(t)
+ ρ+Ψ− ėB(t)

eB(t)
+ βB

ḃB(t)

bB(t)
+ βE

ėB(t)

eB(t)

=
(1− s)2ẏ(t)u′′((1− s)y(t)) + (ρ+ δ) eY (t)

αEy(t)
κEµ(t)AE

(
bR(t)
eR(t)

)κB

− (ρ+ δ)(1− s)u′((1− s)y(t))

eY (t)
αEy(t)

κEµ(t)AE

(
bR(t)
eR(t)

)κB

− s
αKy(t)

k(t)
+
ẏ(t)

y(t)
− ėY (t)

eY (t)
.

Use Assumption 3 and rearrange:

κE
αE

µ(t)eY (t)AE

(
bR(t)

eR(t)

)κB

[
−

(
ḃ(t)

b(t)
+ Ψ + gL

)
βB

b(t)

bB(t)
+ Ψ− δ − ėB(t)

eB(t)
+ βB

ḃB(t)

bB(t)
+ βE

ėB(t)

eB(t)
+ s

αKy(t)

k(t)
− ẏ(t)

y(t)
+
ėY (t)

eY (t)

]

=−
(
ẏ(t)

y(t)
+ ρ+ δ

)
.

Substitute constant growth rates, recognizing that e(t) and b(t) must grow at the same rate
ge:

κE
αE

µ(t)eY (t)AE

(
bR(t)

eR(t)

)κB
[
− (ge +Ψ+ gL) βB

b(t)

bB(t)
+ Ψ− δ + s

αKy(t)

k(t)
− gy + ge

]
=− [gy + ρ+ δ].

Substitute for y(t)/k(t) from the transition equation for k(t) and use gy = gk =
αE

1−αK
ge:

κE
αE

µ(t)eY (t)AE

(
bR(t)

eR(t)

)κB
[
− (ge +Ψ+ gL) βB

b(t)

bB(t)
+ Ψ− δ + αK (δ + gL) + (1− αE)gE

]
=−

[
αE

1− αK

ge + ρ+ δ

]
.
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Substitute from (A-58):

κE
αE

µ(t)eY (t)AE

(
κBβEbB(t)

κEβBeB(t)

)κB

[
− (ge +Ψ+ gL) βB

b(t)

bB(t)
+ Ψ− δ + αK (δ + gL) + (1− αE)gE

]
=−

[
αE

1− αK

ge + ρ+ δ

]
. (A-60)

For this to hold, µ(t)eY (t) must be constant. Therefore gµ = −ge. Use this in (A-53):

ge + ρ+ λ =QSβE
Υ(t)

µ(t)
AB

(
bB(t)

eB(t)

)βB

. (A-61)

For this to hold, Υ(t) must grow at the same rate as µ(t). Use that in (A-54) and rearrange:

eB(t)

bB(t)
=

(
ge + ρ+Ψ

βBAB

) 1
βE

. (A-62)

Equation (A-56) implies:

Υ(t)

eB(t)
ABbB(t)

βBeB(t)
βE =

κE
βE

µ(t)

eR(t)
AEbR(t)

κBeR(t)
κE .

Substitute from (A-61) and (A-58), and then substitute from (A-62):

ge + ρ+ λ =κEAEQS

(
κBβE
κEβB

(
ge + ρ+Ψ

βBAB

)− 1
βE

)κB

. (A-63)

The left-hand side monotonically increases in ge, and the right-hand side monotonically
decreases in ge. As ge → ∞, the left-hand side goes to ∞ and the right-hand side goes
to zero. As ge → −(ρ + Ψ) from above, the left-hand side goes to a finite value and the
right-hand side goes to −∞. So there is exactly one intersection at some ge ∈

(
− [ρ+Ψ],∞

)
.

That intersection has ge > 0 if and only if the right-hand side is greater than the left-hand
side at ge = 0, so if and only if

κEAEQS >(ρ+ λ)

(
κEβB
κBβE

(
ρ+Ψ

βBAB

) 1
βE

)κB

.

This is equivalent to the condition on χ0 given in the proposition. Because the right-hand
side of (A-63) increases in QS while the left-hand side of (A-63) is independent of QS, ge
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increases in QS. Similar analysis holds that ge increases in AE and AB and decreases in Ψ,
ρ, and λ. We have established part ii of the proposition.

We established that µ(t) and Υ(t) grow at rate −ge. Therefore the current-value prices
of R(t) and B(t) each grow at rate ρ− (ge + gL). These prices increase over time if and only
if ge < ρ − gL. Part iii of the proposition follows from that observation and, from (A-63),
that ge increases in AEQS.

Now consider the feasibility of the solution. From the transition equation for r(t),

ge = QSAE

(
bR(t)

eR(t)

)κB eR(t)

e(t)
− (λ+ gL).

Substitute from (A-58):

ge = QSAE

(
κBβEbB(t)

κEβBeB(t)

)κB eR(t)

e(t)
− (λ+ gL).

Rearrange:
e(t)

eR(t)
= QSAE

(
κBβEbB(t)

κEβBeB(t)

)κB 1

ge + λ+ gL
.

And substitute from (A-62):

e(t)

eR(t)
= QSAE

(
κBβE
κEβB

(
ge + ρ+Ψ

βBAB

)−1
βE

)κB

1

ge + λ+ gL
. (A-64)

Feasibility requires ge > −(λ+ gL) and

ge + λ+ gL <QSAE

(
κBβE
κEβB

(
ge + ρ+Ψ

βBAB

)−1
βE

)κB

.

Substituting from (A-63), this is equivalent to:

ge >− 1

1− κE
(ρ− κEgL)− λ.

This condition is satisfied when ge > 0.
From the transition equation for b(t),

ge = AB

(
eB(t)

bB(t)

)βE bB(t)

b(t)
− (Ψ + gL).

Rearrange:
b(t)

bB(t)
= AB

(
eB(t)

bB(t)

)βE 1

ge +Ψ+ gL
.
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And substitute from (A-62):

b(t)

bB(t)
=
ge + ρ+Ψ

βB

1

ge +Ψ+ gL
. (A-65)

Feasibility on the robot side requires

1 <
1

βB

ge +Ψ+ ρ

ge +Ψ+ gL
,

while holds for all ge > 0.
Substitute (A-64) into (7):

EROI(t) = 1 + AEQS

(
κBβE
κEβB

(
ge + ρ+Ψ

βBAB

)−1
βE

)κB

ge + gL
ge + λ+ gL

.

Substitute from (A-63):

EROI(t) = 1 +
1

κE

ge + gL
ge + λ+ gL

(ge + ρ+ λ). (A-66)

EROI(t) depends on QS, AE, and AB only through ge in (A-66). EROI(t) increases in
ge in (A-66) because the fraction and the final term both increase in ge. Part iv of the
proposition follows from this observation and part ii. Part v also follows from using ge = 0
in (A-66) and recalling that EROI(t) increases in ge in (A-66).

J Proof of Proposition 9

In a biomass economy in which Assumption 1 holds, Proposition 1 showed that there is
no balanced growth path with output per capita growing forever at a strictly positive rate.
Therefore output per capita in any economy using the biomass resource is bounded above.
Define ȲH as the least upper bound on output in the biomass economy. Assume ξD ≥ ȲH . In
that case, an economy that uses the biomass resource cannot begin accessing the oil resource
or, because ξS > ξD, the solar resource. We have established part i of the proposition.

If ξM < ȲH , then it is feasible to develop the coal resource. From Proposition 3, there
exists a balanced growth path in the economy with the coal resource in which all variables
grow at the rate of population. Denote output per capita along this path as yMss . Welfare
on the balanced growth path is u(s yMss )/(ρ− gL). Using Assumption 3, welfare can be made
arbitrarily large by making yMss arbitrarily large. From Proposition 3, yMss increases with QM

in constant elasticity fashion, so yMss and u(s yMss ) can be made arbitrarily large by making QM

arbitrarily large. Welfare at the time of first developing a coal resource may be lower than
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welfare along the balanced growth path but can also be made arbitrarily large by making QM

arbitrarily large. In contrast, from Proposition 1, welfare in the biomass economy is bounded
from above by u(s Ȳ )/(ρ− gL), which is independent of QM . Therefore, the economy finds
it optimal and feasible to eventually develop the coal resource if QM is sufficiently large and
ξM is sufficiently small. We have established part ii of the proposition.

Now consider a case in which yMss ∈ (ξD, ξS), so that it is feasible to develop the oil
resource from an economy that uses the coal resource. From Proposition 5, there exists a
balanced growth path in the economy with the oil resource in which all variables grow at the
rate of population. Denote output per capita along this path as yDss. Following the argument
of part ii, QD can be made large enough to make it optimal to develop the oil resource from
an economy that uses the coal resource. Therefore, an economy that uses the coal resource
finds it optimal and feasible to eventually develop the oil resource if QD is sufficiently large
and ξD is not too large. We have established part iii of the proposition.

Now consider a case in which yDss > ξS, so that it is feasible to develop the solar resource
from an economy that uses the oil resource. Consider first a manufactured solar resource.
From Corollary 6, there exists a balanced growth path in the economy with the solar resource
in which all variables grow at the rate of population. Denote output per capita along this
path as ySss. Following the argument of part ii, QS can be made large enough to make it
optimal to develop the solar resource from an economy that uses the oil resource. Therefore,
an economy that uses the oil resource finds it optimal and feasible to eventually develop the
solar resource if QS is sufficiently large and ξS is not too large. We have established part iv
of the proposition for a manufactured solar resource.

For a self-replicating solar resource, observe from Proposition 8 that the growth rate
increases in QS and, from (A-63), that it does so without bound. Welfare at the time of
first developing a solar resource may be lower but can be made arbitrarily large by making
QS arbitrarily large. Therefore, an economy that uses the oil resource finds it optimal and
feasible to eventually develop the solar resource if QS is sufficiently large and ξS is not too
large. We have established part iv of the proposition for a self-replicating solar resource.
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K Proof of Proposition A-1

Consider a case with ℓR(t), kR(t) = 0 and eR(t) > 0. By labor and capital market-clearing,
ℓY (t) = 1 and kY (t) = k(t). Equilibrium solves the following maximization problem:

max
EY (·)

∫ ∞

0

e−ρtL(t)u

(
(1− s)

AL(t)αLK(t)αKEY (t)
αE

L(t)

)
dt

s.t. L̇(t) =gLL(t)

K̇(t) =sAL(t)αLK(t)αKEY (t)
αE − δK(t)

Ż(t) =ΩZ(t)− Z(t)ω
(
κ

σ
σ−1

E AEER(t)
)1−ω

Ṙ(t) =Z(t)ω
(
κ

σ
σ−1

E AEER(t)
)1−ω

− λR(t)

E(t) =QDR(t)

E(t) =EY (t) + ER(t).

Converting to per-capita, substituting, and applying Assumption 3, this is equivalent to:

max
eY (·)

∫ ∞

0

e−(ρ−gL)t ln ((1− s)Ak(t)αKeY (t)
αE) dt

s.t. k̇(t) =sAk(t)αKeY (t)
αE − (δ + gL)k(t)

ż(t) =(Ω− gL)z(t)− z(t)ω
(
κ

σ
σ−1

E AE[QDr(t)− eY (t)]
)1−ω

ṙ(t) =z(t)ω
(
κ

σ
σ−1

E AE[QDr(t)− eY (t)]
)1−ω

− (λ+ gL)r(t).

The current-value Hamiltonian is:

ln ((1− s)Ak(t)αKeY (t)
αE) + ν(t)

[
sAk(t)αKeY (t)

αE − (δ + gL)k(t)

]
+ γ(t)

[
(Ω− gL)z(t)− z(t)ω

(
κ

σ
σ−1

E AE[QDr(t)− eY (t)]
)1−ω

]
+ µ(t)

[
z(t)ω

(
κ

σ
σ−1

E AE[QDr(t)− eY (t)]
)1−ω

− (λ+ gL)r(t)

]
.
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The costate equations are:

(ρ− gL)ν(t)− ν̇(t) =αKk(t)
−1 + αKν(t)sAk(t)

αKeY (t)
αEk(t)−1 − ν(t)[δ + gL]

⇔ ν̇(t) =(ρ+ δ)ν(t)− αKk(t)
−1 − αKν(t)sAk(t)

αKeY (t)
αEk(t)−1 (A-67)

(ρ− gL)γ(t)− γ̇(t) =γ(t)(Ω− gL) + [µ(t)− γ(t)]ωz(t)ω−1
(
κ

σ
σ−1

E AE[QDr(t)− eY (t)]
)1−ω

⇔ γ̇(t) =γ(t)(ρ− Ω)− [µ(t)− γ(t)]ωz(t)ω−1
(
κ

σ
σ−1

E AE[QDr(t)− eY (t)]
)1−ω

(A-68)

(ρ− gL)µ(t)− µ̇(t) =− µ(t)(λ+ gL) + [µ(t)− γ(t)](1− ω)z(t)ω
(
κ

σ
σ−1

E AE[QDr(t)− eY (t)]
)−ω

κ
σ

σ−1

E AEQD

⇔ µ̇(t) =µ(t)(λ+ ρ)− [µ(t)− γ(t)](1− ω)z(t)ω
(
κ

σ
σ−1

E AE[QDr(t)− eY (t)]
)−ω

κ
σ

σ−1

E AEQD.

(A-69)

The condition to maximize the Hamiltonian is:

0 =αEeY (t)
−1 − [µ(t)− γ(t)](1− ω)z(t)ω

(
κ

σ
σ−1

E AE[QDr(t)− eY (t)]
)−ω

κ
σ

σ−1

E AE

+ αEν(t)sAk(t)
αKeY (t)

αEeY (t)
−1. (A-70)

Time-differentiate (A-70):

0 =− αEeY (t)
−1 ėY (t)

eY (t)
− [µ̇(t)− γ̇(t)](1− ω)z(t)ω

(
κ

σ
σ−1

E AE[QDr(t)− eY (t)]
)−ω

κ
σ

σ−1

E AE

− [µ(t)− γ(t)]ω(1− ω)z(t)ω
(
κ

σ
σ−1

E AE[QDr(t)− eY (t)]
)−ω

κ
σ

σ−1

E AE{
ż(t)

z(t)
− QDṙ(t)− ėY (t)

QDr(t)− eY (t)

}
+ αEν(t)sAk(t)

αKeY (t)
αEeY (t)

−1

{
ν̇(t)

ν(t)
+ αK

k̇(t)

k(t)
− (1− αE)

ėY (t)

eY (t)

}
Substitute from the transition equation for k(t) and from equations (A-67) and (A-70) and
rearrange:

αEeY (t)
−1 1

1− ω

(
κ

σ
σ−1

E AE[QDr(t)− eY (t)]
)ω

z(t)ωκ
σ

σ−1

E AE

{
αE

ėY (t)

eY (t)
+ (ρ− gL)− αKk(t)

−1ν(t)−1

}
=− [µ̇(t)− γ̇(t)]

− [µ(t)− γ(t)]

{
ω
ż(t)

z(t)
− ω

QDṙ(t)− ėY (t)

QDr(t)− eY (t)

− (ρ− gL)− (1− αK)(δ + gL) + αKk(t)
−1ν(t)−1 + (1− αE)

ėY (t)

eY (t)

}
.
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Substitute from the transition equations for r(t) and z(t) and solve for γ̇(t): for γ̇(t):

γ̇(t) =µ̇(t)

+ αEeY (t)
−1 1

1− ω

eR(t)

z(t)ω
(
κ

σ
σ−1

E AE[QDr(t)− eY (t)]
)1−ω

{
αE

ėY (t)

eY (t)
+ (ρ− gL)− αKk(t)

−1ν(t)−1

}

+ [µ(t)− γ(t)]

{
ω(Ω− gL)− ωz(t)ω

(
κ

σ
σ−1

E AE[QDr(t)− eY (t)]
)1−ω

(
1

z(t)
+

QD

eR(t)

)
+ ω(λ+ gL)

e(t)

eR(t)
+ ω

ėY (t)

eR(t)
− (ρ− gL)− (1− αK)(δ + gL) + αKk(t)

−1ν(t)−1

+ (1− αE)
ėY (t)

eY (t)

}
.

Substitute for γ(t) from (A-70):

γ̇(t) =µ̇(t)

+ αEeY (t)
−1 1

1− ω

eR(t)

z(t)ω
(
κ

σ
σ−1

E AE[QDr(t)− eY (t)]
)1−ω

{
αE

ėY (t)

eY (t)
+ (ρ− gL)− αKk(t)

−1ν(t)−1

+

[
1 + ν(t)sAk(t)αKeY (t)

αE

]
[
ω(Ω− gL)− ωz(t)ω

(
κ

σ
σ−1

E AE[QDr(t)− eY (t)]
)1−ω

(
1

z(t)
+

QD

eR(t)

)
+ ω(λ+ gL)

e(t)

eR(t)

+ ω
ėY (t)

eR(t)
− (ρ− gL)− (1− αK)(δ + gL) + αKk(t)

−1ν(t)−1 + (1− αE)
ėY (t)

eY (t)

]}
.

(A-71)

Substitute for γ(t) from (A-70) into (A-69):

µ̇(t) =µ(t)(λ+ ρ)− αEeY (t)
−1QD

[
1 + ν(t)sAk(t)αKeY (t)

αE

]
. (A-72)
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Substitute µ̇(t) into (A-71) and rearrange:

γ̇(t) =µ(t)(λ+ ρ)− αEeY (t)
−1 1

1− ω

([
1 + ν(t)sAk(t)αKeY (t)

αE

]
QD + ω

eR(t)

z(t)

)
+ αEeY (t)

−1 1

1− ω

eR(t)

z(t)ω
(
κ

σ
σ−1

E AE[QDr(t)− eY (t)]
)1−ω

{
ω(Ω− gL) + ω(λ+ gL)

e(t)

eR(t)
+ ω

ėY (t)

eR(t)
+
ėY (t)

eY (t)

+ ν(t)sAk(t)αKeY (t)
αE[

ω(Ω− gL)− ωz(t)ω
(
κ

σ
σ−1

E AE[QDr(t)− eY (t)]
)1−ω 1

z(t)

+ ω(λ+ gL)
e(t)

eR(t)
+ ω

ėY (t)

eR(t)
− (ρ− gL)− (1− αK)(δ + gL) + αKk(t)

−1ν(t)−1

+ (1− αE)
ėY (t)

eY (t)

]}
. (A-73)

Solve (A-70) for γ(t), substitute that and γ̇(t) from (A-73) into (A-68), and rearrange:

ėY (t)

eY (t)

{
1 + ω

eY (t)

eR(t)
+ ν(t)sAk(t)αKeY (t)

αE

[
(1− αE) + ω

eY (t)

eR(t)

]}
=− 1

αE

eY (t)µ(t) (1− ω)(λ+ Ω)κ
σ

σ−1

E AE

(
z(t)

κ
σ

σ−1

E AEeR(t)

)ω

+

[
1 + ν(t)sAk(t)αKeY (t)

αE

]
QDκ

σ
σ−1

E AE

(
z(t)

κ
σ

σ−1

E AEeR(t)

)ω

− (ρ− Ω)− ω(Ω− gL)− ω(λ+ gL)
e(t)

eR(t)

− ν(t)sAk(t)αKeY (t)
αE[

ρ− Ω + ω(Ω− gL) + ω(λ+ gL)
e(t)

eR(t)
− (ρ− gL)− (1− αK)(δ + gL) + αKk(t)

−1ν(t)−1

]
(A-74)

Now consider a balanced growth path. From its transition equation, k(t) grows at a
constant rate if and only if y(t)/k(t) is constant. So gk = gy. Substituting into the final
good production function,

gy =
αE

αE + αL

ge. (A-75)
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From its transition equation, z(t) grows at constant rate ge if and only if:

κ
σ

σ−1

E AE
eR(t)

z(t)
= (Ω− gL − ge)

1
1−ω . (A-76)

Using this and the transition equation for r(t), r(t) grows at constant rate ge if and only if:

ge + λ+ gL =
(
κ

σ
σ−1

E AE

)1−ω
(
eR(t)

z(t)

)−ω
eR(t)

r(t)

=κ
σ

σ−1

E AE (Ω− gL − ge)
−ω
1−ω

eR(t)

r(t)

⇔ eR(t)

r(t)
= [ge + λ+ gL]

(
κ

σ
σ−1

E AE

)−1

(Ω− gL − ge)
ω

1−ω . (A-77)

Substituting for y(t)/k(t) from the capital transition equation into (A-67), we find:

ν̇(t)

ν(t)
=(ρ+ δ)− αKk(t)

−1ν(t)−1 − αK [gk + δ + gL].

ν(t)k(t) is constant if and only if ν̇(t)/ν(t) = −gk. Using that condition, gk = gy, and (A-75)
in the foregoing equation yields

ν(t)k(t) =
αK

αEge + (δ + ρ)− αK(δ + gL)
. (A-78)

Substitute y(t)/k(t) from the capital transition equation, gk = gy, gy from (A-75), ν(t)k(t)
from (A-78), and ėY (t)/eY (t) = ge into (A-74):

ge

[
1 + ω

eY (t)

eR(t)

]
1

1− αK

αEge + (1− αK)(δ + ρ)

αEge + (δ + ρ)− αK(δ + gL)

=− 1

αE

eY (t)µ(t) (1− ω)(λ+ Ω)
[
κ

σ
σ−1

E AE

]1−ω
(
z(t)

eR(t)

)ω

− 1

1− αK

αEge + (1− αK)(δ + ρ)

αEge + (δ + ρ)− αK(δ + gL)[
(ρ− Ω) + ω(Ω− gL) + ω(λ+ gL)

e(t)

eR(t)
−QD

[
κ

σ
σ−1

E AE

]1−ω
(
z(t)

eR(t)

)ω ]
. (A-79)

Observe that

eR(t)

r(t)
=
eR(t)

eY (t)

eY (t)

r(t)
=
eR(t)

eY (t)
QD

eY (t)

e(t)
=
eR(t)

eY (t)
QD

(
1− eR(t)

e(t)

)
=
eR(t)

eY (t)

(
QD − eR(t)

r(t)

)
.
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Therefore:

eY (t)

eR(t)
=
QD − eR(t)

r(t)

eR(t)
r(t)

.

Using that and (A-77),

eY (t)

eR(t)
+

1

ω
=
QDκ

σ
σ−1

E AE + 1−ω
ω

[ge + λ+ gL] (Ω− gL − ge)
ω

1−ω

[ge + λ+ gL] (Ω− gL − ge)
ω

1−ω

.

Substitute into (A-79), and also use eR(t)/r(t) from (A-77) and eR(t)/z(t) from (A-76):

ωge
QDκ

σ
σ−1

E AE + 1−ω
ω

[ge + λ+ gL] (Ω− gL − ge)
ω

1−ω

[ge + λ+ gL] (Ω− gL − ge)
ω

1−ω

[
αEge + (1− αK)(δ + ρ)

]
=− 1− αK

αE

eY (t)µ(t) (1− ω)(λ+ Ω)κ
σ

σ−1

E AE

[
αEge + (δ + ρ)− αK(δ + gL)

]
(Ω− gL − ge)

−ω
1−ω

−
[
αEge + (1− αK)(δ + ρ)

]
[
(ρ− Ω) + ω(Ω− gL)−QDκ

σ
σ−1

E AE (Ω− gL − ge)
−ω
1−ω

ge + (1− ω)(λ+ gL)

ge + λ+ gL

]
. (A-80)

This last equation requires µ(t)eY (t) be constant, which in turn requires that gµ = −ge.
Substitute that into the left-hand side of (A-72) and, in the right-hand side of (A-72), substi-
tute k̇(t) from its transition equation, gk = gy and gy from (A-75), and ν(t)k(t) from (A-78),
and then solve for µ(t)eY (t):

µ(t)eY (t) =αE
QD

ge + λ+ ρ

1

1− αK

αEge + (1− αK)(δ + ρ)

αEge + (δ + ρ)− αK(δ + gL)
. (A-81)

Substitute into (A-80):

(ge + ρ− Ω) + ω(Ω− gL − ge) = (1− ω)QDκ
σ

σ−1

E AE (Ω− gL − ge)
−ω
1−ω

ge + ρ− Ω

ge + ρ+ λ
(A-82)

The left-hand side of (A-82) increases in ge. The right-hand side of (A-82) is real-valued
for ge < Ω − gL and, in those case, increases in ge for ge > −(ρ + λ). As ge approaches
−(ρ− Ω) from above, the left-hand side of (A-82) approaches ω(ρ− gL) > 0 and the right-
hand side of (A-82) approaches zero. As ge approaches Ω − gL from below, the left-hand
side of (A-82) approaches ρ− gL > 0 and the right-hand side of (A-82) approaches positive
infinity. Therefore there exists ge ∈

(
− (ρ − Ω),Ω − gL

)
such that (A-82) holds. An
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intersection occurs at strictly negative ge if the left-hand side of (A-82) is strictly less than
the right-hand side of (A-82) when each is evaluated at ge = 0. That sufficient condition is:

0 <(1− ω)QDκ
σ

σ−1

E AE (Ω− gL)
−ω
1−ω

ρ− Ω

ρ+ λ
− (ρ− Ω)− ω(Ω− gL)

⇔ QDAE >
1

1− ω
(Ω− gL)

ω
1−ω

ρ+ λ

κ
σ

σ−1

E (ρ− Ω)

{
(ρ− Ω) + ω(Ω− gL)

}
. (A-83)

Defining χ as in Proposition 5, this last inequality is equivalent to

QDAE >

[
λ+ ρ

λ+ gL

(1− ω)(ρ− Ω) + ω(ρ− gL)

(1− ω)(ρ− Ω)

] −1
σ−1

χ. (A-84)

Define X as the right-hand side of (A-84). If QDAE > X, then the ge that solves (A-82)
is strictly negative. Observing that the terms inside square brackets in (A-84) are strictly
greater than 1 and recalling that σ > 1 under the conditions of the proposition, we find: (i)
X ≤ χ; (ii) χ/X is strictly decreasing in σ; and (iii) limσ→∞X = limσ→∞ χ.

Increasing QDAE increases the right-hand side of (A-82) when it is strictly positive,
without affecting the left-hand side of (A-82). Because the right-hand side of (A-82) cuts
the left-hand side of (A-82) from below around the first intersection in ge (which is the
one whose existence is implied by (A-83)), an increase in QDAE moves that intersection to
smaller ge.

Now consider the feasibility of a balanced growth path. From the capital transition
equation, gk = gy, and (A-75), y(t)/k(t) > 0 if and only if

0 <
1

s

[
αE

αE + αL

ge + δ + gL

]
.

This is satisfied if and only if

ge > −αE + αL

αE

(δ + gL). (A-85)

From (A-78), ν(t)k(t) > 0 if and only if

ge > − 1

αE

[(1− αK)δ + ρ− αKgL] .

Using that ρ > gL, this inequality holds whenever inequality (A-85) holds. From (A-77),
eR(t)/e(t) > 0 if and only if

0 < [ge + λ+ gL] (Ω− gL − ge)
ω

1−ω , (A-86)
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which holds if and only if ge ∈ (−(λ+ gL),Ω− gL). From (A-81), µ(t)eY (t) > 0 if and only if

0 <
1

ge + λ+ ρ

αEge + (1− αK)(δ + ρ)

αEge + (δ + ρ)− αK(δ + gL)
.

The first fraction is strictly positive for ge > −(ρ − Ω), which is met by the analyzed
solution to (A-82). Both the denominator and the numerator in the second fraction are
strictly positive when inequality (A-85) holds. From (A-76), eR(t)/z(t) > 0 if and only
if ge < Ω − gL, which is met by the analyzed solution to (A-82). Finally, from (A-77),
eR(t)/e(t) < 1 if and only if

QDAE >κ
− σ

σ−1

E [ge + λ+ gL] (Ω− gL − ge)
ω

1−ω . (A-87)

At ge = 0, the right-hand side of (A-87) is strictly less than the right-hand side of (A-83),
so that inequality (A-87) is implied by inequality (A-83) when ge = 0. The derivative of the
right-hand side of (A-87) with respect to ge is

κ
− σ

σ−1

E (Ω− gL − ge)
ω

1−ω

[
1− ω

1− ω

ge + λ+ gL
Ω− gL − ge

]
.

The right-hand side of (A-87) is zero at ge = −(λ + gL) (which is a lower bound on ge
from inequality (A-86)) and increases until it reaches a maximum and then decreases to 0
at ge = Ω− gL. That maximum is at strictly positive ge if and only if the above derivative
is strictly positive when evaluated at ge = 0, and thus if and only if

Ω− gL >
ω

1− ω
(λ+ gL). (A-88)

When inequality (A-88) holds, we know that inequality (A-87) holds at all ge < 0 because
its right-hand side increases in ge up to at least ge = 0 and we showed that the inequality
does hold at ge = 0.

From inequalities (A-85) and (A-86), a balanced growth path with ge ∈
(
−(ρ−Ω),Ω−gL

)
is feasible if

ge > max

{
−αE + αL

αE

(δ + gL),−(λ+ gL)

}
. (A-89)

If ρ− Ω is not too large, then this inequality holds for all ge > −(ρ− Ω).
We have found a path along which ℓR(t), kR(t) = 0 with eR(t) > 0 and all variables grow

at a constant rate. The conditions of the proposition ensure that the path is feasible, since
inequalities (A-84), (A-87), and (A-89) hold. Part i of the proposition follows from (A-75).
Part ii of the proposition follows from the analysis of (A-82). Part iiii of the proposition
follows from that same analysis and from (A-76).

Using (A-77), (7) becomes:

EROI(t) =1 +QDAEκ
σ

σ−1

E

ge + gL

[ge + λ+ gL] (Ω− gL − ge)
ω

1−ω

.

We have proved part iv of the proposition.
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