Lemoine Energy and Growth May 2025

Appendix

The first section contains additional analysis. The second section provides details for the
numerical examples. Subsequent sections contain proofs. Throughout, I use ¢, k, e, r, and
y to denote per-capita variables, I use a ss subscript to denote a steady state, and I use g,
to indicate the instantaneous growth rate of variable x.

A Analysis of deposit-constrained degrowth, for tapped
resources with o > 1

Consider the setting of Section 5, with ¢ > 1. When inputs are gross substitutes, the optimal
path may not be interior. Instead, it may be a corner solution in which energy inputs to
deposit-tapping completely crowd out other inputs to deposit-tapping (i.e., Lg(t), Kg(t) =
0). I analyze these balanced growth paths under log utility:

Proposition A-1 (Deposit-Constrained Degrowth with Tapped Resources). Let Assump-
tions 1 and 3 hold and fix o > 1. Define g. as the growth rate of energy per capita, g, as
the growth rate of output per capita, g, as the growth rate of capital per capita, and x as
in Proposition 5. If p — Q is not too large and Q@ — g, > 2=(X + gr), then there exists
X < x such that x/X s strictly decreasing in o, lim, oo X = lim, o0 X, and ApQp > X
implies the ezistence of a balanced growth path with Lg(t), Kr(t) = 0 and with R(t)/L(t),

Er(t)/L(t), Ey(t)/L(t), and Z(t)/L(t) all growing at rate g. # 0. Along this path:

L Gy =9k = gt e
ii g € (= (p—©),0).
iii g and Z(t)/Er(t) each decrease in Ag and Qp.

g _

w FROIt) =1+ A kIt getgr .
(> #Qp B getgr+N(Q—gr—ge) T-@

Proof. See Appendix K. n

When energy resources are sufficiently productive (i.e., AgQp is large), the growth rates
of output and energy are negative (parts i and ii). Reinvesting growing energy stocks in
deposit-tapping at a constant rate eats up the available deposits, as Z(t)/FEr(t) falls in the
productivity of energy resources (part iii). The increasing scarcity of deposits restricts the
ability to produce further energy, so the growth rate of energy must also fall until the rate
of energy reinvestment comes into equilibrium with the rate of deposit finds (part iii).

This is a scenario of deposit-constrained degrowth. The economy accumulates a lot of
spare energy. Deposits are scarce relative to energy, so their availability constrains how
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much of the spare energy can be devoted to tapping new deposits. As a result, a large share
of the energy produced is devoted to final good production (eg(t)/e(t) is small) and thus
to consumption. Nonetheless, the available deposits decline over time as they are exploited
via energy inputs faster than they are found. Energy production falls with deposits, and
consumption falls over time as available energy falls, albeit from a potentially high level that
was enabled by the high productivity of energy deposits.

B Numerical Implementation

I implement the model by discretizing the transition equations over a one-year timestep. I
determine the economy’s path over 400 years by solving the social planner’s problem. The
control variables comprise the factor allocations and the state variables, with the transition
and market-clearing equations serving as constraints. I use the Knitro solver’s interior-point
algorithm in Matlab. I provide an analytic gradient and an analytic Hessian.

I fix the annual growth rate of population to g;, = 0.01, which is roughly in keeping with
the recent growth rate of world population and only a bit higher than the pre-1900 growth
rate.® I fix the saving rate to s = 0.25, which is in keeping with the global rate.?® 1 set
the value share of energy in final good production to ap = 0.05, which is around the value
in the U.S. over the past decades (Hassler et al., 2021; Orak and Cakir Melek, 2021). I
then set ax /(1 — ag) = 0.2632 to match the capital share relative to labor in Hassler et al.
(2021), which implies o = 0.25 and «y, = 0.7. Following Hassler et al. (2021), the annual
utility discount rate is p = 0.0152 and the annual depreciation rate is 6 = 0.05. I normalize
A(t) = 1 and assume log utility.

For the tapped resource, I calibrate the annual discovery rate Q to the 11% growth in
global probable and proved oil reserves between 2000 and 2007 (Sorrell et al., 2012, 716).
This implies 2 = 0.015. T fix A = 0.041 to the production-weighted aggregate annual decline
rate of all oil fields (Sorrell et al., 2012, 718). For the manufactured resource, I set A = 0.005
based on the median annual degradation rate for silicon panels in Jordan and Kurtz (2013)
and Jordan et al. (2016).

For both the tapped and the manufactured resource, I fix kg = 0.5 and kg = 0.9 and I
normalize A =1 and Apx = 1. For the tapped resource, I fix w = 0.5.

I calibrate @Qp and Qg to the EROI of oil and solar resources. First, I fix the EROI
of each resource to an average from Supplementary Table 1 of Slamersak et al. (2022): I
set the EROI of the tapped resource to 10.65 following their analysis of gas-to-electricity,
and I set the EROI of the manufactured resource to 7.75 following their analysis of solar
photovoltaics. Second, I use equation (A-20) to obtain the egss/ess that must hold in steady

38https://en.wikipedia.org/wiki/Human_population_projections#/media/File:World_
population_growth, _1700-2100, _2022_revision.png
39nttps://data.worldbank.org/indicator/NE.GDI.FTOT.ZS
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state. Finally, I back out @p or Qg from that and (A-34). When exploring values of Qp or
(s that do not yield energy-enabled growth, I set the relevant parameter to twice or half of
the boundary value y, depending on which boundary I want to violate.

I set the initial resource stock to Ry = 100 and the initial deposit stock to Z; = 1000.
I follow DICE-2016R (Nordhaus, 2017) in setting the initial capital stock to Ky = 223, in
trillion year 2010 dollars.

C Proof of Proposition 1

Equilibrium solves the following maximization problem:

> 1 _— ar, QK ap
max / e_ptL(t)u(( S)A(t) Ly (t)*r Ky (t)*% E(t) ) "
Ly (), Ky (),Le(:),Kr() Jo 70

st A(t) =g4A(t)
L(t) =g L(t)
K(t) =sALy (t)*t Ky (t)*< B(t)*® — §K(t)
E(t) =QuLp(t)*"* Kp(t)?"x R*1r
L(t) =Ly (t) + Ls(t)
K(t) =Ky (t) + Kg(t)

Converting to per-capita and substituting, this is equivalent to:

ey%,%};(. /0 e—(p—gL)tu((l — 8)A()ly ()L ky (£)*% | Qu[1l — by (1)]?HE [k(t) — ky(t)]¢HKr(t)¢HR:| ) dt

)
s.t. A(t) =gaA(t)
(1) =sAby (1) ky ()% [@Hu () () - /w(tnmr(t)m] "5+ g)k(t)
7(t) = — grr(t).

The current-value Hamiltonian is:
u((l — $)A(t)ly (t)*F ky (1)K [QH[l — Ey(t)]¢HL [k(t) — k:y(t)]‘ﬁHKT(t)‘ﬁHR} E)

+ v(t) {SAfy(t)aka(t)aK [QH[l — Uy ()] [k (t) — ky(t)]¢HKT¢HR] v (6 + gL)k(t)}

— pu(t)grr(t) +¥(t)gaA(t).
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The conditions to maximize the Hamiltonian are:

0= | (1= (= o) + 0] |25 = 122 o

0= | (1= (1= ) + ()] [ 725 ),

Together, these imply:

&0 Cap +apgur’
I N S—

Cag +apdur
Substituting, we find
PHL PHK
E(t) :QH (Lm[/(t)) (Lm[((t)) R¢>HR

ar + gL ag + QpQHK

- oy aj, ax [67%¢
Y(t) =A(t) (aL i aEd)HL) (aK + aE¢HK)
[QH (Lm)m (LWL)W R

ar + gL oK + apduK

aE

L(t)aL +apdHL K (t)aK+aE¢HK )

Define

Ap(t) 2 A(t) Tox—epGrxTonm

Defining yz(t) 2 Y (t)/[Ag(t)L(t)] and analogously for the other variables, we find:

ar ary, ax a
yp(t) = | ——— —_—
o +apdpr ag + OpQHK

ap

PHL PHK
[QH (L#SHL) (%) TH(t>¢HR] kH<t)aK+aE¢HK7

ap + apdhr ag + apdPuK
1

1 —ax —ap(duk + dur

. )QA)TH(t)-

1 — ok —ap(Puk + our

The growth rate of kgy(t) is:

ke (t) =syn(t) — (6 +9r + )9A> ku(t),

a(t) = (gL '

1
1 — ok —ap(duk + ¢HR)9A) ’

ZSXHQ?{E7~H(t)aE¢HRkH(t)OtK+aE¢HK—1 _ <5+9L +
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where
a «a R
X N < ar, > t < K ) K ( apQHL )¢HL ( AEQKL )¢HK
ap + apdHL ag + OpQHK ar + apdur ag + OEQHK
That growth rate is constant if and only if
o (8O g (el - {gk +6+ g1+ . QA}
sxuQf 1 —ag —ap(dux + dur)
(A-1)

is constant. Observe that:

\ et e )gA)t
ru(t) =e ( et n ru(0).

Substitute into (A-1):

1
l—ag—agépgK

e

1
—OBPHR (9L+1_O‘K_QE(¢HK+¢HR)9A)t R AEPHR
L(0)An (0)

ku(t) = | sxuQ°

g+ 0+ g1, +

1
l-ax—ap(¢gx+9oHR) ga

And thus:

ka(t)  1—oax —apénx gt 1 —ax — ap(éux + ngR)gA <0

The growth rate of output per capita is:

9@ _ ) o ku(t) | An(t)
O E¢HRTH(t> + ok + E¢HK]kH<t) + An(D)
ga — OpPHRIL

:OZL + ag(¢ur + dur)

The proposition follows.
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D Preliminaries for Propositions 3 and 4

Equilibrium solves the following maximization problem:

max /Ooo e—ptL(t)u((l — S)ALY(t)aLKY(t)aKEY(t)aE) d

Ly (),Ky (),By (), L (), Kp(),Lr(),Kr(-),Er() L(t)

s.t. L(t) =g L(t)
K(t) =sALy (t)*" Ky (t)"* Ey (t)*" — 6K (1)
Z(t) =QZ(t) = Z(t)* F(L(t), Kg(t), Er(t))' ™
R(t) =Z(t)* F(Lg(t), Kn(t), Er(t))' ™ — AR(t)
B(0) =Qui L (1) Kp(1)** R(t)
L(t) =Ly (t) + Lp(t) + Lr(?)
K(t) =Ky (t) + Kg(t) + Kg(t)
E(t) =By (t) + En(t).

Converting to per-capita and substituting, this is equivalent to:

[e%¢) ar
—(p—gL)t
a 1—35)A|1—{lg(t) —lR(t k(t) — kg(t) — kg(t
eE(-»@(-)ﬂ(-}fkm-),e;z(-)/o ‘ u(( °) [ () ~ Ll )} { (£) = k(t) = knl )}
ap
{QMEE(t)mekE(t)¢MKr(t)¢MR - eR(t)] ) dt

ar,

s.t. k(t) =sA {1 —lp(t) — €R(t)} {k(t) —kg(t) — kR(t)}

aK

(€924

[@MeE@)mkE<t>¢MKr<t>¢MR - eR<t>] G+ gk

() =(Q = gr)z(t) — 2(t)* F(Lr(t), kr(t), er(t) ™
P(t) =2(8)“F(Lr(t), kr(t), er(t))' ™ — (A + gr)r(t).

The following lemma establishes that any balanced growth path with interior solutions
must have variables growing at the rate of population:

Lemma A-2. A balanced growth path with Lg(t), Kr(t), Er(t) > 0 must have all variables
growing at the rate of population.

Proof. Use g, to indicate the instantaneous growth rate of variable x. From the transition
equation for z(t), 2(t)/z(t) is constant if and only if F'(¢r(t), kr(t),er(t))/z(t) is constant.
From the transition equation for r(t), 7*(¢) /r(t) can be constant with F'(¢g(t), kr(t), er(t))/z(t)

constant if and only if F/(¢g(t), kr(t),er(t))/r(t) is constant. Therefore, if g, and g, are each
constant, then g. = g, = gr/r.
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If gr/r # 0 and e and kr grow at constant rates, then £z must grow at a constant rate.
The constant growth rate of /r cannot be strictly positive because g is bounded above by
1. The constant growth rate of £z cannot be strictly negative because the (full employment)
labor constraint implies that ¢y and/or {g must grow at a strictly positive rate yet these
variables are each bounded above by 1. Therefore a constant growth rate of /z must be zero.
If gr/1, Gk, and g., are also to be constant, then gr/r, giy, ge, = 0. That implies g., g, = 0.
It follows straightforwardly that the remaining variables (in per capita form) also grow at
rate zero. O

So we seek a steady state in per-capita variables. The current-value Hamiltonian is:

a(=9af1- a0 - )] [0~ kst6) = ko)) [QutsO ket - entt] )

ott) (st = tuto) — )] [k~ ot k)] [Quteter sty osrior s — eato)]”
- 5+ a0

#9000 = g2)2(0) = 20 F(lalt). ha0) ()~

T ult) [z(tVF(eR(t), kn(t), en(t)™ — (A + gL>r<t>] .

The costate equations are:

OéKZ/(t)

(0= auhvle) = 7(0) =] (1= (1 = shyle) + v G2 = 0+ gnott)
e o(t) = - [(1 — ) (1 - s)y(t) + su(t)] O‘kf; lég) +(p+ O)w(t), (A-2)
(0= 907(0) = 3(0) =00 = gn) + (1) = 5(0) o (FEA- D)

F(lg(t), k

=y
S~— |
~

S—

[

=y
—~

~

SN—
SN—
N—
T

€

~—~
;I>
w
S—

=40 =100~ ) [u) 0]« (

(0= gu)n(t) = 1) = = p(B\ + 1) + [(1 — s (1 - $)y(t) + su<t>] e

apdury(t) e(t)
o) ) O

o ilt) =u(t) (o + A) — [(1 (L= s)y(e) + sv<t>}
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The conditions to maximize the Hamiltonian are:

0 =[(1 = ua = ooy + vt [0z 0

NOREG Mt)]y“)’ (A-5)

0= | (1 (1= e + st [ 222 LD 2, (A0
0= S (1 — (1 = o) + ()

o -s0)0 -9 (Fraridmam) T s D
0= S = (1= o)+ svlo)

o = 0] - () ey 4

20 * OF (¢alt), kat), ex(t)
) praetd) (o)

. Qay, ey(t) _
() =22 (0), (A-10)
by (1) =KWy (A-11)

apouk et)

Take ratios of equations (A-7), (A-8), and (A-9), substitute for ¢y (¢) and ky(¢), and cancel

the ey (£):
e ()T () () e
e () (e ) e e

Solve (A-12) for kg(t):

) = [ L () (LY () O]
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Substitute into (A-13) and solve for (g(t):

kr(o—1) kr(o—1)+1 o o—1
[ kK KL 1—kg Ark
wo-(ie) GRG0 ()
k kr(o—1) / kr(o—1)+1
(e
Substitute back into (A-14):
kr(o—1) kr(o—1)+1 o o—1
(kL KK 1— kg Ark
wo-(n) G () ()
EE(t) kr(o—1) k‘E(t) ki (o—1)+1
o () ()

Substitute from (A-10) and (A-15) into the labor resource constraint and solve for {g(t):

ta(t) =1+ )

apdmr et)
N ( KK )m((ol) (i)I{L(Ul)+1 (1—I§,E>U (ALK)Ul
OmK OmL KE Ag
en(t) (kp®) ™V fep@)\ ! At6)
e(t) \ e(t) e(t) '
Solve for eg(t)/e(t):
er(t) [1—{lp(t) — ano(ébL]\/[LgE(t 1/0r(t)
e(t)  __a pre O NREOTIT N (A \ T (ke T e\
_aE¢>LML + <¢MK> <<1>M_LL> (ﬁ) ( ALI§> ( e(t) > < e(t) )

Substitute from (A-11) and (A-14) into the capital constraint:

kg(t) ag  ey(t
[1 - apdur e(t)

+( Ky )H,L(O'—l)< KK >/€K(U—1)+1 (1 _RE)U <ALK>U—1
dumr PumK KE Ap

BET T e

A-9
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Substitute for eg(t)/e(t) from (A-17):

k()
k(1)

[  andux Lo(t)
e )™ () () ) ot

=) (4
e ) ) )
) G GG () (
[1—lp(t) — S le(t)]/le(t)

kr(o—1) kr(o—1)+1 T
——%L L (-Ex L LK
apoML <¢MK) (¢ML> < > ( Ap ) (

Finally, at a steady state, é(t) = 0 in equation (7). Therefore,

HK(U_l) 05(t) HL(o—_l)]
) (%)

EROI, =1+ =%

€Rss

gr- (A-20)

E Proof of Proposition 3

Section D contains preliminaries. By Lemma A-2; any interior balanced growth path must
have per-capita variables constant. If o = 1, we have, from (A-16) and (A-18):

T 6R<t>1—1’

apPMmL e(t) omr ke e(t)
k’E(t) . [(677¢ - GR(t) RK 1-— RE GR(t) B
k?(t) N [1 * apPMK (1 e(t) > * dMK  KE (t) } ' (A 21)

These are both interior as long as eg(t)/e(t) < 1. With these:

ey(t)
CYE¢ML e(t) £st)
ky(t) ok ey(t) ke(t)
k(t) OCE(bMK €(t) k’(t) ‘

Uy (t) =

(A-22)

A-10
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And:

R, 1— RE €R<t>

lr(t) = Ci(t),
(1) omr ke e(t) 5(t)
kp(t 1-— t) kp(t
r(t) _ kK rp er(t) ki( ). (A-23)
k(t)  oux ke e(t) k(t)
At a steady state, (A-4) becomes:
/ T'ss €Rss
Yss (1 - s)u ((1 - 5)953) + SVss| = NSS<IO + )‘> - .
O‘EQSMR €ss
Substitute into the steady-state version of (A-9):
1 T z Y F
O:__ss +)\ﬁ+ ss — [ss 1-w > S8H7
QZSMR,u (p )ess |:/jj K :| ( ) <F(€R887 kRSS7 eRss)) €Rss P
where
Fss = F(£RSS; kRssv 6Rss)-
Solve for v,,:
1 r
——(p+A Zos
Vss :,U/ss(l_ ¢MR(Z ) = - )
<1 - W) <F(€Rss,]:1;35,6333)) eRSsSs ke
Substitute into (A-3):
z Y F 1 r
0 = — Q ]_ — W 55 ss Ko — + A _Ss
(p ) (( ) (F<€RSS7 k:Rs& 6Rss)> €Rss b ngR (p )ess>
F(£R357 kRss; eRss) ) T 1 Tss
—w —((p+A)—.
( Zss ¢MR (p )ess
From the transition equation for z(t),
Zss __1
=(Q—gp) . (A-24)

FSS
Using (A-24) in the expression prior to it yields:

0 =(p— (1 —w) (2 = 92) 7 kg — [(p— Q) + w(2 — gu)] ——(p+ ) 222 ELe.

¢MR Fss €Css
The transition equation for r(¢) and (A-24) yield:
T'ss _w
(At gu) et =0~ gi) 5. (A2

A-11
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Substitute into the prior expression:

p— gr + A
p—+w@—ygr) p+ A

€Rss

=¢mr(l— w)F&E( (A-26)

658

The right-hand side is strictly positive because p > Q, gr.

It remains to verify that the steady state is feasible. Equation (A-25) shows that a
steady state with other variables strictly positive has rgs > 0 if and only if either w = 0
or Q > gr. From (A-24), z,c > 0 with other variables strictly positive requires 2 > g.
Because eygs = €55 — €Rrss, a steady state has strictly positive final good production only if
erss/€ss < 1. Using p > gp and kg, ppp < 1, it is clear from (A-26) that egss/ess < 1 when
either w = 0 or 2 > g;. Finally, from the capital transition equation, yss/kss = (0 + g1.)/s,
s0 kss > 0 if yss > 0, and from the final good production function and (A-22), yss > 0 when
Uy, eyss > 0if kgg > 0. So it is internally consistent for all variables to be strictly positive
if and only if either w =0 or 2 > g;.

The claims about prices are implied by the existence of steady states in per-capita, current
value terms for v(t) and p(t). The claim about FROI, follows from (A-20) and (A-26).

Finally, consider the elasticity of y,s with respect to Q. From (A-25), (A-23), (A-21), (A-26),
and the transition equation for k(t):

des A — Fss dkRss S dyss Fss deRss dess
=0 — == (A 1 1— :

dQM ( gL) 1 ( * gL) KK( K;E) kRss dkss 5 + gL dQM i e €Rss dess dQM
(A-27)

From (2), (A-21), (A-26), and the transition equation for k(t):

dess €5 ess dkpss s dyss €ss drgs

==+ + — :
dQM QM (bMK kEss dkss 0+ gr dQM ¢MR Tss dQM
Substitute from (A-27) and solve for degs/dQ -

€ss €ss dkE.ss S dyss €ss _ _1% -1 _ Fs dkRss S dyss
dess _ Qur T OMK Tt Wi Trgr dgar T OMATS (0 —gr) (A +gr) ™ wx (L — Kp) g G 57, agw

dQwm L= Garres(Q — ) 9 (A + gp) L Lo e

Tss €Rrss dess

(A-28)

From the final good production function, (A-22), (A-21), (A-26), and the transition equation
for k(t):

dyss Yss dess S dyss Yss deYss dess

dQM —OK sts dkss (5 + gL dQM * ar €Yy ss dess dQM

A-12
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Substitute from (A-28) and rearrange to solve for dyss/dQs:

dyss
dQwm
€ss
o -Yes deyss wQM
= d
e¥ss dess 1_gp s (Q—g) T-0 (Agr) Lk };gss ECTS
B Parx peas s +oMrEE(Q—gL) - T8 (Ahgr)~hg (1—rp) s fiss
1 — ax Yss dbyss s o Yss deyss kEss dkss 5"'gL krss dkss 6+9r,
Ky dkss o+9L Eeyes dess 1-¢pRrs(Q—gr) T w()\+gL) 1y Fas d€Rss

€Rss dess

Substitute for y,s/kss from the transition equation for k(t) and simplify some other terms,
using constancy of shares from (A-21), (A-22), (A-23), and (A-26):

€| —

1
AEpYss —
dyss B QM 1-¢pp(Q—gr) T-% (A\gr)~ 1HEF§S

dQu

oMK +OrR(Q— gL)*ﬁ(MgL) 11—
1—¢mr(Q—gr) I- W(>x+gL) 1KEFS“

1—CYK—O[E

Substitute for Fy,/rss from (A-25):

1
dyss QM o QEW

d 7 . drvx+OMRr(1—KE)KK
Q@ Yss I —ag aE¢MK+¢ML+¢IMR(1_“E)

The left-hand side is the elasticity of y,s with respect to Q3. The right-hand side is constant
in @y and strictly positive. We have established the claim in the proposition about the
elasticity.

F Proof of Proposition 4

Section D contains preliminaries. By Lemma A-2, any interior balanced growth path must
have per-capita variables constant.
Use (A-4) in (A-9) and evaluate at a steady state:

ap €yss Tss Zss v ans
0 = - — ss A ss S8 1 - )
6Yssu (p * )aE¢MR €ss + |:,u 7 :| ( W) (Fss) aeRss

where
Fss é F(gRssa kRssa 6Rss)-

Solve for -
(1-w) (3) 2=

- w 755'
(- (72)" 8~ (0 Vaiziz

PMR €ss

A-13
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Substitute into the steady-state version of (A-3):

0= (- |a-w) (5) prmmprng | - (F) (p+ 2T

aeRss ¢MR €ss sS

From the transition equation for z(t):

Zss 1

po= () (A-29)

Use (A-29) in the prior expression and substitute for the partial derivative of Fg,:

1

W == 1 T'ss €ERss Fss UT
0=(p— Q1 —w)(Q—g) rpAy —|(p— Q) +w(Q—gr)|(p+A) - .
¢MR Fss €ss €Rss

And use (A-29) in the transition equation for r(t), evaluated at a steady state:
Fo =(2 = g0) 75 (A + g0 )rss. (A-30)
Substitute that into the prior expression and rearrange:

o (CbMRKJE (1—w)(p—Q)
* Atp (1=w)(p—Q) +wlp—gz) €Rss

> i (Q_gL)iﬁAEeRss-
(A-31)

When w > 0, equation (A-31) shows that a steady state requires 2 > g;. Using o # 1,
substitute for ry in (A-31) from (A-30), substitute for Fis from (5), and rearrange:

o

1-— RE % ALK 1 7t KL 1K
€Rss = < KE ) AE Mgz (1—w)(p—Q) e _ 1 gRsskRss' (A—32)

Mo o) Dralean) OM R

Rearrange (A-12) and (A-13) and evaluate at a steady state:
dmL  KE ALk - KRss R €Rss v
eEss = €ss)
k 1—kp \ Ap CRss CRss

—o=1 —pp 2=l _1
I _<Z5MK RE ALk o [ lRss P (eRres ) °
FEss — €ss.
krk 1—kg \ Ag kRss K Rss

Substitute into the per-capita version of (2) evaluated at the steady state and solve for e:

_o—1 ko=l 1
G?SMR: MT;?R oML KE ALk 7 ( KkRss "7 (erss\
k 1—kp \ Ag CRss CRss
o1 —rp o=l _17¢MK
OdMK  KE Ak 7 CRss Lo €Rss 7
kg 1—kg \ Agp kRss ERss

A-14
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Substitute for 7 from (A-31):

( . )m G ((WRKE Lol =2 (g gyt ) (- gL>—1—“’wAE) h

€Rss A + p (1 - W)(p Q) + w(ﬁ gL) €Rss

_o-179MLtOMK bumL PMK
KE ALK 7 ¢ML ¢MK
1—kp \ Ag kL RK

kp(c—=1)+1
——— %M

kg (0—1)+1 .

o—1
L—KL - PMK k
Rss

k—kr S dmrL —LomLt+omi)
Rss €Rss '

Substitute for egss from (A-32) and rearrange to obtain:

e P 4’1%5;;;2MK
:(Q — gL)l w(a 1) |:(1 — RE)AL;(]
€Rss
—(o—1)
e ¢ML PML ¢MK PMK o rro vt o PMR
Hgfl AEQM ( ) ) ERI; ML=RLOMK [. Lss MK—KKPML
L KK
1 (1=w)(p—O) N\
OMR (A g1)°
(Aﬂ) (I =w)(p— ) +wlp—gr) )
PMLtéMK
[ 1 ] PMR
Aty (1 w)(p Q €ss
S TG G MR = 1

Apply Assumption 2 to eliminate (s and kggs:

€ss w 1 a1 U%# o b bmr brric Parxc 7¢£Z/1731>
=(Q - gL)m(Ji ) [(1 - "JE)AL;(} Ky ApQu ( ) (—)
€Rss R RK
1 (1=w)(p—9) N\
PMR (A+g)°
(Aﬂ) (1-w)(p—Q)+wlp—gr)
PMLTOMEK
[ 1 ] MR ( )
. A-33
>\+g (1—w)(p—Q) €ss __
/\-Hf (1=w)(p—)+w(p—gr) ¢ MRep,, 1

0. Mp 1 (1—w><p—ﬂ>+w<p—gL>>
P AgL dMmR (1-w)(p—2) ’
the left-hand side is strictly positive but the right-hand side is strictly negative, so the equa-

tion cannot hold. For ey /egss > )\’\L’JL (m14R (1—wzg;:)£>2():fgg§_ﬂ) and either w = 0 or p > €, the

right-hand side of (A-33) monotonically decreases in e/ eRss, going to 0 as egs/erss — 00

and going to infinity as ess/€rss — /\)‘J:;’)L mlm = wzgp ws)z();rwg,)) 9) from above. The left-hand

A strictly positive solution requires either w = 0 or Q > gr. If ess/epss € (

A-15
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side monotonically increases in egs/egss and is strictly positive. So when either w = 0 or
Q) > gr, there is a unique ez /egss > 0 that solves the equation. That solution has:

€s  Atp 1 (A-w)lp—D)+wlp—gi)

€rss A+ 9L PMR (I-w)(p—19Q) '
From (A-31), the steady state has rss > 0 if and only if Q > g;. Because eygs = €45 — €Rss,
the steady state has strictly positive final good production if and only if e s/erss > 1, which

holds because p > Q, gr. From (A-20), EROI(t) is constant along the balanced growth path
and

Ap 1 (1—w)p—Q) +wlp—gL)
A+ gL Pur (1—=w)(p—9Q)

We have proved part i of the proposition.

The right-hand side of equation (A-33) increases in Ap and Q) if 0 < 1 and decreases in
Ag and @y if 0 > 1. So the egs/epgss that solves (A-33)—and, by (A-20), EROI—increases
in Ag and Q) if 0 < 1 and decreases in Ag and @), if 0 > 1. We have proved parts ii and
iii of the proposition.

The claims about prices are implied by the existence of steady states in per-capita, current
value terms for v(t) and pu(t).

FROI,, >1+ gr.

G Proof of Proposition 5

The setting of Proposition 5 matches those of Propositions 3 and 4 as ¢y, g — 1 (which implies
Oumr, P — 0) and with @p in place of Q3. Lemma A-2 still applies here. Therefore any
interior balanced growth path must have per-capita variables constant and prices growing
at rate p — gr.

The case with ¢ = 1 (i.e., part i of the proposition) follows from taking the limit as
¢mr — 1 in the proof of Proposition 3.

Now consider o # 1. Using e;s = Qprss in equation (A-31) and taking ¢pr — 1 (and
¢ML7 ¢MK — 0) yields:

€ss _ ((/\+P) [(1 —W)(P—Q)+w(p—gL)]>U [ApQp]' ™"
(p= D1 - w)rp (A+90)(Q = g) ™=
From (A-30), an interior solution requires either w = 0 or 2 > g;. In either case, ess/eRss is
interior.
The steady state has strictly positive final good production if and only if ey /egss > 1.
From (A-34), ess/erss > 1 if and only if

(o0 -0 1eo (A 90\’ Nt (1-0) (1-w)(p—9Q) 7
FUsnl e =0 (S5 ) @™ (e )

(A-35)

— = (A34)

A-16
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For o < 1, inequality (A-35) holds if and only if

Atp \7T e (1—w)(p—9)+w(p—gL))"il
A >(A+ _ Q—gp)T= ,
w00 >0 (5 ) @mas (B
where the right-hand side is y from the proposition. We have proved part ii of the proposition.
For o > 1, inequality (A-35) holds if and only if

A+p o1 o (1—w)(p—Q) +wlp—gL) 1
AEQD<<“9L>(—RE<A+9L>) (@ =g1) ( 1-w(p-Q) ) ’

where the right-hand side is x from the proposition. We have proved part iii of the proposi-
tion.

EROI(t) along a balanced growth path follows from equations (A-20) and (A-34). We
have proved part iv of the proposition.

H Proof of Proposition 7

Consider a case with (x(t), kgr(t) = 0 and er(t) > 0. By labor and capital market-clearing,
Uy (t) =1 and ky(t) = k(t). Equilibrium then solves the following maximization problem:

max 0 /oo e‘ptL(t)u((l - S>AL(t)aLK(t)aKEY(t)aE) dt

Ey(-),Eg L(t)
s.t. L(t) =g L(t)
K (t) =sAL(t)*“ K (t)*% Ey(t)*% — 6 K (t)
R(t) =k% T ApEr(t) — AR(?)
E(t) =QsR(t)
E(t) =By (1) + Br(t)
Converting to per-capita and substituting, this is equivalent to:

max /0 " ety ((1 — ) AR [ey(t)]aE) dt

ey ()

st k(1) =sA[R(H)]* [ey (£)]°F — (6 + g )k(t)

H(t) =k " Ap[Qsr(t) — ey ()] — (A +go)r(t).

The current-value Hamiltonian is:

(1= AR Ser (07 ) + (0 (sAKOF S er (017 = 0+ 90)h () )

+ult) [E AslQsr(t) — ex (0] — (A + gL>r<t>} .
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The costate equations are:
(0= 90)w(t) = 0) = (1= (L= )0 + )| 25 = (54 gt
S u(t) =— {(1 —s)u' (1 —s)y(t)) + sz/(t)} a:(yt()t) +(p+9o)v(t), (A-36)
(p = gu)n(t) — (t) =p(t)nf " ApQs — p(t) (A + g1)
o le) =l0) |0+ A~ 7 45 s). (A-37)
The condition to maximize the Hamiltonian is:
_ / apy(t) e
0= | (0= (1= ) + 500 25— ey A (A-33)
Substituting into (A-36), we obtain:
o(0) =~ w(eE " 455D 4 (54 oy (A-30)
Time-differentiating (A-38), we obtain:
B éy (1)
0—[(1—3) (1 —=s)y(t)) + sv(t } { ) )

L= 91— s)u(0) 2 ty +sv<>“’3y<”—n<t>mg—1AE-

Substitute from (A-37), (A-38), and (A-39):

0 =itz g | 15 = 2 st = (1 - i) 2o

y(t) vt ey (t)

+ sy(t) { agKg 1AEZE:3 + ap(p+9) el;(éfz?)l — u(t)ky, 1AE [(,O—i- A) — mﬁAEQS} :
Time-differentiate the final good production function and substitute for ¢(¢) in the previous
equation:

_ e |90 éY(f)] a2 y() k(1) éy (1)
0 =acg g |5 = O aplt = P ) 2000 e )+ e (t)]

v(t)

+ aE(p+ 6)€y<t)

+ sy(t) { agky 1AE/]:8

A-18
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Use Assumption 3 and rearrange:
1, |9 ev(d)
0=pt)kgy "Ap | —F% —
R
1 [ (t) éy (1)

o |0 TP

—(p+ A+ /f]?AEQS — saK%

+ v(t)sagp(p+9) y() . (A-40)

B ey ()

Now consider a balanced growth path. k(t)/k(t) is constant over time if and only if

y(t) _grt+o+ar
k(t) s

Therefore g, = g,, which, in the final good production function, implies that

(A-41)

gy :Oéng + aEgey

4 __9E
Iy Cap+ ongeY'
The resource transition equation implies:
rt) a5 ey (t)
—= =Ky A — — (A :
e 0= ] 0

The growth rate of r is constant if and only if ey () grows at g,. The growth rate of r is the

same as the growth rate of e. Therefore er(t) grows at rate g. and
05 5)
=—0e. A-42
9y g + QLQ ( )
Using this and g5 = g, in (A-41),

y(t)  artarde T O+ gL

=2ptar A-43
E(t) s ( )
Use g, = g, in (A-40) and substitute from (A-42) and (A-43):
o1 oL o1 72)
— t o IA _ _ )\ g IA — _ 5
0=p(t)kp " Ap { anta, 9+ N+ ApQs — ax (aE+aLge+ +9L):|

y(®)
Cy (t)
Multiply through by ey (t) and multiply the final term by k(¢)/k(t), again using (A-43):

1 ap

E e ) ap +or +v(t)sap(p+0)

75T arL 75T ap
0=u(t)ey(t)kp "Ag | ——————¢ge — A A - ———— G+
e (OE " A |~ g (p 0+ A5 Qs —ane (g0 )|

ap

- aEmge +v(t)k(t)ar(p +9) (

agp

——g.+ 0+ . A-44
aE+aL9 9L> ( )
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v(t)k(t) is constant if and only if #(t)/v(t) = —gg. In that case, (A-39) implies

_o_ ap 1

Hk(t) =pt)ey(t)kp ' Ap— ——. A-45
OO =)oy (05 4525 L (A-49

Substitute into (A-44) and use (A-42):

ag
_— ar, e Tta9e gL+t ag
0=u(t)ey()ky 'Ap | ———————g.— (p+ \) + kg ‘A o .
utley (ki Ap | = —ge = (p+ A) + i~ ApQs — ax ox ot o aptar’
— aEige. (A-46)
ap + oy

o

If g. is constant, so too is pu(t)ey (t). From (A-37), u(t) grows at rate p+ A — k' ApQs,
so u(t)ey (t) constant implies:
ge =k "ApQs — (p+ ). (A-47)
Substituting into (A-46), we find:

(0% 5 —
O = a 1A —_ A
ap + o (KE 5Qs = (p+ )>

2 [k T ApQs — (p+ V)| + g1+ }
— Qg ¢.

{,u(t)ey(t)/ig‘lAE 1—ag ——
i [KE T ARQs — (p+ N)| + p 40

agp+tar

This holds if either g. = 0 or

ap
p(t)er (1) = e ,
-3 ozE+EaL [’{57 AEQS*(P+>\)} +gr+6
Rp AE 1-— (077¢ - —5—
aEfaL [Hgil AEQS—(/H‘)\)} +p+6

The right-hand side is strictly positive for g. # 0 if and only if:

aptar

o [KE T ApQs — (p+ N)| +p+ 6

aptar

" [H?AEQS —(p+ )\)} +gr+0
1 >agk

(A-48)

Observe that y(t)/k(t) > 0 requires, from (A-43), that the numerator on the right-hand
side of (A-48) be strictly positive and that v(t)k(t) > 0 requires, from (A-45), that the
denominator on the right-hand side of (A-48) be strictly positive. Using p > g1, these two
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conditions are jointly satisfied if and only if the numerator in (A-48) is strictly positive, so
if and only if

ap + of,

kg tApQs > p+ A — (91 +6). (A-49)

ap

If this last inequality holds, then inequality (A-48) also holds, because ax < 1. If u(t)ey (¢)
is weakly negative, then (A-48) would not hold and so (A-49) would not hold, which means
that the path is not feasible. So pu(t)ey(t) > 0 on a feasible path, as would be expected.
Finally, observe that r(t) grows at a constant rate if and only if

er(t) _ 9e +A+gL
ct) ki ApQs

(A-50)

Substituting from (A-47), we have eg(t)/e(t) € (0,1) if and only if

Ky ApQs — (p—gr)
KFAEQS

Because p > gr, this condition holds if and only if

€ (0,1).

kg ' ApQs > p— gL (A-51)

We have found a feasible path along which (g(t),kgr(t) = 0 with eg(t) > 0 and all

variables growing at a constant rate. If AzQg > X, then k5 'ApQs > p + A (observing
that (A + g2)[(A + p)/(A + g1)]°-T decreases in o for ¢ > 1) and thus inequalities (A-49)
and (A-51) hold. Part i of the proposition follows from g, = gy and (A-42). Part ii follows
from (A-47). Part iii follows from (7), (A-47), and (A-50).
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I Proof of Proposition 8

Equilibrium solves the following maximization problem:

o0 1 — 8) ALy ()20 Ky (1)K By (£)%F
A / eptL(t)u(( s) ALy (t)*F Ky (t)*% Ey (t) )dt
Ly (,Ky (),By (),Er(-),Ep(),Br(-),Bs () Jo L(t)

s.t. L(t) =g, L(t)
K (t) =sAL(t)** Ky (1) Ey ()" — 0K (t)
R(t) =AgBg(t)"® Ex(t)"® — AR(t)
B(t) =ApBg(t)’2 E(t)’s — UB(t)
E(t) =QsR(t)
L(t) =Ly (1)
K(t) =Ky (t)
E(t) =Ey(t)+ Egr(t) + Ep(t)
B(t) =Bg(t) + Bg(t)

Converting to per-capita and substituting, this is equivalent to:

max Ooe_(p_gL)tu — 8 K ey ()]
6Y(')>eR‘(')7bR(')/O <<1 )A[k(t)] [ <t>] ) &
st o(t) =A% ey ()% — (5 + g1 k(1)
() AEbR( )*Per(t)™ — (A4 gu)r(t)
b(t )

) =Ap[b(t) — br(t)) " [Qsr(t) — ey (t) — er(t)]™ — (¥ + go)b(t).

(t)/k(t) is constant over time if and only if y(¢)/K(t) is constant over time. Therefore
gr = gy, which, in the final good production function, implies that

9y =CK Gk + AOF(ey
ap
ap + ay,

We have established part i of the proposition.
The current-value Hamiltonian is:

u(u AR [ey<t>1%) ) (sAw)]aK ey (01 — (54 gL>k<t>)
) [AEbRa)”BeR(t)”E . gL>r<t>]

+ (1) [Ap[b(t) — br(D)]2[Qs7(t) — ey (t) — er(t)]”® — (¥ + gr)b(1)] .

< Oy = Gey -
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The costate equations are:

(0 = gr)v(t) = v(t) =ax(l = s)u'((1 = s)y(t)y(t)/k(t) + axsv()y(t)/k(t) — (6 + gr)v(t)

& olt) = = B (1= (L= t) + vl + (i), (A-52)
(0 — gu)ult) — iut) =Qs B (( >> Apbi(t)°5en(®)® — u(t)(\ + 1)
& ilt) = — Qspe <( >) Abs(t)e(t)% + u(t)p + A, (A-53)
(0 — g2)Y(t) — T(t) =B (())ABbB< Voren(t)® — T(H)(W + g1)
& T(t) = fs ((>)ABbB() ()7 +Y(t)]p + ). (A-54)
The conditions to maximize the Hamiltonian are:
0= (1= (1= )yt) + sv)| B4 _ 5, IO 4 mep)E, (A55)
ey(t) eB(t)
0 =RKRE ( ) AEbR< ) ( ) ﬁE ( )ABbB( ) €B(t)BE, (A—56)
er(t) B(t)
— ( ) ( ) BE _
0= BbR( )AEbR< )*Per(t)"” 53 bl )ABbB( )PBep(t)’". (A-57)

Equations (A-56) and (A-57) imply:
kpbr(t) _ Brebs(t)

rper(t)  Bgep(t)’ (A-58)
Rearrange equation (A-55):
T( ) t)PBe BE — — s — s SU %(t) _
At eaye = (1= (- syle) + 0| S (as)
Time-differentiating yields:
T(t) ept) o bst) | , es(t)| T(t) S5 (1)65
() ent) +/BBbB(t)+5E (D) )A Bbi(t)"ep(t)
== 2O ) + 5010) g“;i(( ;
om0 555 106 - )

A-23



Lemoine Energy and Growth May 2025

Substitute from (A-52), (A-54), and (A-59):

o (e Ceslt) |, belt) |, esld)
putn (200) o = 2 + gy e
_ (=9 (0)u"((1 = $)y(t) +s(p +0)v(t)  axy(t)  §(t) eév(t)
(1 =) ((1 = s)y(t)) + sv(?) k() () ev(t)
Substitute from the transition equation for b(t), for v(t) from (A-55), and for Y (¢) from (A-56):
b(t) b(t) ép(t) b (t) ép(t)
~150) + ¥ +gr 5Bb 0 +p+ V- en(l) +5Bb @) +5E€B(t)

(1= P30 (1= s)y(t) + (p+ ) 2D wpp(t) Ap (2G)™ — (p+8)(1 = s)u'(1 = )y (1))

KB
ey (t) [{E,LL( )AE 6R(2>

agy(t)
agy(t)  yt) év(t)
k@) y(t)  ev(t)

Use Assumption 3 and rearrange:

“E per(t4s ()

BR(t)

b(t) b(t) ép(t) bp(t) ep(t) | agy(t) yt) ¢
[— (Tt)%—\lf%—gL) ﬁBbB(t) + WU -5 — 63(75) —FﬁBbB(t) +5E63(t) + s k(t) — y(t) +
__(¥@)
= (o)

Substitute constant growth rates, recognizing that e(t) and b(t) must grow at the same rate
Ge:

“E per(Op (250) |~ (0o 40+ 00 B+ 0 =5+ T

_[gy+P+6]-

Substitute for y(t)/k(t) from the transition equation for k(¢) and use g, = gr, = =E—g,:

“Ep0ers (P0) |- 0+ 0t 0n) Bk

ap
Qg
:_|: ge+p+5:|
1 —ag

(0 +gr)+(1- aE)QE}
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Substitute from (A-58):

H_E © lt)ey (DA (HBBEbB@))”B

kefpes(t)
b(t)
bi(t)

- [t (A-60)

[_(96+W+9L)BB +‘1I—5+QK(5+9L)+<1_05E)9E

For this to hold, p(t)ey (t) must be constant. Therefore g, = —g.. Use this in (A-53):

BB
ge +p+ A =QsPE z((f)) Ap (Z]; 8) : (A-61)

For this to hold, Y (¢) must grow at the same rate as u(t). Use that in (A-54) and rearrange:

es(t) (&+p+@)é
= A-62
bs(t) BpAp (A-62)
Equation (A-56) implies:
T(t) ke p(t)
— = Apbp(t)PPep(t)’” =—= = Apbg(t)"Peg(t)"”.
ea(0) Bbp(t)" e (t) B en(t) R(t)""er(t)
Substitute from (A-61) and (A-58), and then substitute from (A-62):
1 KB
kBPE ge+p+\11>_ﬂE
et p+A=kpgA : A-63
Je TP rAEQs <f<&EﬁB ( BpAp ) ( )

The left-hand side monotonically increases in g., and the right-hand side monotonically
decreases in g.. As g. — o0, the left-hand side goes to oo and the right-hand side goes
to zero. As g — —(p + V) from above, the left-hand side goes to a finite value and the
right-hand side goes to —o0. So there is exactly one intersection at some g, € (— [p+ V], oo).
That intersection has g. > 0 if and only if the right-hand side is greater than the left-hand
side at g. = 0, so if and only if

kpApQs >(p+ N (:igz (ZJAD%) .

This is equivalent to the condition on x( given in the proposition. Because the right-hand
side of (A-63) increases in Qg while the left-hand side of (A-63) is independent of Qg, ge
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increases in (Qg. Similar analysis holds that g. increases in Ay and Ag and decreases in W,
p, and X\. We have established part ii of the proposition.

We established that u(t) and Y(t) grow at rate —g.. Therefore the current-value prices
of R(t) and B(t) each grow at rate p — (g +gz). These prices increase over time if and only
if g < p— gr. Part iii of the proposition follows from that observation and, from (A-63),
that g. increases in AgQs.

Now consider the feasibility of the solution. From the transition equation for r(t),

. bR(t) "B BR(t)
ge_QSAE <€R(t)) e(t) —()\“‘gL)
Substitute from (A-58):
B kBebs(t) " erl(t)
ge = QsAg (m) o) (A+gL).
Rearrange:
e(t) — 0sA </€BBEbB(t))”B 1
er(t) *F\ kpBpes(t) ge +A+gr
And substitute from (A-62):
e(t) o lﬁBﬁE (ge—i—p—i-\ll)ﬁé " 1 )
er(t) Qs Ar (“EBB BeAp ) ge +A+gr (A-64)

Feasibility requires g. > —(\ 4 ¢1) and

-1\ KB
e U\ 7e
ge+>\+gL<QsAE<KJB6E (9 +p+ > E) .

HEﬁB 53 AB

Substituting from (A-63), this is equivalent to:

1
1—I€E

Ge > — (p— KEgL) — A

This condition is satisfied when g, > 0.
From the transition equation for b(t),

_ en(t) )" bo(t)
o= 40 (525) iy~ v+

Rearrange:

bt) _ 4, (eB(t))BE 1

Gge + VU +gr
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And substitute from (A-62):

b(t) getp+V 1

: A-65
bs(1) B get+¥+ygL ( )
Feasibility on the robot side requires
1 <i ge + WV +p 7
Bege+ ¥ +ygrL
while holds for all g. > 0.
Substitute (A-64) into (7):
B (ge+p+U\E\ g+
KBPE [ Ge T P E Je T JL
EROI(t)=1+ A < ) —_—
(0= 1 Aes (mEﬁB Bads ) Gt A +ar
Substitute from (A-63):
1 Ge + gr
FEROI(t) =1+ —————————(ge +p+ \). A-66
(t) ey ) (A-66)

EROI(t) depends on Qg, Ag, and Ap only through g. in (A-66). EFROI(t) increases in
ge in (A-66) because the fraction and the final term both increase in g.. Part iv of the

proposition follows from this observation and part ii. Part v also follows from using g, = 0
in (A-66) and recalling that EROI(t) increases in g, in (A-66).

J Proof of Proposition 9

In a biomass economy in which Assumption 1 holds, Proposition 1 showed that there is
no balanced growth path with output per capita growing forever at a strictly positive rate.
Therefore output per capita in any economy using the biomass resource is bounded above.
Define Yy as the least upper bound on output in the biomass economy. Assume {p > Yy, In
that case, an economy that uses the biomass resource cannot begin accessing the oil resource
or, because £g > &p, the solar resource. We have established part i of the proposition.

If &3 < Yy, then it is feasible to develop the coal resource. From Proposition 3, there
exists a balanced growth path in the economy with the coal resource in which all variables
grow at the rate of population. Denote output per capita along this path as y. Welfare
on the balanced growth path is u(s y)/(p — gr). Using Assumption 3, welfare can be made
arbitrarily large by making y arbitrarily large. From Proposition 3, y* increases with Qs
in constant elasticity fashion, so ™ and u(sy??) can be made arbitrarily large by making Q
arbitrarily large. Welfare at the time of first developing a coal resource may be lower than

A-27



Lemoine Energy and Growth May 2025

welfare along the balanced growth path but can also be made arbitrarily large by making Qs
arbitrarily large. In contrast, from Proposition 1, welfare in the biomass economy is bounded
from above by u(sY)/(p — g1), which is independent of Q,;. Therefore, the economy finds
it optimal and feasible to eventually develop the coal resource if Q) is sufficiently large and
& is sufficiently small. We have established part ii of the proposition.

Now consider a case in which y* € (£p,&s), so that it is feasible to develop the oil
resource from an economy that uses the coal resource. From Proposition 5, there exists a
balanced growth path in the economy with the oil resource in which all variables grow at the
rate of population. Denote output per capita along this path as y2. Following the argument
of part ii, )p can be made large enough to make it optimal to develop the oil resource from
an economy that uses the coal resource. Therefore, an economy that uses the coal resource
finds it optimal and feasible to eventually develop the oil resource if (Qp is sufficiently large
and &p is not too large. We have established part iii of the proposition.

Now consider a case in which y2 > &g, so that it is feasible to develop the solar resource
from an economy that uses the oil resource. Consider first a manufactured solar resource.
From Corollary 6, there exists a balanced growth path in the economy with the solar resource
in which all variables grow at the rate of population. Denote output per capita along this
path as y2. Following the argument of part ii, Qg can be made large enough to make it
optimal to develop the solar resource from an economy that uses the oil resource. Therefore,
an economy that uses the oil resource finds it optimal and feasible to eventually develop the
solar resource if (g is sufficiently large and &g is not too large. We have established part iv
of the proposition for a manufactured solar resource.

For a self-replicating solar resource, observe from Proposition 8 that the growth rate
increases in Qg and, from (A-63), that it does so without bound. Welfare at the time of
first developing a solar resource may be lower but can be made arbitrarily large by making
Qs arbitrarily large. Therefore, an economy that uses the oil resource finds it optimal and
feasible to eventually develop the solar resource if Qg is sufficiently large and &g is not too
large. We have established part iv of the proposition for a self-replicating solar resource.
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K Proof of Proposition A-1

Consider a case with ¢x(t), kgr(t) = 0 and egr(t) > 0. By labor and capital market-clearing,
Uy (t) = 1 and ky(t) = k(t). Equilibrium solves the following maximization problem:

© . AL(t)* L K (t)*% Ey ()"
I}?YE%/O e " L(t)u ((1 ) 0] )dt

s.t. L(t) =g L(t)
K(t) =sAL(t)** K (t)*% By (t)* — 6K (t)

2(t) =02(t) — Z(1)* (n]‘;IAEER(t)>1w

1—w

R(t) =Z(t) (mfAEER(t)) “AR()

E(t) =QpR(t)
E(t) =By (t) + En(t).

Converting to per-capita, substituting, and applying Assumption 3, this is equivalent to:

max ooe—(ﬂ—gL)t n — s OK oy (1) OF
ey(.)/o In (1 — 8) AR(£) ™ ey (1)) dt
st k(t) =sAk(t)* ey ()% — (86 + g1)k(t)

2() (2 = gu)2(t) = =) (w5 AplQor(t) = ev (1))

() =2()° (w5 AplQor(t) — ev(0])  — (A4 ge)r(r).

l—w

The current-value Hamiltonian is:
In (1 — 8)Ak()*% ey (£)°F) + (1) {sAk(t)aKey(t)aE — 5+ gL)k(t)]
#9000 = 90)2(0) - 20 (5 AeQor () ex(0])

(0|40 (557 A6Qor(®) ~ er(0)]) = (et
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The costate equations are:

(P = 90Jv18) = 7(0) =ach(1)™ + (s Ak(E) ey (11°2K(0)”! (D)5 + 0]

e (1) =(p+ 0)w(t) — k() — au(t)sAR(D) Ser (02 k(D) (A6T)
(p = 90)7(6) = 3(6) /()2 = g2) + [n( (0" (5 AslQor(t) — ev(1])

& 4() =10 — Q) — [u(t) —1(Owz(0) " (55T ApQor(t) — ev (1])

(A-68)
(p = g)n(t) = ji(t) = = p(OY+ g2) + [(t) = 1)1 —w)2(t)* (55T AplQor(t) — ev(t)]) s " ApQp

& () =)0+ p) — [() = 1(B)(1 = w)2(t)* (wE " Ap[Qor(t) —ev(8)])  KE " ArQp.
(A-69)

The condition to maximize the Hamiltonian is:

o

0 :O‘Eey(t)_l — [p(t) = ()1 — w)z(t)” <K§AE[QDT(t) — ey(t)]>_w K?AE

+ apv(t)sAk(t) ey (t)*Fey (t) 1. (A-70)
Time-differentiate (A-70):
ev(®) . w (55T =
0=—aper(t) ™ = 0) = 4(0)(1 - w)a(0) (k2 AplQor(t) = ex()])  KE " Ap

o

= [ut) = Y (1 = w)2(t)” (w5 AplQr(t) — ev(®)]) KA
{Z(t) ~ Qpr(t) —eév () }
z(t)  Qpr(t) —ey(t)

() k(1) éy (1)

DAkt ey (£ ey () { 2L —(1-

Fap sk et rer) {10 + o) (1= an) 20

Substitute from the transition equation for k(t) and from equations (A-67) and (A-70) and
rearrange:

) (ﬁﬁAE[QM ) - ey<t)])w{aEéy(t)

OéEey(t)il
1l—w Z( )w’%E IAE

(o 1) aKw)lu(t)l}

) Qpr(t) —éy(b)
— [u(t) — ’Y(t)]{wz(t) CL)QDr(t) —ey(t)

—(p—g1) — (1= a)(6 + g1) + axch(t) () + (1 — ap) 2 }
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Substitute from the transition equations for r(t) and z(t) and solve for 4(t): for (¢):

agey (t)~! 1 er(t) ozEéY(t) — 1) — ax —1,(4)-1
’ " 1_“z(t)w (mfAE[QDr(t) - ey(t)])lw{ @ o o }
1 Qb )

+ [u(t) - 'y(t)]{w(fl —g1) — w(t)” (K5 ApQor(t) — ev(t)]) (W + 22

Tt g Dy (1= )6+ g1) + ank(®) ()

Substitute for v(¢) from (A-70):

1 eR(t)
P (w5 AslQor() — ev(8)])

{aE% T (p— 1) — arck() ()

+ {1 + y(t)sAk(t)aKey(t)o‘E}

(61— g0) — ) (77 46lQor) — v 0]) (5 + 2220) +wn o) S
éY(t) -1 -1 éY(t)
Fo2 (0= g1) = (1= )6+ 90) + anch(t) vl + (1 - an) 24 |
(A-71)
Substitute for y(t) from (A-70) into (A-69):
[(t) =p(t) (N + p) — agey(t) *Qp |1+ V(t)sAk:(t)o‘Key(t)aE] : (A-72)
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Substitute /i(t) into (A-71) and rearrange:

V() =pu(t) (A +p) — aEeY(t)_lﬁ ({1 + l/(t)SAk(t)o‘Key(t)aE} Qp + w?i?)
+ agey (1) : _1 - — er(t) _
() (w5 AsQor(t) - ex(t)])

e(t) ey t) ey

( (
{(Q gr) + Wt or) s e T o
+ v(t)sAk(t)* ey (£)*F

(62 gu) o) (5 AslQor(t) - er(0]) i

Folt ) S w2 (o ) = (1= a0 + 1) + arck(t) v(e)”
@) i

+-an 20} (A-73)

Solve (A-70) for y(t), substitute that and 4(t) from (A-73) into (A-68), and rearrange:

(
e e

- ieymu(t) (1= W)+ DrE A <¢>

OF /igilAEeR(t)

+ [1 + v(t)sAk(t) ey ()" ]Q F”g B As (%)
e(t)

GR(t)

—(p—Q)—wQ—9g1) —wA+g51)

—v(t)sAk(t) K ey (t)*"
{p SO w(@—gi) F gL>j;—2) C(p—gu) — (1 — ax) (6 + g2) + axch(t) w(t)"
(A-74)

Now consider a balanced growth path. From its transition equation, k(t) grows at a
constant rate if and only if y(t)/k(¢) is constant. So g, = g,. Substituting into the final
good production function,

a
gy = E Je. (A-75)
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From its transition equation, z(t) grows at constant rate g if and only if:

< GR(t) 1
A =(Q—gr —ge)T¥ . A-
Using this and the transition equation for r(t), r(t) grows at constant rate g, if and only if:
14 Y\ (ert) T er(t)
ren ()
sotra=(£70) (%) 5
- —w BR(t)
=k A (Q — g — go) T
Kp E ( gL ge) ’l“(t)
&y, +A+g1) (nf A >_1(Q—g —g)te (A-77)
Substituting for y(¢)/k(t) from the capital transition equation into (A-67), we find:
v(t
U =+ 9) — axch(t) w0 ol + 6+ g1

v(t)k(t) is constant if and only if ©(t)/v(t) = —gi. Using that condition, gy = g,, and (A-75)
in the foregoing equation yields

297¢
v(t)k(t) = . A-T8
(B)R(7) apge + (0 +p) — ax(d +gr) ( )
Substitute y(t)/k(t) from the capital transition equation, g, = gy, g, from (A-75), v(t)k(t)
from (A-78), and éy (t)/ey(t) = g. into (A-74):

Cy (t)
Ge {1 + weR(t)

1 apge + (1 —ak)(0 + p)
1 — ok apge + (0+ p) — ax(d + gr)

o=+l —g0) +lr +00 0~ 0p [ ae] (2] a

] 1 apge + (1 — ag)(d + p)
1 — ok agge+ (04 p) — ax(d +g1)

Observe that

€R(t) _GR(t) 6y<t> . €R(t) ey(t) . eR(t) . €R(t) _ €R(t) _ €R(t)
W) er®) ) e e et " (1 ) (QD )
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Therefore:

er(t)
ey (t) :QD B0}

en(t) er(t)

Using that and (A-77),

1 _Qprg ' Ap+ 179+ A+ 9] (2 — g1 — ge) T
erlt)  w [9e + A+ g1 (2 = g1 — g.)

Substitute into (A-79), and also use eg(t)/r(t) from (A-77) and eg(t)/z(t) from (A-76):

1, QRE A+ 2 g Ak ] (2= g1 — )7 asa + 1~ )6 +)
[9e + A+ 9] (Q — g — ge) T+
1—OéK =

e ey<tm<t><1—w)(Am)mﬁAE[aEmmm—aK<5+gL>] Qg1 — g2

- |asg. + (1= )0+ )

= 2 g+ (1 —w)(A+91)
- Q) +w( - - AR (Q — g — ge) T . (A-80
{(P ) + w( gr) — Qprg ' Ap ( gL = ge) et At a1 ( )
This last equation requires p(t)ey (t) be constant, which in turn requires that g, = —ge.

Substitute that into the left-hand side of (A-72) and, in the right-hand side of (A-72), substi-
tute k(t) from its transition equation, g, = g, and g, from (A-75), and v(t)k(t) from (A-78),
and then solve for pu(t)ey (t):

Qp 1 apge + (1 —ag)(0+ p)

t t) = . A-81
e ) = P T ar awge + (0 + ) — ax(0 + 92) (4-81)
Substitute into (A-80):
-z —w ge+p—0Q
et =D Fw(@—gL—g)=(1- T AR (Q— gy —go)Te 2P0 (A82
(9 +p ) + w( gr — ge) = ( w)@pry  Ag ( gL — Ge) GetptA ( )

The left-hand side of (A-82) increases in g.. The right-hand side of (A-82) is real-valued
for go < Q — g; and, in those case, increases in g, for g > —(p + ). As g. approaches
—(p — Q) from above, the left-hand side of (A-82) approaches w(p — gr) > 0 and the right-
hand side of (A-82) approaches zero. As g. approaches 2 — gy from below, the left-hand
side of (A-82) approaches p — g > 0 and the right-hand side of (A-82) approaches positive
infinity. Therefore there exists g. € (— (p — Q),Q — g) such that (A-82) holds. An
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intersection occurs at strictly negative g, if the left-hand side of (A-82) is strictly less than
the right-hand side of (A-82) when each is evaluated at g. = 0. That sufficient condition is:

0 <(1 ~w)Qprp ' Ap (2 — )™= /p);i) —(p=Q) —w(@—yg1)
& QoAp > (- g)15 #{@—Q) +w<9—gL>}. (A-83)
—w RET(p— Q)

Defining x as in Proposition 5, this last inequality is equivalent to

QDAE > (A—84)

At p <1—w><p—ﬂ>+w<p—gL>]oﬂ
o (I-w)(p-9)

Define X as the right-hand side of (A-84). If QpAr > X, then the g. that solves (A-82)
is strictly negative. Observing that the terms inside square brackets in (A-84) are strictly
greater than 1 and recalling that ¢ > 1 under the conditions of the proposition, we find: (i)
X < ; (ii) x/X is strictly decreasing in o; and (iii) lim, 0o X = lim, 00 X-

Increasing QpAp increases the right-hand side of (A-82) when it is strictly positive,
without affecting the left-hand side of (A-82). Because the right-hand side of (A-82) cuts
the left-hand side of (A-82) from below around the first intersection in g. (which is the
one whose existence is implied by (A-83)), an increase in QpAgr moves that intersection to
smaller g,.

Now consider the feasibility of a balanced growth path. From the capital transition
equation, gy = g,, and (A-75), y(t)/k(t) > 0 if and only if

1
0<=|—2E

———0.+ 0+ .
S aE+aLg gL

This is satisfied if and only if

_|_
ge > ——ET2L(5 4 gp). (A-85)
ag
From (A-78), v(t)k(t) > 0 if and only if
1
Je > —— [(1 — OéK>5 +p— OéKgL] .
895

Using that p > g, this inequality holds whenever inequality (A-85) holds. From (A-77),
er(t)/e(t) > 0 if and only if

w

0<[ge+A+gr](Q—9gL—9:)7=, (A-86)
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which holds if and only if g. € (—(A+gr), 2 —gr). From (A-81), u(t)ey(t) > 0 if and only if
0 1 ozEge—i-(l—ozK)(é—i—p)
< .
ge+)\+paEge+(5+p) _OCK(6+QL)
The first fraction is strictly positive for g. > —(p — §2), which is met by the analyzed
solution to (A-82). Both the denominator and the numerator in the second fraction are
strictly positive when inequality (A-85) holds. From (A-76), egr(t)/z(t) > 0 if and only
if g < Q — gr, which is met by the analyzed solution to (A-82). Finally, from (A-77),
er(t)/e(t) < 1if and only if

QpAp >kp " [ge + A+ g1) (2 — g1 — go) 7= . (A-87)

At g. = 0, the right-hand side of (A-87) is strictly less than the right-hand side of (A-83),
so that inequality (A-87) is implied by inequality (A-83) when g. = 0. The derivative of the
right-hand side of (A-87) with respect to g, is

W get+tA+gL
l—wQ—gr—ge|
The right-hand side of (A-87) is zero at g. = —(A + gr) (which is a lower bound on g,
from inequality (A-86)) and increases until it reaches a maximum and then decreases to 0
at g. = 2 — gr. That maximum is at strictly positive g. if and only if the above derivative
is strictly positive when evaluated at g. = 0, and thus if and only if

w
Q—gL >E()‘+9L)- (A-88)

k' T (= gn —ge) T |1 —

When inequality (A-88) holds, we know that inequality (A-87) holds at all g. < 0 because
its right-hand side increases in g. up to at least g. = 0 and we showed that the inequality
does hold at g. = 0.

From inequalities (A-85) and (A-86), a balanced growth path with g. € (—(p—Q),2—gy)
is feasible if
OOt gu) ()} (A-59)

aFp
If p — Q is not too large, then this inequality holds for all g. > —(p — Q).

We have found a path along which ¢g(t), kr(t) = 0 with eg(¢) > 0 and all variables grow
at a constant rate. The conditions of the proposition ensure that the path is feasible, since
inequalities (A-84), (A-87), and (A-89) hold. Part i of the proposition follows from (A-75).
Part ii of the proposition follows from the analysis of (A-82). Part iiii of the proposition
follows from that same analysis and from (A-76).

Using (A-77), (7) becomes:

e > max{—

. Je + 91
[ge + A+ 92] (2 — g — ge) ™=

We have proved part iv of the proposition.
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