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Abstract

In a conversation interlocutors talk without constraints on talking or-
der or duration. The contents of simultaneous messages are assumed to
get lost. By equating messages with disclosures of singleton subsets of in-
terlocutors’ possibility sets we endow them with literal meanings. Literal-
meaning strategies minimize inferences from disclosures. All other strategies
are pragmatic-meaning strategies. With common knowledge of possibility
sets’ sizes, optimal literal-meaning strategies let only the better-informed
player talk. Optimal pragmatic-meaning strategies are strictly better and
generally require that with positive probability both players talk simulta-
neously. With uncertain sizes of possibility sets, both players talk also in
optimal literal-meaning strategies.
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This conversation would have been hard enough even with
two people talking.

Taylor in Barbara Kingsolver’s The Bean Trees

1 Introduction

Decision relevant information is frequently distributed among multiple par-
ties (“players” in the sequel). Even if their interests are fully aligned, physical
and language constraints may limit how much information they can convey
to each other at any given point in time. They then have an interest in
engaging in a conversation, i.e., to share information incrementally by talk-
ing to each other, without constraints on talking order or duration. We are
interested in the form such conversations take when players are impatient.
We ask: who talks, about what, and when?

We let players’ private information take the form of “possibility sets.” A
player’s possibility set contains the states she cannot rule out.! We endow
messages with literal meanings by requiring them to be disclosures of subsets
of players’ possibility sets. Physical constraints allow players only to move
at discrete points in time. Moreover, the contents of simultaneous disclo-
sures are lost. We also impose a language constraint by limiting players to
disclosures of only singleton subsets of their possibility sets. That is players
have names for single states but not for collections of them. If they want
to describe a collection of states they can do so by continuing to talk for
multiple periods.

We investigate a game in which two impatient players face multiple issues
and need to decide which, if any, action to take for each issue. Among all
available actions for an issue, there is one that matches the state for that
issue, which we refer to as the “true state.” That action yields a positive
payoff for both players for that issue, whereas taking any other action yields
a negative payoff. Player’s do not individually know the state for an issue
but would know the state if they pooled their information.

Each issue is a potential topic for a conversation. KEach player’s infor-
mation, her type, takes the form of a possibility profile composed of one
possibility set for each topic. Each possibility set for a topic is a non-trivial
subset of the set of states for that topic. A player’s possibility set for a topic

'We use “state” to refer to payoff states rather than states of the world. A full descrip-
tion of the state of the world would also include players’ private information.



contains the set of states for that topic that the player considers possible.
All players’ possibility sets for a topic contain the true state for that topic,
making it distributed knowledge among them.

In each period, players can communicate information about their possi-
bility sets. They face two principal frictions: (1) at any given time they are
only able to communicate partial information about a single possibility set
and (2) the contents of simultaneous disclosures are lost. That is, players
cannot reveal all their information all at once and, to be effective, may have
to engage in some form of turn taking. We assume that in any period a
player can only disclose a singleton element of one of her possibility sets.
When players make simultaneous disclosures, they observe that fact but not
the content of the disclosure of their counterpart. We also assume that play-
ers must complete topics that they have started before disclosing in another
topic — that is, we assume no switching.

It may help to have the following situation in mind: Ann and Bob plan
a vacation. Where to go is the (lone) topic of their conversation. They
consider a fixed number of possible destinations. Each cares about a different
characteristic of a potential destination. For each possible destination Ann
only knows about the characteristic she cares about — she investigated each
destination for that feature. Likewise for Bob. They are only interested
in visiting a destination that matches both of the characteristics they are
interested in. A friend of theirs told them, with both present, that there is
exactly one destination that meets both of their requirements but forgot to
mention which one. A state is the identity of this ideal destination. The state
space is the set of all these possible identities. Ann’s possibility set is the set
of destination with the characteristic she cares and knows about, and likewise
for Bob. They have no words for these possibility sets or any nontrivial
subset, but can name every individual destination. Since their interests are
fully aligned, they have no reason to be untruthful and hence, without loss
of generality, whatever they say satisfies a truth-telling constraint and might
as well be viewed as a disclosure.

We consider primarily the case in which the sizes of players’ possibility
sets are commonly known. In that environment, we begin by examining
(perfect Bayesian Nash) equilibria that capture the difficulty of coordinating
on attaching meanings to disclosures beyond what is disclosed: a player’s
strategy is a literal-meaning strategy if it is invariant to exchanging states
everywhere in that player’s private history and for all choices the strategy



prescribes.? In a literal-meaning equilibrium players use (but are not re-
stricted to) literal-meaning strategies.

If a player uses a literal-meaning strategy and the sizes of possibility
sets are commonly known then, conditional on her not knowing the truth,
the timing of her disclosure and listening choices is independent of her type
and whenever she discloses she randomizes uniformly over the undisclosed
elements in her possibility set. As a result, conditional on the speaker not
knowing the truth, the only information the listener learns from the speaker’s
disclosure is the identity of the disclosed element. Hence, in a literal meaning
equilibrium, the meaning of a disclosure, aside from possibly indicating the
speaker’s ignorance of the truth, coincides with what is disclosed — meaning
(very nearly) equals saying.

We refer to any equilibrium that is not a literal-meaning equilibrium as a
pragmatic-meaning equilibrium. Strategies in a pragmatic-meaning equilib-
rium encode additional information into a disclosure — if, for example, states
can be put in an order, a player’s strategy may prescribe always to disclose the
minimal undisclosed element of her possibility set. In a pragmatic-meaning
equilibrium, meaning transcends literal meaning. This relates our exercise
to the linguistics literature on pragmatics that was started by Grice [19].

For the case that the sizes of players’ possibility sets are commonly known,
we show that every talking order can be supported by a literal-meaning equi-
librium while in optimal literal-meaning equilibria only the better informed
player talks. In optimal literal-meaning equilibria interlocutors address dif-
ferent topics in the order of who is better informed on each topic. Opti-
mal pragmatic-meaning equilibria strictly improve on optimal literal-meaning
equilibria and generally require that both players talk with positive proba-
bility and do so simultaneously, even if at the outset one is better informed
than the other.

If we let the sizes of possibility sets be private information, even in literal-
meaning strategies players can encode significant information into disclosures
beyond what is disclosed. They can use the choice between listening and dis-
closing as a means of providing information about how well informed they
are. As result, it is no longer the case that optimal literal-meaning strate-
gies prescribe that only the ex ante better-informed player discloses. Any

2This condition is a symmetry constraint in the spirit of Crawford and Haller’s [10]
notion of an “attainable strategy” in repeated games with absence of labels for actions.
Blume [7] considers a richer set of symmetry constraints.



such strategy is payoff dominated (and remains so for multiple periods) by a
strategy in which players alternate having the choice between listening and
disclosing while their partner listens. Early disclosures can be used to signal
that one’s possibility set is small and that therefore one should continue dis-
closing. A player with a large possibility set then has an incentive to delay
disclosing in order to find out whether their partner is better informed at the
interim stage.

2 Model

Two players, ¢ = 1,2, converse in periods ¢t = 1,2, ..., with an infinite time
horizon. Their goal is to uncover the true state in a finite K-dimensional state
space ) = Hle Q with typical element w = (wy,...,wg) € Q. The true
state w* € (1 is generated by each state component wj, being independently
drawn from a uniform common-prior distribution over the set €.

In period 0, before the start of the conversation, each player ¢ privately
learns a possibility profile S; = Hszl Sir. C Q that is composed of possibility
sets, Si. Player i’s possibility profile is her “type.” In each dimension £k,
player ¢’s possibility set indicates the set of state components wy that player
1 considers possible. The size of player i’s possibility set S;; in each dimen-
sion k is exogenously fixed at |Sy.| = ny and commonly known (we relax this
constraint in Section 5). The sizes of players’ possibility sets satisfy n; > 1
and nig + nox, — 1 < |Q|. That is, in every dimension neither player indi-
vidually knows the truth, while it is possible for players to know it jointly.
Conditional on the true state w* each pair (Six, Sax) is independently drawn
from a uniform distribution over the set

{<‘§1k7 §2k) C Qifglk N Sop = {wr}, ‘Szk‘ = nig, = 1,2}

Hence, the true state is distributed knowledge. We refer to each dimension
k as a topic.

As long as the conversation has not ended, in each period each player
chooses between listening, taking an action for one of the topics, disclosing
an element of one of her possibility sets, or ending the entire conversation.
Denote player i’s choice to listen by ¢;. For each w; € ), player ¢ has a
corresponding action a;*. Her set of actions for the k-th topic is A =
{a;*}u,cq, and the set of all of the actions available to her is A; == Uszl Ajje.
Denote player ¢’s choice to disclose element wy € ;. in her kth possibility
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set by d;*. Let S; denote the set of all S; that satisfy |Si| = ny for all
k=1,...,K. For each S; € S; define D;(S;) = {d;*}u,es,, and D;(S;) =
UK, Dir(S;). The former is the set of disclosure choices in topic k and
the latter the entire set of disclosure choices available to player 7. Define
D, = i€ D;(S;). Denote player i’s choice to end the conversation by e;.
Then prior to the beginning of game, the set of choices that player ¢ may
have available is C; .= D; U A; U {e; } U {4;}.

The choices available to player ¢ are further constrained by being history-
dependent subsets of C;. Player ¢ only has a choice in period ¢ if neither
player j has ended the conversation prior to that period by choosing e;.
An action a;* is only available to player i in period ¢ if neither player has
taken an action for the kth topic prior to that period. That is, any player’s
action for a topic, even a wrong one, completes that topic. A disclosure
choice d;* is only available to player ¢ in period t if wy € Sik, neither player
disclosed wy, prior to period t in a period in which they were the only discloser,
neither player j took an action in Aj;, and for every topic k' # k for which
some player i made a disclosure prior to period ¢ some player i (possibly
the same as 7) took an action ays prior to period ¢. That is, a player cannot
disclose information that is not available to her, disclose information that has
already been disclosed, disclose for a topic that has been completed by some
player’s action, or switch from disclosures having been made in one topic
to disclosing in another prior to the former having been completed with an
action.® A player only understands a disclosure by her counterpart if she
herself is listening. If either she also discloses or acts, she observes the fact
that her counterpart disclosed but not the content of the disclosure. Denote
the fact of a disclosure by player i, stripped of its content, by d.

For a detailed description of the game, players’ private information, and
the choices available to them at every stage, consider each player i’s private
histories. For every S;, let (S;) denote a length-0 private history of player
i. Given any finite ¢ > 1, a sequence (S;, (c},c%,), (¢Z,é%,),...,(c,c",)) is a
length-t (private) history, ht, for player 7 if and only if the following conditions
hold:

1. S; € S; (player i’s type satisfies the commonly known size constraint
|Sik| = my in every dimension);

30ne effect of the latter requirement is that if players try to simultaneously start
conversing about different topics, they foreclose further disclosures on those topics.



10.

11.

12.

. ¢f € C; for all 7 <t (player i’s length-t history records her own choices

up to and including time t);

. ¢, € C_;U{d} for all 7 < t (player i’s length-t history records her

observations of the choices of her counterpart up to and including time
t, where in some instances she sees only the fact, d, that —¢ disclosed,
and not what —i disclosed);

Forall 7 <t ¢, =dif ¢] # ¢ and ¢”, € D_; and otherwise, ¢”, = c7,
(player i is only prevented from seeing the content of her counterpart’s
disclosure if either she herself discloses or takes an action);

cl # e] for all 7 < t (player i did not end the conversation prior to
period t);

¢T, # e, for all 7 < t (player ¢ did not observe player —i ending the
conversation prior to period t);

for all 7 < ¢, if ¢] = d* then w, € Sy (player i can only disclose

elements of her possibility sets);

for all 7 < ¢, if ¢7, = d** then w, € S_;; (if player ¢ observes the

content of a disclosure by player —i, the disclosed element has to belong
to player —i’s possibility set);

forall 7 < t,if ¢] = d* and ¢7; # d, then ¢} ™ # d}* for j = 1,2 and

all s > 1 (if player ¢ made a successful disclosure, then neither player
can disclose that element again);

forall 7 < ¢, if ¢7, = d**, then cjﬁs # dj* for j = 1,2 all s > 1 (if player
1 observed a successful disclosure by player —i, then neither player can
disclose that element again);

for all 7 < ¢, if ¢f € Dy (S;) and ¢; ¢ Ajp for both j = 1 and j = 2
and all s satisfying 7 < s < ¢, then ¢! ¢ D;(S;) and &', ¢ D_; x(S_;)
for all k& # k' (if player i disclosed in some topic neither player can
switch to disclosing in some other topic before the former topic has
been completed by an action);

for all 7 < t,if &7, € D_;p(S—;) U{d}, and ¢; ¢ Ajp for both j = 1
and j = 2 and all s satisfying 7 < s < t, then ¢! ¢ D;(S;) and



&, ¢ D_;,(S_;) for all k # K (if player —i disclosed in some topic
neither player can switch to disclosing in some other topic before the
former topic has been closed by an action);

13. for all 7 < ¢t and s > 1, if either ¢] € Ay, or ¢”;, € A_;, then [ ¢
Aix UD; and é71° ¢ A, U D_;, (if player i took an action for some
topic, that topic has been completed, no more actions can be taken in
that topic, and no more disclosures in that topic can be made);

14. there exists S_; € S_; such that |S;NS_;| = 1 and conditions (1) - (13)
hold for player —i (player i’s private history is consistent with some
private information for player —i).

Given any length-t private history h! of player i, a choice ¢; € C; is
available to player 7 if there exists a continuation history Al ™ with c/*! = ¢;.
Denote the set of choices available to player i following history h! by C;(hf).
A sequence (S;, (¢!, ct,), (c2,¢%,),...) is an infinite-length (private) history,
h$e, for player 4 if and only if (S;, (¢}, cl,), (2, %)), ..., (ct,c.)) is a length-t
(private) history for every ¢.

In every period ¢ the players’ common payoff U(ct, ¢' ., w) depends on their
profile of choices (cf, " ;) € C; x C_; and the state w € Q. If player i ends the
entire conversation by choosing e;, both players receive the (continuation)
payoff B > 0. This is the always available outside option payoff from not
engaging in a conversation. If both players either disclose or listen in period
t, ie., if ¢¢ € D;(S;) U {l;} for i = 1,2, their payoff is zero for that period.
If the true state is w, player i chooses ¢! = a;*, i.e., takes the action that
matches the component of state w in the kth topic and player —i chooses
c,e{a}UD_i(S_;)U{l_;}, i.e., either chooses the same matching action,
discloses or listens, the common payoff is @ > . That is, solving the issue
for one of the topics is worthwhile, at least when it can be done without
delay. For every other profile of choices (¢}, ¢' ), the common payoff is v < 0,
where av < —. Hence, it is prohibitively costly to take an action that does
not match a component of the state w in some topic k.

To summarize, for any state w € €2, the common period-t payoff from

4This implies that by choosing to end a conversation, a player vetoes any current and
future action for the topics under consideration.



choice profile (¢}, ¢* ;) equals

0 if C;‘f € Dz(SZ) U {gl} and Ct_i S D_i(S_Z) U {f_i},

a ifc=a*and ', € {a®}UD_;(S_;) U{l_;}
U, w)= for some k € {1,..., K} ,

g ifct=eorc,=e

~v otherwise

where > >0 > v and o« < —y. For any w € Q and § € (0, 1), the payoff
from a conversation equals the present discounted value of the per-period
payoffs

T
Z 5t71U(C§7 thia W),
t=1

where T' is finite if the conversation terminates in period T or it is infinite if
the conversation never terminates.

A private history h! is a terminal history if T = oo or T is finite and there
is a player j for whom c;fr = e]T. All private histories that are not terminal
histories are nonterminal histories. Denote the set of nonterminal histories
by H;. A strategy o; : H; — A(C;) for player ¢ maps the set of player i’s
non-terminal histories into the set of probability distributions over player ¢’s
choice set C;, where o; satisfies o;(ht) € A(C;(ht)) for every nonterminal
history hl.

Much of the paper will be concerned with literal-meaning strategies and
equilibria in which players use but are not restricted to those strategies.
This is meant to capture some of the difficulty of encoding meaning into a
disclosure beyond what is immediately implied by it. The literal-meaning
condition is a symmetry property. Elements of a topic that have not been
distinguished by history have to be treated identically. In terms of a single
topic, for simplicity denoted by €, it says that a player’s strategy o; is a
literal meaning strategy if and only if

O-Z(hf)(c) = O'Z'(ﬂ'(llz))(ﬂ'(c)),Vi,Vhf,VC,Vﬂ', (1>

where each 7 is a permutation of the elements of Q.5

°Blume and Park [8] refer to this as a no-common-labeling condition. If players lack
common labels for the elements of €2, for each player their counterpart’s strategy has to
be a literal-meaning strategy. Here, I have in mind that players may have common labels
but find it difficult to make use of them.



To illustrate one of the key effects of requiring a strategy o; of player
7 to be a literal-meaning strategy, suppose that after some private history
h! the strategy prescribes that player i disclose one of the elements of her
remaining possibility set. Denote the set of undisclosed elements in player i’s
possibility set following history hf by S and consider a permutation 7 with
the property that 7(w) € S!,Vw € S and 71(w) = w, Vw € Q\ St Notice that
with any such permutation, hf = w(h}). Suppose that ¢ is a disclosure d¥ of
an element w in S!. Then from the literal-meaning condition (1) we get

oi(hf)(d?) = o3(ht) (df ), Vi.

That is, there is equal probability of player i disclosing each of the elements
of her remaining possibility set.

3 Literal-meaning strategies: equilibria and
optimality

In a literal-meaning equilibrium the interlocutors use strategies that mini-
mize what can be inferred from a disclosure. All the listener learns from a
disclosure, aside from the fact that the speaker does not yet know the truth,
is the identity of the disclosed element of the speaker’s possibility set. This
minimizes the burden of having to coordinate on message meanings.

In this section, we first show that there still is a significant coordination
problem. In general, there is a large number of Pareto ranked literal-meaning
equilibria. If an issue is sufficiently important and can be satisfactorily re-
solved in a reasonable amount of time, then every talking order can be sup-
ported by a literal-meaning equilibrium. All of the following talking orders,
as well as many others, are supported by a literal-meaning equilibrium: a
social hierarchy determines who always talks; the less well informed player
always talks; the better informed player always talks; players alternate, fol-
lowing a politeness norm. This result is driven by the strong complementarity
between talking and listening. Given that the contents of simultaneous talk
are lost, it is optimal to listen when the other is talking and vice versa.

Restricting attention to optimal literal-meaning equilibria drastically re-
duces the coordination problem. In an optimal literal-meaning equilibrium,
the better informed player talks exclusively. At any given instant the better
informed player is more likely to name the true state and if that fails, the



informational advantage of the better informed player increases, reinforcing
the rationale for letting the better informed player keep talking.

We first derive these results for a single topic and then, using the as-
sumption that rules out topic switching, extend it to multiple topics. For
multiple topics, we show in addition that in an optimal literal-meaning equi-
librium players converse about topics in the order of how well informed they
are about them and that they may skip topics about which they have little
information.

3.1 A single-topic example

The example in this section provides a simple illustration of literal-meaning
equilibria when there is only a single topic. It also demonstrates that (1) in
every literal-meaning equilibrium there is a residue of pragmatic inference, (2)
in some literal-meaning equilibria players leverage that pragmatic inference
by acting on it, and (3) there are multiple optimal literal-meaning equilibria
with different behaviors on path.

Consider the case of a single topic with a state space 2 of size || = 4.
Suppose that the size of player 1’s possibility set is |S;| = 2 and the size of
player 2’s possibility set is |Ss| = 3. Let a = 100, § = 0.1, v = =500 and
9 = 0.9 (the example is robust to significant variations in the values of these
parameters). Then there is a literal-meaning equilibrium with the following
behavior on path: In period 1 player 1 discloses and player 2 listens. In
period 2 player 1 listens. Player 2 acts in period 2 if player 1 disclosed an
element of Sy in period 1 and otherwise discloses. If period 3 is reached, then
player 1 acts and player 2 listens. Following a period in which a player has
acted, some player i (or both) ends the game by choosing e;.

Notice that if period 3 is reached, player 1 is justified to act regardless
of what player 2 disclosed in period 2. This is the case because period 3 is
only reached if player 2 did not act in period 2. Player 2 would have acted,
had the state disclosed in period 1 been the true state. Since player 2 chose
to disclose rather than to act in period 2, player 1 infers that the member of
her possibility set that she disclosed in period 1 cannot be the true state.’

6Tt is player 2’s failure to act that matters, not that player 2 is making an irrelevant
disclosure. There is a similar equilibrium in which instead of disclosing player 2 stays
silent in response to player 1 having failed to disclose the true state. Inferences from
inaction are reminiscent of those in familiar logic puzzles like the dirty-faces puzzle that
is described in Littlewood [26] or the unfaithful-wives puzzle, an early version of which
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Hence, since one the elements of her possibility set is the true state, it has
to be the undisclosed one.

In this equilibrium, the information conveyed to player 1 through a disclo-
sure by player 2 is the identity of the disclosed element of player 2’s possibility
set but also the fact that the state initially disclosed by player 1 is not the
true state. Player 1’s initial disclosure creates context that helps shape the
meaning of player 2’s subsequent disclosure. This will be true for every dis-
closure or silence in a literal-meaning equilibrium that follows a disclosure
by the other player. What is peculiar about this equilibrium is not that
there is minimal pragmatic inference but that players take advantage of the
difference between saying, i.e., the content of the disclosure by player 2, and
meaning, which also includes the indication implied by player 2’s disclosure
that the state disclosed earlier by player 1 is not the true state — they are
leveraging pragmatic inference.

There are other literal-meaning equilibria that do not leverage pragmatic
inference. In one such equilibrium player 1 discloses in every period, player 2
listens until player 1 discloses the true element, then player 2 acts, and finally
either player ends the game. In this equilibrium, there is also a difference
between what is said (or not said) and what is meant — silence in response to
a disclosure indicates that the disclosed element was not the true state. As
in the equilibrium described earlier, player 1 gains information from player
2’s silence, but in this case that inference is irrelevant for her continuation
play — as long as player 2 has not acted, she continues disclosing. In this
equilibrium players make but do not leverage pragmatic inferences.

Both of the equilibria we described are optimal in the class of literal-
meaning equilibria. We will later return to this example to show that once
we drop the literal-meaning requirement, there are equilibria that strictly
improve on optimal literal-meaning equilibria. In those equilibria leveraging
pragmatic inference is necessary for optimality.

appears in Gamow and Stern [17]. Similar inferences play a role in Geanakoplos and
Polemarchakis [18], where it can occur that agents keep refining their information while
repeatedly announcing the same conflicting posteriors until they finally agree. In their
words, there is “no evident revision.”
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3.2 A class of literal-meaning equilibria for a single
topic

In this section we show that whenever the outside option is not too attrac-
tive, we can arbitrarily assign players to periods and have a literal-meaning
equilibrium in which in every period the player who has been assigned to
that period discloses until the true state has been discovered.

We focus on the case in which K = 1, i.e., there is a single topic. To
economize on notation, we suppress the index k and write w for wy and n;
for n;,. To describe the strategies we use to prove our result it is convenient
to introduce a classification of histories. For every player ¢ and every state
w € S;, let H¥' denote the set of all private length ¢ histories of player i
for which ¢ ¢ A;,¢™, ¢ A_; for all 7 < t, and there is a time 7/ < t with
&', = d*,. Histories in H** are those in which no action has been taken and
player ¢ has learned that the true state is w through a disclosure by player
—i. The union of all those histories is H}" = {J, g H;"*. This is the set of
all histories in which player ¢ has learned the true state through a disclosure
of her counterpart and the topic has not yet been completed with an action.

For every private length-t history h! of player i, use D;(h!) to denote the
set of all of player i’s successful disclosures made in periods 1,...,t. Use
S! to denote those elements in player i’s possibility set that neither player
successfully disclosed prior to period . Let H? denote the set of all private
length-¢ histories of player i for which ¢] ¢ A;,¢", ¢ A_; for all 7 < ¢ and
|S¥| = 1. Histories in H?' are those in which player i can infer the true state
for any strategy of player —i that has player —i act whenever she knows the
truth: If |S!| = 1, and no action has been taken, then player ¢ must have
disclosed all but one state in their possibility set prior to period ¢t and if
period t 4 1 has been reached it is the case that —¢ did not act. Therefore, if
player —i acts whenever she knows the truth, following any history in H?!,
player ¢ knows the true state.

Define H;* := H!* U H?*. This is the set of player i’s private histories in
which neither player has yet taken an action and player ¢ either has learned
the true state directly or can infer it from player —i’s inaction, as just de-
scribed.

Let H{ be the set of all of player i’s private length-t histories for which
there exists a period 7 < ¢ with either ¢ € A; or ¢7; € A_;. This is
the set of histories in which either player took an action. Finally, define
HY = H!\ {H;" U H}. This is the set of all length-¢ private histories of
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player ¢ in which no action has been taken and player ¢ remains uncertain
about the identity of the true state w*.

Our first result refers to a class of strategy profiles that make use of an
assignment of players to time periods. To every period ¢t = 1,2,... assign a
player i; € {1,2}. Refer to this as a “player assignment.” For every finite set
X, let U(X) denote the uniform distribution on X. Given a player assign-
ment, call a strategy profile o = (01, 0,) a “player-assignment profile” if it
satisfies

w

1. For every private history h; € H¥* of player i, let o;(h;) = a*.

2. For every private history h; € H?' of player i with S! = {w}, let
oi(h;) = a®.

3. For every private history h; € H* of player i, let o;(h;) = e;.

4. For every private history h; € HY of player i, let

oi(hi) = { U(D;i(S;) \ Di(hy)) if i = iz, and

¢ otherwise.

Proposition 1 There exists 3 > 0 such that for all 5 € (0,/3), every player-
assignment profile o is a literal-meaning equilibrium profile.

Proof: For every private history h! of player i with |Sf| > 0, let player 4’s
belief in period ¢ + 1 about the identity of the true state be given by
1if ht € Het
plw =w*|ht) =13 1/]S! if w € S! and bt ¢ H}*

0 otherwise

That is, player ¢ only updates her beliefs about the true state in response
to new evidence and only in accordance with the evidence provided. Given
that player —i’s strategy prescribes

o_i(h_) = { UD-i(S=i) \ D—i(h)) if —i =iy

¢ otherwise

for every history h_; € H% of player —i and that player —i ends the game af-
ter every other history, on the equilibrium path these are the beliefs obtained
using Bayes’ rule.
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On the path of play that is induced by o, every player assignment profile
has players at worst conduct an exhaustive search over a set with ny +mn, —1
states that contains the true state, examining a new state at every turn.
Hence, the expected payoff from any player assignment profile is at least
dmtm2=l(q +§B3) > 0. Off the path of play that is induced by o, the same is
true, except that the lower bound on the expected continuation payoff may
be higher for histories during which some states have already been examined.
If we choose § so that §™*"2~ (a4 §3) > > 0, then for every 3 € (0, /)
we have 6772~ 1(a+§3) > B > 0. Therefore, for all 5 € (0, 3) and for every
private history of player ¢, player ¢ prefers to conform with o; rather than to
end the conversation by choosing e;.

Following any history h € H}*, player i knows the identity of the true
state w* from a disclosure of player —i. Taking action a¥” results in imme-
diately receiving the maximal payoff a provided player —i does not take an
action a“, with w # w* or ends the conversation with e_;,. Unless player
—i takes action a“;, making any other choice results at best in the payoff
da < a. If player —i takes an action a*; with w # w* or chooses e_;, then
the game ends and player ¢ cannot influence the outcome. Hence, following
any history hl € H}*, the strategy o; is optimal.

In any history hf € H?!, player i disclosed all but one element of her
possibility set prior to period t. Had any of these disclosures been equal
to d¥”, then, given the specification of strategy o_;, player —i would have
taken the action a; and ended the game. Since the game has not ended,
player i can infer that none of her disclosures were equal to d¢”, and hence
the remaining element in her possibility set must equal w*. Therefore, taking
action a¥" in period t + 1 as prescribed by strategy o; is optimal.

Given our specification of beliefs, for any private history hl € HP', player
1’s posterior probability that w = w* is no larger than % for all w € ;.
Therefore, since a < —v, it is not optimal for player i to deviate to any
strategy o} that prescribes taking action a in period t + 1 for any w € €.

Given any private history h! € HY for which i;,1 = i, consider a deviation
to a strategy o) that prescribes choosing ¢ in period ¢+ 1 rather than making
a disclosure in D;(S;) \ D;(hl). Given that player —i’s strategy prescribes to
listen in period t + 1 and that player i’s deviation does not affect in which
periods player —i listens and in which periods she discloses, at best this
deviation misses one opportunity to learn about one of the elements in S;.
Hence, there can be no gain from any such deviation.

Given any private history h! € HY for which i,4; = —i, consider a devia-

14



tion to a strategy o} that prescribes making a disclosure in D;(S;) \ D;(hf) in
period t 4 1 rather than listening. Given that player —i’s strategy prescribes
to disclose in period t 4+ 1 and that player ¢’s deviation does not affect in
which periods player —¢ listens and in which periods she discloses, at best
this deviation misses one opportunity to learn about one of the elements in
S_;. Hence, there can be no gain from any such deviation. a

3.3 Optimal literal-meaning strategies for a single topic

Optimal profiles of literal-meaning strategies maximize players’ (common)
expected payoff at the beginning of the game within the class of literal mean-
ing strategies. On path, they remain optimal. Consider the case in which £
is sufficiently small for it not to be optimal to immediately end the conver-
sation.

If player ¢ disclosed w* in the last round, optimal continuation play is
trivial: player —i takes the optimal action and ends the game. Otherwise,
the only information relevant for optimal continuation play is the number
of elements in each player’s remaining possibility set and who disclosed last.
This follows from the fact that if players use literal-meaning strategies, then
after any on-path history the only information each player has about the
location of w* is their remaining possibility set, that all elements in that set
are equally likely, and who disclosed in the previous round. Who disclosed in
the last round is relevant in the event that player ¢ has only one element left
in their possibility set and may be able to infer that this is w* from player
—1 having chosen to disclose or be silent rather than to act in the previous
period.

Define V(m,n,i) as the (common) expected continuation payoff on path
when players use optimal literal-meaning strategies, have reached a history
in which player 1 has m elements left in their possibility set, player 2 has n
elements left, player ¢ disclosed in the previous period and player 7 failed to
disclose w*. Here, let ¢ = 0,1, 2, where ¢ = 0 indicates that neither player
disclosed in the previous period.

Notice that V' (1,n,2) = a+d5: Since player 2 disclosed last, and therefore
did not act, player 1 infers that it cannot be the case that any of the states
she disclosed are equal to w*. Since w* is in Sy, she can conclude that the
single state in her remaining possibility is w*. Therefore, it is optimal for
her to take the action a*”, following which it is optimal for either player i to
end the game with the action e;, which results in a payoff a + 03 for both
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players.

Similarly, V' (1,n,0) = a + §3: Since player 2 chose to be silent in the
previous round rather than to act, player 1 infers that it cannot be the case
that any of the states she disclosed are equal to w*. Since w* is in S7, she can
conclude that the single state in her remaining possibility is w*. Therefore,
it is optimal for her to take the action a*", which results in a payoff o + 5.3
for both players.

Observe next that V(1,n,1) = §(a + §5) when n > 1: Since player 1
failed to disclose w*, n > 1, and player 1 has not yet observed player 2’s
response, both players remain uncertain about w* and hence won’t act in
the current period. Player 2’s inaction, however, will reveal to player 1 that
the sole remaining element in his possibility is w*. Hence, in the next period
player 1 will take the action a*”.

Whenever m > 2 and n > 2, which includes the beginning of the game,
neither player has enough information to justify taking an action and there-
fore the information about who disclosed in the last period is irrelevant.
Hence, for m > 2 and n > 2, we can suppress ¢ in the triple (m,n,4) and,
slightly abusing notation, write V' (m,n) = V(m,n,i). Also, for n > 2 define
V(1,n) =V(1,n,1) =d§a+B).

Proposition 2 If § < 20210408 ypen for alln > m > 2,

1 —1
V(im,n) = Eé(a +d5) + mT(SV(m —1,n),

Furthermore, in every optimal literal-meaning profile the player with the
lower number of remaining elements in their possibility set must disclose
one of their elements following every on-path history in which she has two or
more undisclosed elements left in her possibility set.

Proof: We know from Proposition 1 that for sufficiently small 3 > 0 there
are strategy profiles for which neither player ¢ has an incentive to end the
game by choosing e;. Suppose that this condition on [ is satisfied — we will
verify the more specific condition in the statement of Proposition 2 at the
the end of this proof. Then we can restrict attention to strategy profiles that
search for and eventually discover w* rather than immediately end the game.
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Consider V' (2,n). With n > 2, have
1 1 1 n—1
V(2,n) = max {25(04 +95) + §5V(1,n, 1), Eé(a +95) + T5V(2,n - 1)}

= max {;m +68) + %5% +58), %5(04 +68) + ”7_151/(2, n— 1)} .

Since V(2,n — 1) < d(a+ ), it follows that for n > 2

V(2,n) = %5(04 +45) + %51/(1, n,1) = %5(04 +463) + %52(04 +40)
_ %5@4 +68) + %5{/(1, n)

When n = m = 2, then
1 1 1 1
V(2,2) = max {55(a +0p3) + §5V(1, 2,1), 55(04 +08) + 55\/(2, 1, 2)}

1 1 1 1
= 5(5(04 +48) + 5(52(04 +B) = 55(04 +88) + 551/(1, 2).

Hence, we have verified the expression for V(m,n) in the statement of
the proposition for m = 2 and n > 2. The expression for V(m,n) evidently
holds whenever n = m > 2. Therefore, consider n > m > 2. We proceed by
induction on m.

Suppose the expression for V(m,n) is correct for m = k and all n > k.
We want to show that it holds for m =k + 1 and all n > k + 1.

V(k+1,n) =

n

1 k 1
max {Mé(a +48) + m(ﬂ/(k, n), Eé(a +48) +

vk + 1, — 1)}
n
Notice that V(k,n — 1) > V(k+ 1,n — 1). Hence,

Vik+1,n) <

n—1

n

max {kila(a +58)+ — sV (k,m), %5((1 +68)+

F 1 5V(k,n—1)}
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Since, by assumption n > k+1, it is the case that n—1 > k, and therefore
by the induction hypothesis we have that V(k,n — 1) = V(k,n).
This implies that

V(k+1,n)= %H(S(oz +08) + kL_H(SV(k, n).
This verifies the expression for the value function in the statement of the
proposition.

From inspecting the value function, it follows immediately that to realize
these continuation payoffs, the player with the lower number of remaining
elements must disclose one of their elements following every on-path history
in which they have 2 or more undisclosed elements.

A soon as the player with the lower number of remaining elements reaches
the point where they have disclosed all but one of their elements, we saw that
there are different optimal continuations. There is, however, one among these
in which that player discloses their sole remaining element. It follows that,
for sufficiently small § the expected payoff from any optimal literal-meaning
profile equals

1 m—1 1 m — 2 1
mé(a+5ﬁ)+7m (m_lé (a+5ﬁ)+7m_1 (m_25 (a+55)+...>
(a+08) i t
=) 9
[
51 —0™) (a+5B)
1-4 m
which confirms the explicit bound on [ in the proposition. a

Thus in any optimal strategy profile, only the better informed player talk
and expected payoff only depends on how well informed that player is. As a
consequence reducing the information of the less well informed player does
not impact payoffs at the optimum.

Corollary 1 Whenever |S;| < |S_;|, there is no loss from making player —i
less informed by enlarging her possibility set.
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3.4 Optimal literal-meaning strategies for multiple top-
ics

Suppose now that there are K > 2 topics. Recall that we assumed no switch-
ing — a topic that has been started with a disclosure for that topic must be
completed with an action for that topic before another topic can be started.
Given our finding in Proposition 2 for optimal play with a single topic, we
can then ask how to optimally arrange the order in which to converse about
multiple topics.

At any given time, we say that players converse about topic k if either
player makes a first disclosure in €2 or has disclosed an element in 2, and
neither player ¢ = 1, 2 has ended the conversation by choosing e; or completed
the topic by taking an action a; € A;. For every topic k, select a best informed
player i, € arg mine1,93{|Si x|} and define my, == |S;, x| as the size of topic
k. Assume that there is at least one topic k that satisfies %% > .
Define a topic k" as being simpler than topic k” if my < my». Order topics
by decreasing simplicity, so that for all k = 1,..., K — 1 it is the case that
my < myy1. Say that players converse about topics in the order of their

1-67k) (a+68) 3,

simplicity if (i) they always converse about a topic k with J(Tm—k

(ii) they never converse about a topic k with %% < B, and (iii)

for any two topics k' and k” with my < my» and 6(1_16_?“”) (ﬁ:j,ﬁ) > (3, they

converse about topic &’ before conversing about topic k”.

Proposition 3 In every optimal literal-meaning profile (i) players converse
optimally about every topic they converse about; (ii) players immediately ei-
ther start a new topic or end the conversation after completing a topic; and,
(11i) players converse about topics in the order of their simplicity.

Proof: Property (i) in the proposition follows immediately from our no-
switching assumption: No switching implies that it is never optimal for play-
ers to simultaneously start conversing about different topics - they would be
trapped there without gaining any information. Conditional on starting a
topic k, players are constrained to converse about that topic before moving on
to another topic and the conversation about topic k does not constrain how
they converse about other topics. Thus optimally conversing about topic
k, once a conversation about that topic has been started, is both directly
beneficial and, in addition, avoids delaying transitions to other topics &’ that
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—1 D) (O‘T:‘S'B > (3, if they exist, or toward getting the positive benefit

£ from endlng the conversation if no such topic remains.

Property (ii) in the proposition is a simple consequence of the fact that
any length of time during which both players are silent only serves to defer
optimal continuation payoffs and thus reduces overall payoffs.

To establish the property (iii), suppose that players converse about topics
with sizes myq, ..., mg following the order of topics k =1,2..., and end the
conversation following topic k*, allowing for the possibility that k£* < K (that
is, before there has been a conversation about every topic). By property (ii),
players immediately either start a new topic or end the conversation after
completing a topic. Use V} to denote the continuation payoff from optimally
conversing about topics k,k 4+ 1,...,k* in that order. Then,

satisty

(1 — 6™ (a + 5p)

]._5 e

Vk* -

and for k < k*

1 —1 1 -2
Vi = — (8o + 62Vipy) + 2 "2 ( (60 + 62Vii1) + ——25(... ))

M, my, my — 1 my — 1
1 §(1 —gm)
=— - oV
mp 1—9¢ (CM + k+1)
Hence,

m; i k o mj
Vl—aZ(Sk”l(l_[l—(ll__% >;> L 1<H a-o j)éﬂ
J

Consider two topics k' and k' + ¢, where k' + ¢ < k* and suppose that
my > myyy. Then, if we switch the position of these two topics in the
order of the conversation, not changing the position of any other topics, this
strictly increases the values of the kth summand in the first term of the
expression for V; for all k with k' < k < k' + ¢, leaving the values of all other
summands and the value of the second term unchanged. Hence, for all topics
that players converse about, it is optimal to converse about simpler topics
prior to conversing about more complex topics.

Suppose that topics have been put in this order and examine the following
alternative expression for V7.
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k*—1 k k*
. 5(1—omi) 1 . 5(1—o6m) 1
o k—1 k*—1
Vl—ag:lé (j|:|1—1_5 —m')+5 <||—1_5 — (a4 6p)

J j=1 J

If we dropped topic £* from the conversation, the payoff would be

k-1 k-1
1—6m) 1 . 5(1—0m) 1
V — (5k 1 ( . 5]@ 2 )
k-1 k*—1
—0mi) 1 . o(1—0om) 1
_ 5k 1 (—_ 5k 1 o\ v )
az (H L) e (T
Hence dropping topic k* from the conversation raises the common ex-
pected payoff if and only if 202 ék*) (O;;rkiﬁ ) < B. An analogous argument

shows that adding a topic k* —|— 1 to the conversation raises the common
6(1— 5mk*+1)(a+56)

—0 mk*+1 > /6
This concludes the proof of Clalm (iii) in the proposition that players

converse about topics in the order of their simplicity. a

expected payoff if and only if

4 Pragmatic-meaning equilibria

Until now, we have focussed on equilibria in which there are restrictions on
what disclosures can mean. In literal-meaning equilibria a disclosure only
indicates (i) that the discloser did not (yet) know the truth and (ii) what
was disclosed. In this section we remove this restriction. We focus on the
single-topic case since it highlights the distinction between literal-meaning
equilibria, in which meaning closely matches saying and pragmatic-meaning
equilibria, which allow for significant gaps between saying and meaning.
Throughout, we assume that g > 0 is sufficiently small relative to o that
terminating the conversation is not optimal.

Proposition 4 There exists a pragmatic-meaning equilibrium with a strictly
higher expected payoff than from any literal-meaning equilibrium.

The idea for proving this result is simple — pick an optimal literal meaning-
equilibrium, which by definition makes no distinction among the elements
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of €, and compare it to an alternative equilibrium that takes advantage
of ordering the states in {2 from lowest to highest. We highlight the key
steps, leaving out those details that closely follow the pattern in the proof of
Proposition 1.

Propositions 1 and 2 imply that in an optimal literal-meaning equilibrium
the player with the lower number of elements in her possibility set discloses in
every round prior to the truth being discovered, with the possible exceptions
of the last and the penultimate round. Furthermore, the optimal literal-
meaning equilibria in which the player with the lower number of undisclosed
elements does not disclose in the last and the penultimate round are payoff
equivalent to an optimal equilibrium in which that player does disclose in
every round.

Hence, if, without loss of generality, we let ny < ns, there is an optimal
literal-meaning equilibrium with strategy profile ¢ in which player 1 discloses
in every round and player 2 listens in every round until she learns the truth.
Given that player 1 uses a literal-meaning strategy, she makes no distinctions
among the elements of her remaining possibility set whenever she discloses,
and hence player 2 only learns the identity of the disclosed state from player
1’s disclosure.

Compare this to enumerating the elements of Q) from w! to w”, replacing
player 1’s strategy by the strategy o that specifies

oy (h1) = afgmjin{dwj € (D1(51) \ Di(h1))}

for every private history of player 1 and having player 2, as before, listening
in every period until she learns the truth, following which player 2 acts. The
key is that with strategy o} of player 1, player 2 is able to infer the truth
faster in expectation than with o; : whenever player 1, following the strategy
o discloses w’ and {w*, w1, ... w"} NS, is a singleton set {w}, player 2
can infer that w is the true state.

We can reflect this in the specification of player 2’s beliefs as follows. for
every state w € Sy, let HY' denote the set of all private length-¢ histories of
player 2 for which there is a time 7 < ¢ with ¢] = ¥ and {w’,w*!, ..., w"}N
Sy = w. Histories in HY* are those in which player 2 can infer the true
state w through a disclosure by player 1. The union of all those histories
is Hy' = U,ecg, Hs". This is the set of all histories in which player 2 has
learned the true state through a disclosure of player 1.

For every private history Al of player 2 with [Si| > 0 and w’ the maximal
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element disclosed by player 1 according to history hb, let player 2’s belief in
period t 4+ 1 about the identity of the true state be given by

1if B € Hy'
L |ifwe{w{...,w”}ﬂSﬁandhégZH%t

_ ) = T wmns
plo =) =4 0 e S (W) 18] = 0 and B & HY

0 otherwise.

That is, player 2 only updates her beliefs about the true state in response to
new evidence and does so in accordance with what she can infer from player
1’s strategy, unless the inference is inconsistent with what she knows. In the
latter case, she assigns equal probability to those states in her possibility set
that she cannot rule out based on past disclosures alone.

Our next result shows that (i) there is room for improving on the bet-
ter informed player always disclosing the minimal element of their remaining
possibility set and (ii) optimality requires simultaneous talk with positive
probability. The latter is true despite the fact that we assumed that simul-
taneous disclosures erase the content of what is disclosed. It relies on players
being able to make inferences from simultaneous talk even if they do not
understand what is being said.

Proposition 5 Suppose that 1 < |S;| < | —1,i = 1,2 and || > 4. Then
i any optimal pragmatic-meaning equilibrium of a single-topic conversation
there is positive probability that both players talk and that they do so simul-
taneously.

Proof: In any optimal pragmatic-meaning equilibrium at least one player
must talk with positive probability in period 1. Otherwise, it would be
possible to accelerate the discovery of the true states by treating every period
t as if it were period t + 1. We will show that in any optimal pragmatic-
meaning equilibrium both players talk with positive probability in period 1.
To arrive at a contradiction, suppose that there is an optimal pragmatic-
meaning equilibrium in which only one player talks with positive probability
in period 1. Wlog let that be player 1. If in the hypothesized equilibrium
player 1 uses a strategy that reveals S; with probability 1 in period 1, then
there must be at least as many messages as there are sets S;. Since the
maximal number of messages available to player 1, i.e., the number of possible
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disclosures plus silence, satisfies |S1]| + 1 < |, this implies that we need

\Q\)
20> ()
And, because 1 < |Si| < Q] — 1, (||S91||) is minimized by |S1| = 2 and by
51| = |Q| — 2. But n > (}) = (,",) is violated for all n > 4. Hence, given
the antecedent in the statement of the proposition, it is impossible for player
1 to use a strategy that reveals S; with probability 1 in period 1.

Therefore, the maximal probability with which player 2 learns the truth
from player 1’s disclosure in period 1 is bounded away from one. Denote
that maximal probability by p < 1. In the postulated pragmatic-meaning
equilibrium, for every realization of the pair of of possibility sets, the expected
payoff is no larger than ¢ and with probability 1 —p > 0 it is no larger than
52.

Fix a possibility set Sy of player 2. There is positive probability that
Sy = Sp. Modify the postulated optimal pragmatic-meaning equilibrium by
having player 2 make a disclosure in period 1 if and only if So = S;. Then,
in the event that Sy = S player 1 learns the truth in period 2 from the
fact that player 2 made a disclosure (where the nature of the disclosure is
irrelevant). Hence in the event that S, = §2, the modified strategy profile
achieves a payoff equal to ¢, which is never lower than the payoff from the
postulated optimal pragmatic-meaning equilibrium and is strictly higher with
probability 1 —p > 0. a

Hence, politeness is suboptimal.” It is optimal for one of the players
sometimes to interrupt the other to make an important point.

4.1 An example of an optimal pragmatic-meaning equi-
librium
Recall our example from Section 3.1 with state space |2] = 4, and players

having possibility sets with sizes |S1| = 2 and |S;| = 3, respectively. We
showed that given the values of the parameters «, 3, v, and d chosen there,

“In Aumann and Hart’s [5] study of long cheap talk, polite talk, i.e., “talk without
simultaneous messages,” is generally less effective than impolite talk because polite talk
cannot take advantage of jointly controlled lotteries. In the common-interest environment
of the present paper there is nothing gained from the use of jointly controlled lotteries.
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there is an optimal literal-meaning equilibrium with the following behavior
on path: In period 1 player 1 discloses and player 2 listens. In period 2 player
1 listens. Player 2 acts in period 2 if player 1 disclosed an element of S5 in
period 1 and otherwise discloses. If period 3 is reached, then player 1 acts
and player 2 listens. Following a period in which a player has acted, some
player i (or both) ends the game by choosing e;. In this equilibrium there
is positive probability that the first disclosure fails to reveal the truth. The
expected payoff from this equilibrium is %(5 + 0%)(a + 03).

There is a pragmatic-meaning equilibrium in which single disclosure suf-
fices to identify the true state. To see this, consider a strategy for player 2
that prescribes for player 2 to disclose in period 1 according to the following
rule:

{wh W W s
{w', w?, Wl s
{w', W, wl s @’

{wQ,w?’,cf} N

This strategy fully reveals player 2’s possibility set for each of its possible
realizations in the first period. Hence, the payoff from this equilibrium equals
6(a+683) > (6 + 6%)(a + 63). The equilibrium is optimal since it identifies
the true state at the earliest possible opportunity with probability 1.

There is no strategy for player 1 that would reveal player 1’s possibility
set for every possible realization in the first period. Hence, in this example
it is the case that in every optimal literal-meaning equilibrium player 1 talks
in the first period, whereas in every optimal pragmatic-meaning equilibrium
player 2 talks in the first period.

Notice that this example also suggests that we need to rethink what
it means to be “better informed.” Player 1 would be better informed in
a decision problem in which players had to pick an action based on their
individual information. Here, in contract, one can think of player 2 as being
better informed. Player 2 knows more about what she does not know: she
can rule out exactly one state from the set of possible states. This allows her
to signal the remaining states in her possibility set with a single disclosure.
This observation straightforwardly generalizes to give us the following result.

Proposition 6 There exists a pragmatic-meaning strategqy that lets player 1
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learn the identity of w* with certainty in or before period
t* = min{|S_;|, || — |S_i|} + 1.

Notice that the same conclusion would also hold for literal-meaning strate-
gies if we added the ability to negate statements to players’ languages. With
negation agent j could name the |Q| — |S;| missing elements in her possi-
bility set, which would be an efficient way of identifying her possibility set
whenever S; is large in relation to €.

5 Uncertainty about informedness

Until now, we have maintained the assumption that the sizes of players’ pos-
sibility sets in each topic, n;;, are commonly known. In this section we drop
this assumption. Focussing on the case of a single topic (and therefore drop-
ping the index k), we now assume that the size of each player i’s possibility
set n; is randomly and privately drawn from a set M = {my,...,my} with
1 <my <--- <myg. To isolate the effect of uncertainty about informedness,
we consider literal-meaning strategies.

Denote player 1’s distribution on M by p and player 2’s distribution by q.
We will have occasion to vary the set M while keeping its cardinality, L, and
the distributions p and ¢ fixed. For that reason, we assign probabilities p, and
ge to the indices ¢ rather than directly to sizes my,, with the understanding
that for any fixed M, p, = p(my) and g, = q(my) are the probabilities that
player 1’s and player 2’s possibility sets are of size m,. Assume that p, > 0
and ¢, > Oforall £ =1,2,..., L. Say that player 1 is ex ante better informed if
player 2’s informativeness distribution ¢ first-order stochastically dominates
player 1’s distribution p, that is, player 1 is more likely to draw possibility
sets of smaller sizes. To ensure that it is always worthwhile to converse, we
let § vary with M and assume that for every M considered it is the case that
B < St

L

To state our next result, two definitions will be helpful. First we define
what it means for one strategy profile to be better than another conditional
on public histories. For any 7 > 2, strategy profile o is 7-sequentially su-
perior to strategy profile ¢’ if conditional on every on-path public history
generated by o the expected continuation payoff from ¢ is no less than from
o', and for every t less than 7 there is an on-path public history of length
t generated by o for which the continuation payoff from o strictly exceeds
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that from o (this also implies that strategy o has a strictly higher ex ante
expected payoff). Evaluating expected continuation payoffs conditional on
public histories adopts the perspective of an outside observer, who does not
know the realized sizes of players possibility sets.

Second, we define a class of strategy profile that, as we will see, permit
players to exchange information about the sizes of their possibility sets. A
strategy profile prescribes that players alternate having the option to talk
if (i) conditional on no prior disclosure, one player is designated to listen
while the other can choose whether to disclose, (ii) the roles of listener and
talker switch every period prior to the first disclosure, (iii) the less well-
informed player 2 is designated to listen in period 1, and (iv) once a player
has disclosed, that player discloses for the remainder of the game.

Before, when a player was better informed and we restricted attention to
literal meaning strategies, it was best to let that player do all the talking.
Now, however, a player who is better informed ex ante need no longer be
better informed at the interim stage, when the sizes of possibility sets are
realized. The following proposition indicates how that tension is resolved.
While for some distributions over possibility sets it may be nearly optimal
to have only player 1 talk, there are also scenarios in which it is sequentially
superior to let players alternate having the option to talk.

Proposition 7 (i) For fited M, § > 0 and every € > 0, there exist distri-
butions p and q for which it is e-optimal only to have player 1 talk. (i) In
contrast, for any fixed p,q and 6 > 0, there exist M and 5 > 0 for which
letting players alternate having the option to talk is 2(L — 1)-sequentially
superior to always continuing with only letting player 1 talk.

Proof: Expected payoffs are bound from above by % a;;‘Eﬁ , the maximal

expected payoff achievable if players were certain that the size of player 1’s
possibility set is minimal. If instead there is uncertainty about about the
sizes of the possibility sets and their distributions are given by p and ¢, then
the expected payoff from having player 1 always disclose until one of her
disclosures matches the truth equals

L

S(1—6m)a+6p
D @)
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1-6 my

Evidently, for any € > 0 and sufficiently large p;, we have

Zz W 1 JW) a:@‘m < €. This establishes part (i).
Suppose that players adopt a strategy that makes the following prescrip-
tions on path:

1. In period 1 player 1 discloses if |S;| = mq, and player 2 listens.

2. In period 2, if there has been no prior disclosure, player 2 discloses if
|So| = my, and player 1 listens.

3. In period t = /¢, if there has been no prior disclosure, ¢ is odd, and
¢ < 2(L —1), player 1 discloses if |S;| = my, and player 2 listens.

4. In period t = ¢, if there has been no prior disclosure, ¢ is even, and
¢ <2(L —1), player 2 discloses if |Sa| = my, and player 1 listens.

5. Once a player has made a disclosure that player discloses until the other
player acts.

6. A player acts following the period in which their conversation partner

has disclosed the true state.

Then their expected payoff equals

L—1 /-1
(1 ="+ 6
ZH L= p) (L= @)l + (1 — poygore 2= 0D 2 £ 0P
=1 i=1 - My
(1 —0m)a+4d8
1_ 1_ 2L 2

=1

using the convention Hf;}[(l pi)(1 —q;)] =1 for £ =1.
In the expressions (2) and (3), set 5 = 0. Then both expressions are

weighted sums of the same terms 6(11%73 0 = 1,2,...,L. Notice that
the weight on 5(11_ 6::1)%1 in (3) is strictly larger than in (2). Therefore, by
increasing ms, ..., my, we can ensure that the weight on 0U=") a g decisive

in the comparison of the payoffs in (2) and (3), and hence the payoff in (3)
is strictly larger than the payoff in (2). By continuity, this remains true for
sufficiently small g > 0. Hence, there exist M and § > 0 for which letting
players alternate having the option to talk yields a strictly higher payoff
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than only letting player 1 talk. If player 1 discloses in period 1, this reveals
that her possibility set if of minimal size, m;, and therefore it is optimal
for her to keep disclosing by Proposition 2. If player 1 fails to disclose in
period 1, this demonstrates to the outside observer that the smallest player
1’s possibility set can be is mo, whereas there is still positive probability that
player 2’s possiblity is is of size m; < msy. Hence, when we calculate the
expected continuation payoffs from either continuing with the strategy in
which players alternate having the option to talk or letting player 1 disclose
until the truth is revealed, we get sums of 6(11155 2 n‘; A =1,2,...,L. But
now, only the payoff from letting players alternate havmg the optlon to talk
has a positive weight on 5(11 65 . Hence, the same argument as before
shows that there exist M and f3 > O for which letting players continue to
alternate having the option to talk yields a strictly higher payoff than only
letting player 1 continue to talk. If player 2 discloses in period 2, this reveals
that her possibility set if of minimal size, m, and therefore it is optimal
for her to keep disclosing by Proposition 2. If player 2 fails to disclose in
period 2, this demonstrates to the outside observer that for both players the
smallest a possibility set can be is mo. This puts us back in essentially the
same situation as at the beginning of the game: from the perspective of the
outside observer, both players have possibility sets drawn from distributions
p and ¢, with support on {ms, ..., mp}, p, = 1%1’ go = 7% s
stochastically dominating p. Hence, fixing m», and increasing ms, ..., mp, we
can find M and 8 > 0 such that continuing with letting players alternate
having the option to talk yields a strictly higher payoff than yields a strictly
higher payoff than only letting player 1 continue to talk. We can repeat
this two-step argument L — 1 time (equivalently for 2(L — 1) periods). After
2(L — 1) periods, it has been revealed that both players’ possibility sets are
of size My, and hence it is optimal for either player to start disclosing. O

Notice that with the sequentially superior strategy there is positive prob-
ability that for some number periods overtly nothing happens — the players
remain silent. This, once again, is reminiscent of similar behavior in familiar
logic puzzles (Littlewood [26], Gamow and Stern [17]) and the phenomenon
in Bayesian dialogues (Geanakoplos and Polemarchakis [18]) of agents repeat-
edly announcing the same conflicting posteriors. In all of these case agents
refine information on the basis of a form of inaction.
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6 Discussion

This paper contributes to the literature on information sharing through cheap
talk, Crawford and Sobel [9], and disclosure, Grossman [23] and Milgrom [28].
It also relates to the linguistics literature on pragmatics in the tradition of
Grice [19], which is surveyed in Benz and Stevens [6].

The pragmatics literature is concerned with the difference between what
is said and what is implicated. It notes that there is more to meaning than
literal meaning. Grice postulates a cooperative principle that lets interlocu-
tors work out what is meant on the assumption that they are rational and
have a common goal. Following Grice and the bulk of the linguistics lit-
erature on pragmatics, we study information sharing in a common-interest
environment.

There is a variety of approaches to understanding pragmatic reasoning
in the linguistics literature, including, but not limited to, the iterative best
response model of Franke [16], which is in similar spirit to Crawford’s [11] ap-
plication of level-k reasoning (Nagel [29]) to communication games, iterative
deletion of weakly dominated strategies (Rothschild [32]), and the recently
popular rational speech act framework of Frank and Goodman [15] (surveyed
in Degen [12]). Common to the mentioned papers is their aim to exhibit a
reasoning process that rationalizes pragmatic inference and their avoidance
of the requirement that behavior be in equilibrium.

Departing from that literature, we study equilibria, which happen to ex-
hibit pragmatic features to different degrees. Furthermore, we examine two-
sided incomplete information. We allow interlocutors to assume both the
role of speaker and that of listener and let them endogenously switch be-
tween those roles during the course of the conversation. While the pragmat-
ics literature focusses on single communicative acts, modeled as two-stage
games in which the speaker first sends a message which is then interpreted
by the listener, we allow conversations to be open ended, with no definite
termination point.

Open ended conversations have been considered in the cheap-talk liter-
ature by Forges [14], Aumann and Hart [5], and Krishna and Morgan [25].
Their results leverage jointly controlled lotteries, which play no role in our en-
vironment. As Aumann and Hart, we find that impolite talk is more effective
than polite talk, but for different reasons. Antic, Chakraborty Harbaugh [2]
consider open ended information exchange between interlocutors with com-
mon interests in the presence of a third party with misaligned interests who
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can overhear the conversation.

Unlike the cheap-talk literature, Crawford and Sobel [9], in which the
meaning of messages is entirely endogenous, our messages have a literal mean-
ings. This is consistent both with the disclosure literature in the tradition of
Grossman [23] and Milgrom [28] and the game theoretic literature on prag-
matics.

In order for communication in our environment not to be instantaneous
and complete, and therefore non-interesting, we need a friction. In the cheap-
talk literature, this friction comes from non-aligned interests. In the disclo-
sure literature, both conflicts of interest and language constraints in the form
of truth-telling conditions are sources of friction.

Glazer and Rubinstein [20][21][22], study pragmatic inference in environ-
ments in which the main friction is conflict of interests. They replace the
role of Grice’s cooperative principle in analyzing pragmatic inference with
the goal of a third party, a mechanism designer or a judge. In the linguistics
literature, Asher, Paul, and Venant [3] study conversations with conflict in
zero-sum games, which like our environments have no determinate endpoints
— one player’s goal is to steer the conversation into a a winning set and the
other player’s goal is to prevent that. Pawlowitsch [30] explores incentives to
strategize in “Bayesian dialogues” a la Geanakoplos and Polemarchakis [18]
and links them to Gricean conversational implicatures (Grice [19]).

The principal friction in our model is a language constraint: at any given
time interlocutors can only disclose a single state from the set of states they
consider possible. We also impose two physical constraints. First, in keeping
with most of the literature, players can only communicate at fixed discrete
points in time. Second, we postulate that simultaneous talk is ineffective —
player observes the fact of simultaneous talk but none of its content.

Our language constraint necessitates gradual information exchange. This
is in contrast to Blume and Park [8] who model interlocutors’ information
the same way we do here but impose no constraint on which subsets from
their possibility sets players can disclose. In Blume and Park’s paper gradual
information exchange arises endogenously for reasons similar to those in Stein
[33], Dziuda and Gradwohl [13], Rosenberg, Solan, and Vieille [31], Hérner
and Skrzypacz [24], Augenblick and Bodoh-Creed [4], and in the literature
on incremental contributions to a public good (Admati and Perry [1] and
Marx and Matthews [27]).

Departing from the pragmatics literature, which is primarily concerned
with rationalizing the reasoning process that underlies pragmatic inferences,

31



here the focus is on equilibrium behavior in conversations, which may vary
in its reliance on pragmatic inference. This allows us to shed light on what
players decide to talk about, who gets to talk when, and when they end
their conversation. We note that even in equilibria that minimize pragmatic
inference, some such inference is inevitable, which one might call pragmatics
creep. We find that if talking is sufficiently valuable, a folk-theorem type
result obtains: any talking order into which we can put players can be sus-
tained in equilibrium. For optimal equilibria among those that minimize
pragmatic inference, we can predict when potential interlocutors engage in a
conversation, who talks in which order, and when interlocutors terminate a
conversation. While there is a large set of literal-meaning equilibria, which
minimize pragmatic inference, we find that they are never optimal.

In pragmatic-meaning equilibria, i.e., those that do not minimize prag-
matic inference, interlocutors can make use of a variety of ways of taking
advantage of the labeling of states. The revelation of a single state can serve
to indicate an entire possibility set, by, for example always revealing the min-
imal state in one’s possibility set. Or, it can be used to indicate which state
or set of states does not belong to one’s possibility set.

Rich conversation patterns also emerge when we stick with literal-meaning
strategies but allow for uncertainty about the sizes of possibility sets. Specif-
ically, players can gain from delaying disclosure when their possibility sets
are relatively large, in the hope that their partner is better informed and for
that reason starts disclosing early.

Our findings, by design, depend on agents being language constrained.
Interlocutors in our conversations lack names for nontrivial subsets of the
state space, are unable to use negation, and cannot name numbers. FEn-
riching their language with any of these features would significantly simplify
their task. This mirrors the distinction that Geanakoplos and Polemarchakis
[18] make between direct and indirect communication. Their indirect com-
munication limits agents to making statements about probabilities of events,
whereas direct communication would allow them to declare their informa-
tion. We believe that language constraints are real, that there is value in
studying them in stylized settings, and that doing so can help illustrate the
value of familiar features of language, like the ability to negate statements.
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