Building the UA/Eller/MIS AZSecure Cybersecurity Analytics Program: My Journey

Hsinchun Chen, Ph. D. Regents' Professor, Thomas R. Brown Chair Director, Al Lab, AZSecure Cybersecurity Program Fellow, ACM, IEEE, AAAS University of Arizona SKM, October 8, 2021

Funding Acknowledgements: NSF (SaTC, SFS, ACI)

Outline

- Security Informatics & Analytics: COPLINK, BorderSafe, Dark Web
- Azsecure Cybersecurity Analytics:
- (1) Dark Web Analytics for studying international hacker community, forums, and markets;
- (2) Privacy and PII (Personally Identifiable Information) Analytics for identifying and alleviating privacy risks for vulnerable populations;
- (3) Adversarial Malware Generation and Evasion for adversarial AI in cybersecurity; and
- (4) Smart Vulnerability Assessment for scientific workflows and OSS (Open Source Software) vulnerability analytics and mitigation.

Computational Design Science Research at UA/Eller/MIS AI Lab

- Applications/problems: digital libraries, search engines, biomedical informatics, healthcare data mining, security informatics, business intelligence, cybersecurity analytics
- Approaches: web collection/spidering, databases, data warehousing, data mining, text mining, web mining, statistical NLP, machine learning, deep learning, ontologies, social media analytics, interface design, information visualization, economic modeling, assessment
- Structure: federal funding (NSF/DOD/NIH), director, affiliated faculty, post-docs, Ph.D./MS/BS students → tech transfer, commercialization
- Major phases: DLI → COPLINK → Dark Web → AZSecure

Security Informatics & Analytics: COPLINK & Dark Web

D-Lib Magazine July/August 1998

ISSN 1082-9873

NSF/DARPA/NASA Digital Libraries Initiative

A Program Manager's Perspective

Stephen M. Griffin Division of Information and Intelligent Systems (IIS) Program Director: Special Projects Digital Libraries Initiative National Science Foundation Arlington, Virginia USA sgriffin@usf.gov

National Institute of Justice

STRENGTHEN SCIENCE. ADVANCE JUSTICE.

Digital Government (DigitalGov)

Program Solicitation NSF 04-521 Replaces Document 02-156

National Science Foundation
 Directorate for Computer and Information Science and Engineering
 Division of Information and Intelligent Systems

Global Security Impacts

- "War on terror" (Iraq and Afghanistan) surpassed cost of Second World War, \$5 trillion...Time Magazine
- Hacker costing \$1 trillion globally...
 President Obama

From the Surface Web to the Dark Web

COPLINK: Crime Data Mining (1997-2009)

COPLINK Identity Resolution and Criminal Network Analysis

* Only the grayed datasets are available to the AI Lab

Border Security: High-risk Vehicle Identification (LPR + DM/SNA)

COPLINK: Crime Data Mining

ABC News April 15, 2003

Google for Cops: Coplink software helps police search for cyber clues to bust criminals

IBM i2 COPLINK

Accelerating law enforcement investigations

Q Palantir (\$54B, IPO 2020)

COPLINBK Commercialization Timeline

- 1994-1997, NSF DLI projects, DL, SE
- 1997, NIJ \$1.2M project, UA/TPD
- 2000, NSF DG \$1.6M, UA/TPD/PPD
- 2000, KCC founding, UA tech transfer; \$2.6M VC funding
- 2001, Tucson, Phoenix, San Diego
- 2002, bubble burst, \$2M additional funding (anti-dilution clause)
- 2003, DC snipper investigation use, NYT cover article; AZ, CA, NJ, IL
- 2009, SilverLake PE fund; COPLINK + i2
- 2011, sold to IBM (\$500M); Chen exit
- 2017, IBM sold COPLINK to Forensic Logic

→ COPLINK is in use in 5,000+ law enforcement jurisdictions and intelligence agencies in the U.S. and Europe, making significant contribution to public safety worldwide.

Dark Web: Countering Terrorism (2003-2014)

- Dark Web: Terrorists' and cyber criminals' use of the Internet
- Collection: Web sites, forums, blogs, YouTube, etc.
- 20 TBs in size, with close to 10B pages/files/messages (the entire LOC collection: 15 <u>TBs</u>)

<u>Awal Afgan arab II</u> Dourous

Arabic Writeprint Feature for Authorship Analysis

CyberGate (Abbasi, et al., MISQ, 2008)

14

The Dark Web project in the Press

Project Seeks to Track Terror WebS Posts, 11/11/2007

Researchers say tool could trace online posts to terrorists, 11/11/2007

Mathematicians Work to Help Track Terrorist Activity, 9/14/2007

ISI, Springer, 2006

• Intelligence and Security Informatics (ISI) (Chen, 2006)

Data, text, and web miningFrom COPLINK to Dark Web

• IEEE ISI, EISIC, PAISI → 4000+ scholars, since 2003

Dark Web, Springer, 2012

Integrated Series in Information Systems 30 Series Editors: Ramesh Sharda - Stefan Voß Hsinchun Chen Dark Web **Exploring and Data Mining** the Dark Side of the Web D Springer

22 chapters, 451 pages, 150 illustrations (81 in color); Springer Integrated Series in Information Systems, 2012.

Selected TOC:

- Forum Spidering
- Link and Content Analysis
- Dark Network Analysis
- Interactional Coherence Analysis
- Dark Web Attribution System
- Authorship Analysis
- Sentiment Analysis
- Affect Analysis
- CyberGate Visualization
- Dark Web Forum Portal
- Case Studies: Jihadi Video Analysis, Extremist YouTube Videos, IEDs, WMDs, Women's Forums

AZSecure Cybersecurity Analytics Program (2010-present): SaTC, SFS, ACI

Secure and Trustworthy Cyberspace (SaTC)

PROGRAM SOLICITATION

NSF 21-500

REPLACES DOCUMENT(S): NSF 19-603

National Science Foundation

Directorate for Computer and Information Science and Engineering Division of Computer and Network Systems Division of Computing and Communication Foundations Division of Information and Intelligent Systems Office of Advanced Cyberinfrastructure CyberCorps(R) Scholarship for Service (SFS) Defending America's Cyberspace

PROGRAM SOLICITATION NSF 21-580

REPLACES DOCUMENT(S): NSF 19-521

National Science Foundation Directorate for Education and Human Resources Division of Graduate Education Cybersecurity Innovation for Cyberinfrastructure (CICI)

PROGRAM SOLICITATION NSF 21-512

REPLACES DOCUMENT(S): NSF 19-514

Directorate for Computer and Information Science and Engineering Office of Advanced Cyberinfrastructure

Azsecure Cybersecurity Analytics Program:

- (1) Dark Web Analytics for studying international hacker community, forums, and markets;
- (2) Privacy and PII (Personally Identifiable Information) Analytics for identifying and alleviating privacy risks for vulnerable populations;
- (3) Adversarial Malware Generation and Evasion for adversarial AI in cybersecurity; and
- (4) Smart Vulnerability Assessment for scientific workflows and OSS (Open Source Software) vulnerability analytics and mitigation.

nature

doi:10.1038/nature16961

Mastering the game of Go with deep neural networks and tree search

David Silver¹*, Aja Huang¹*, Chris J. Maddison¹, Arthur Guez¹, Laurent Sifre¹, George van den Driessche¹, Julian Schrittwieser¹, Ioannis Antonoglou¹, Veda Panneershelvam¹, Marc Lanctot¹, Sander Dieleman¹, Dominik Grewe¹, John Nham², Nal Kalchbrenner¹, Ilya Sutskever², Timothy Lillicrap¹, Madeleine Leach¹, Koray Kavukcuoglu¹, Thore Graepel¹ & Demis Hassabis¹

nature

doi:10.1038/nature24270

Mastering the game of Go without human knowledge

David Silver¹*, Julian Schrittwieser¹*, Karen Simonyan¹*, Ioannis Antonoglou¹, Aja Huang¹, Arthur Guez¹, Thomas Hubert¹, Lucas Baker¹, Matthew Lai¹, Adrian Bolton¹, Yutian Chen¹, Timothy Lillicrap¹, Fan Hui¹, Laurent Sifre¹, George van den Driessche¹, Thore Graepel¹ & Demis Hassabis¹

Al & Deep Learning: From AlphaGo to Autonomous Vehicles (2012-)

Hacker Web, AZSecure projects at UA/MIS AI Lab (2010-present)

Al and Cybersecurity

- Al and Cybersecurity \rightarrow not just buzzwords!
 - Noted as a national security priority by NSF, NSTC, and NAS.
- Role of AI for Cybersecurity :
 - 1. Automate common cybersecurity tasks
 - 2. Identify patterns in large datasets

ARTIFICIAL INTELLIGENCE AND **CYBERSECURITY: OPPORTUNITIES** AND CHALLENGES

TECHNICAL WORKSHOP SUMMARY REPORT

A report by the **NETWORKING & INFORMATION TECHNOLOGY** RESEARCH AND DEVELOPMENT SUBCOMMITTEE

and the MACHINE LEARNING & ARTIFICIAL INTELLIGENCE SUBCOMMITTEE of the NATIONAL SCIENCE & TECHNOLOGY COUNCIL

MARCH 2020

AI for Cybersecurity – An Analytics Approach

SPECIAL ISSUE

MOVING TOWARD BLACK HAT RESEARCH IN INFORMATION SYSTEMS SECURITY: AN EDITORIAL INTRODUCTION TO THE SPECIAL ISSUE

By: M. Adam Mahmood University of Texas at El Paso mmahmood@utep.edu

> Mikko Siponen University of Oulu, Finland mikko.siponen@oulu.fi

Detmar Straub Georgia State University dstraub@gsu.edu

H. Raghav Rao State University of New York at Buffalo mgmtrao@buffalo.edu

T. S. Raghu Arizona State University raghu.santanam@asu.edu

Introduction I

The *MIS Quarterly* Special Issue on Information Systems Security in the Digital Economy received a total of 80 manuscripts from which we accepted nine for publication in the Special Issue. To introduce the readers to the special issue papers, we have chosen to digress from the tradition of summarizing the papers in-depth and, instead, would like to take this opportunity to encourage researchers to conduct

Black Hats Versus White Hats Versus Grey Hats

What exactly is this white hat versus the black hat dichotomy? When making movies about the Old American West, filmmakers made a symbolic distinction at times between the good guys, wearing white hats, and the bad guys, wearing black hats. If, for the sake of our basic theme, we can adopt this distinction momentarily, we would like to go on to asseverate that the information systems field is heavily overemphasizing research on white hats to the detriment of studies on black hats. It is easy to see how this would, quite naturally, occur. Scholars have better access to white hats, although even here, white hat managers do not typically want to share detailed information about their losses and have responded in this manner for some time (Hoffer and Straub 1989). Thus it is a readier access to data that has led information security researchers to gravitate toward white hat issues.

Whereas we could offer more extensive evidence of the prevalence of white hat IS research studies, a quick review of the papers in this special issue indicates that only the paper by Abbasi, Zhang, Zimbra, Chen, and Nunamaker attempts to empirically represent the activities of black hats, but even with this representation, we are at arm's length from black hat motivations and future dark plans.

We need to state unequivocally that our argument for more emphasis on the black hat type of research in no way diminishes the contributions of the white hat papers in this special

Dark Web Analytics:

studying international hacker community, forums, and markets

*ACI, 2012-2017; SaTC 2013-2018; SFS-1, 2012-2018 * SaTC 2019-; SFS-2, 2019-

Secure and Trustworthy Cyberspace (SaTC)

PROGRAM SOLICITATION NSF 21-500

REPLACES DOCUMENT(S): NSF 19-603

National Science Foundation

Directorate for Computer and Information Science and Engineering Division of Computer and Network Systems Division of Computing and Communication Foundations Division of Information and Intelligent Systems Office of Advanced Cyberinfrastructure CyberCorps(R) Scholarship for Service (SFS) Defending America's Cyberspace

PROGRAM SOLICITATION NSF 21-580

REPLACES DOCUMENT(S): NSF 19-521

National Science Foundation

Directorate for Education and Human Resource Division of Graduate Education Cybersecurity Innovation for Cyberinfrastructure (CICI)

PROGRAM SOLICITATION NSF 21-512

REPLACES DOCUMENT(S): NSF 19-514

Mational Science Foundation

Directorate for Computer and Information Science and Engineering Office of Advanced Cyberinfrastructure

Hacker Web

	PHP mail	1
	 We can the explosit to replace openesh-5.3 tas.go with a multiple version Administrator installs our OpenSIN 5.2 with our _modifications_ 	
200	The download history will still show the name of the site that supplied the o filename even when the target user opened the our septercomm file instead.	eiginel file
1	Conditions that have to be may far supportation to succeed	1000
BATHAR	 The ability to write in the temporary file directory, "/rep" by default on (shell, fip, etc with write pressenant could be helpful for making this 2. The target user chooses to download the file and chooses the "Open visit" 7. The target user also have to download the file in the download manager proceeding, the file spaced automatically, as normal behavior, but that can 	ork yemotely; reference iin previous
25ес жие форума гистрация: 18.05.2007	Firsthus on Windows has sliphtly different results. I found during testing the the tight file will be opened. Although unreliable, we were shie to get the h manager to show the replecement file and it will be special if the user thouse Repletation on Windows would be lineated anyways due to the fart that pro day	story of the
ofiumeeli: 1.023 nyrauee: <u>759</u> 0: 22222208	Explantation in Manheer would be interest enveryers due to the fait that by due access to do ional things on distinct as a faith and the faith constraint implement file to be sent in history that waith a seguint, which can be explained when you don't went the sarget to thick anything much is not do the o	it is also en
	masilia-1.3.1/specm/in/msistalFileCommun.cpp -> 12001 (34-174))	100
	Mg_INETWOODED malocalfile:/CreaseDalque/FEDintil type, SEDintil attributes)	
Code to	Deseault ev. SSSoci Longilane;	126
execute /	<pre>Elfed 75_ktH nekstofszing pathfase, leaffake, rootlake, suffix: rv = GetDath-spathfase;; elee</pre>	SZ)
explore	nelAutoficing pathflare, leafflane, contflare, suffix;	

exploit Mozilla Firefox 3.5.3

Mass mailing or targeted campaigns that use common files to host or exploit code have been and are a very popular vector of attack. In other words document received via e-mail or opened trough a browser plug-in. In regards to malicious PDF files the security industry save as significant increase o half of 2008 which might be related to Adobe Systems release of the specifications, format structure and functionality of PDF files.

Most enterprise networks perimeters are protected and contain several security filters and mechanism the block threads. However a malicous PDF very successful passing trough Firevalls, Intrusion Prevention Systems, Anti-span, Anti-virus and other security controls. By reaching the victim mail leverage social engineering techniques to lure the user to dick/open the document. Then, for example, if the user opens a PDF malicous IBF or explose a vulnerability when Adobe Reader parses the crafted file. This might cause the application to corrupt memory on the stack or heap causing as shellocde. This shellocal enormally downloads and executes a malicous IBF form the Internet. Then there there that and ere tradier biga Zdring wo of these shellocdes. In some circumstances the vulnerability could be exploited without opening the file and just by having a malicious IBF form

<u>Tutorial</u> on how to create malicious documents

BlackPOS malware <u>attachment</u>.

Selected data breaches in 2014

Victim	Date	Ramification]
Target	2013.12	40M credit/debit cards; 70M customer records; 46% drop in annual profits (seller: Rescator)	
Neiman Marcus	2014.3	282K credit/debit cards	
Sally Beauty	2014.3	25K credit/debit cards	
P.F. Chang	2014.6	8 month of customer data from 33 stores	
J.P. Morgan Chase	2014.8	83M accounts	Yahoo confirms: hackers stole 500 million
UPS	2014.8	51 stores customers	account details in 2014 data breach Boohoo for Yahoo. State-sponsored attacker blamed for hack as users told to change passwords.
Dairy Queen	2014.9	395 store systems	Graham Chatry I Statember 22, 2015 8.01 cm] Files under Data koss, Yahoo \Rightarrow 21 4577 States on Twitter f Share on Facebook +
Home Depot	2014.9	56M credit/debit cards	
Jimmy Jones	2014.9	216 store systems	
Staples	2014.10	51 store systems	500,000,000+

Are your data breached? Do you even know?

Data Breaches since 2005 (FTC, Clearinghouse, 2019)

- # of records breached: 11,582,808,013
- # of data breaches: 9,071

Hacker Community Platforms – "Know your enemy"

Discussion board allowing hackers to freely share malicious tools and knowledge

Markets facilitating the sale of illicit goods (e.g., new exploits, drugs, weapons) Price Rules FAQ THE BEAM STATES STATES THE BEAM STAT

(e.g., credit

cards, SSN's)

Carding Shops

Mr. Bin

IRC Channels

Plain-text IM service commonly used by hacktivist groups (e.g., Anonymous)

US \rightarrow cybercrime and general hacking Russia \rightarrow underground economy, financial fraud China \rightarrow cyberwarfare content

MIS Quarterly Vol. 43 No. 1, pp. 1-22/March 2019

METHODS ARTICLE

DICE-E: A FRAMEWORK FOR CONDUCTING DARKNET IDENTIFICATION, COLLECTION, EVALUATION WITH ETHICS¹

Victor Benjamin

Identify Hacker Assets/Tools

Sagar Samtani (JMIS, January 2018)

Journal of Management Information Systems

ISSN: 0742-1222 (Print) 1557-928X (Online) Journal homepage: http://www.tandfonline.com/loi/mmis20

Exploring Emerging Hacker Assets and Key Hackers for Proactive Cyber Threat Intelligence

Sagar Samtani, Ryan Chinn, Hsinchun Chen & Jay F. Nunamaker Jr.

Hacker Asset/Tool Examples

07-2014 Construct Exploit Name	08-08-2014 Post Date			
<pre>ist a old snippet by me which shows one of a possible construct to code a bot in delphi. enjoy it ist code: code: code: program autoStart; windows, Registry, SysUtils, ShellApi, TLHelp32, WinTypes, Messages, WinProcs, WinINet, URLMon; var str, OldWame, NewName, NewDir, SPath, dlURL: String; var str, OldWame, NewName, NewDir, SPath, dlURL: String; i: Integer; fInterval: Integer = 30; // Angabe in Sekunden const sAutoStartName = 'AutoStartTest'; // Name des Autostarteintrags sSutostartName = 'AutoStartTest'; // Name des Autostarteintrags sSutostartName = 'AutoStartTest'; // Name des Autostarteintrags sSutostartName = 'YutoStartTest'; // Name des Autostarteintrags sSutex = ''; // Mutex Name {</pre>	[7] • Senior Member Join Date: Dec 2010 Location: Russi Attachment Posts: 165			

Figure 1. Forum post with source code to create botnets

Figure 2. Forum post with BlackPOS malware attachment

AZSecure Hacker Assets Portal System

AZSecure Hacker Assets Portal (English, Russian, Arabic)

Forum	Language	Date Range	# of Posts	# of Members	# of source code	# of attachments	# of tutorials
OpenSC	English	02/07/2005-02/21/2016	124,993	6,796	2,590	2,349	628
Xeksec	Russian	07/07/2007-9/15/2015	62,316	18,462	2,456	-	40
Ashiyane	Arabic	5/30/2003 – 9/24/2016	34,247	6,406	5,958	10,086	80
tuts4you	English	6/10/2006 - 10/31/2016	40,666	2,539	-	2,206	38
exelab	Russian	8/25/2008 - 10/27/2016	328,477	13,289	4,572	-	628
Total:	-	02/07/2005- 10/31/2016	590,699	47,492	15,576	14,851	987

Cyber Threat Intelligence (CTI) Example – Bank Exploits (e.g., BlackPOS)

Cyber Threat Intelligence (CTI) Example – Mobile Malware

Labeling Hacker Exploits for Proactive Cyber Threat Intelligence: A Deep Transfer Learning Approach

Benjamin Ampel (MISQ, 2nd Round))
Literature Review: Hacker Forum Exploit Analysis

Year	Author	1. Data Source	2. Data Type Used	Analytics	Identified Exploits	3. Purpose
2019	lSchafer et al.	General purpose forums	Forum titles, users, message, topic, keywords	SNA, LDA	Leaks, botnets, DDoS	Trend identification
2019	ibeniamin et al.	General purpose forums	Post content, attachments, source code, keywords, reputation	()IN REGRESSION	Rootkit, XSS, SQLi, DDoS, shellcode, drive-by	Darknet identification, collection, evaluation
2018	iwilliams et al.	General purpose forums	Sub-forum name, author, post content, attachment metadata	LSTM	Crypters, keyloggers, RATs, DDoS, SQLi	Exploit categorization
2018	Goval et al.	Forums, Twitter, Blogs	Post content, Tweet content, blog content	LSTM, RNN	phisning	Cyber attack prediction
2018	Deliu et al.	Nulled.IO leak	Post content	SVM, CNN	Botnet, crypter, keylogger, malware, rootkit	Exploit categorization
2017	iSamtani et al.		Post content, assets, thread, author, source code	LDA, SVM	Crypters, keyloggers, RATs, botnets	Exploit categorization
2017	Grisnam et al.		Post content, date, author, role, attachments	RNN	Mobile malware	Malware identification/ Proactive CTI
2017	Deliu et al.	Nulled.IO leak	Post content	SVIVL LDA	Backdoor, botnet, crypter, DDoS, exploit, malware, password, rootkit	Exploit categorization

• Key Observations:

- 1. Studies focus on general forums, but not exploit DNMs or public repositories.
- 2. Although source code contains valuable information, many studies omit them from analysis.
- 3. The most common task is to categorize post content by exploit category.

Proposed Research Design

Results and Discussion: DTL-EL Model

Experiment 2: Intern transfer learnir	Results				
Model	Layer Weights	Accuracy	Precision	Recall	F1
Naïve Bayes	Random	8.59% ***	18.09% ***	15.08% ***	16.45% ***
Logistic Regression	Random	37.16% ***	35.13% ***	38.85% ***	36.9% ***
XGBoost Decision Tree	Random	47.65% ***	48.87% ***	30.06% ***	37.22% ***
SVM	Random	48.72% ***	37.98% ***	27.38% ***	31.82% ***
RNN	Random	57.64% ***	62.89% ***	53.93% ***	57.62% ***
GRU	Random	61.34% ***	64.06% ***	59.27% ***	62.09% **
LSTM	Random	62.39% ***	65.77% ***	60.49% ***	63.42% **
BiLSTM	Random	63.05% ***	67.56% ***	59.71% ***	63.21% **
BiLSTM w/ Attention	Random	63.38% ***	66.04% ***	61.88% ***	64.02% **
DTL-EL (Our model)	Transferred	66.17%	68.25%	64.99%	66.61%

Case Study: System Integration

- Hacker exploit source code can be input for classification with attention weights.
- The system applies a DTL-EL label upon the collection of new hacker forum text, providing real-time information to researchers.
 - APIs allow for forums to be downloaded in their entirety with related programming languages and exploit labels for source code.

Hacker Exploit Dashboard

Label Your Exploit

userid name

select I

Figure 16. Hacker Exploit Portal For Further Analysis

users

Detecting Cyber Threats with AI Agents: Multilingual, Multimedia DNM Content

Reza Ebrahimi (JMIS, MIS, IEEE PAMI)

Detecting Cyber Threats with AI Agents

- Intelligence Source: Dark web
 - A large conglomerate of platforms that facilitate illegal transactions among hackers
- DarkNet Market Places (Amazon for illegal products; hidden from search engines) → Attract cybercriminals
 - Hacker Assets: Hacking tools (Remote Access Trojan); malicious executables; hacking tutorials
 - Non-Hacker Assets: Digital goods (credit card information); copyrighted software; pirated e-books; counterfeits; drugs; forged documents

Dark Net Marketplaces (DNMs)

Essay I: Learning From Unlabeled Cybersecurity Content (JMIS, March 2020)

- Learning from examples \rightarrow supervised by human-labeled data \rightarrow Expensive!
- Unlabeled data improves cyber threat detection with transductive learning theory

44

Essay II: Learning from Heterogeneous Cybersecurity Content (MISQ, Forthcoming)

- Cyber threat detection in non-English content \rightarrow lack of non-English training data
- Transfer cyber threat knowledge from high-resource English platforms to non-English ones with **transfer learning theory**

• Significantly decreased reliance on human supervision and outperformed machine translation.

Essay III: Learning from Heterogeneous Cybersecurity Content (IEEE TPAMI, 2nd Round)

- Learning from two domains (multilingual text, source code, image representations)
- Align different data distributions & feature spaces with domain adaptation theory

• Enables heterogeneous data analytics (multilingual text, images) in any online market.

Privacy and PII (Personally Identifiable Information) Analytics:

identifying and alleviating privacy risks for vulnerable populations

(SaTC 2019-; SFS-2, 2019-)

Secure and Trustworthy Cyberspace (SaTC)

PROGRAM SOLICITATION NSF 21-500

REPLACES DOCUMENT(S): NSF 19-603

National Science Foundation

Directorate for Computer and Information Science and Engineering Division of Computer and Network Systems Division of Computing and Communication Foundations Division of Information and Intelligent Systems Office of Advanced Cyberinfrastructure CyberCorps(R) Scholarship for Service (SFS) Defending America's Cyberspace

PROGRAM SOLICITATION NSF 21-580

REPLACES DOCUMENT(S): NSF 19-521

National Science Foundation

Directorate for Education and Human Resources Division of Graduate Education Exploring Privacy Risk of Exposed Digital Personally Identifiable Information (PII): A Neighbor Attention-Based Approach

Fangyu Lin and Hsinchun Chen

Data Breaches since 2005 (FTC, Clearinghouse, 2019)

- # of records breached: 11,582,808,013
- # of data breaches: 9,071

Revealing and Protecting PII: From Dark Web to Surface Web

IRB, HIPAA, GDPR, PII

- → Cybersecurity to Privacy
- → Michael Bazzell + From Dark Web to Surface Web

Open Source Intelligence Techniques

RESOURCES FOR SEARCHING AND ANALYZING ONLINE INFORMATION

MICHAEL BAZZELL

HIDING FROM The Internet

ELIMINATING PERSONAL ONLINE INFORMATION FOURTH EDITION MICHAEL BAZZELL

Dark Web Intelligence Sources (May, 2021)

Source	Description	Size*	Promising Attributes
Stolen Account	Stolen social media and e-	25 billions	Username
Collection	mail accounts		Password
Stolen Credit Card	Stolen credit and debit card	832	Full name
- Tormarket	owner information	thousands	Country
	* No card number		State
			City
			Zip
Stolen SSN -	Personal information of SSN	5.75	Full name
Buyssn	owners	millions	YOB
	*No SSN		City
			State
			Zip
			Country

"Passwords are like underwear... change often, don't share..."

Stolen Accounts

	E-mail		
Rank	Domains	Numbers	Percentage
1	yahoo.com	244,769,117	20.41%
2	hotmail.com	182,564,724	15.22%
3	gmail.com	103,435,791	8.62%
4	mail.ru	90,371,699	7.53%
5	aol.com	44,830,568	3.74%
6	yandex.ru	36,336,003	3.03%
7	rambler.ru	23,521,080	1.96%
8	hotmail.fr	16,571,495	1.38%
9	web.de	12,918,595	1.08%
10	live.com	11,661,375	0.97%
11	msn.com	11,248,354	0.94%
12	gmx.de	10,800,404	0.90%
13	163.com	10,492,032	0.87%
14	bk.ru	9,416,062	0.78%
15	yahoo.fr	8,886,223	0.74%
Total	-	817,823,522	68.18%

Popular Passwords

Rank	Passwords	Numbers
1	123456	3,370,644
2	123456789	1,187,812
3	Homelesspa*	546,648
4	password	522,529
5	abc123	516,091
6	password1	435,753
7	12345	382,970
8	qwerty	376,099
9	12345678	357,654
10	1234567	287,453
11	1234567890	252,929
12	111111	236,852
13	iloveyou	211,593
14	123456a	205,807
15	123123	191,450
Total	-	9,082,284

AZSecure Privacy Portal Design

Figure 1. AZSecure Privacy Portal Project Overview

Search in AZSecure Privacy Portal

Figure 5. A mock-up response when records are found

Return Exposed PII

How do I protect myself? Find out <u>here</u>.

Figure 9. Mock-ups of a comprehensive exposed PII profile

esult from our database:						
Platform	Leaked Attributes					
TorMarket	name: lee katchen zip: 16*** address: 1234 Ma********* jobDetails: carpenter relationshipStatus: married politicalViews: moderate religiousViews: buddhist birthyear: 1948 phoneNumber: 631-***_**** city: er*****					
esults from surface web search engines:						
Platform	Leaked Attributes	MCA Matching Results⊙	TF/IDF Matching Results			
Zabasearch	name: Lee R Katchen state: Pennsylvania address: 5551 Fr******** birthyear: 1948 phoneNumber: 814-***_**** city: Fr*****	•	\otimes			
Anywho	name: Lee R Katchen state: PA address: 1024 Ap********* city: Er***** phoneNumber: 814-***_****	9	\otimes			
Anywho	name: Lee R Katchen state: PA address: 3747 Bi********* Age: 52 city: Er***** phoneNumber: 814-***-***	\otimes	\otimes			
Anywho	name: Lee R Katchen state: PA address: 3747 Bi******** city: Er***** Age: 52 phoneNumber: 814-***_****	\otimes	\otimes			

AZSecure Cybersecurity Analytics Program (2010-present): SaTC, SFS, ACI

Secure and Trustworthy Cyberspace (SaTC)

PROGRAM SOLICITATION

NSF 21-500

REPLACES DOCUMENT(S): NSF 19-603

National Science Foundation

Directorate for Computer and Information Science and Engineering Division of Computer and Network Systems Division of Computing and Communication Foundations Division of Information and Intelligent Systems Office of Advanced Cyberinfrastructure CyberCorps(R) Scholarship for Service (SFS) Defending America's Cyberspace

PROGRAM SOLICITATION NSF 21-580

REPLACES DOCUMENT(S): NSF 19-521

National Science Foundation Directorate for Education and Human Resources Division of Graduate Education Cybersecurity Innovation for Cyberinfrastructure (CICI)

PROGRAM SOLICITATION NSF 21-512

REPLACES DOCUMENT(S): NSF 19-514

Directorate for Computer and Information Science and Engineering Office of Advanced Cyberinfrastructure

Azsecure Cybersecurity Analytics Program: Looking into the Future

- (1) Dark Web Analytics for studying international hacker community, forums, and markets;
- (2) Privacy and PII (Personally Identifiable Information) Analytics for identifying and alleviating privacy risks for vulnerable populations;
- (3) Adversarial Malware Generation and Evasion for adversarial AI in cybersecurity; and
- (4) Smart Vulnerability Assessment for scientific workflows and OSS (Open Source Software) vulnerability analytics and mitigation.

For questions and comments

hchen@eller.Arizona.edu http://ai.Arizona.edu

