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Clinical intelligence about a patient’s risk of future adverse health events can support clinical decision making
in personalized and preventive care.  Healthcare predictive analytics using electronic health records offers a
promising direction to address the challenging tasks of risk profiling.  Patients with chronic diseases often face
risks of not just one, but an array of adverse health events.  However, existing risk models typically focus on
one specific event and do not predict multiple outcomes.  To attain enhanced risk profiling, we adopt the design
science paradigm and propose a principled approach called Bayesian multitask learning (BMTL).  Considering
the model development for an event as a single task, our BMTL approach is to coordinate a set of baseline
models—one for each event—and communicate training information across the models.  The BMTL approach
allows healthcare providers to achieve multifaceted risk profiling and model an arbitrary number of events
simultaneously.  Our experimental evaluations demonstrate that the BMTL approach attains an improved
predictive performance when compared with the alternatives that model multiple events separately. We also
find that, in most cases, the BMTL approach significantly outperforms existing multitask learning techniques. 
More importantly, our analysis shows that the BMTL approach can create significant potential impacts on
clinical practice in reducing the failures and delays in preventive interventions.  We discuss several implica-
tions of this study for health IT, big data and predictive analytics, and design science research.
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Introduction

The prevalence and the growth rate of patients with chronic
diseases are an alarming global phenomenon in many
developed and developing countries.  According to the World
Health Organization (2014a, 2014b), most new cases and
mortalities of diabetes and cardiovascular diseases occur in
low- and middle-income countries.  In the United States, more
than 140 million Americans live with one or more chronic
conditions, and the population is expected to grow by at least
10 million new cases per decade (Anderson 2010).  Mean-
while, the costs of chronic care have also been escalating over
the last decades, currently accounting for 86% of health care
cost in the United States (Gerteis et al. 2014).  The surging
cases and costs make patients, clinical experts, and health
policymakers around the world believe that effective inter-
ventions are needed to prevent, detect, and manage chronic
diseases and their sequelae.

With increased adoption of electronic health record (EHR)
systems in clinical practices, EHR data analytics for advanced
clinical decision support is attracting both scientific and prac-
tical interest (Agarwal et al. 2010; Dixon-Woods et al. 2013).
Clinical intelligence about a patient’s risks of future adverse
health events has been a key element for effective decision
making in chronic care.  This is because patients with chronic
diseases often develop complications and comorbidities in
their disease course.  For instance, patients with diabetes often
have higher risks of stroke, heart diseases, eye problems, and
renal failure (Centers for Disease Control and Prevention
2014).  Similarly, chronic kidney disease can lead to anemia,
cardiovascular events, and mortality (Thomas et al. 2008).
Accurate predictions of future adverse health events could
enable clinicians to take preventive and personalized interven-
tions, which in turn could reduce patients’ risks and improve
their quality of life.

The value of predictive analytics in healthcare has been
repeatedly emphasized in prior information systems (IS)
research.  As noted by Agarwal and Dhar (2014), healthcare
is a domain in which prediction is perhaps more important
than explanation, considering the daunting cost of delay in
diagnosis and treatment.  Chen et al. (2012) discuss the poten-
tial of EHR-based healthcare analytics for “smart health and
wellbeing” from the perspective of business intelligence.  By
the same token, after exploring the extant healthcare IS
research, Fichman et al. (2011, p. 425) suggest that 

Another emerging avenue for knowledge discovery
arises from using digital technology to enable new
kinds of mathematical healthcare modeling and
simulations.…use of healthcare analytics tools and
how they should be integrated with electronic health
records warrants future research attention.

Developing and utilizing information technology (IT) arti-
facts, such as models, techniques, and systems, to address
practical needs has been a focus of IS research since the
inception of the discipline (Hevner et al. 2004).  This stream
of design research is becoming particularly important and
relevant given the surging interest in big data and predictive
analytics research (Chen et al. 2012; Shmueli and Koppius
2011).  The research motivations are often to obtain valuable
insights through the development of advanced analytics
techniques and the use of large and rich data sources that were
previously unavailable or underutilized.  For example, Bao
and Datta (2014) developed a text analysis method to analyze
nearly 15,000 corporate risk disclosures, which has
applications in financial accounting.  Similarly, Fang et al.
(2013) developed a naïve Bayesian method to predict
behaviors in large social networks with tens of thousands of
users. 
 
Consistent with the design science paradigm and the recent IS
research on big data analytics, we develop and evaluate a
novel data analytics approach in the context of healthcare.  To
our knowledge, this is the first IS study to focus on EHR
analytics.  Our goal is to improve clinical decision making
and facilitate preventive and personalized care with data
analytics.  Specifically, we harvest big EHR data and develop
a Bayesian multitask learning (BMTL) approach to predict
patients’ risks of adverse health events.  Delay or failure to
provide preventive interventions is one of the common
medical errors and results in numerous deaths (Kohn et al.
2000).  The EHR-driven BMTL approach could augment
healthcare providers’ capability in identifying high-risk
patients for timely interventions.  

The proposed BMTL approach is distinctly different from the
existing risk models.  Existing healthcare predictive analytics
research often focuses on modeling one specific event or
outcome.2  However, it is rare, especially in chronic care, that
patients only face one type of risk.  Multifaceted risk profiling
with different events or outcomes would provide healthcare
professionals greater clinical insights toward a comprehensive
and effective care plan.  Technically, we can just construct an
array of independent risk models, one for each adverse
outcome.  While this approach is simple and straightforward,
it neglects the fact that a patient’s risk to one event (say,
stroke) is often correlated with his or her risk to other events
(say, heart attack).  Information contained in one model may
be useful to other relevant models, as long as we can coor-
dinate multiple models in a unified modeling framework.

2Healthcare predictive analytics has been phrased in numerous ways in the
literature, including prognosis, clinical predictive modeling, and health infor-
matics, among others.  We choose to use the phrase “healthcare predictive
analytics” throughout this paper as it is more expressive to the IS audience.

474 MIS Quarterly Vol. 41 No. 2/June 2017



Lin et al./Healthcare Predictive Analytics for Risk Profiling

This is analogous to the economic effect of knowledge trans-
fers or spillovers, in which the net effect of a group is greater
than the sum of that of the individuals (Gupta 2008).  We pos-
tulate the existence of such spillover effect across individual
models in a joint modeling framework and develop a
principled approach to exploit this model spillover effect to
improve learning performance.  Considering risk prediction
for a specific adverse health event as a single machine
learning task, the key aspect of our approach is to obtain an
improved predictive performance for each individual task by
learning multiple related tasks jointly and simultaneously. 
Our approach is in sharp contrast with the existing healthcare
predictive analytics literature in which the research either
considers only one clinical event (e.g., Brownstein et al.
2010), or models multiple clinical events as completely inde-
pendent tasks, for example the UKPDS Risk Engine (Kothari
et al. 2002; Stevens et al. 2001).  Taken together, we are
interested in studying the following:

• What are a patient’s risks to an array of adverse health
events?

• How can we model multiple risks simultaneously?

• Does simultaneous learning of multiple event risks
improve the overall predictive performance of each event
risk?

We chose diabetes as our research case and performed risk
profiling on three common, and often fatal, adverse health
events:  stroke, acute myocardial infarction, and acute renal
failure.  Our experiments confirmed the postulated model
spillover effect.  The proposed BMTL approach achieved
significantly improved predictive performance for each event
compared with independent models that consider the events
separately.  The BMTL approach also demonstrated competi-
tive and often superior performance in a head-to-head com-
parison with other multitask learning approaches in the
literature.  More importantly, our evaluation results provided
evidence that the BMTL approach can lead to interventions
that reduce risks of the three adverse health events beyond
what would occur without the predictions.  These findings,
along with the artifact, have implications for several areas of
IS research, including health IT, big data and predictive
analytics, and design science.

The rest of the paper is organized as follows.  In the next
section, we review related work in healthcare predictive
analytics and multitask learning.  We then describe the pro-
posed BMTL approach and contrast it with the existing
techniques.  Following that, we outline a set of experiments
and present their results regarding the viability and utility of
the BMTL approach.  In the final section, we discuss the

contributions of this study to the IS knowledge base, the
practical implications of enhanced risk profiling, and direc-
tions for future work.

Research Background

Healthcare Predictive Analytics

Healthcare predictive analytics aims to predict future health-
related outcomes or events based on clinical and/or non-
clinical patterns in the data.  The outcomes of interest in
healthcare predictive analytics, such as medical complications
(Stevens et al. 2001), hospital readmissions (Bardhan et al.
2014), treatment responses (Meyer et al. 2014), and patient
mortality (Tabak et al. 2014), are often of great practical
importance.  While predictive analytics may be used to inform
causal inference, the primary goal of prediction models is not
to unbiasedly explain whether a factor contributes to an
outcome, but to predict the outcome in new observations as
accurately as possible (Moons et al. 2009; Shmueli and
Koppius 2011).  This important difference between prediction
research and explanatory research drives distinctive principles
for model development and evaluation given that explanatory
power does not imply predictive power (Shmueli and Koppius
2011, p. 553).

There are generally two ways a healthcare predictive model
can be developed.  One is commonly seen in the medical field
in which patient data are purposely collected in clinical trials
with a set of predefined protocols.  For instance, Tammemägi
et al. (2013) developed a risk prediction model for the diag-
nosis of lung cancer using trial data.  There are also several
major cohort studies and trials on cardiovascular diseases and
diabetes, such as the Framingham Heart Study (D’Agostino
et al. 2008) and the UK Prospective Diabetes Study (UKPDS)
(Stevens et al. 2001).  In addition to clinical trials, the other
way to develop a healthcare predictive model is to use
existing data that have been routinely collected in clinical
practice, such as EHRs, insurance claims, and clinical regis-
tries.  The surging interest of healthcare predictive analytics
in recent years is largely driven by the increasing availability
of these data.  For example, Tabak et al. (2014) use laboratory
test results and diagnoses in EHRs to develop an inpatient
mortality predictive model with excellent performance.  Simi-
larly, Bardhan et al. (2014) develop their readmission model
using the admission data from a regional data exchange
registry.

While healthcare predictive analytics can support clinical
decisions, actual use of predictive models in clinical practice
remains limited (Moons et al. 2009).  The barriers for wide-
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spread use of predictive models in healthcare include
(1) inadequate integration with existing clinical workflow,
(2) requiring variables that are expensive to obtain or not
immediately accessible, and (3) the need to adapt the models
from the study population to the local population.  Some of
these barriers could be effectively mitigated with the imple-
mentation of EHR systems (Moons et al. 2009; Toll et al.
2008).  This is because the advent of EHRs not only provides
accessible and local cohort data for healthcare predictive
analytics, but also offers a platform that seamlessly embeds a
predictive model into the clinical workflow.

There is an increased interest in understanding the interface
between predictive analytics and decision making.  For
instance, Meyer et al. (2014) recently proposed a principled
machine learning approach for dynamic decision making
through the lens of control theory.  Their PRediction of
Control Errors in Dynamic Contexts (PROCEDO) approach
repeatedly iterates predictions of operation failures (with a
C4.5 decision tree) and adjustments of control strategies
(based on domain expert’s judgment).  Our BMTL approach
is different because we emphasize improving predictive
accuracy rather than modifying the strategies for actions and
decision making.  This is because once an accurate prediction
is made, clinical guidelines usually provide clear strategies for
actions and interventions.

As we mentioned, most of the extant healthcare predictive
analytics studies are committed to one specific event, and
develop models to best capture the characteristics of the
event.  For example, Bardhan et al. (2014) investigated the
readmissions of patients with congestive heart failure, and
developed a model to answer whether, when, and how often
the patients would have be readmitted.  The UKPDS Risk
Engine can predict coronary heart disease and stroke in
patients with type 2 diabetes (Kothari et al. 2002; Stevens et
al. 2001), but these two types of predictions are effectively
two independent predictive models.  Multiple comorbidities
are a common phenomenon among patients with chronic
diseases.  We hence are motivated to achieve risk profiling
with multiple events being considered and modeled
simultaneously.  

Very few prior studies of healthcare predictive analytics con-
sider multifaceted risk profiling.  The closest study to ours is
perhaps that by Smith and Mezhir (2014), in which the
authors developed a two-part model to predict lymph node
ratio and survival in pancreatic cancer patients.  Lymph node
ratio is a strong predictor on cancer survival, but it is typically
unobservable and needs to be estimated.  The two-part model
first uses a logistic regression to predict lymph node ratio in
pancreatic cancer patients and then passes the predicted ratio
as an input for a Cox regression.  This approach is different

from ours in model design and application.  In terms of model
design, we shall see later in the model development section
that our BMTL approach does not have such a sequential
dependency, but instead uses a hierarchical correlation struc-
ture to coordinate among multiple baseline models.  In terms
of applications, BMTL addresses multiple adverse health
events in chronic care whereas Smith and Mezhir emphasize
only one outcome:  cancer survival.  Taken together, our
BMTL enables a more flexible and holistic approach for
multifaceted risk profiling.

Multitask Learning

Multitask learning is a machine learning strategy in which
multiple related tasks are trained jointly instead of indepen-
dently with the goal to improve the overall performance of
learning (Caruana 1997).3  Figure 1 provides schematic repre-
sentations of single-task learning and multitask learning.  In
multitask learning there is a shared computational structure to
tie individual tasks together in a unified training process.
This allows training signals to be passed across models as an
inductive bias (Baxter 2000; Caruana 1997), which in turn
improves the generalizability of each trained model.  Indeed,
research in machine learning (Bishop 2007), statistics (Tib-
shirani 1996), and artificial intelligence (Mitchell 1982) has
suggested the critical and necessary role of biases in the gen-
eralizability of learning and prediction.  Shmueli and Koppius
(2011) also commented on the tradeoff between bias and
variance when discussing predictive analytics research in IS. 

The literature shows three general approaches to achieve
multitask learning.  The first approach is through sharing
common hidden nodes in artificial neural networks (ANNs)
(Bakker and Heskes 2003; Caruana 1997).  The architecture
of an ANN typically has one input layer, one output layer, and
an arbitrary number of hidden layers between the input and
the output layers.  One can achieve multitask learning by
configuring each task as a node in the output layer (Caruana
1997).  In doing so, these output nodes receive the same
inputs from the nodes in the hidden layer but each with dif-
ferent, task-specific input weights.  This approach is most
straightforward but the baseline model has to be an ANN. 
The second approach to implement multitask learning is to
minimize (or maximize) an appropriate regularization func-
tion over all tasks.  This approach can be applied to a wide
array of baseline models such as regressions (Huang et al.
2012), support vector machines (SVMs) (Cai and Cherkassky

3We should note that multitask learning is different from ensemble learning.
They are similar because both utilize multiple models in the learning process.
However, ensemble learning considers only one outcome variable whereas
multitask learning considers multiple outcome variables simultaneously. 
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Figure 1.  Illustration of Single-Task Learning (a) and Multitask Learning (b)

2012), tree-based models (Simm et al. 2014), and others as
long as the learning can be formulated as an optimization
problem.  However, a complication from having a global
regularization function is that tasks often need to be at least
moderately positively correlated, otherwise multitask learning
could lead to decreased performance compared to single-task
learning—a problem known as “negative transfer” (Pan and
Yang 2010).  The third approach for multitask learning is to
impose common prior distributions over tasks in a Bayesian
framework (Archambeau et al. 2011; Xue et al. 2007).  This
approach is perhaps the most flexible one considering that
nearly every statistical or machine learning model (including
ANNs, SVMs, decision trees, and regressions) can have a
Bayesian representation (see Chipman et al. 2002; Neal 1996;
Tipping 2001).  This approach allows an elaborative structure
to transfer information across baseline models and can effec-
tively eliminate the negative transfer issue because unrelated
or negatively related tasks are truthfully reflected in the
models.  The main challenge for the Bayesian approach is that
models with even moderate complexity often do not have an
analytical solution, making numerical simulation the only
route to fit the model.

Multitask learning is an underutilized modeling strategy in the
research and practice of healthcare predictive analytics.  Most
existing multitask learning models were developed for small
scale applications, such as text or image classification (Baxter
2000; Pan and Yang 2010).  Recently, a small number of
healthcare predictive analytics studies have started to leverage
the multitask learning strategy.  For example, Zhou et al.
(2011) formulated cognitive scores of a patient with
Alzheimer’s disease at different time points as a multitask
learning prediction problem.  Singh et al. (2014) presented a
similar construction to predict renal function over time. 
However, the foci of these studies are still just one specific
patient outcome.  Developing and utilizing multitask learning

strategies to predict multiple patient outcomes remains a
research gap in the literature that we aim to fill.

Summary

As the adoption of EHR systems accelerates, EHR-based
healthcare predictive analytics is becoming an emerging
research area with significant practical values (Chen et al.
2012).  While patients with chronic diseases often face higher
risks of many adverse health events, the extant research on
risk profiling failed to consider the multifaceted nature of
risks and focuses on only one specific adverse health event at
a time. Modeling risks of multiple adverse health events not
only provides better clinical intelligence for comprehensive
preventive interventions, but also has the potential to achieve
improved predictive performance for each event.  However,
multifaceted risk profiling is scarce in the extant healthcare
predictive analytics research.  This is perhaps due to lack of
awareness as well as lack of techniques in this area.  Research
on multitask learning suggests an effective strategy to formu-
late a unified predictive analytics framework for multiple
events and outcomes.  We leverage the multitask learning
strategy to develop a novel, principled approach to simul-
taneously model and predict multiple future health events, as
discussed in the ensuing section.

Model Development

We first briefly describe single-task learning logistic regres-
sion models that have been widely used in prior healthcare
predictive analytics research.  We then describe the proposed
Bayesian multitask learning (BMTL) approach for logistic
regression models.  Following that, we discuss the generaliz-
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ability of our BMTL approach to other baseline models and
contrast our approach with existing techniques.

Single-Task Learning with Logistic
Regression Models

Given N patients, we are interested in modeling their risks of
K different future adverse health events based on available
information in EHRs.  EHR data contain outcomes of these
adverse events as well as the covariates from each patient at
any point in time.  We can carry out EHR-based risk profiling
with the following procedure.  We first choose a specific
point of time in each patient’s medical history (henceforth
denoted by v0i) and then predict whether the patient will
experience the K different adverse health events in the next w

years.  Given a specific w, we let  denote patient( ) { }yi
k ∈ 0 1,

i’s observed outcome of event k between v0i and v0i + w years. 

We use  to denote a vector containing J[ ]xi i i iJ

T
x x x= 1 2, , ,

predictors, which represent known characteristics of the

patient at v0i.  Intuitively,  follows a Bernoulli( )yi
k

distribution; that is, , where   is( ) ( )( )y Bernoullii
k

i
k~ θ ( )θi

k

the probability of event k given xi.

A logistic regression model identifies the relation between 
 and xi through a logit function.  In the single-task( )θi

k

learning paradigm, risks of the K events may be modeled as
the following:4
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or, in a more compact representation, 
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In (1) and (2), logit(z) = log(z/(1 – z)) is a logit function, and 
α(k) and βJ

(k)’s are event-specific intercepts and coefficients. 
We can then predict whether patient i will experience events
1 through K based on the respective θi

(k) in the above system
of equations.  Notice that these equations do not have explicit
relations with other, and each baseline logistic regression is
estimated independently in the single-task leaning paradigm. 

BMTL for Logistic Regression Models

Using the baseline logistic regression models specified as the
ones in the previous section, we now describe how to model 
logit (θi

(k))  with the proposed BMTL approach.  Our key
methodological innovation and contribution to the literature
is that in BMTL we formulate a unique hierarchical correla-
tion structure across different tasks.  Assuming all tasks have
the same set of J predictors, we consider the correlations of
the regression coefficients of a predictor across tasks.  As
shown in Figure 2, we achieve this by explicitly modeling the
correlation matrix (Ωj, j = 1,…, J) for each of the regression
coefficients corresponding to a particular predictor.5  In doing
so, the training of each βJ

(k) involves not only information
within a specific task but also information from other tasks
through the respective correlation matrix.  

The structure of a BMTL logistic regression model can be
represented by a plate diagram as shown in Figure 3.  Table
1 provides a description for each of the parameters in Figure
3.  Consistent with the conventions of a plate diagram, the
symbol at the upper-right corner of each plate (rectangle)
indicates the number of nodes in the respective plate, and the
single- and double-bordered nodes are used to represent
stochastic and deterministic (given their parent nodes) param-
eters, respectively.  To summarize, Figure 3 shows that the
probability of event occurrence (θ) is determined by the inter-
cepts (α) and coefficients (β) in a set of K logistic regression
models.  The regression coefficients for the jth predictor across
tasks (βj) follow a multivariate normal (MVN) distribution
with zero means and a scaled covariance matrix rj

2Gj.  The rj

is shrinkage scalar, and it is used to regulate the original
covariance matrix Gj.  We parameterized Gj as follows:   Gj =
diag (σj) * Ωj * diag, where σj and Ωj are, respectively, a K ×
1 vector of standard deviations and a K × K correlation matrix

4We may consider more sophisticated models than the one presented here. 
Given that the aim of this paper is to investigate the feasibility, utility, and
generalizability of a principled approach (BMTL), we use simpler models for
ease of exposition.  Extensions such as patient- or physician-level fixed
effects or heterogeneity are straightforward and have minimal effects on the
implementation of our BMTL approach described here.

5Our BMTL approach for logistic regressions has similarity with the
seemingly unrelated regressions (SURs) in the sense that both approaches
consider correlations across different regression equations.  However, SURs
place correlations on the disturbance terms of the equations to avoid bias
while BMTL places correlations on the coefficients to introduce bias for
improved predictive performance. 
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Figure 2.  Illustration of Correlation Structure across Tasks in BMTL

Figure 3.  Plate Diagram of BMTL for Logistic Regression Models

for the elements in βj.  Following Gelman et al. (2008), we
standardize all nonbinary predictors to have mean 0 and
standard deviation 0.5, and then specify weakly informative
prior distributions for parameters in the BMTL logistic regres-
sion model.  In what follows, we provide a detailed description
and justification for each of these parameters.

Regression Intercept:  α(k) 

Consistent with Gelman et al. (2008), we set the prior distribu-
tion of the regression intercept α(k) to follow a Cauchy distribu-
tion with center 0 and scale 10.  As shown in Figure 4, a
Cauchy distribution has a bell-shape density function like the
normal distribution but with thicker tails.  Gelman et al. sug-
gest this as the default prior for the intercept term because

Cauchy allows the occasional possibility of very large values
and hence is more robust and conservative than the usual
normal distribution.  In addition, after standardizing the raw
data, the Cauchy density with center 0 and scale 10 is disperse
enough to allow the baseline event probability for an average
case to range between 10-9 (very unlikely to have the adverse
health event) and 1 - 10-9 (very likely to have the adverse
health event) in a logistic regression model (Gelman et al.
2008).  

Regression Coefficients:  βj

A common approach to model regression coefficients in a
Bayesian framework is through MVN distribution (e.g., Ghose
et al. 2013; Xu et al. 2014).  In doing so, the regression coeffi-
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Table 1.  Description of Parameters

Parameter Distribution/Function Form and Supporting Reference Description

α(k) Cauchy distribution (Gelman et al. 2008):
α(k) ~ Cauchy(0, 10)

Intercept term in a logistic regression.  One for
each task.

βj

Multivariate normal (MVN) distribution with the horseshoe
prior (Carvalho et al. 2010; Gelman et al. 2008):  

Coefficients for the jth predictor across logistic
regressions.  One for each predictor.  

rj

Horseshoe prior (Carvalho et al. 2010):
rj = τjψ,

τj, ψ ~ Half-Cauchy(0, 1)

Shrinkage coefficient for the covariance matrix
in the MVN distribution of the jth covariate. 
One for each predictor.

Gj

Covariance matrix (Barnard et al. 2000)
Gj = diag(σj) * Ωj * diag(σj),

[ ]σ σ σ σj j n j
K T

= ( ) ( ) ( ), , ,1 2 

Covariance matrix in the MVN distribution of
the jth coefficients across tasks.  One for each
predictor.

σ j
k( ) Half-Cauchy distribution (Gelman et al. 2008):

~ Half-Cauchy(0, 2.5)σ j
k( )

Standard deviation of the jth coefficient in the
kth logistic regression.  

Ωj

Lewandowski, Kurowicka and Joe (LKJ, 2009) distribution:
Ωj ~ LKJ(K, 1)

Correlation matrix of the jth coefficients across
tasks.  One for each predictor.

Note:  The index j ranges from 1 to J (the total number of predictors), and the index k ranges from 1 to K (the total number of tasks).

Figure 4.  Comparing Normal and Cauchy Distributions

cients are allowed to be correlated with and influenced by each

other.  Accordingly, we model βj = with[ ]β β βj j j
K T( ) ( ) ( ), , ,1 2 

a MVN distribution:  

βj ~ MVN(0, rj
2Gj) (3)

where rj is a shrinkage scalar and Gj is a covariance matrix. 

The zero mean in MVN distribution indicates no prior knowl-
edge with regard to the effect of the predictor.  On the other
hand, the scaled covariance matrix, rj

2Gj, is intended to capture
the relationships among βj

(1), βj
(2),…, and βj

(K)—the coefficients
of the jth predictor in different tasks.  We discuss the prior
distributions of the shrinkage scalar, rj, and the original
covariance matrix, Gj, in the following.
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Shrinkage Scalar:  rj

Like many practical big data problems, EHR data have a
large number of candidate predictors potentially useful for
predictive analytics, including but not limited to patient
demographic information and various clinical phenotypes,
such as diagnoses, treatments, and laboratory tests.  The
theoretical and empirical results in Tibshirani (1996) suggest
that one can often improve the predictive performance of a
linear model by shrinking or setting some of the coefficients
toward 0.  This reduces, or even eliminates, the effects of the
respective predictors.

In a Bayesian linear model, one can achieve shrinkage by
setting coefficients’ prior distributions to have a zero mean
with a smaller variance.  In doing so, the posterior distribu-
tions of these coefficients will be closer to zero.  The rj in (3)
is a shrinkage parameter used to scale the original covariance
matrix Gj.  We set rj to follow a horseshoe prior distribution
(Carvalho et al. 2010).  The horseshoe is a robust, adaptive,
and effective shrinkage prior because it has a probability
density highly concentrated around zero but also with thicker
tails than the normal distribution to accommodate occasional
extreme values.  Consistent with Carvalho et al. (2010), we
operationalize the horseshoe prior as follows:

rj = τjψ (4)

τj,ψ ~ Half-Cauchy(0,1) (5)

where ψ and τj are the global (across all predictors) and local
(specific to a predictor) components, respectively, in the
horseshoe prior.  Both ψ and τj follow a half-Cauchy
distribution, which is a truncated Cauchy distribution with
densities only on positive real numbers.  The horseshoe prior
is fully specified.  That is, the center 0 and scale 1 in the half-
Cauchy distribution are fixed values, and we do not need to
supply any hyperparameters for the distribution.

Covariance Matrix:  Gj

The most commonly used prior distribution for covariance
matrices is the inverse-Wishart distribution because its
conjugacy property with the normal distribution makes it very
easy to compute (Xu et al. 2014).  However, there is a trade-
off between computational convenience and statistical
accuracy.  Barnard et al. (2000) provide a detailed exposition
about the properties and limitations of the usual inverse-
Wishart distribution, and suggest a more stable, flexible, and
elaborative strategy to model covariance matrices.  Speci-
fically, we can write

Gj = diag(σj) * Ωj * diag(σj) (6)

where σj =  is a vector of standard devia-[ ]σ σ σj j j
K T( ) ( ) ( ), , ,1 2 

tions in which σj
(k) is the standard deviation of βj

(K), the
coefficient for predictor j in task k.  The diag(σj) is a diagonal
matrix with elements of σj on the diagonal.  The parameter Ωj

is the correlation matrix for the coefficients of predictor j
across the K tasks.  As motivated earlier and shown in Figure
2, the key element in our BMTL approach is to superimpose
a correlation structure over models.  By using the decompo-
sition strategy from Barnard et al., we re-parameterize the
covariance matrix in the MVN distribution with a correlation
matrix, which in turn allows us to explicitly model correla-
tions for the elements in βj and achieve multitask learning.

Standard Deviation:  σj(k)

The standard deviation for the jth coefficient in the kth task is
denoted as σj

(k).  We set it to have a half-Cauchy prior
distribution with center 0 and scale 2.5, as suggested by
Gelman et al. (2008).  As mentioned earlier, half-Cauchy
distribution has probability density only on positive reals.
This ensures that we will not generate a negative standard
deviation.  In addition, since the raw data have been standard-
ized, the variation of the logistic regression coefficients is
contained as well.  The scale of 2.5 in the half-Cauchy distri-
bution is a conservative choice, and has shown to be effective
and robust in many applications (Gelman et al. 2008).  

Correlation Matrix:  Ωj

The implementation of our BMTL approach hinges on
whether we can capture the correlation among coefficients
across tasks.  However, modeling a correlation matrix is not
easy in practice because of its geometric constraints:  sym-
metric, positive semidefinite, and diagonal elements always
equal 1.  Prior studies usually generate correlation matrices by
modeling the off-diagonal entries in the matrices.  However,
this approach cannot guarantee the resulting matrix to be
positive semidefinite (Rousseeuw and Molenberghs 1994). 
To address this issue, we follow Lewandowski, Kurowicka
and Joe (LKJ, 2009) to generate random samples of Ωj. 
Specifically,

Ωj ~ LKJ(d, η) (7)

The first parameter of the LKJ distribution specifies the
dimension of the desired correlation matrix.  Hence, d equals
K, the number of tasks, in this study.  The second parameter
controls the degree to which the correlation matrix shrinks
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toward the identity matrix.  When η equals 1, the prior den-
sity is uniform over the space of all correlation matrices.  As
an example, for the two correlation matrices A and B below,
they are equally likely to be generated from the LKJ distribu-
tion when η equals 1.  As η increases, the prior increasingly
concentrates around the identity matrix, giving matrix A a
higher probability density than matrix B.  In BMTL, we set
η = 1, which reflects no prior information on Ωj.

Model Fitting

With the above model specification, we now discuss our
approach for model fitting.  We first note that our model has
a rich structure with a set of nonconventional prior distribu-
tions.  As such, there is no closed form solution for the
posterior distribution.  We hence fit the BMTL logistic
regression model with the No-U-Turn Sampler (NUTS)
(Hoffman and Gelman 2014), which is a variant of Hamil-
tonian Monte Carlo (HMC).  As compared to other com-
monly used Markov chain Monte Carlo (MCMC) algorithms,
such as Metropolis algorithm and Gibbs sampler, HMC is
more flexible and efficient because it requires no conjugacy,
suppresses the local random walk behavior, and explores the
marginal variances rather than the conditional variances of
the probability space (Neal 2011).  These properties make
HMC a suitable and sometimes the only feasible option for
Bayesian models like ours with high dimensionality, high
correlation, and complex hierarchical structure.  Interested
readers are referred to Neal (2011) and Duane et al. (1987)
for detailed exposition of HMC.  

Generalizability of the BMTL Approach

Having shown the design of BMTL and its construction for
logistic regression models, we now briefly discuss the gener-
alizability of our BMTL approach.  As mentioned, we enable
multitask learning by imposing a hierarchical correlation
structure as a channel to transfer information over tasks.  We
use logistic regression models to illustrate our BMTL ap-
proach because they are the most common technique in
predictive analytics research and provide good modeling
intuitions compared with other machine learning models.
Nevertheless, it is clear that we make no assumptions on the
baseline models for BMTL except that the models need to
have a Bayesian representation.  That is not very restrictive

since many statistical and machine learning models have been
implemented in a Bayesian framework, such as ANNs (Neal
1996), SVMs (Tipping 2001) and decision trees (Chipman et
al. 2002).  To illustrate the generalizability of the BMTL ap-
proach, Appendix A provides an example on how to specify
ANNs as the baseline models in the BMTL approach.

Contrast with the Literature

We now recap the methodological novelties of this study.  We
contrast these with respect to the existing healthcare predic-
tive analytics research and the multitask learning research.

Compared with the extant healthcare predictive analytics
research, this study is among the first that recognizes the
potential benefits of multifaceted risk profiling.  Managing
multiple comorbidities is particularly relevant for aging
populations in developed and developing counties.  As such,
Parekh and Barton (2010, p. 1304) argue that “transformation
from a single chronic condition approach to a multiple chronic
conditions approach is needed.” The literature of healthcare
predictive analytics has a very limited knowledge base and
methodological tools for multifaceted risk profiling.  Our
novelty is hence providing a principled approach to assess
multiple patient outcomes.

Compared with the existing multitask learning literature, we
follow the design science paradigm and propose a novel
design to achieve multitask learning.  The design principle in
our approach is utilizing a hierarchical Bayesian structure to
establish correlations among the coefficients of the same pre-
dictor in a set of baseline models.  This design is conceptually
intuitive and can potentially be applied to any baseline models
as long as they have a Bayesian formulation.  We demonstrate
the design principle using logistic regressions as our baseline
models, and illustrate ANN-based BMTL in Appendix A. 
This is in contrast with the existing multitask learning ap-
proaches, which are designed specifically for a particular type
of baseline models, for example, ANNs (Caruana 1997), trees
(Simm et al. 2014), or regressions (Huang et al. 2012).

In addition, the BMTL approach can avoid negative transfer
in which multitask learning performs worse than single-task
learning when the tasks are not positively correlated.  Nega-
tive transfer is a common problem in many extant multitask
learning approaches.  Tree-based (Simm et al. 2014) and
regression-based (Huang et al. 2012) multitask learning
models are often designed to optimize certain regularization
functions, and thus are prone to the problem of negative
transfer.  Our BMTL approach, on the other hand, avoids this
problem by modeling the full correlation matrix, which
accommodates any pattern of correlation and hetero-
scedasticity across tasks.
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Experimental Study

We choose diabetes as our research case because of its large
patient population and its broad societal impact.  According
to the International Diabetes Federation (2013), the global
population of diabetic patients is projected to grow from 382
million in 2013 to 592 million in 2035.  Among the new
cases, 80% will come from developing countries, including
China, India, and Pakistan.  In the United States, diabetes is
the seventh leading cause of death.  Currently, more than 29
million Americans live with diabetes with an estimated
medical cost of $322 billion per year (Centers for Disease
Control and Prevention 2014; Dall et al. 2014).

Diabetes is associated with many complications.  To demon-
strate multifaceted risk profiling, we simultaneously model
and predict diabetic patients’ risks of three adverse health
events:  stroke (henceforth denoted by STK), acute myo-
cardial infarction (AMI), and acute renal failure (ARF). 
These three adverse health events are common among
diabetic patients and often lead to premature death.  There-
fore, accurate predictions of these adverse health events could
be used to optimize decisions in care plans and patient
education.

We conducted experiments on de-identified EHR data from
a major 600-bed hospital in Taiwan.  The hospital has over
one million registered patients, and provides care to roughly
750,000 outpatients and 20,000 inpatients annually.  From
our EHR data, we identifed a cohort of 14,782 adults with
type 2 diabetes using diagnosis codes from the International
Classification of Diseases, Ninth Revision, Clinical Modifica-
tion (ICD-9-CM).  For each of these patients, we further
extracted their complete medical history in the EHRs.  We
used standard ICD-9-CM codes to identify whether a patient
experienced any of the three adverse health events.  Among
the patients in the cohort, 2,370 (16%) had an STK event, 722
(5%) an AMI event, and 1,006 (7%) an ARF event.

Our EHR data contain comprehensive information collected
from daily clinical practice from 2003 to 2012, including
basic patient demographic information, ICD-9-CM diagnosis
codes, treatments, laboratory tests, and physiological mea-
sures, among others.  We note that these data elements are
common in most EHR systems across organizations and
countries, despite some potential differences in data unit or
coding scheme, which have no impact on implementing our
BMTL approach.6  A total of 179 predictors which have

values in more than 10% of patients in the cohort are con-
sidered in our analysis.7  Prior to the analysis, missing values
are imputed using the respective column mean.  Examples of
the final predictors are illustrated in Table 2.8

Experiment Design and
Performance Measure

We designed experiments to reflect practical uses of a risk
prediction model.  Figure 5 illustrates the experiment design.
For each patient we randomly sampled a visit (v0i) from the
first half of the patient’s medical history.  For example, if a
patient visited the hospital eight times during the observation
period, v0i would be sampled from the first four visits.  Using
data from an earlier visit allows us to more realistically assess
the predictive performance of the model because we would
have less information about the patients.  Since the main
purpose of risk profiling is to enable preventive interventions,
it is also more clinically useful if we are able to make
predictions at an earlier stage of disease process, which is
another reason why we sample a visit from the first half of the
medical history.  We then used the “visible” information at v0i

for model training.  The way we accounted for information
prior to v0i depends on the type of variables.  For diagnosis
and treatment variables, we set their values to 1 if there was
evidence, at or before v0i, indicating that the patient had the
diagnoses/treatments, and 0 otherwise.  For lab and exam
variables, we set them to the most recent recorded values
available at v0i.  We determined the status of yi

(k) by whether
patient i experienced an event (STK, AMI, or ARF) in the
next w years after v0i.  We varied w from 1 to 5 years for two
purposes.  First, we wanted to examine whether the time
window length affects predictive performance.  Second, we
wanted to understand if the issue of data censoring affects the
overall performance of our BMTL approach.  With this
experiment design, Table 3 summarizes event occurrence with
respect to the sampled visit of each patient.  Notice that
patients could have the events before their respective sampled
visit.  We excluded patients who experienced all three events
(i.e., STK, AMI, and ARF) before their respective v0i.  How-

6As an example of the difference in data unit, cholesterol is typically
measured by milligrams per deciliter (mg/dL) in Taiwan and the United
Sttaes, but in the United Kingdom, the standard unit for cholesterol is
millimoles per liter (mmol/L).  Similarly, some healthcare providers may
have moved from the common ICD-9-CM to the new ICD-10-CM coding

scheme for diagnosis. Regardless of these differences, they do not affect the
implementation of our BMTL approach. Moreover, our main objective is not
to provide a model, but to provide a principled approach for healthcare
institutions, practitioners, and researchers to build their own models using
their own data.

7There is no gold standard for the cutoff of missing value.  As such, we have
tried different cutoffs, ranging from 10% to 90%, for the degree of accepted
missing values.  All of these produced similar results.

8A complete list of the variables is available upon request from the first
author.
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v1 v2 v3 v4 v5 v6 v7 v8 Time

Step 1: Randomly sample a visit from the first half of the patient’s medical history .

v1 v2 v3 v4 v5 v6 v7 v8 Time

Step 2: Use information available at and before the sampled visit for training. 

v1 v2 v3 v4 v5 v6 v7 v8 Time

Step 3: Predict if an event will happen in the next w years. 

Event occurrence

Sampled visit, denoted by v0i

Table 2.  Examples of Predictors Used in Our Analysis

Category Example Predictors

Patient Information Age, body weight, male, smoking

Diagnoses Three-digit ICD-9-CM codes, e.g., 401 for essential hypertension and 427 for cardiac
dysrhythmias

Treatments Aspirin, clopidogrel, insulin, isoket, metformin

Labs and Exams Computerized tomography, low-density lipoprotein cholesterol, serum creatinine, systolic
blood pressure

Figure 5.  Illustration of Experimental Design

Table 3.  Summary of Event Occurrence

Event Before v0i

 During v0i and v0i + w (cumulative with respect to w)

w = 1 year w = 2 years w = 3 years w = 4 years w = 5 years

STK 1,507 354 560 685 793 828

AMI 485 75 146 178 210 225

ARF 410 217 399 488 536 571

ever, we retained patients in the cohort if they experienced
only one or two of the three events before their v0i because we
needed to predict their risk of the other event.  Overall, at v0i

the cohort included 12,494 patients with zero events, 2,144
with one event, and 144 with two events.  Our evaluations of
predictive power use only events that happen during v0i and v0i

+ w years, and do not include events that happened before v0i

because these events are already known to the clinician and
the patient at v0i.

The essence of evaluating a predictive model is measuring the
model’s performance on previously unseen instances in a
holdout dataset (Shmueli and Koppius 2011).  Cross-
validation is the most common approach for evaluating
predictive models.  In cross-validation, instances are divided
into M subsets, and a model is trained on M ! 1 subsets and
tested on the holdout subset.  By performing the evaluation M
times—each with a different holdout subset—the predictive
performance of a model is its average performance across the
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True positive rate
Positive correctly predicted

Total positives
=

False positive rate
Negatives incorrectly predicted

Total negatives
=

M holdout subsets.  We used a 10-fold cross-validation design
(i.e., M =10) and quantified predictive performance using
receiver operating characteristics (ROC) (Fawcett 2006).  The
ROC space is two-dimensional with true positive rate as the
Y axis and false positive rate as the X axis, in which 

The area under the ROC curve (AUC; aka, C-statistic or C-
index) is a scalar metric ranging between 0.5 (equivalent to a
random guess) and 1.0 (perfect performance).  The AUC is a
standard measure in predictive analytics and quantifies a
model’s trade-offs between type I and type II errors (Bardhan
et al. 2014).  Unless otherwise stated, we use AUC as the
primary measure to compare different predictive models in
our evaluation experiments.

We conducted three sets of evaluations to assess the proposed
BMTL approach.  In the first set of evaluations, we aimed to
understand the utility of multitask learning.  We compared the
BMTL approach for logistic regression models (denoted by
BMTL-Logit) with three single-task learning counterparts: 
Bayesian logistic regression (denoted by B-Logit), the com-
mon maximum likelihood based logistic regression (denoted
by Logit), and logistic regression with lasso regularization
(denoted by Logit-lasso) (Tibshirani 1996).  To fit the BMTL-
Logit model for this and the following evaluations, a total of
2,000 samples were drawn from two separate Markov chains
after 1,000 warm-up draws from each chain.9  For each
parameter, convergence was assessed using Gelman and 
Rubin’s (1992) diagnostic test, also known as the  statistic,R
with the value less than 1.2.  In the second set of evaluations,
we aimed to understand the performance of our BMTL
approach against other multitask learning approaches in the
literature.  We hence compared BMTL-Logit with logistic
regression-based multitask learning (MTL-Logit; Huang et al.
2012), tree-based multitask learning (MTL-Tree; Simm et al.
2014) and ANN-based multitask learning (MTL-ANN; Caru-

ana 1997).10  In the third set of evaluations, we aimed to
demonstrate the practical impact of our BMTL approach.  We
counterfactually analyzed how healthcare predictive models
could augment clinicians’ capability in identifying high-risk
patients and providing guideline-recommended preventive
treatments to reduce the risks.

Experiment Results

Evaluation 1:  BMTL Versus Single-Task
Learning Approaches

In evaluation 1, we compared BMTL-Logit, B-Logit, Logit,
and Logit-lasso models to examine the utility of multitask
learning over single-task learning.  Table 4 summarizes the
results in evaluation 1, which are broken down by the length
of the window (i.e., w) and by the prediction task (i.e., STK,
AMI, or ARF).  While each of the single-task learning models
is trained independently, the BMTL-Logit model simul-
taneously learns and predicts the three events in the same
window size.  The results show that BMTL-Logit consistently
outperforms the alternative single-task learning models.  The
nonparametric DeLong test of AUC (DeLong et al. 1988)
shows that all of the performance differences are statistically
significant.  

The average AUC measures of BMTL-Logit, B-Logit, Logit,
and Logit-lasso models across all windows and tasks are
0.774, 0.755, 0.751, and 0.758.  The performance difference
between BMTL-Logit and the alternative models varies
depending on the window length and task.  Overall, the mean
(maximum and minimum) difference is 0.019 (0.049 and
0.005).  We notice a greater performance difference in the
AMI task among models.  Averaging across the windows,
BMTL-Logit attains an AUC of 0.743 in the AMI task
whereas B-Logit, Logit, and Logit-lasso are, respectively,
0.713, 0.707, and 0.717.  This greater degree of performance
improvement from BMTL is likely due to the fact that AMI
is a relatively rare event in our cohort compared with STK
and ARF.  A known challenge in machine learning is “class
imbalance,” in which negative instances significantly out-
number positive instances (He and Garcia 2009).  Learning
from imbalanced data is difficult because there is a higher risk
for overfitting.  By simultaneously learning multiple baseline
models, BMTL can mitigate class imbalance because the AMI
model can now leverage additional training signals from STK

9Readers familiar with the Metropolis algorithm and Gibbs sampler may find
the 2,000 MCMC iterations (1,000 burn-in draws and 1,000 sampling draws)
extremely small.  This is because NUTS is much more efficient than random-
walk Metropolis and Gibbs, especially for high dimensional and hierarchical
models.  See Hoffman and Gelman (2014) for an example of how a 2,000-
iteration NUTS outperforms a 1,000,000-iteration Metropolis/Gibbs. 

10For the implementations of MTL-Logit, MTL-Tree, and MTL-ANN, we use
open source R packages grpreg, extraTrees, and nnet, respectively.

MIS Quarterly Vol. 41 No. 2/June 2017 485



Lin et al./Healthcare Predictive Analytics for Risk Profiling

Table 4.  Summary of Results in Evaluation 1

Window
(w) Task

Models

BMTL-Logit B-Logit Logit Logit-lasso

1 STK 0.747 0.725*** 0.723*** 0.735***

1 AMI 0.778 0.744*** 0.729*** 0.758**

1 ARF 0.863 0.855* 0.847** 0.849***

2 STK 0.744 0.724*** 0.722*** 0.729***

2 AMI 0.748 0.723** 0.719** 0.721***

2 ARF 0.841 0.831*** 0.828*** 0.835**

3 STK 0.742 0.724*** 0.722*** 0.728***

3 AMI 0.736 0.703*** 0.699*** 0.704***

3 ARF 0.833 0.823*** 0.819*** 0.823***

4 STK 0.739 0.723** 0.722*** 0.725***

4 AMI 0.725 0.694*** 0.691*** 0.699***

4 ARF 0.824 0.817** 0.814*** 0.819**

5 STK 0.739 0.724*** 0.723*** 0.727***

5 AMI 0.727 0.699*** 0.698*** 0.704***

5 ARF 0.820 0.812*** 0.809*** 0.814***

Note:  Bolded values highlight the best AUC result in a row.  

***The AUC result is statistically significantly different from BMTL-Logit at α = 0.01.

**The AUC result is statistically significantly different from BMTL-Logit at α = 0.05.

*The AUC result is statistically significantly different from BMTL-Logit at α = 0.1.

and ARF models.11  Overall, the results from evaluation 1
confirm our speculations that there exists a spillover effect
among individual baseline models and that our BMTL
approach can effectively exploit the spillover effect to
improve predictive performance.

Evaluation 2:  BMTL Versus Other Multitask
Learning Approaches

Although it is relatively new to the IS community, multitask
learning has been an active area in machine learning and
artificial intelligence.  A number of multitask learning ap-
proaches have been proposed since the seminal paper by
Caruana (1997).  To determine the standing of our BMTL
approach among the existing ones, we conducted a head-to-
head comparison of predictive performance with a logistic
regression-based MTL-Logit approach (Huang et al. 2012), a
recent MTL-Tree approach (Simm et al. 2014), and the classic
MTL-ANN approach (Caruana 1997).  Unlike BMTL-Logit,
all three of these alternative multitask learning approaches
require user-specified parameters.  For MTL-Logit, users need

to specify the weight for the regulation term; for MTL-Tree,
the size of the tree; for MTL-ANN, the number of hidden
nodes and the learning rate.  We identified the best parameter
settings for these approaches through cross-validation before
we conducted evaluation 2.

Table 5 reports the results from evaluation 2.  The average
AUC values of BMTL-Logit, MTL-Logit, MTL-Tree, and
MTL-ANN are 0.774, 0.755, 0.736, and 0.690, respectively. 
The results from evaluation 2 suggest that the BMTL-Logit
approach consistently outperformed the alternative
approaches—often with a statistically significant margin. 
Taken together, BMTL-Logit is very competitive among the
existing multitask learning approaches for multifaceted risk
profiling. 

Evaluation 3:  Counterfactual Analysis
of Practical Use

We have been arguing that healthcare predictive analytics can
provide clinical intelligence for preventive care.  Grady and
Berkowitz (2011) also suggest that clinical predictive
modeling should go beyond prediction of risk and provide
evidence that “prediction can lead to actions that reduce risk11We thank an anonymous reviewer for pointing out this technical insight. 
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Table 5.  Summary of Results in Evaluation 2

Window
(w) Task

Models

BMTL-Logit MTL-Logit MTL-Tree MTL-ANN

1 STK 0.747 0.746 0.717** 0.660***

1 AMI 0.778 0.767* 0.737** 0.686**

1 ARF 0.863 0.849* 0.831*** 0.650***

2 STK 0.744 0.735* 0.708*** 0.657***

2 AMI 0.748 0.701*** 0.727** 0.734*

2 ARF 0.841 0.817*** 0.787*** 0.768***

3 STK 0.742 0.730** 0.702*** 0.677***

3 AMI 0.736 0.693*** 0.727* 0.680***

3 ARF 0.833 0.816*** 0.787*** 0.763***

4 STK 0.739 0.722** 0.690*** 0.675***

4 AMI 0.725 0.701* 0.704* 0.628***

4 ARF 0.824 0.811*** 0.773*** 0.740***

5 STK 0.739 0.719*** 0.686*** 0.670***

5 AMI 0.727 0.705** 0.692** 0.653***

5 ARF 0.820 0.809*** 0.77*** 0.703***

Note:  Bolded values highlight the best AUC result in a row.  

***The AUC result is statistically significantly different from BMTL-Logit at α = 0.01.

**The AUC result is statistically significantly different from BMTL-Logit at α = 0.05.

*The AUC result is statistically significantly different from BMTL-Logit at α = 0.1.

beyond what would occur without the prediction rule” (p.
1702). Prescribing preventive treatments is perhaps the most
critical action in reducing risks.  The practical utility of a
model is hence its capability in prompting preventive
interventions in high risk patients who otherwise would not
receive such interventions.  The gold standard to determine
the impact of a healthcare predictive model is through a
randomized clinical trial with two groups of clinicians—one
with the predictive model and the other without.  However,
clinical trials are extremely expensive and time-consuming,
which is one of the reasons why very few healthcare predic-
tive models have undergone such evaluation.  Accordingly,
Reilly and Evans (2006, p. 207) suggest that 

The potential impact of a prediction rule can be
estimated by assessing its predictive validity and
clinical sensibility and by measuring its potential to
improve current decision making.

Instead of measuring the actual impact with a clinical trial, we
proceeded to assess the potential impact of our approach
through a counterfactual analysis.  Specifically, we assume
that rational clinicians will always prescribe guideline-
recommended preventive interventions if they foresee a high

risk of adverse health events in their patients.12  We then
looked into the patients with STK/AMI/ARF events during v0i

and v0i + 5 years, and analyzed the proportion of them who
had not received any preventive interventions but could have
been provided with such interventions at v0i had an indication
of “high risk” was provided by a predictive model.  In other
words, our counterfactual analysis reveals clinicians’ risk
assessment capability and preventive treatment behavior, and
triangulates that with what could have happened differently
with the support from a predictive model.  

We identified appropriate preventive treatments for STK,
AMI, and ARF by using the Diabetes Comprehensive Care
Plan Guidelines from the American Association of Clinical
Endocrinologists (Table 6).  In medical science, it is very
common to use 20% risk over 10 years as a cutoff between
high- and low-risk patients (e.g., Dhamoon and Elkind 2010;
Lackland et al. 2012).  Following Dhamoon and Elkind  (2010), 

12While the assumption is practically reasonable and consistent with the
economics literature of rational choice (Simon 1955), we nonetheless
acknowledge that there are occasions a clinician purposefully chooses not to
prescribe preventive treatments to high-risk patients.  In addition, we also
note that getting preventive treatments does not guarantee prevention of
adverse health events. 
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Predicted Risk
(from a model)

Preventive treatment
prescribed at/before v0i

Yes

No

Low High

a b

c d

Table 6.  Guideline-Recommended Preventive Treatments for STK, AMI and ARF

Adverse Health Event Preventive Treatment

STK • Antihypertensive agents
• Antiplatelet therapy

AMI • Antihypertensive agents
• Antiplatelet therapy
• Lipid lowering therapy

ARF • Antihypertensive agents
• Angiotensin receptor blockers
• Angiotensin-converting-enzyme inhibitors

a. marginal physician utility:  events captured by physician, not by model
b. positive consistency:  both physician and model captured the events
c. negative consistency:  neither physician nor model captured the events
d. marginal model utility:  events captured by model, not by physician

Figure 6.  Schematic Contingency Table for Evaluation 3

we chose 10% risk over 5 years as our cutoff level because
the median follow-up time among the patients in our data is
about 5 years, which makes it impractical to assess 10-year
risks.  Accordingly, we categorize patients who have 5-year
event risk above (below) 10% at v0i as high (low) risk.13

With two levels of treatment behavior (with or without
preventive treatments) and two levels of predicted risk (high
or low), we then created a contingency table like Figure 6. 
Such a contingency table can provide several useful insights. 
The a, b, c, and d in the contingency table are the number of
patients who fit into the respective quadrant.  We name the a
and d values in the contingency table as marginal physician
utility and marginal model utility, respectively, because they
represent the events that are correctly identified only by the
physician or only by the predictive model.  Values b and c in
the contingency table, on the other hand, show consistency
between the physician’s judgment and the model’s predic-
tion—either both correct (b; positive consistency) or both

incorrect (c; negative consistency).  Given that the pool of
patients in this analysis are the ones who will have an adverse
health event in the next five years, they should be classified
as high-risk by a predictive model and provided with at least
one preventive treatment by a physician.  Therefore, we may
consider a and c as model’s errors, and c and d as physician’s
errors.  In light of this analytical exposition, a predictive
model is deemed more useful and valuable than another when
it has a smaller value in c (making fewer mistakes) and a
larger value in d (augmenting physician’s capability).

Along with our BMTL-Logit model, we also used the Logit-
lasso model and the UKPDS Risk Engine (Kothari et al. 2002;
Stevens et al. 2001) as our benchmarks in this analysis.  The
Logit-lasso model is a commonly used technique in data-
driven healthcare predictive analytics and performed reason-
ably well in our evaluation 1.  On the other hand, the UKPDS
Risk Engine is one of the most authoritative risk models in
diabetes care based on a large-scale clinical trial.

Figure 7 reports the results from evaluation 3.  Regardless of
the event type, we notice that a large portion of these patients
did not have the guideline-recommended preventive treat-

13As a robustness check (see Appendix B), we examined different cut-off
values (5% or 20% risk over 5 years).  We found qualitatively similar results
as the ones presented here.

488 MIS Quarterly Vol. 41 No. 2/June 2017



Lin et al./Healthcare Predictive Analytics for Risk Profiling

Predicted Risk
(BMTL-Logit)

Preventive treatment
prescribed at/before v0i

Yes

No

Low High

83 369

181 195

Predicted Risk
(Logit-lasso)

Yes

No

Low High

96 356

197 179

Predicted Risk
(UKPDS)

Yes

No

Low High

398 54

329 47

STK
(# of events = 828)

Predicted Risk
(BMTL-Logit)

Preventive treatment
prescribed at/before v0i

Yes

No

Low High

107 54

61 3

Predicted Risk
(Logit-lasso)

Yes

No

Low High

111 50

63 1

Predicted Risk
(UKPDS)

Yes

No

Low High

111 50

44 20

AMI
(# of events = 225)

Predicted Risk
(BMTL-Logit)

Preventive treatment
prescribed at/before v0i

Yes

No

Low High

118 195

154 104

Predicted Risk
(Logit-lasso)

Yes

No

Low High

121 192

170 88

Predicted Risk
(UKPDS)

Yes

No

Low High
ARF

(# of events = 571)

UKPDS does not
predict ARF risks.

Figure 7.  Summary of Results in Evaluation 3

ments at or before their respective v0i (STK:  45%; AMI: 
28%; ARF:  45%).  The nonzero d values suggest that all the
models provide some level of practical utility by recognizing
high-risk patients who were missed by the clinician.  From the
c and d values, the UKPDS Risk Engine outperforms the
alternative models in the AMI cases.  However, it falls short
in the STK cases and does not predict ARF risks.  With
smaller c and larger d values, the BMTL-Logit model
consistently outperforms the Logit-lasso model.  Overall, we
find that risk prediction models can support clinical decision
making in a meaningful way.  Our BMTL approach can better
identify high-risk patients than the common Logit-lasso
model.  However, UKPDS seems to be the best model in
predicting AMI, showing the merits of clinical trials in
building certain risk models.  In practice, an EHR system
should employ both trial-based and data-driven risk models to
maximize the opportunity for clinical decision support.  A
clinician could then choose which model to use based on the
predictive accuracy obtained from the historical records of the
local patient population (e.g., UKPDS for AMI events and
BMTL for STK and ARF events in our focal hospital).

Discussion and Conclusions

The pronounced need to use IT to transform healthcare is
widely recognized in the IS community (Agarwal et al. 2010; 

Chen et al. 2012; Fichman et al. 2011).  Although there is
little doubt about the importance of EHR systems in health-
care, the research and practice communities are still exploring
ways to fully realize the potential of EHRs.  Clearly, the capa-
bilities of EHRs are more than just digitalized patient records
per se.  Big and longitudinal EHR data can enable various
business intelligence and analytics applications for advanced
clinical decision support that were previously unavailable.
 
With the rise of EHR adoption, we ask whether it is possible
and advantageous to model risks of different adverse health
events simultaneously using EHR data.  We further add to the
extant research by developing a principled approach,
Bayesian multitask learning (BMTL), for multifaceted risk
profiling in chronic care.  Formulating a comprehensive care
plan for people with chronic disease is challenging because
there is a need to assess and manage risks of different compli-
cations and comorbidities.  As an IT artifact for advanced
clinical decision support, the BMTL approach can assist
healthcare providers in better assessing patients’ risks and
attaining the goals of preventive and personalized care.

To demonstrate the viability and utility of the BMTL ap-
proach, we used diabetes as our research case, and chose
stroke, acute myocardial infarction, and acute renal failure as
three adverse health events to be modeled simultaneously in
diabetic patients.  Our experiments showed that the BMTL
approach consistently outperformed the respective single-task
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Table 7.  Linking This Study to Areas of IS Research

IS Research Area Examples of IS Research Relevance of This Study

Healthcare IS Bardhan et al. (2014)
Meyer et al. (2014)

Research context:  Provide advanced decision support
in healthcare

Big data and predictive
analytics

Bao and Datta (2014) 
Fang et al. (2013)

Methodology:  Develop an analytics approach for big
EHR data 

Design science Abbasi et al. (2012)
Chen et al. (2013)

Research paradigm:  Address a practical problem with
an IT artifact

learning models.  In most evaluation settings, BMTL also had
significantly better performance compared to the existing
multitask learning approaches.  Our counterfactual analysis of
potential impact further reveals that the BMTL approach can
support clinicians by identifying high-risk patients who other-
wise would not be prescribed with preventive interventions.

Relevance to IS Research

This study fits into multiple areas of IS research.  The ones
most relevant are healthcare IS (Agarwal et al. 2010; Fichman
et al. 2011), big data and predictive analytics (Goes 2014;
Shmueli and Koppius 2011), and design science (Gregor and
Hevner 2013; Hevner et al. 2004).  These three areas of IS
research are not mutually exclusive.  In fact, they represent
the research context, methodology, and research paradigm of
this study.  Table 7 summarizes the relevance of this study to
these areas, which we discuss in turn.

Healthcare IS.  We examine the role of IS in the healthcare
context.  Healthcare IS research concerns the issues regarding
the managerial, organizational, and technical aspects of IS in
various healthcare settings.  Most of the extant research
follows the positivist paradigm and examines the adoption
and impacts of health IT (Angst and Agarwal 2009; Venka-
tesh et al. 2011; Yaraghi et al. 2015).  The unique character-
istics of healthcare, such as privacy concerns, government
regulations, and diverse stakeholders, shed light on new IS
theories and empirical findings.  Against this backdrop, one
specific gap in healthcare IS research is the development of
advanced decision support methods or techniques that lever-
age the large amount of patient-level clinical data in EHRs
(Fichman et al. 2011).  Recent studies from Bardhan et al.
(2014) and Meyer et al. (2014) show promising applications
of advanced decision support in healthcare.  Following these
studies, we explored a risk-profiling application that provides
decision support in chronic care.  We recognize that our ap-
proach can be implemented in various contexts, but we
focused on healthcare for reasons of scope.  As we have
shown, even in this particular context of healthcare, EHR data

analytics is very complex and of significant importance to
research and practice (Agarwal et al. 2010; Chen et al. 2012).

Big data and predictive analytics.  Developing better algo-
rithms and models to discover useful insights from data has
been the focus of big data and predictive analytics research
(Chen et al. 2012; Goes 2014; Shmueli and Koppius 2011).
As mentioned earlier, Bao and Datta (2014) and Fang et al.
(2013) are excellent examples of big data analytics in IS
research.  In their application contexts, it is beyond the cogni-
tive capability of a human being to harness tens of thousands
of financial reports or predict social behaviors in large social
networks.  Analytics, hence, provides a necessary means to
harvest data and facilitate knowledge discovery.  There are
similar cognitive challenges for clinicians at the point of care. 
The big EHR data contain longitudinal and detailed informa-
tion about patients, but it is difficult for clinicians to leverage
this rich information.  Consistent with big data and predictive
analytics research, we developed a big EHR data analytics
approach to acquire useful clinical insights for chronic care. 

Design science.  This study follows the paradigm of design
science research.  In contrast with the positivist paradigm that
emphasizes theory development and testing, the main objec-
tive of design science research is to develop IT artifacts to
address practical problems (Gregor and Hevner 2013; Hevner
et al. 2004).  According to Hevner et al. (2004, p. 77), 

IT artifacts are broadly defined as constructs
(vocabulary and symbols), models (abstractions and
representations), methods (algorithms and practices),
and instantiations (implemented and prototype
systems).

Indeed, IT artifacts may take on different forms depending on
the problem at hand.  Chen et al. (2013) provided a novel ap-
proach in developing data models.  Their goal was to enable
efficient information flow in emergency management prac-
tice.  Similarly, Abbasi et al. (2012) developed a new meta-
learning framework to improve the performance of financial
fraud detection.  Consistent with these studies, we aim to
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address a salient practical problem with an IT artifact.  Our
BMTL approach falls into the methods category of IT arti-
facts, and provides guidance on “how to search the solution
space” (Hevner et al. 2004, p. 79).  A perennial need in
healthcare is assessing patient risks, and risk profiling is
becoming particularly important as it moves toward preven-
tive and personalized care.  We develop a new method for
multifaceted risk profiling that enables improved performance
in risk profiling.

Contributions to the IS Knowledge Base

Our study makes several research contributions.  First, we
developed an EHR data analytics approach for risk profiling.
An essential novelty of our approach is the consideration of
multiple adverse health events in a risk-prediction framework.
To our knowledge, BMTL is the first approach for multi-
faceted risk profiling and allows healthcare providers to
model an arbitrary number of events and outcomes simul-
taneously.  In contrast with the existing multitask learning
techniques, our approach is enabled by a unique hierarchical
correlation structure that orchestrates multiple baseline
models in a joint modeling framework.  Second, we evaluated
the proposed approach with real-world EHR data.  We
obtained empirical evidence that simultaneous learning of
multiple event risks improves overall predictive performance
of each event risk.  That is, a multifaceted risk profiling
framework can indeed offer better clinical insights than
multiple independent risk models.  Finally, we recognize that
there are multiple approaches to achieve multitask learning. 
Our evaluation results further suggest that BMTL outperforms
the alternative multitask learning techniques in risk profiling.

Design science research can offer different forms of contri-
butions to the IS knowledge base, including strong theory,
partial theory, incomplete theory, or even the instantiation of
the solution artifact (Gregor and Hevner 2013).  Other than
the instantiation of the BMTL approach in healthcare, our
theoretical contribution is to motivate, examine, and establish
two design principles in data analytics:  (1) multitask learning
and (2) hierarchical correlation structure for multitask
learning.  To our knowledge, the two design principles are
either new to the IS discipline (design principle 1) or new to
the world (design principle 2).  These design principles
prescribe how to model multiple outcomes simultaneously to
attain improved predictive performance.  The prescriptive
knowledge advanced in this study is generalizable to other
predictive analytics contexts as a “nascent design theory”
(Gregor and Hevner 2013).  Analogous to the effort of theory
testing in a positivist manuscript, this study offers proof-of-
concept and proof-of-value-added by demonstrating the

viability and utility of these design principles in EHR-based
risk profiling.

Practical Implications

Healthcare is in the midst of a paradigm shift—from reactive
care to preventive care (Dexter et al. 2001) and from one-size-
fits-all medicine to precision medicine (The White House
2015).  Prediction of adverse health events in patients with
chronic disease plays a significant role in improving health-
care quality and reducing cost of care.  According to Hillestad
et al. (2005), a fully EHR-enhanced chronic care management
system with advanced clinical decision support tools can
potentially yield up to $147 billion in savings per year as a
result of preventing medical complications and reducing
healthcare acute incidents.  Hospitals, physicians, and patients
can all benefit from a more comprehensive and accurate risk-
profiling application such as BMTL.  We discuss key
practical implications for these stakeholders in the following.

Hospitals.  Hospitals are facing new healthcare delivery
models such as accountable care organizations and bundled
payments.  These are designed to create financial incentives
for better, rather than more, services (Bates et al. 2014).  To
maximize financial gain, hospitals will need to consider not
only the best treatments for a patient’s current condition, but
also preventive interventions for possible complications and
comorbidities in the future.  In other words, there is an
increasing need for hospitals to look beyond each specific
patient encounter and take a long term prospect for care
provision.  Multifaceted risk profiling applications like BMTL
will facilitate hospitals in identifying patient risks of different
adverse health events as well as the most cost-efficient service
plans in the long run.

Physicians.  The BMTL approach provides physicians with
advanced clinical decision support at the point of care.
Despite physicians being highly trained professionals,
medical errors such as failures and delays in providing
preventive interventions are pervasive (Kohn et al. 2000).  As
Eddy (1990, p. 1272) notes, “The complexity of modern
medicine exceeds the inherent limitations of the unaided
human mind.” Just like the need for marketers to predict
consumer behavior from large marketing databases for effec-
tive promotions, physicians, too, have a similar need to
predict patient risk from large EHR databases for timely
interventions.  The results from our evaluations suggest that
BMTL can augment physicians in identifying high-risk
patients and, hence, reduce medical errors.

Patients.  The number of chronic conditions often determines
a patient’s quality of life and healthcare spending.  Data from
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the Medical Expenditure Panel Survey show a strong positive
correlation between the number of chronic conditions and
healthcare spending (Gerteis et al. 2014).  Specifically, having
one additional chronic condition can be roughly translated to
an increment of $2,000 in annual healthcare spending.  It is
hence of significant importance and interest for people with
chronic disease to obtain preventive care.  With hundreds of
millions of patients living with chronic diseases and trillions
of dollars spent on chronic care annually, even relatively
small improvements in the performance of risk profiling can
lead to significant impacts on quality and cost of care. 

Beyond these stakeholders, a subtle but important practical
implication stemming from our study is the complementarity
between trial-based risk models and EHR-based risk models. 
Randomized controlled trials provide the strongest evidence
in quantifying risk factors whereas EHRs permit a holistic and
more realistic context of prediction.  Our evaluation shows the
usefulness of the UKPDS Risk Engine in predicting AMI
events, although it cannot predict ARF events and its STK
predictions are not as good as EHR-based risk models.
Instead of replacing one type of risk models with the other,
physicians should attain the best decision support by con-
sidering evidence from both clinical trials and EHR data and
then triangulating these different sources of information with
the unique characteristics of the focal patient.  That is, the
implementation of clinical decision support systems should
include both trial- and EHR-based risk models so as to enable
the best care.

Limitations and Future Research

This work has a number of limitations.  First and foremost,
the “no free lunch” theorem suggests that there will never be
a learning method that can guarantee to outperform another
method on every possible data set (Wolpert and Macready
1997).  Our evaluations are based on one EHR data set from
a single hospital.  While we have employed cross-validation
to train and test models, it is still possible that the better
performance of the BMTL approach is limited to the data set
under consideration.  Future research may experiment the
BMTL approach on different data sets and explore the
conditions in which it is effective.  Second, in our BMTL
approach the baseline individual models need to be the same
modeling technique (e.g., all logistic regression models).  We
note that this is a limitation universal to all existing multitask
learning approaches in the literature.  It is not clear how dif-
ferent techniques can be integrated in a multitask learning
framework and share information in the learning process
because the parameters from different techniques are not
related in any meaningful way.  Third, we assume that
individual models in BMTL have the same set of predictors.

Despite this assumption, extending the BMTL approach to
coordinate models with non-exact predictors is straight-
forward.  If there are K individual models (again, one for each
event) and a predictor is used only in H individual models (1
# H # K), we just need to adjust the dimension of the
corresponding terms in our BMTL formulation from K to H. 
Finally, information sharing across models is only through the
correlations of the coefficients of the same predictor in
different models.  Incorporating correlation matrices for each
pair of unique predictors will exponentially increase the
complexity of model fitting.  Therefore, future studies may
explore other ways to communicate information among dif-
ferent predictors across models.  Despite these limitations,
this study is just a first step toward multifaceted risk profiling
and EHR data analytics.  Most importantly, our principled
approach opens a new way to frame and conduct big data and
predictive analytics for enhanced performance.  
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Appendix A

Bayesian Multitask Learning for Artificial Neural Networks

We have shown in the main text how to apply the proposed Bayesian Multitask Learning (BMTL) approach to a set of baseline logistic
regression models.  The BMTL approach is applicable to other baseline models as well.  To demonstrate the generalizability of the BMTL
approach, we describe how to apply BMTL to artificial neural networks (ANNs) in this appendix.  In the interest of consistency and for ease
of exposition, we reuse the notations in equations (1) to (7) in the main text whenever possible.  

Consider a feed-forward ANN with one single hidden layer.  A typical functional form of the ANN is
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The π in (A2) is referred to as an activation function in the literature of ANNs and is often nonlinear.  Two common choices for π are the logistic

and the hyperbolic tangent functions.  The  and  are task-specific parameters to be fitted.  The  and  are the biasesα α β0 0
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Predicted Risk
(BMTL-Logit)

Preventive treatment
prescribed at/before v0i

Yes

No

Low High

28 424

69 307

Predicted Risk
(Logit-lasso)

Yes

No

Low High

40 412

88 288

Predicted Risk
(UKPDS)

Yes

No

Low High

344 108

278 98

STK
(# of events = 828)

Predicted Risk
(BMTL-Logit)

Preventive treatment
prescribed at/before v0i

Yes

No

Low High

85 76

56 8

Predicted Risk
(Logit-lasso)

Yes

No

Low High

88 75

59 5

Predicted Risk
(UKPDS)

Yes

No

Low High

65 96

28 36

AMI
(# of events = 225)

Predicted Risk
(BMTL-Logit)

Preventive treatment
prescribed at/before v0i

Yes

No

Low High

62 252

84 174

Predicted Risk
(Logit-lasso)

Yes

No

Low High

75 238

100 158

Predicted Risk
(UKPDS)

Yes

No

Low High
ARF

(# of events = 571)

UKPDS does not
predict ARF risks.

for the output and hidden nodes, and the  and  are the weights for the respective input units.  To achieve BMTL, we set the followingαh
k( ) βhj

k( )

prior distributions for these parameters.
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In (A4) and (A5),  and .  At this point, it is straightforward to draw hyper prior[ ]α α α αj j j j
K T

= ( ) ( ) ( ), , ,1 2  [ ]β β β βhj hj hj hj
K T
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distributions for uj and shj as we did for rj in (4) and (5).  Similarly, Ah and Bhj will follow the same formulation as Gj in (6).

Appendix B

Robust Check for Evaluation 3 Using Different Decision Thresholds

Figure B1.  Summary of Results in Evaluation 3 Using 5% as the Cut-Off Value for High/Low Risks
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Predicted Risk
(BMTL-Logit)

Preventive treatment
prescribed at/before v0i

Yes

No

Low High

208 244

309 67

Predicted Risk
(Logit-lasso)

Yes

No

Low High

205 247

312 64

Predicted Risk
(UKPDS)

Yes

No

Low High

436 16

354 22

STK
(# of events = 828)

Predicted Risk
(BMTL-Logit)

Preventive treatment
prescribed at/before v0i

Yes

No

Low High

126 35

63 1

Predicted Risk
(Logit-lasso)

Yes

No

Low High

125 36

63 1

Predicted Risk
(UKPDS)

Yes

No

Low High

140 21

60 4

AMI
(# of events = 225)

Predicted Risk
(BMTL-Logit)

Preventive treatment
prescribed at/before v0i

Yes

No

Low High

174 139

196 62

Predicted Risk
(Logit-lasso)

Yes

No

Low High

181 132

200 58

Predicted Risk
(UKPDS)

Yes

No

Low High
ARF

(# of events = 571)

UKPDS does not
predict ARF risks.

Figure B2.  Summary of Results in Evaluation 3 Using 20% as the Cut-Off Value for High/Low Risks
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