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1.  OVERVIEW 
Every human has distinct biometric characteristics. They can be classified using biometric 
measurements.  The ability to positively confirm the identity of people crossing international 
borders has always been of paramount importance. DHS has been at the forefront of the 
deployment of biometric systems. Current biometric systems at border crossings offer 
reasonably prompt, nonintrusive and accurate support for the identification of travelers. 
Nevertheless, given the ever-growing size of biometric datasets (visa applicants, watch lists, 
etc.), the question is whether current technology will be able to keep up with emerging 
operational needs. 
 
The past two decades have seen a substantial increase in biometrics activity accompanied by 
the deployment of biometric systems in diverse applications ranging from laptop access to 
border control systems. The inclusion of biometric evidence in military and criminal courts 
necessitates a careful examination of the scientific basis for biometric recognition. In particular, 
there is an urgent need to systematically review the scientific literature to determine if some of 
the common assumptions made about biometric traits with respect to criteria such as 
universality, uniqueness, permanence, measurability, performance, acceptability and 
circumvention, is borne out in the academic literature. Thus, the purpose of this study is to:  

(a) Identify gaps in existing research and the implications on operational system risks; and  
(b) Provide recommendations for further research and deployment scenarios. 

 
 

2. INTRODUCTION  
Human recognition and identification are challenging problems, with diverse practical 
applications. Biometrics has become an active research field with many unresolved questions. A 
fundamental requirement of any biometric recognition system is a specific human trait, which 
should have several desirable properties such as universality, distinctiveness or individuality, 
and measurability.  Universality means every individual in the considered population should 
possess the trait. Distinctiveness, sometimes termed individuality, means the trait should be 
sufficiently different across individuals in the population. Measurability means that it should be 
possible to acquire the biometric trait by a physical system and transform it into digitized 
features without causing undue inconvenience to the individual.  Compared to the other 
properties, the distinctiveness of a given trait is difficult to verify due to the enormous number of 
individuals in the world. Some biometric traits, such as fingerprints and iris, are generally 
considered as being unique to an individual based primarily on empirical results, and on a few 
theoretical studies. Recently the term individuality has been used to describe the distinctiveness 
or uniqueness of a given biometric trait. The underlying scientific bases for individuality of 
biometric traits have been studied using different methods.  In Section 3, we offer an overview 
of the recent research results on individuality of strong biometric modalities and their 
measurability, followed by the discussion of distinctiveness of soft biometric modalities in 
Section 4. Section 5 provides a short overview of computational challenges in the development 
of modern large scale biometric systems. We conclude with the recommendations for further 
research and innovation directions in Biometrics in Section 6.   
 
 
3. INDIVIDUALITY OF FINGERPRINTS, FACE AND IRIS BIOMETRICS 

A. Individuality of Fingerprints 

The fingerprint individuality problem was first addressed by Galton in 1892 [1], which is defined 



as the probability of a specific fingerprint configuration. Galton assumed that a full fingerprint 
can be covered by 24 independent square regions on average, each spanning 6 ridges. He 
further assumed 1/2 to be the probability to reconstruct any region by looking at the surrounding 
ridges; 1/16 to be the probability of occurrence of a specific fingerprint type; 1/256 to be the 
probability of occurrence of the correct number of ridges entering and exiting each of the 24 
regions. Thus, the probability of a particular fingerprint configuration is: 
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A number of subsequent models [2], [3], [4], [5] consider the probability of a particular fingerprint 
configuration based on the number of minutiae features n, and a fixed probability of their 
occurrence p. Assuming complete independence between the minutiae points, this gives: 

P  pn                          (2) 
 
Different p and n are used in different models. Although the above models are rather 
straightforward, a significant weakness is that they are based on ideal conditions, where the 
realistic problems such as partial matching and intra-class variations are not considered.  
 
In Pankanti and Jain’s work [6], the individuality is described in a more realistic manner: for a 
given input fingerprint containing n minutiae points, the individuality is the probability that an 
arbitrary fingerprint in a database containing m minutiae will have exactly q corresponding 
minutiae with the input. It is easy to deduce that if there are q or more matches, the two 
fingerprints are considered sufficiently similar and thus should belong to the same person. 
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Figure 1. Parameters used in defining fingerprint individuality [6]. Alignment of minutia points must be 
established in an input fingerprint image prior to matching it with a template. 



 
In Equation (3), the ratio M = A/C, where A is area of overlap and C is the total area of the 
fingerprint (Figure 1). ‘l’ is the probability of two position-matched minutiae having a similar 
direction.  One weakness of Pankanti and Jain’s work is that the assumption of uniform 
distribution of minutiae features may not always be satisfied in practice. This problem is later 
addressed by Dass et al. [7], using a family of finite mixture models, which better represent 
clusters of features observed in fingerprint images compared to the uniform distribution.  The 
estimates of fingerprint individuality are obtained using the probability of a random 
correspondence (PRC), which is defined as follows: Let Q denote the query fingerprint image 
and T denote the template for the given fingerprint. Let m be the total number of minutiae points 
in Q and n be the total number of minutiae points in T. Let pm be the probability of a random 
minutiae feature from T matching one of the m minutiae features of Q. Then the PRC is the 
probability of obtaining exactly k matches between Q and T (Equation 4): 
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A small PRC value indicates it is unlikely that the query and template fingerprint image belong to 
the same person. To calculate PRC, pm has to be properly estimated based on the statistical 
distribution of the template database.  Another weakness of Pankanti’s work is that it does not 
consider all possible discriminatory information that is embedded in fingerprints. Only ridge 
endings and ridge bifurcations are considered. Other fingerprint features, such as pattern type 
(Level 1) and pores (Level 3 features), are not included.  In a later study, Chen and Jain [8] 
developed a more complex model to incorporate all three levels of fingerprint features.  The 
correlation between features and the feature distribution are also considered. However, in the 
related work we consider here, the image quality is not explicitly taken into account for 
individuality.  In practice, fingerprint image quality, age, gender and other attributes have been 
demonstrated to exhibit a significant impact on the system’s ability to match fingerprints and 
develop useful large scale applications [48][49].   

B. Individuality of Iris 

Iris is considered to be a highly individualized pattern [14], [15]. However, the individuality of iris 
is currently not well defined or quantified [16]. Unlike fingerprint, the iris information is usually 
represented as 2 dimensional binary code, called Iris Code. Two such codes can then be 
compared using certain distance measures (Hamming distance, Euclidean distance, etc). To 
address the individuality of iris, Yoon et al. [17] proposed a dichotomy solution, which 
transforms the distances into two categories: intra-class distances and inter-class distances. 
That is, given two Iris Codes, they either belong to the same person (thus their distance is intra-
class) or not (thus their distance is inter-class). Regardless of the types of features, the feature 
distance vectors are numeric values that can be sent to a proper classifier for recognition. 
Eleven models based on different features, distance types and classifiers have been developed 
and compared, which provide a strong background for this and future studies. Unfortunately, the 
key question: “what is the individuality of iris” has not been explicitly answered.  

Daugman [15] suggests that the iris recognition system could yield a zero false-match rate, on a 
large database that contains 632,500 iris images of 316,250 persons spanning 152 countries. 
However, this rate is predicated on high quality iris images, which are obtained under strict 
supervision. Low quality images in that data set had been omitted.  In practice, the image quality 
can be affected by various factors, which becomes a major concern that is related to the 



discrimination capability of an iris recognition system. In Kalka et al.’s work [18], the effect of 
various quality factors has been analyzed, including de-focus blur, off-angle, occlusion/specular 
reflection, lighting, and iris resolution. A fully automated iris image quality evaluation block is 
developed to estimate the factors. This work shows that after removing the poor-quality images 
selected by specific quality metrics, a considerable improvement in recognition performance is 
achieved. They further provide an upper bound on the computational complexity required to 
evaluate the quality of a single image.  

Kalka’s work shows that the performance of an iris recognition system can be significantly 
compromised by the image quality. Thus, to build a realistic model for the individuality of iris, the 
error impact should be taken into account. This interesting problem is still open for future study. 

 

C. Individuality of Face 

Unnikrishnan [19] used the notion of unusual features to study individuality in face recognition. 
Here, an unusual feature is defined as a feature whose metrics lie below the 5th or above the 
95th percentiles for that feature. Those features could be nose length, inter pupillary distance, 
upper lip length, shape of forehead, prominence of the chin, etc. Note that these are shape 
features, not appearance features. The author further indicated that a face with 100 
independent features will have 10 unusual features on average. It is easy to compute the 
probability of a particular face configuration with 10 unusual features: 

                                                    ܲ ൌ 0.05ଵ଴ ൌ 9.8 ൈ 10ିଵସ.                                                      (5) 

In other words, this simple model suggests that the combination of these 10 unusual features 
can distinguish 10ଵଷ	different faces. Perrett et al. [20] identify 224 shape features on the frontal 
face. If all these features can be acquired by an automatic identification system, then this 
system can distinguish ~10ଶଽ	faces. 

Although Unnikrishnan’s work presents promising modeling results, it is still preliminary. The 
critical fact is that, when referred to face recognition, the facial features are usually not extracted 
from actual faces, but from 2D face images. Several issues need to be addressed before we 
can develop a realistic face individuality model: (1) Although there are many effective facial 
feature extraction techniques, no standard organization is currently established to group the 
facial information into feature categories. (2) The quality of image can be significantly 
compromised by pose, illumination, expression, and aging. (3) The statistical inter-dependence 
between facial features of a single individual may not be negligible.  

Klare and Jain [21] proposed a taxonomy which categories facial features into 3 levels: Level 1 
features are those global features of a face that can be extracted from low resolution face 
images (those with inter-pupilary distance (IPD) less than 30 pixel), such as gender, ethnicity 
and general age group. Level 2 features are explicit to face recognition and require more 
detailed face observations. These are local features, usually only relevant for face recognition, 
including features extracted using elastic bunch graph matching (EBGM) [22], local binary 
patterns (LBP) [23], SIFT feature descriptors [24], [25], metrological features [26], and so on. 
Level 3 features contain micro level features on the face such as scars and facial marks [27]. 
Klare’s work may serve as a starting point for the future studies on the individuality of faces and 
its consequences for face recognition. 



In the past two decades, a number of preprocessing methods have been developed to improve 
image quality.  Blanz and Vetter [28] proposed a 3D morphable model that allow users to adjust 
the initial alignment between the input 2D image and the 3D morphable facial model, then 
change the pose of the input image to frontal and set the illumination to ideal ambient condition. 
The model is trained by a set of face images to learn the distribution of 3D facial shape and 
texture in a parameterized feature space. Gao et al. [29] proposed a pose normalization 
approach based on fitting active appearance models (AAM). In this work, profile faces with 
different rotation angles in depth were warped into shape-free frontal view faces. Bronstein et al. 
[30] present a 3D face recognition approach that is invariant to expressions. Their algorithm is a 
representation of the facial surface that is invariant to isometric deformations. Chen and Lovell 
[31] proposed a face recognition method which is robust to illumination and expression. In this 
work, adaptive principal component analysis (APCA) is used to construct a subspace of image 
representations, which are then warped according to inter-class and intra-class sample 
covariance, respectively. Park et al. [32] proposed a generative 3D aging modeling to simulate 
the facial aging process. In this work, the input image is projected into the parametric 3D aging 
pattern space. A new face image at target age is then simulated. For low-resolution face 
images, Bourlai et al. [33] proposed a method that applies a number of tools such as image 
filtering, linear de-noising, and thresholding based nonlinear de-noising methods to enhance the 
quality of the low resolution images. All these preprocessing methods can considerably improve 
the recognition accuracy. 

                                         

D. Capacity Approach 

In data analysis, we often assume that the data is drawn independently and identically 
distributed (i.i.d.). However this assumption is not always true in practice. Sometimes we can 
accept an approximate independence. Sometimes, the dependence cannot be ignored. In that 
case we usually have two options. The first option is to eliminate the effect of dependence either 
by applying a de-correlation method [34], or by considering an informative feature subset, which 
involves a feature selection problem that can be solved in various ways [35], [26]. The second 
option is to incorporate the dependence information into the model. For fingerprint analysis, 
Dass et al. [7] proposed a mixture model in which minutiae are first clustered and then 
independently modeled in each cluster. A similar approach is applied by Chen et al. [8] when 
developing a mixture model based on 5 major fingerprint classes to evaluate fingerprint 
individuality. R. Kwitt et al. [36] proposed a joint statistical model for texture image retrieval 
problem, in which a copula-based method is applied to capture the associations among 
coefficients. These methods may be adapted for studies that involve different type of features. 

One may argue that in Unnikrishnan’s work [19], a specific number of rare features may not be 
guaranteed for each individual. Alternatively, if we represent each feature using a binary symbol 
(such as ‘long (1)’ or ‘short (0)’), and consider each feature as i.i.d. Bernoulli random variables 
over the population with  ௥ܲ ( ௜݂ ൌ 1ሻ ൌ 0.5 for ݅ ൌ 1, 2, .		.		.		 . , ݊, then the probability of a particular 
face configuration is 1/2௡. That means 	8.59	 ൈ 10ଽ individuals (which is more than the world 
population), can be distinguished using 33 features.  

In practice, however, most human faces are remarkably similar, which means the variations in 
the relative sizes and distances among these features could be subtle. However the embedded 
noise in the face information could be overwhelming due to the large variations in pose, 
illumination, expression, occlusion, camera parameters, and background. Similar problem can 



apply to other biometrics, such as measurements on the human body. Thus, to study the 
general performance of a biometric system, we need to address a more challenging problem: 
the impact of the noise. This problem can be addressed by adopting the concept of capacity 
from information theory.  

In information theory, a communication channel (or channel), refers to a physical or logical 
transmission medium that can be used to transfer an information signal from one or more 
transmitters to one or more receivers. The transfer process is subject to uncontrollable ambient 
noise and the imperfection of the signaling process itself. The communication will not be 
successful unless the transmitter and receiver agree on what was sent. In information theory, 
the channel has a very important characteristic, called channel capacity, which is defined as the 
tightest upper bound on the amount of information that can be reliably transmitted over a 
communication channel. A channel is said to be memoryless if the probability distribution of the 
output depends only on the current input and is conditionally independent of previous channel 
inputs or outputs. The channel capacity of a memoryless channel is defined as [37] 

ܥ                                                         ൌ 	max௣ሺ௫ሻ ;ሺܺ	ܫ ܻሻ,                                                          (6) 

where ܫሺܺ; ܻሻ is the mutual information of the input X and output Y and the maximum is taken 
over all possible input distributions. The mutual information is given by: 

;ሺܺܫ                                          ܻሻ ൌ ׬	 ,ݔሺ݌ ሻݕ log
௣ሺ௫,௬ሻ

௣ሺ௫ሻ௣ሺ௬ሻ
 (7)                                                   ,ݕ݀ݔ݀	

Or equivalently, 

;ሺܺܫ                                       ܻሻ ൌ ݄ሺܺሻ െ ݄ሺളܻܺሻ ൌ ݄ሺܺሻ ൅ ݄ሺܻሻ െ ݄ሺܺ, ܻሻ.                                  (8) 

 

E. Recognition capacity 

The noise problem in a biometric authentication system can be considered as a noisy channel 
problem in communications. The noise comes either from the errors that are inevitably involved 
during the feature extraction process, or from intended security intrusion behaviors [38] such as 
spoofing. Thus, after a noisy feature extraction process, the subject is represented by a series 
of features. These features are further used to distinguish subjects. The quality, complexity, and 
variability of the features can be attributed to a recognition channel.  An example of this 
approach has been introduced and characterized by Schmid et al. in [39], [40]. Similar to a 
communication channel, a recognition channel is also characterized by its capacity, called 
recognition capacity. The recognition capacity of a biometric system is considered as the 
maximum number of classes that can be successfully recognized asymptotically with probability 
of recognition error close to zero when the number of informative samples gets large. To 
achieve the expression of recognition capacity, the feature extraction process is modeled using 
a parallel Gaussian channel. In Schmid’s and Nicollo’s work [34], the input ܺ ൌ ሺݔଵ,.		.		.		.		.,ݔ௡ሻ is 
considered as a set of independent features, which is obtained by feature selection and de-
correlation operation PCA or ICA. Assume there is additional i.i.d. Gaussian noise 
,ሺ0	݊ܽ݅ݏݏݑܽܩ	~		௜ݖ ௜ܰሻ generated by the environment for each feature ݔ௜		ሺ݅ ൌ 1,… . , ݊). Finally, let 
the output be ܻ ൌ ሺݕଵ	,.		.		.		.		,ݕ௡	ሻ. The original parallel Gaussian channel capacity for ܺ is given by 
[37]: 



ܥ                                   ൌ max∑ாሾ௫మሿஸ௉ 	௜ݔሺ	ܫ ; ሻ	௜ݕ ൌ 	∑
ଵ

ଶ
	logଶሺ1 ൅
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Where ௜ܲ		 ൌ ௜ݔൣܧ
ଶ൧, ܲ ൌ 	∑ ௜ܲ are the power constraints. The equality is achieved if 

,ሺ0	݊ܽ݅ݏݏݑܽܩ	~௜ݔ ௜ܲሻ  for each ݅. Schmid [34] used a variation of the channel capacity in Equation 
9 to derive the recognition capacity density for a biometric system based on PCA-encoding 
(Equation 10): 
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ଵ

ଶ௡
௡
௜ୀଵ 	logଶሺ1 ൅

ఒ೔
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where the input ܺ is encoded as a series of principal components and ߣ௜ is the ݅th eigenvalue in 
the principal component analysis. Other efforts on channel capacity applications include Barni et 
al.’s watermark channel analysis [41] and Wyner’s photon channel analysis [42]. 

While these modeling approaches open the door for the analysis of performance and scale in 
biometric systems, none of them has been developed based on the strong empirical foundation, 
which would confirm the realism of the assumptions and the robustness of modeling 
methodology.  For this reason, such modeling approaches remain aspirational in terms of their 
impact to practice. The performance indicators we receive from the largest biometric data 
collection and deployment in the World, India’s UIDAI, which reports False Positive and False 
Negative identification rates around 0.1% for a population of about 600 million users through 
multimodal system with 10-fingers and both iris [50], appear to be the state of the art.    

   

4. DISTINCTIVENESS OF SOFT BIOMETRICS 

Soft biometric traits are those characteristics that provide some information about the individual, 
but lack the distinctiveness and permanence to sufficiently differentiate any two individuals [43]. 
Soft biometric traits include gender, ethnicity, age, eye color, hair color, weight, etc.  

Jain et al. [43] showed that 3 soft biometrics (gender, ethnicity and height) can improve 
fingerprint recognition by around 6%. Other soft biometrics such as freckle, mole, scar, 
pockmark, dark skin color and wrinkle can also improve the face-recognition performance of a 
state-of-the-art commercial matcher [27]. Scheirer et al. show that that the collection of 10 soft 
biometrics and 10 context attributes can boost the face identification system over the baseline 
by over 30% [44]. Furthermore, the possibility for human recognition based solely on a bag of 
soft biometric traits has been studied and promising preliminary results have been 
demonstrated by Dantcheva et al. [45]. Kumar et al. [46] also showed the collection of 65 
attributes extracted from face images can be used in a stand-alone feature model. Compared to 
the current state-of the-art for the Labeled Faces in the Wild (LFW) data base, this model 
reduces the error rates by 23.92% in face verification.  

Strength of soft biometric traits is that they contain additional discriminatory information which 
can be used in concert with primary traits such as fingerprints and iris. The attributes are usually 
binary values, which means the computational time and space based on the attributes will be 
small. However, the measurability of a large number of attributes will be low. The automatic 
extraction of the attributes still remains a challenge. A large training sample may be required, 
which will be expensive and time consuming to collect. 



How can we determine the discrimination ability of a soft biometric system? There are number 
of terms related to discrimination ability, such as individuality [6], recognition capacity [34], 
reliability [47], etc. To the best of our knowledge, only a few theoretical studies of the 
discrimination ability of soft biometric traits exist.  The discrimination capability of soft biometric 
systems is currently neither well defined nor systematically studied. Given the characteristic of 
soft biometric traits, instead of trying to address the discrimination capability of single soft 
biometric trait, it may be more reasonable to consider the discrimination capability of the 
collection of a number of soft biometrics. In other words, we investigate whether a given number 
of features (including soft biometric features) is sufficient to distinguish individuals.  

Although we currently do not have a standard for measuring the individuality of soft biometrics, 
we observe that the Probability of a Random Correspondence (PRC) [7] can be considered a 
generic formulation for soft biometric traits. Using Equation 4 the feature set needs to satisfy all 
or part of the following assumptions: (1) The features are scalar variables; (2) A match between 
two features is always aligned. That is, ݔ௜ will only be compared with ݕ௜ for all ݅; (3) All matches 
are independent and equally likely; (4) All features are sufficiently accurate and, as a 
consequence, no uncertainty should be associated with a match based on the quality of 
features.   

Schmid et al.’s capacity driven approach [34] could be adapted to soft biometric systems, for 
example, body measurements. Unfortunately, in practice, the distribution of some soft biometric 
traits, such as gender and ethnicity, are not continuous, not Gaussian as required by the model. 
Also, the distribution of some measurements might have long tails. Another relevant 
consideration proposed by Dantcheva et al. [47] is the notion of reliability of a multi-trait soft 
biometric system (SBS). In practice, it is possible that the subjects will share similar facial and 
body characteristics. This is called cross subject interference. The reliability of a SBS captures 
the probability of false identification of a randomly chosen person out of a random set of ܰ 
subjects. If we denote the number of categories by ߩ, the feature space by ݒ ൌ ሺݒ௜, .		.		.		 . ,  ,ேሻݒ
the number of non-empty categories by ܨሺݒሻ( 1	 ൑ ሻݒሺܨ ൑ ܰሻ  ), the reliability is modeled by the 
probability ܲሺܨሻ	that a randomly drawn ܰ-tuple of people will have ܨ active categories out of a 
total of minሼߩ, ܰሽ	possible active categories (Equation 11): 

                                                        ܲሺܨሻ ൌ
ிಿషಷ

ሺ௉ିிሻ!ሺேିிሻ! ∑
೔ಿష೔

ሺಿష೔ሻ!ሺഐష೔ሻ!
ಿ
೔సభ

                                          (11) 

Given ߩ, the reliability of authentication averaged over the subjects in ݒ is a function of the 
number of nonempty categories ܨሺݒሻ, and independent of the distribution of categories. 

 

5. SYSTEM ENGINEERING ISSUES IN LARGE SCALE BIOMETRICS 

Cloud computing-based biometric databases offer a long-term, scalable solution to a variety of 
emerging challenges facing current biometric architectures. These challenges include rapidly 
growing data volumes, increased system usage, costs associated with specialized hardware, 
and growing administrative costs.  

The number of biometric data records — typically fingerprints, but increasingly iris and facial 
images, and especially video clips and voice recordings — has greatly expanded as a variety of 



user communities and government agencies are called upon to use the latest authentication 
(identification and verification) technologies. Some of the most common applications of 
biometric data are to reliably and quantifiably establish identity of people who want to enter the 
country, have committed crimes, or are on a watch list. The number of biometric data records 
has recently expanded on a massive scale due to new requirements for governmental agencies 
to use the latest identification and verification technologies. This data is being expanded to 
support tasks that include border security, criminal justice, and terrorist watch list monitoring. 
Eventually, hundreds of millions of identities, amounting to petabytes of biometric data, will be 
housed in databases operated by the government or private organizations. Many of these 
agencies will require their systems to identify individuals in near real-time with a high degree of 
accuracy. At the same time, shrinking budgets are necessitating a reduction in the cost-per-
match while demanding increases in both accuracy and in the number of matches performed. 
The systems currently deployed by these agencies are reaching their upper limits in terms of 
storage capacity and have not yet produced tenable results in providing peta-scale solutions.  
What is needed is a system composed of inexpensive, preferably commodity-like components 
that provides accuracy, performance, scalability, reliability, availability, and interoperability. 
 
The researchers at the Center for Identification Technology Research (CITeR), an NSF I/UCRC, 
have been issued a challenge by the center’s Industry Advisory Board, to investigate possible 
approaches that will enable the scale up of operations of biometric and identity management 
systems and operations.  The scale-up challenge faced by CITeR’s industry and government 
affiliates is remarkable. Over the next few years, biometric databases for the Federal Bureau of 
Investigations (FBI) [1], Department of State (DoS) [9], Department of Defense (DoD) [10], and 
the Department of Homeland Security (DHS) [11] are expected to grow to accommodate 
hundreds of millions of identities. For example the DHS Automated Biometric Identification 
System (IDENT) database, as of 2010, hosts 110 million identities and enrolls or verifies over 
125,000 individuals per day [12]. Another example is the national identity cards program for 
India’s 1.2 billion-plus citizens, called “Aadhaar” and run by the Unique Identification Authority of 
India, (UIDIA) [13] which also demonstrates the geometric progression of the number of 
identities expected in new systems that process biometric data. In early 2014, having enrolled 
over 600 M users, India’s UIDIA processes more than 400 trillion biometric matches per day 
using an equivalent of 3 Automated Biometric Identification Systems (ABIS).  These operations 
require about 30 TB of input / output every day [50].   
 
 
6. FUTURE RESEARCH RECOMMENDATIONS 

In this study, we systematically reviewed the scientific literature to determine if some of the 
common assumptions made about biometric traits with respect to criteria such as universality, 
uniqueness / individuality, permanence, measurability and performance, are borne out in the 
academic literature. This report discusses some of our observations with respect to some strong 
biometric modalities (fingerprints, face and iris) and offers preliminary insights into soft biometric 
atteributes. We provide recommendations for future research activities that can strengthen the 
fundamentals of biometrics from a scientific perspective.  

Individuality 

The uniqueness of a biometric trait can be evaluated using different types of models. These 
models fall under three different categories: 



o Biological models: In this approach, the anatomical aspect of the trait is modeled 
based on a biological understanding of the trait.  

o Feature models: In this approach, the capacity of the “template” or the feature set 
used to characterize the biometric trait is used to assess the uniqueness of the 
trait. 

o Score models: In this approach, a biometric matcher is used to compare 
biometric samples and the resulting match scores are analyzed in order to 
understand the distinctiveness of the biometric trait. 

Biological models for fingerprint generation have been proposed in the literature. However, 
these models have not been used to quantify the uniqueness of the biometric trait. In the case 
of iris, most studies focus on match scores and attempt to model the distribution of scores in 
order to understand the uniqueness of iris patterns.  

Research gap 1: In order to quantify the uniqueness / individuality of a trait, it is necessary to 
independently develop three types of models: biological models, feature set models and score 
models. Further, the relationship between these models has to be systematically established2. 
This research activity will help the scientific community to quantify the notion of uniqueness as it 
pertains to individual biometric traits. 

 

Permanence 

The impact of aging on the performance of biometric algorithms has been studied in the context 
of face recognition. Several aging models have been developed by face recognition researchers 
in order to account for the changes in an individual’s facial structure and texture over a period of 
time. However, such studies have not been extensively conducted in the context of fingerprint 
and iris. While recent research has examined the degradation in match scores when matching 
time-lapsed data, the biological underpinnings for this observation has not been established. 

Research gap 2: The impact of age on biometric traits has not been rigorously studied. The 
face recognition community has published a few datasets that can be used to facilitate such 
studies. However, the fingerprint and iris recognition researchers do not have easy access to 
time-lapsed data (where biometric data from an individual has been collected over a long period 
of time – e.g., 10 – 20 years). This calls for two lines of research activities: (a) begin assembling 
datasets that capture the biometric traits of individuals over a large span of time; (b) develop 
models that account for changes in a biometric trait with respect to age3. 

Research gap 3: The impact of diseases on biometric traits has not been systematically 
analyzed. Most biometric datasets available for scientific research contain data acquired from 

                                                            

2 For example, in the case of fingerprints, the degree of uniqueness as established by minutiae points should be 
consistent with that established using a biological model for generating fingerprints.  

3 Besides age, the impact of nutrition and environment should also be established. 



reasonably healthy individuals4. Consequently, a preponderance of scientific publications report 
performance of biometric algorithms on healthy subjects, i.e., subjects whose biometric traits 
may not exhibit a great deal of anomaly. Access to operational data may be instructive for 
furthering our understanding of the robustness of biometric algorithms to pathological variations 
in the general population.  

Research gap 4: The availability of cosmetic surgical procedures to modify an individual’s 
appearance poses a challenge to biometric algorithms. Recent research has analyzed the 
impact of cosmetic plastic surgery on face recognition algorithms5. However, a more rigorous 
study is required to understand the various types of cosmetic alterations that are available and 
their impact on biometric algorithms. These cosmetic alterations are socially acceptable and are 
not intended to deliberately defeat a biometric system. Collaboration with the medical 
community will be necessary to perform this research in an effective manner. 

 

Systems 

With respect to biometric systems and their quality, the recent study from the National 
Academies [58] states that “if it is determined that biometric systems and technologies are the 
most appropriate (...), then our understanding of the underlying science and technology must be 
robust enough to support the applications.” Unfortunately, to date we found no studies which 
analyze possible internal flaws (faults, performance limitations, zero-effort failures) in the 
development of any biometric system.  This does not imply there were none.  It does indicate 
that these systems are rather immature.  Further, large-scale biometric systems appear not to 
be open to scientific scrutiny.  Rather, such systems are large black boxes inaccessible for 
independent verification and validation.     

Research gap 5: With respect to improvements in accuracy we recommend studying the new 
concepts of self-adaptation [59].  The self-adaptive software engineering paradigm would allow 
biometric systems to change over time and, in such a way, better accommodate changes in 
scale, periodic quality shifts, a variety of modalities, etc. Further, such systems would be able to 
monitor operational environments and choose algorithms and / or security defenses deemed the 
most appropriate for the given emerging threat. With respect to improvements in cost / time 
computational effectiveness and privacy preservation, we acknowledge ample evidence of the 
leap towards systems with billion(s) of users. This prompts the need to study fundamental 
biometric search and retrieval techniques, and effective winnowing (partitioning and indexing) 
techniques, with provable accuracy, that reduce penetration rates by orders of magnitude.  Such 
a research direction would calibrate concerns related to highly decentralized biometric services 
(clouds).  

 

                                                            

4 As an example, we are not aware of any fingerprint datasets available to the research community at large, which 
contain data from individuals with skin diseases. Similarly, we are not aware of iris datasets containing ocular 
images of individuals with eye diseases.  

5 Similarly, the appearance of an iris can be impacted by the introduction of cosmetic contact lenses. 
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