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Abstract

We study optimal minipublic design with endogenous evidence. A policymaker selects a

group of citizens—a minipublic—for advice on the desirability of a policy. Citizens can discover

local evidence at no cost but might be deterred by uncertainty about the policymaker’s adoption

standard. The key driving force is the curse of too little information: a citizen hesitates to

contribute his evidence if and only if neither his evidence nor that contributed by the rest of

the minipublic is sufficiently novel. Evidence discovery is hardest to sustain under moderate

political uncertainty. Relative to the first-best minipublic, the optimal minipublic generically

features a greater range of demographics, overrepresenting demographics at the margins of the

citizenry while selecting more diversely around the median demographic. Our findings bear

implications for the link between the representativeness and the policy impact of minipublics.

JEL: D71, D72, D83

Keywords: minipublic, evidence discovery, curse of too little information, political uncertainty,

demographic diversity, representativeness

1 Introduction

Evaluating the impact of a novel public policy is a complex task, especially in diverse societies.

Citizens of different socio-economic backgrounds are affected by the policy in varied, far-reaching,

and uncertain ways. What is more, the evidence critical for evaluation is often quintessentially

local: lay citizens can claim privileged insight into how the policy is likely to impact them and fellow

citizens of similar background.1 Accordingly, policymakers often must rely on citizens’ willingness
∗We thank Attila Ambrus, Alina Arefeva, Steven Callander, Gent Carrabregu, Alessandra Casella, Miaomiao

Dong, Laura Doval, Hülya Eraslan, Marina Halac, Daniel Hauser, Dimitri Landa, Stephan Lauermann, Helene Mass,
Jacopo Perego, Anja Prummer, João Ramos, Kareen Rozen, Bruno Strulovici, Leeat Yariv, Huseyin Yildirim, as
well as numerous seminar and conference audiences for valuable feedback. Bardhi gratefully acknowledges financial
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1This is especially the case for policy decisions that involve normative and societal values, rather than mere

technical knowledge, and that entail complex tradeoffs, e.g., tradeoffs across generations of citizens, as in the case of
climate policy.
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to discover and bring forth local evidence as a crucial input into the policy decision. Indeed, over

the last few decades, policymakers have actively sought ways to induce higher citizen participation

in evidence-based policymaking (Michels and De Graaf (2010), Jacobs and Kaufmann (2019)).2

This paper studies a policy environment in which (i) a small number of citizens is targeted by

the policymaker to contribute their local evidence, and (ii) citizens face prior uncertainty about

the standard that the policymaker follows when making the policy decision. First, we examine

how the presence of uncertainty about how demanding the policymaker will be toward the policy—

which we refer to as political uncertainty—distorts citizens’ incentives to contribute evidence. Are

citizens less willing to contribute evidence in the presence of greater political uncertainty? Second,

we analyze the policymaker’s problem of assembling a group of citizens—which, for reasons that

become clear below, we refer to as a minipublic—to learn as much as possible about the policy in

question. To what extent is the optimal minipublic demographically representative of the citizenry

at large? How much evidence does it endogenously produce? Does the policymaker target citizens

from more diverse backgrounds in the presence of greater political uncertainty?

Our framework is motivated by the increased popularity of a particular form of citizen partici-

pation: minipublics.3 Conceptualized first by Dahl (1989), a minipublic is a small group of ordinary

citizens selected from the entire citizenry, tasked with gathering information on an issue of public

interest in order to inform policymaking. A recent illustrious minipublic is the Citizens’ Convention

on Climate (CCC), implemented in France between October 2019 and June 2020. The CCC was

initiated by French President Emmanuel Macron to engage citizens in formulating France’s climate

policy. It consisted of 150 citizens, drawn by lot and representative of the French population along

six criteria: gender, age, education, occupation, residence, and geographical area. Strikingly, po-

litical uncertainty accompanied the CCC throughout its proceedings. At the onset, Macron vowed

that the citizens’ policy recommendations would be enacted “without filter.” In January 2020, he

invoked provisions of the French Constitution to narrow down the meaning of “without filter” by

reserving the option to not act upon some of the recommendations. Consequently, after the CCC

issued its recommendation in June 2020, Macron stated he would ignore at most three recommenda-

tions of his own choosing. The uncertainty about Macron’s response was further heightened by the

ongoing pandemic. Ultimately the government accepted only 10% of the CCC’s recommendations,

modified or watered down another 37%, and rejected the remaining 53%. In light of the French

2Such efforts have taken many forms, from collaborative governance, citizens’ advisory committees, and partic-
ipatory budgeting, to deliberative bodies of citizens such as consensus conferences, deliberative polls, citizen juries,
and planning cells. In 2017, the OECD launched the Innovative Citizen Participation Project, aiming to record and
analyze all cases worldwide of deliberative, collaborative, and participatory decision making.

3Since the early 1990s, minipublics, as an innovative form of citizen participation, have been drawing increased
attention from policymakers and academics alike. Breckon, Hopkins and Rickey (2019) reviews case studies of
minipublics around the world.
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experience, concerns about political uncertainty and about limited impact accompanied subsequent

minipublics such as Scotland’s Climate Assembly and the UK Climate Assembly.4 A key takeaway

of these examples is that political uncertainty is a first-order consideration when the minipublic’s

role is strictly advisory.

Our main insight is that political uncertainty can be detrimental to the production of evidence

in minipublics, especially in small ones, and leads to the policymaker choosing minipublics that

are not sufficiently representative of the citizenry. We formalize this insight in a setting that, a

priori, is arguably conducive of more, rather than less, evidence production: (i) the policymaker

and the citizens agree ex ante on the decision threshold to be followed; (ii) minipublic citizens are

not self-interested, i.e., like the policymaker, they evaluate the policy for its citizenry-wide impact;

and (iii) evidence is costless to discover. A citizen hesitates to discover evidence when both the

rest of the minipublic is sufficiently uninformative and he cannot contribute substantially to it—we

refer to this incentive problem as the curse of too little information. The policymaker controls

the citizens’ incentives through designing the size and the composition of the minipublic. We first

propose a benchmark for the ideal minipublic of a given size—the one that maximizes the welfare

of both the policymaker and the citizens in the absence of political uncertainty—which is also the

most informative minipublic of that size. If this ideal minipublic is not feasible in the presence of

political uncertainty, the policymaker’s only instrument for inducing citizens to discover evidence is

to make the most peripheral citizens in the minipublic, who are the ones most hesitant to discover

evidence, less marginally informative. We show that, relative to the ideal minipublic, the generic

pattern of the optimal minipublic is one that overrepresents citizens closer to the periphery while

making the selection of citizens around the median citizen more diverse.

Even though our results are cast in terms of the optimal design of minipublics, the framework

applies beyond this specific application. The assignment of members to legislative committees, the

appointment of faculty to university committees, and the drawing by lot of the Council of 500 (the

Boule) in ancient Athens are other natural applications of our framework. We essentially study

the design of an advisory committee in which the designer and the committee members share a

common value for a multi-attribute object available for adoption. Decision-making power rests with

the designer rather than the committee. Each member is an expert on a single attribute and chooses

whether to discover evidence about it. Therefore, by choosing members, the designer chooses which

4For early coverage of the CCC, see https://www.theguardian.com/world/2020/jan/10/citizens-panels-ready-
help-macron-french-climate-policies. On the criticism that Macron faced about his response to the recommen-
dations and the referenced percentages, see https://www.publicdeliberation.net/the-promises-and-disappointments-
of-the-french-citizens-convention-for-climate/. On concerns about political uncertainty in Scotland’s Climate
Assembly and the UK Climate Assembly, see https://www.opendemocracy.net/en/can-europe-make-it/scrutiny-
and-citizens-assemblies-a-missing-piece-of-the-democratic-puzzle/ and https://www.wfd.org/commentary/how-has-
uk-climate-assembly-impacted-parliament-0.
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attributes to learn about.

Framework. The baseline model features a unit mass of citizens and a single policymaker. A

citizen’s position in [0, 1] indexes his demographic background. The policymaker chooses a finite set

of citizens—a minipublic—from this unit mass. She is constrained by a maximal capacity for the

minipublic: she can costlessly target up to, but no more than, n citizens. First, the policymaker

chooses a minipublic. Subsequently, each minipublic citizen observes the rest of the minipublic and

then decides whether to discover his local evidence. Finally, the policymaker observes the citizens’

discovered evidence and decides whether to adopt the policy.

Each minipublic citizen i can exclusively discover his local evidence which is informative about

the true value of the policy. This can, for instance, be interpreted as the local impact of the policy

for citizen i’s demographic background. A key ingredient of our model is the correlation of local

evidence across demographic backgrounds, which allows the policymaker to extrapolate from the

evidence of the minipublic to the larger citizenry. The baseline model allows for general Gaussian

correlation across local evidence, whereas the specification of Section 4.2.2 uses the sample path of

an Ornstein-Uhlenbeck process to model correlation that is positive between any two citizens and

weakens with distance between their demographics. Moreover, if the citizens discover evidence, it

becomes publicly observable—that is, evidence is fully transparent and the players are symmetrically

informed at all times. This structure captures in a stylized way the intricate processes of information

gathering and deliberation that take place in real-world minipublics.

The game features both common interest and heterogeneous evidence about the policy. That

is, both the policymaker and the citizens care about the true value of the policy, which in the

stylized model of Section 4.2.2 corresponds to the average local impact across citizens. The only

friction between the citizens and the policymaker arises due to a random threshold of adoption,

which captures in reduced form any wedge between the contribution of the policy to the public

interest—the evaluation of which is the minipublic’s task—and the impact of the policy on other

idiosyncratic interests of the policymaker. This threshold is realized after the policymaker chooses

the minipublic but before she makes a decision. The more variable this threshold is, the greater is

the political uncertainty that the citizens face.

Main results. The conflict between the policymaker and the citizens boils down to whether a

more informative minipublic is preferred. We identify a sufficient minipublic informativeness statis-

tic, which equals the variance in the posterior value of the policy given the minipublic’s evidence.

All players’ expected payoffs from a minipublic depend only on this statistic. Notably, the policy-

maker’s payoff strictly increases in informativeness: the more informative the evidence provided by

the minipublic, the more precise the estimate of the policy’s value. Hence, the problem of the poli-
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cymaker reduces to identifying the most informative minipublic of at most n citizens in which each

citizen is willing to discover his local evidence. Correspondingly, any first-best minipublic attains

the highest informativeness among all minipublics of size at most n and provides a benchmark for

the informativeness-maximizing level of demographic diversity.

By contrast, the citizen’s payoff is quasiconvex—that is, U-shaped—in informativeness. This is

due to two opposing effects. On the one hand, a more informative minipublic leads to a better-

informed adoption decision, which benefits the citizen. On the other, when starting from a prior

value of the policy for which the expected misalignment due to the uncertain threshold is low, an

informative minipublic introduces the downside of posterior values with high expected misalignment

becoming more likely. We show that the second effect dominates when two conditions are met. First,

when starting from no information, the citizen’s marginal value from an infinitesimally small amount

of information must be negative. Second, both the total informativeness of the minipublic and the

marginal informativeness of each of its citizens must be sufficiently low. We refer to these two

conditions in tandem as the curse of too little information. Identifying this key driving force in a

general Gaussian framework of local evidence is a first contribution of our analysis.

A second contribution is leveraging the curse of too little information in order to characterize

precisely how the optimal minipublic is distorted relative to any first-best minipublic. If no first-

best minipublic is feasible, the policymaker has two instruments available to incentivize evidence

discovery: distortion in minipublic size and distortion in its composition. We establish that the first

instrument—distortion in size—is counterproductive for the policymaker. The optimal minipublic, if

nonempty, consists of exactly n active citizens. If the policymaker is able to incentivize a minipublic

of fewer than n citizens to be active, then she is also able to incentivize a strictly more informative

minipublic of exactly n citizens to be active as well. The addition of new citizens strengthens the

incentives of the original citizens, while the new citizens are willing to discover evidence since they

are joining a minipublic that has already escaped the curse of too little information.

A key implication of the curse of too little information is that the passive citizens in a minipublic

are those with the highest marginal informativeness. For the Ornstein-Uhlenbeck correlation, these

are the leftmost citizen and the rightmost citizen in a minipublic. We show that if no first-best

minipublic is feasible, the policymaker distorts the composition so as to ensure that all citizens are

less marginally informative than their passive fellow citizens in the first-best minipublic. That is, the

way out of the curse of too little information is to make minipublic citizens “informationally smaller.”

We then flesh out the implications of such reduced marginal informativeness for optimal demographic

diversity, understood as the distances between demographics in the optimal minipublic, in the

context of the Ornstein-Uhlenbeck correlation. The immediate neighbors of the most peripheral
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citizens shift further away from the median citizen and towards the periphery so as to be more

similar to the peripheral citizens and hence less marginally informative. The substantial step is to

show that there are only two patterns of distortions that can arise: (i) an equidistant pattern in which

all citizens are uniformly further away from the median citizen than their first-best counterparts, or

(ii) an alternating pattern in which immediate neighbors in the minipublic are, two by two, more

similar to each other that their first-best counterparts. We further show that, of these two patterns,

the equidistant one is predominant: the alternating pattern can arise for at most one capacity, and

only if no equidistant minipublic is feasible.

This characterization allows us to study how the composition of the optimal minipublic varies

with primitives of the environment: political uncertainty, minipublic capacity, policy sentiment,

and homogeneity of the citizenry. On a cautionary note, our analysis reveals that what discourages

evidence discovery and forces the policymaker towards a distorted minipublic is the presence of

moderate, rather than high, political uncertainty. The first-best minipublic is optimal if political

uncertainty is either sufficiently high or sufficiently low. Against a first intuition that greater uncer-

tainty makes evidence discovery more challenging, distortions are greatest—that is, the equidistant

minipublic is more diverse and shifted furthest away from the median citizen—for moderate uncer-

tainty. It is under such level of uncertainty that both the likelihood of misalignment is sufficiently

high and each citizen’s evidence significantly influences such likelihood. Therefore, higher political

uncertainty is not always detrimental to evidence production in minipublics. Besides political un-

certainty, we also show that the distortions in composition are greatest in smaller minipublics, for

stronger policy sentiment, and for more heterogeneous citizenries.

2 Baseline model

Players. A policymaker (“she”) and a unit mass of citizens, each (“he”) indexed by i ∈ [0, 1],

evaluate the desirability of an uncertain policy. This evaluation takes place within a minipublic,

which is an arbitrary finite selection of distinct citizens m = {i1, i2, ..., in} ⊂ [0, 1]. Without loss,

let i1 < i2 < . . . < in. The set of all minipublics of size at most n > 0 is denoted byMn.

Policy evaluation. The uncertain value of the policy B ∈ R follows a Gaussian distribution:

B ∼ N (B̄, σ2). (1)

The prior value B̄ determines the ex ante desirability of the policy, whereas σ2 corresponds to how

uncertain the policy is ex ante. We refer to |B̄| as policy sentiment because, as the payoff structure

below makes clear, the higher |B̄| is, the more strongly all players lean either in favor of or against

the adoption of the policy.
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Citizen i has access to local evidence β(i) ∈ R, which is informative about the true value B.

For instance, the local evidence β(i) can be interpreted as the realized local impact of the policy

for citizen i’s demographic group.5 We let β(m) := (β(i1), . . . , β(in)) denote the vector of local

evidence accessible to citizens in minipublic m = {i1, . . . , in}. For any minipublic m and realized

local evidence β(m), the expected value of the policy is updated from B̄ to a post-minipublic value

Bm := E[B | m, β(m)]. We assume that for any m, the joint distribution of B and β(m) is

multivariate Gaussian; this allows for flexible correlation across the citizens’ local evidence. By

standard Bayesian updating, this post-minipublic value is also Gaussian:

Bm ∼ N (B̄,Σ(m)). (2)

The post-minipublic value Bm is centered at the prior value B̄, and its variance is determined

by the composition of the minipublic. Minipublics that result in a more variable post-minipublic

value are more informative (in the Blackwell order) because that implies lower residual uncertainty

about B. Thus, we refer to Σ(m) as the minipublic informativeness of m. Assumption 1 imposes

regularity conditions on Σ. LetM denote the set containing all finite subsets from [0, 1].

Assumption 1. The minipublic informativeness given by the function Σ :M→ [0, σ2] satisfies the

following properties:

(i) Σ(∅) = 0;

(ii) for any m ( m′, Σ(m) < Σ(m′);

(iii) Σ is continuous at any m ∈M \ ∅.6

Actions and strategies. The game proceeds in three stages: (i) policymaker’s choice of a

minipublic, (ii) citizens’ evidence discovery, and (iii) policymaker’s policy adoption. We solve for

the set of policymaker-preferred Perfect Bayesian equilibria of this game.7 In the first stage, the

policymaker chooses a minipublic m ∈ Mn, where n ∈ N is an exogenous capacity constraint on

the size of the minipublic. The policymaker’s minipublic choice strategy consists of a lottery over

feasible minipublics ∆(Mn). Each citizen in a realized minipublic m observes the entire m.

In the second stage, each citizen i ∈m in the realized minipublic m decides whether to costlessly

and publicly discover his local evidence. If i is active in evidence discovery, then β(i) is observed

by all players. Otherwise, i is passive, and β(i) remains unobserved by all.8 Hence, each minipublic

5Section 4.2 expands on this interpretation by imposing more structure on the nature of local evidence: the value
B is the policy’s average local impact across all demographic groups, and local impact is correlated across groups.

6For a suitable notion of distance between any two minipublics, we take the Hausdorff distance δH(m,m′) :=
inf{ε > 0 : m ⊆m′ε and m′ ⊆mε}, where mε,m

′
ε denote the ε-balls around citizens in m,m′, respectively.

7The focus on policymaker-preferred equilibria is common in the literature on information and mechanism design.
8In Section 6.2, we analyze noisy evidence discovery and establish that restricting attention to perfect discovery

or no discovery is without loss.
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citizen has an evidence discovery strategy δi : Mn → ∆{0, 1}. All discovery decisions are taken

simultaneously within m. An active minipublic m̂ is a minipublic in which all citizens are active,

hence β(m̂) is observed.

In the third stage, the policymaker decides whether to adopt or reject the policy. She makes

this decision after observing (m̂, β(m̂)) as well as a random threshold of adoption c, whose value is

realized at the beginning of the third stage, after all evidence discovery has taken place.

Payoffs. The payoff of the policymaker is given byB if the policy is adopted and c otherwise, where

the threshold of adoption is drawn from c ∼ N (c̄, τ2). By contrast, the payoff of citizen i ∈ [0, 1]

is given by B if the policy is adopted and by ci otherwise, where ci is a citizen-specific threshold

of adoption drawn from ci ∼ N (0, τ2
i ). All thresholds of adoption are realized simultaneously (after

evidence discovery) and independently. We make two simplifications in this baseline model. First,

we set the policymaker’s ex ante bias to c̄ = 0 so as to focus on the role of threshold uncertainty

rather than that of ex ante conflict between the policymaker and the citizens. Second, we observe

that it is without loss to have τi = 0 for all i; hence, all citizens obtain B from adoption and

0 otherwise. Appendix D.4.2 analyzes the richer model with an ex ante biased policymaker and

heterogeneity in citizens’ thresholds, and it establishes that the predictions of our baseline model

extend qualitatively to it. We refer to τ as political uncertainty : the higher τ is, the higher is the

likelihood that the citizens and the policymaker are in ex post disagreement about the policy.9

Interpretation of the policymaker’s threshold and political uncertainty. The threshold c

captures in reduced form any wedge between the contribution of the policy to the public interest—

the evaluation of which is the minipublic’s task—and the impact of the policy on other idiosyncratic

interests of the policymaker. For example, at the time of policy adoption the policymaker might

care disproportionally about the budgetary pressures that the implementation of the policy puts

on certain sectors of the economy or on other policies in the policymaker’s platform, about the

bureaucratic friction underlying its implementation, and about the expected time to its imple-

mentation. Besides, an elected policymaker might be concerned with how adoption affects certain

stakeholders—lobbyists, advocacy groups, key party supporters—and how the policy trades off cur-

rent popularity for favorable political legacy. In the case of CCC, subsequent surveys suggest that

almost all recommendations would have been approved by a supermajority of the French people,

suggesting the presence of a wedge between Macron’s preferred decision and that of the citizens.10

At the time of their proceedings, most minipublics face uncertainty about the eventual wedge

9The probability of ex post disagreement is Pr(0 < B < c) + Pr(c < B < 0) = arctan(τ/σ)/π, which is strictly
increasing in τ .

10See the survey results at http://www.odoxa.fr/sondage/mesures-de-convention-citoyenne-seduisent-francais-a-
lexception-notable-110-km-h/.
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driving the policymaker’s responsiveness to its recommendations. For example, the proceedings of

CCC coincided with the early stages of the global pandemic, the domestic consequences of which

were highly uncertain. In general, the uncertainty about this wedge is arguably greater in more

economically volatile environments, in which the budgetary priorities of the policymaker are less

clearly specified and likely to shift. Political uncertainty is greater the longer is the time frame

specified for a formal response by a policymaker to the minipublic’s report, the lower is the degree

of scrutiny and oversight that the minipublic is allowed after issuing its report, and the lower is the

public visibility of the minipublic and the public awareness about the policy issue. For example,

in light of CCC’s experience, Scotland’s Climate Assembly did not disperse the minipublic after its

report was issued and the government was required to present a formal response within six months.11

Moreover, political uncertainty proxies citizens’ trust in the policymaker based on past decisions on

related issues and her responsiveness to minipublics in the past (Van Dijk and Lefevere (2022)).

3 Policymaker’s problem

This section derives the players’ expected payoffs, introduces the curse of too little information,

which is a key driving force in the analysis, and simplifies the policymaker’s problem of choosing a

minipublic.

3.1 Conflict between the policymaker and the citizens

Players’ expected payoffs. Fix a minipublic m and an evidence discovery strategy profile δ :=

(δi)i∈m. This strategy profile induces a lottery over active minipublics m̂ ⊆m, and hence a lottery

over different levels of minipublic informativeness Σ(m̂). We first characterize the expected payoffs

of the policymaker and of the citizens from an active minipublic m̂. The expectation is taken with

respect to both the local evidence β(m̂) and the threshold of adoption c: the policymaker adopts the

policy if Bm̂ > c and keeps the status quo if Bm̂ < c (allowing for any tie-breaking rule in the zero-

probability event Bm̂ = c). An active minipublic introduces a lottery over post-minipublic values:

if a minipublic is more informative than another, the distribution it induces over post-minipublic

values is a mean-preserving spread of the distribution induced by the less informative one. The payoff

characterization in Lemma A.1 establishes that Σ(m̂) is a sufficient statistic for the minipublic m̂ in

the players’ payoffs. This is a direct implication of the Gaussian distribution of the post-minipublic

value. Therefore, we write the players’ payoffs directly over minipublic informativeness as VP (Σ)

for the policymaker and VC(Σ) for the minipublic citizens.

11See “Scrutiny and citizens’ assemblies: A missing piece of the democratic puzzle?”
(https://www.opendemocracy.net/en/can-europe-make-it/scrutiny-and-citizens-assemblies-a-missing-piece-of-the-
democratic-puzzle/).
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The citizens’ expected payoff from adoption differs from that of the policymaker because the

citizens do not internalize the realized threshold of adoption. For any τ > 0, citizens face agency

loss because policies with a negative (positive) post-minipublic value are adopted (rejected) with

positive probability. The expected payoff of the policymaker is Pr[Bm̂ > c]E[Bm̂ − c|Bm̂ > c],

whereas that of the citizens is Pr[Bm̂ > c]E[Bm̂|Bm̂ > c]. The probability of adoption is the same in

both expression; however, they differ in the expected payoff conditional on adoption. The citizen’s

payoff can be rewritten in the following way so as to highlight the misalignment between him and

the policymaker:

VC(Σ(m̂)) = VP (Σ(m̂)) + Pr [Bm̂ > c] E [c|Bm̂ > c]

= VP (Σ(m̂))− τ2√
τ2 + Σ(m̂)

φ

(
B̄√

τ2 + Σ(m̂)

)
. (3)

The misalignment term in the right-hand side depends on both the probability of adoption and the

expected threshold that the policymaker acts upon conditional on adoption. This expected threshold

is strictly negative. The citizens perceive the policymaker as being too positively disposed towards

the average adopted policy and too negatively disposed towards the average rejected policy. Hence,

the payoff of the citizens is less than that of the policymaker for any informativeness Σ(m̂). As

τ → 0, the misalignment vanishes because the distribution of the policymaker’s threshold collapses

to the citizen’s threshold, so the expected threshold conditional on adoption tends to zero. As

τ → +∞, on the other hand, the probability of adoption approaches 1/2—it is as if a coin flip

determines adoption—whereas the expected threshold conditional on adoption tends to −∞.

We next examine the conflict between the policymaker and the citizens over the level of infor-

mativeness. Lemma 3.1 shows that the policymaker always prefers higher informativeness, whereas

the minipublic citizens might not.

Lemma 3.1 (Dependence of payoffs on informativeness).

(i) The expected payoff of the policymaker, VP (Σ), is strictly increasing in Σ ∈ [0,∞).

(ii) The expected payoff of any citizen, VC(Σ), is strictly quasiconvex in Σ, with a minimum at

Σ = max

{
0,

1

2

(√
τ4 + 4B̄2τ2 − 3τ2

)}
. (4)

The policymaker aims to get as precise an estimate of the value of the policy as she can. For

any realization of her threshold, higher informativeness leads to a more accurate decision, which

strictly benefits her. Hence, the policymaker prefers all citizens in the minipublic to be active, as

each citizen strictly adds to informativeness. In contrast, the citizen’s payoff need not be increasing

10



interim payoff

Bm̂

(a) The citizen’s expected payoff Bm̂Φ (Bm̂/τ) (in blue) and
the policymaker’s expected payoff Bm̂Φ (Bm̂/τ) + τφ (Bm̂/τ)
(in yellow) for every realized post-minipublic value Bm̂.

citizen’s interim payoff

c̄
Bm̂

(b) The citizen’s expected payoff Bm̂1[Bm̂ > c̄] if the poli-
cymaker’s threshold is known to be c̄ > 0 (i.e., τ = 0). the
policymaker’s threshold is known to be c̄ > 0 (i.e., τ = 0).

Figure 1

in informativeness. Higher informativeness has two opposing effects on the citizen’s payoff, which

give rise to quasiconvexity. On the one hand, a more informative minipublic leads to a more

precise estimate of the policy’s value and a better informed adoption decision, which benefits the

citizens. With no political uncertainty this effect is the only one present. In the presence of political

uncertainty, on the other hand, higher informativeness might also increase the probability and the

severity of the expected misalignment between the policymaker and the citizens.

To better understand the quasiconvexity of the citizen’s payoff in informativeness, we contrast

the interim payoff (i.e., before c is drawn) of the citizens with that of the policymaker for any real-

ized post-minipublic value Bm̂ (Figure 1a). The policymaker’s interim payoff is globally increasing

and convex. Hence, for any prior value B̄, the policymaker prefers a lottery over post-minipublic

values induced by any active minipublic to a degenerate lottery with support {B̄} induced by the

empty minipublic. On the other hand, the citizens’ interim payoff is U-shaped.12 A higher post-

minipublic value unequivocally leads to a higher probability of adoption. For sufficiently negative

post-minipublic values, a slight increase in the value is overshadowed by the increase in the prob-

ability of adoption, hence the citizen’s interim payoff decreases in the post-minipublic value. The

payoff approaches zero from below as Bm̂ → −∞ since the probability of adoption goes to zero.

Similarly, it approaches the line Bm̂ from below as Bm̂ → +∞ since the probability of adoption

goes to one. The wedge between the players’ interim payoffs is most pronounced around zero—that

is, the expected misalignment is highest—since it is for such post-minipublic values that the policy-

maker’s decision is most likely to differ from the citizens’ preferred one. The citizens’ interim payoff

is convex for post-minipublic values sufficiently close to zero (i.e., for |Bm̂| <
√

2τ) and concave

otherwise.

12Appendix D.2 extends this insight beyond the Gaussian framework: the citizens’ interim payoff is U-shaped in
the post-minipublic value for any log-concave density of c.
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For B̄ sufficiently far from zero, the citizen prefers the degenerate distribution {B̄} to any mean-

preserving spread Bm̂ ∼ N (B̄,Σ(m̂)) with Σ(m̂) > 0 small, since the probability mass of such

distributions is concentrated on post-minipublic values in the concave portion of the interim payoff.

No information is strictly preferred to a small amount of information. However, for sufficiently

high Σ(m̂), any further mean-preserving spread transfers probability mass from post-minipublic

values around zero with high expected misalignment to extreme post-minipublic values with low

expected misalignment. The downside of such a lottery gets closer to zero and the upside becomes

even more positive due to the citizen’s interim payoff being decreasing for sufficiently negative Bm̂

and increasing for positive Bm̂. Therefore, for B̄ sufficiently far from zero, VC is decreasing for

low informativeness and increasing for high informativeness. For B̄ close to zero, on the other

hand, the convexity of the interim payoff implies that higher informativeness is always preferred,

hence Σ = 0. There is high expected misalignment around the prior value, and any lottery over

post-minipublic values that transfers probability mass further away from the prior leads to lower

expected misalignment.

This heuristic argument, as well as the qualitative finding of Lemma 3.1, extend to the case

of a biased policymaker with c̄ 6= 0. In fact, Appendix D.4.2 shows that uncertainty about the

policymaker’s threshold is sufficient, but not necessary, for the citizen’s expected payoff to be

quasiconvex. Figure 1b illustrates the citizen’s payoff for any given post-minipublic value if the

policymaker’s threshold is known to be c̄ > 0. For B̄ < c̄, the citizen prefers any lottery N (B̄,Σ)

over post-minipublic values to the degenerate lottery at B̄, since such a lottery has a significant

upside but no downside. However, if B̄ > c̄, a low-informativeness minipublic induces a lottery with

a substantial downside for post-minipublic values in the disagreement interval (0, c̄).

The curse of too little information. At the evidence discovery stage, citizen i ∈ m̂ induces

active informativeness Σ(m̂) by being active and passive informativeness Σ(m̂\i) by being passive.

The difference Mi(m̂) := Σ(m̂) − Σ(m̂\i) corresponds to the marginal informativeness of citizen

i. By Assumption 1(ii), active informativeness is strictly higher than passive informativeness for

any m̂ and i ∈ m̂. Moreover, while active informativeness is the same for all citizens in m̂,

passive informativeness might vary. A citizen’s decision of whether to be active, therefore, boils

down to whether he prefers his active informativeness over his passive informativeness. We refer

to this as the evidence discovery constraint (ED): citizen i ∈ m̂ prefers to be active if and only if

VC(Σ(m̂)) > VC(Σ(m̂\i)).
Through the discovery of his local evidence, a minipublic citizen induces a mean-preserving

spread of the distribution over post-minipublic values already induced by the rest of the minipublic.

The citizen’s evidence discovery decision, therefore, is one of choosing between two lotteries over

12
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ΣΣ(m̂)Σ(m̂ \ i)

Figure 2: The curse of too little information.

post-minipublic values. As explained above, the citizen might not prefer a more spread out lottery

if such a spread shifts mass to post-minipublic values with a high expected misalignment, for which

the policymaker is likely to misuse the evidence by making the wrong adoption decision. Formally,

when does the possibility of such misuse dominate the citizen’s calculus, thus leading him to be

passive? Two conditions must be met for this to arise, as illustrated in Figure 2. First, the minimum

of the citizen’s payoff must be to the right of zero. That is, the citizen’s payoff must be decreasing

in informativeness at Σ = 0: contributing a small amount of information to an otherwise entirely

uninformed policymaker harms the citizen.13 Second, both the citizen’s passive informativeness and

his marginal informativeness in the minipublic must be sufficiently low: Σ(m̂ \ i) must be lower

than Σ, and Σ(m̂) must not be too large relative to Σ. Figure 2 illustrates the violation of (ED)

for Σ(m̂) < Σ.

3.2 The simplified problem of the policymaker

The following lemma establishes that it is without loss for the policymaker to restrict attention

to a deterministic choice over active minipublics, thus significantly simplifying the policymaker’s

problem.

Lemma 3.2. In the class of policymaker-preferred equilibria, it is without loss to restrict attention

to deterministic minipublics m ∈Mn in which all citizens are active with probability one.

Lemma 3.2 follows from three observations. First, the policymaker cannot encourage more evi-

dence discovery by using lotteries over different minipublics. This is because each citizen observes

the realized minipublic before deciding whether to be active. Second, for any minipublic and any
13Even though evidence discovery is costless, the marginal value of a small amount of informativeness can be

negative due to the misuse of information. For a classic result on the negative marginal value of a small amount of
information in single-agent settings with costly learning, see Radner and Stiglitz (1984) and Chade and Schlee (2002).
In contrast to Martinelli (2006) and Strulovici (2010), the negative value of experimentation in our framework is not
due to costly information or pivotality considerations in voting.
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equilibrium in which a subset of citizens mix between being active and being passive, we can con-

struct another equilibrium that guarantees a higher expected payoff to the policymaker: in this

alternative equilibrium, all citizens who were active with a nonzero probability in the original equi-

librium are active with probability one. The passive informativeness and the active informativeness

of any citizen in such an equilibrium are weakly higher than in the original equilibrium. By the

curse of too little information, all citizens with a weak preference for being active in the original

equilibrium strictly prefer being active in the alternative one. Third, the policymaker cannot benefit

from including passive citizens in the minipublic. Passive citizens affect neither the informativeness

Σ(m̂) generated by the active citizens in m̂ nor the passive informativeness of any active citizens.

Hence, they are inconsequential both for the policymaker’s expected payoff and the (ED) constraints

of other minipublic citizens.

From Lemma 3.1, the maximization of the policymaker’s expected payoff consists of choosing

the minipublic with the highest informativeness Σ(m) among all active minipublics in Mn. The

(ED) constraints guarantee that each citizen in the minipublic is active. Thus, we can write the

policymaker’s minipublic choice problem as the following simplified problem:

max
m∈Mn

Σ(m) (P)

s.t. VC(Σ(m)) > VC(Σ(m\i)) ∀i ∈m. (ED)

We call a minipublic m feasible if (i) it consists of at most n citizens, and (ii) the (ED) constraint

of each i ∈m is satisfied.

The policymaker’s unconstrained problem (P) consists of choosing a minipublic in Mn that

maximizes informativeness Σ(m). We letMf
n denote the set of first-best minipublics that solve this

problem. By the compactness ofMn and the continuity of Σ, a first-best minipublic always exists.

By Assumption 1(ii), any first-best minipublic consists of exactly n citizens. In the absence of po-

litical uncertainty, any such first-best minipublic maximizes not only the payoff of the policymaker,

but also that of the citizens. Hence, the set of first-best minipublics provides a natural benchmark

for how diverse a minipublic should be absent any strategic considerations.

4 Characterization of the optimal minipublic

4.1 Optimal minipublic size

In designing a minipublic, the policymaker chooses both how large the minipublic is and which

citizens it consists of. If no first-best minipublic inMf
n is feasible, she has two instruments through

which to satisfy all (ED) constraints: distorting the size and/or the composition of the minipublic.

14
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Figure 3: Citizen i ∈m prefers to be active if citizen j 6∈m is added to m.

Our first observation concerns the size of the optimal minipublic. Does the policymaker ever choose

fewer citizens than what her capacity allows? Proposition 4.1 rules out the possibility of any

nonempty optimal minipublic consisting of fewer than n active citizens.14 If the policymaker is able

to incentivize a minipublic of fewer than n citizens to be active, then she is also able to incentivize

a strictly more informative minipublic of exactly n citizens. Adding a new citizen into a minipublic

increases both the active informativeness as well as the passive informativeness of all original citizens,

providing even stronger incentives for them to continue to be active. Moreover, the newly added

citizen strictly prefers to be active since he is joining an active minipublic that has already overcome

the curse of too little information: his passive informativeness is the informativeness of the original

minipublic, at which the citizen’s payoff is already increasing.

Proposition 4.1 (No distortion in minipublic size). Given capacity n, the optimal minipublic either

is empty or consists of exactly n active citizens.

Proposition 4.1 thus narrows down the types of the optimal minipublic that can arise to these

three: (i) a first-best minipublic for n citizens, (ii) a second-best minipublic of n active citizens, and

(iii) the empty minipublic. We say that the optimal minipublic is distorted in composition if it is

of type (ii). It is the characterization of such distortions in the composition that we turn to next.

4.2 Optimal minipublic composition

4.2.1 Marginal informativeness in the optimal minipublic

If no first-best minipublic is feasible, the policymaker is forced to choose a distorted minipublic that

attains the highest informativeness among those feasible. What can be said about its composition?

In any first-best minipublic that is not feasible, the passive citizens are those with the lowest passive

informativeness, and hence the highest marginal informativeness. Because the policymaker cannot
14What makes this result nontrivial is its emphasis on the number of active citizens. Of course, if the optimal

minipublic is empty, then any minipublic of n passive citizens is also optimal.

15



VC

Σ

Σ(mf
n \ i

f
1) Σ(mf

n)Σ(m∗)Σ(m∗ \ i)

Figure 4: Any citizen i in the optimal minipublic m∗ has strictly lower marginal informativeness than the passive
citizen if1 in the first-best minipublic mf

n.

attain a higher active informativeness than that of a first-best minipublic, the only way through

which she can incentivize citizens to be active is by reducing their marginal informativeness within

the minipublic below that of the passive citizens in any first-best minipublic. That is, the way out

of the curse of too little information is to make citizens “informationally smaller” than the passive

citizens in any first-best minipublic.

Proposition 4.2 (Reduced marginal informativeness). If an optimal minipublic m∗ is neither empty

nor in Mf
n, then the marginal informativeness Mi(m

∗) for any i ∈ m∗ is strictly lower than the

highest marginal informativeness max
i∈mf

n

Mi(m
f
n) in any first-best minipublic mf

n ∈Mf
n.

Figure 4 illustrates Proposition 4.2. Suppose that in a first-best minipublic mf
n, citizen if1 is

passive. Since the informativeness of any minipublic other than the first-best is strictly lower, each

citizen in the optimal minipublic must have strictly higher passive informativeness than Σ(mf
n \ if1)

in order to be willing to be active. This implies that each citizen in m∗ has strictly lower marginal

informativeness than if1 in mf
n. If no first-best minipublic is feasible, there is least one passive

citizen in every first-best minipublic. Then, each active citizen in the optimal minipublic must have

strictly lower marginal informativeness than all such passive first-best citizens. If the curse of too

little information is so severe that not just a subset but all citizens are passive in any first-best

minipublic, then the marginal informativeness of each citizen in the optimal minipublic has to be

strictly lower than the marginal informativeness of any citizen in the first-best minipublic.

The key insight emerging from Proposition 4.2 is that the policymaker reduces the marginal

informativeness of citizens in the optimal minipublic in order to incentivize evidence discovery. The

local evidence of each minipublic citizen has to be less novel than that of the passive citizens in any

first-best minipublic. Building on Proposition 4.2, the next section analyzes the precise composition

and demographic diversity of the optimal minipublic for a tractable correlation structure, for which
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Figure 5: The grey mapping illustrates a particular realization of β satisfying Assumption 2.

marginal informativeness can be derived explicitly.

4.2.2 Ornstein-Uhlenbeck correlation in local evidence

We now impose additional structure on the value of the policy and on the correlation across citizens’

local evidence. We interpret the random mapping β : [0, 1]→ R as the realized local impact of the

policy, where β(i) is the realized local impact for demographic i. The value of the policy corresponds

to the policy’s average local impact15

B :=

∫ 1

0
β(i) di.

We model the distribution over possible mappings from which β is drawn through a particular

Gaussian process in which correlation weakens with distance between demographics.16

Assumption 2 (Distribution of the local impact mapping). The mapping β is drawn from the space

of sample paths of an Ornstein-Uhlenbeck process on [0, 1], where

(i) for each i, β(i) ∼ N (B̄, 1);17

(ii) for any two citizens i, j ∈ [0, 1], the correlation between β(i) and β(j) is given by e−|i−j|/`,

where ` ∈ (0,+∞).

Figure 5 illustrates one such realization of the local impact mapping. For any two citizens

i, j ∈ [0, 1], local impact β(i) and β(j) are positively correlated: higher impact for one demographic

suggests higher impact for others as well. The marginal distribution of local impact β(i) is identical
15For ease of interpretation, this formulation weighs equally all demographic groups; however, the analysis can be

extended to a non-uniform measure over demographics.
16Appendix D.1 presents axioms on the correlation structure which are satisfied if and only if Assumption 2 holds.

These axioms have a natural interpretation in our local impact interpretation.
17It is without loss for all subsequent analysis that the mean local impact is normalized to E[β(i)] = B̄ for all

i ∈ [0, 1] instead of an arbitrary β̄(i) and that the variance is normalized to one.
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across all i ∈ [0, 1]. However, how informative a given β(i) is about the average local impact B

varies across citizens. Moreover, the greater ` is, the stronger is the correlation for any pair of

citizens. Hence, ` measures the degree of homogeneity among citizens. As ` → +∞ (or ` → 0),

local impact becomes almost perfectly correlated (or almost independent) across citizens.

Minipublic informativeness. With the Ornstein-Uhlenbeck correlation structure in place, we

derive the minipublic informativeness Σou(m) for any m as well as the marginal informativeness

Mj(m) of each minipublic citizen ij ∈m.18 In the post-minipublic value Bm, the local impact of any

minipublic citizen β(ij) is weighted monotonically with how far ij is from immediate neighbors ij−1

and ij+1: the further away the neighbors are from him, the more influential his evidence is because

the less it overlaps with that of the neighbors. Taking this intuition further, Lemma B.1 shows that

the informativeness of a minipublic can be expressed as a sum of the singleton informativeness of

its citizens, each weighted by how novel the citizen’s evidence is relative to that of the neighbors.

Crucially, the marginal informativeness of each minipublic citizen Mj(m) depends only on ij ’s

immediate neighbors in the minipublic; in fact, it depends only on the distances from those neigh-

bors. The further away ij is from the neighbors, the more marginally informative he is in the

minipublic. This monotonicity is due to two reasons. First, with greater distance, β(ij) is less cor-

related with β(ij−1) and β(ij+1). Second, as distance increases, the mass of citizens between ij and

his neighbors—i.e., citizens outside the minipublic about whom ij is informative—also increases.

Lemma 4.1. Fix m = {i1, . . . , in}. Citizen ij’s marginal informativeness Mj(m) depends on m

only through the adjacent distances ij − ij−1 and ij+1 − ij, and it is strictly increasing in both.

First-best minipublic. The first-best minipublic consists of n distinct citizens who solve the

unconstrained problem (P) by jointly maximizing Σou. Bardhi (2022) characterizes the solution to

this problem, the steps of which are outlined in Remark 1 in Appendix B.

Corollary 4.1 (Proposition 3.5 in Bardhi (2022)). For any n, there exists a unique first-best

minipublic mf
n := {if1 , ..., i

f
n} that satisfies the following:

(i) it is symmetric about the median citizen: ifk = 1− ifn−k+1 for every k ∈ {1, . . . , n};

(ii) the distance between adjacent citizens ∆f
n is constant: ifk − i

f
k−1 = ∆f

n for all k ∈ {2, ..., n};

(iii) the distance ∆f
n is such that the post-minipublic value B

mf
n
weighs equally the realizations

β(if1), . . . , β(ifn).

This characterization builds on three observations. First, if a citizen is to be chosen between

two citizens i and i′, minipublic informativeness is maximized exactly at (i + i′)/2. Hence, the
18The explicit expressions can be found in Lemma B.1 in Appendix B. It is straightforward to verify that Σou

satisfies Assumption 1.
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distance between any two adjacent demographics included in the first-best minipublic is constant.

Second, because correlation decreases in distance, the median citizen is the single most informative

citizen. Hence, any minipublic with a constant distance between citizens becomes strictly more

informative if centered around the median citizen. These two observations reduce the problem to

choosing the leftmost citizen if1 so as to maximize informativeness. Third, such a minipublic in

which the evidence of the peripheral citizens i1 and in is weighted differently from that of the inner

citizens i2, . . . , in−1 is suboptimal: the citizens’ weights are complements from the perspective of

informativeness.

Returning to the constrained problem, which citizens are more likely to be passive in the first-

best minipublic whenever it is not feasible? We show that the structure of mf
n is such that either (i)

only the most peripheral citizens if1 and ifn are passive, or (ii) all citizens are passive. To establish

this, Lemma 4.2 ranks the marginal informativeness of citizens in the first-best minipublic.

Lemma 4.2. In the first-best minipublic mf
n, M1(mf

n) = Mn(mf
n) and Mj(m

f
n) = Mk(m

f
n) for any

j, k ∈ {2, . . . , n− 1}. If n > 3, then M1(mf
n) > M2(mf

n).

This result ranks the first-best citizens based on how “informationally small” each is. Inner

citizens if2 , . . . , i
f
n−1 are equally marginally informative because they are equidistant from their

immediate neighbors. So if one inner citizen is passive, all inner citizens are passive. However, the

peripheral citizens if1 and ifn carry strictly higher marginal informativeness than the inner citizens.

This might seem surprising since all citizens’ evidence is weighted equally in the post-minipublic

value. However, what makes the marginal informativeness of if1 and if2 different is the extent to

which they are correlated to their minipublic neighbors. The peripheral citizen if1 has only one

neighbor, whereas if2 has two neighbors. If if1 remains passive, his only neighbor’s evidence predicts

his impact less accurately than if if2 stays passive and his two neighbors predict his evidence.19

Therefore, if some citizens are passive in the first-best minipublic, if1 and ifn must be among them.

4.2.3 General characterization of the optimal minipublic

We first analyze the distortions in small minipublics, which turn out to be insightful for the general

characterization for any capacity n. The optimal singleton minipublic is either the first-best one

consisting of the median citizen mf
1 = {1/2} or empty. This is because the passive informativeness

of any singleton minipublic is the same: Σ(∅) = 0. If the most informative singleton minipublic

is passive, any other less informative citizen is also passive. The smallest capacity for which a

distorted minipublic arises is n = 2. If the first-best minipublic mf
2 is not feasible, it must be

19Formally, the residual variance of β(i1) given β(i2) is 1 − e−2(i2−i1)/`, whereas the residual variance of β(i2)

given both β(i1) and β(i3) is
(

1− e−2(i2−i1)/`
)(

1− e−2(i3−i2)/`
)
/
(

1− e−2(i3−i1)/`
)
< 1− e−2(i2−i1)/`.
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Figure 6: Distortions in small minipublics

that passive informativeness of at least one citizen is too low. But in a two-citizen minipublic, the

passive informativeness of one citizen increases the closer the other citizen is to the median citizen.

This results in an optimal minipublic in which both citizens are closer to the median citizen than

the first-best citizens (Figure 6a). The insight that i∗2 must be to the left of if2 so as to ensure a

sufficiently high passive informativeness for the peripheral citizen i∗1 generalizes beyond n = 2.

Lemma 4.3. Let n > 2. In any optimal minipublic m∗ /∈ {mf
n, ∅}, i∗2 < if2 and i∗n−1 > ifn−1.

Lemma 4.3 establishes that for the peripheral citizens i∗1 and i∗n to be active, their neighbors i∗2
and i∗n−1, respectively, must be shifted towards the periphery. The key observation, which generalizes

the intuition from n = 2, is that shifting i∗2 to the right of its first-best counterpart strictly decreases

i∗1’s passive informativeness: even if all citizens to the right of i∗2 were chosen so as to maximize

informativeness given i∗2, the resulting minipublic m∗ \ i∗1 would be further away from the first-best

minipublic with (n − 1) citizens. For n = 3, this implies that no distortions in composition are

possible. That is, i∗2 cannot be both to the left and to the right of the median citizen so as to induce

both i∗1 and i∗3 to be active. For n = 4, however, it implies that the inner citizens are further apart

than in the first-best minipublic (Figure 6b). While the patterns of distortions for n = 2 and n = 4

are seemingly different, they are manifestations of the same observation made in Lemma 4.3.

For inner citizens between i∗2 and i∗n−1, we show that any optimal minipublic features at most

two distances between adjacent citizens. First, it could be that all such inner citizens are equidistant

from each other: i∗3 − i∗2 = . . . = i∗n−1 − i∗n−2 =: ∆ for some ∆ > 0. We refer to this as the ∆-

equidistant pattern. Second, it could be that the distance between adjacent inner citizens alternates

consecutively between a smaller distance δ > 0 and a larger distance ∆ > 0. That is, i∗3−i∗2 = i∗5−i∗3,
i∗4 − i∗3 = i∗6 − i∗5, and so on. We refer to this as the (δ,∆)-alternating pattern. Proposition 4.3

characterizes the optimal minipublic in terms of these two patterns and Figure 7 illustrates them.

Proposition 4.3 (Distortions in the optimal minipublic). Let n > 5. Any optimal minipublic

m∗ = {i∗1, . . . , i∗n} /∈ {∅,m
f
n} satisfies the following properties:

(i) for inner citizens {i∗2, . . . , i∗n−1}, the minipublic is either of the ∆∗-equidistant pattern with

∆∗ > ∆f
n or of the (δ∗,∆∗)-alternating pattern with i∗3 − i∗2 = i∗n−1 − i∗n−2 = ∆∗ > ∆f

n;

(ii) the (ED) constraints of i∗1 and i∗n bind; each is closer to their neighbor than in the first-best

minipublic: i∗2−i∗1 < ∆f
n and i∗n−i∗n−1 < ∆f

n; and each either maximizes informativeness given
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Figure 7: Two patterns in Proposition 4.3

the rest of the minipublic or is of distance δ∗ away from his neighbor in the (δ∗,∆∗)-alternating

pattern;

(iii) it is symmetric: i∗k = i∗n−k+1 for k = 1, . . . , n.

For any two citizens i∗2 and i∗n−1 distorted as in Lemma 4.3, the minipublic that attains the high-

est informativeness—which is the one that the policymaker prefers—has all inner citizens i∗3, . . . , i∗n−2

positioned equidistantly. The marginal informativeness of each such inner citizen is higher than in

the first-best minipublic because both his neighbors are further away from him. However, such

an equidistant minipublic might not be feasible if the marginal informativeness of each such inner

citizen is too high to incentivize him to be active. Whenever this is the case, the policymaker has

to decrease this marginal informativeness by shifting the inner citizen closer to some neighbor, and

hence, making his local evidence more redundant. In order to minimize the loss in informativeness

due to such a shift away from the equidistant pattern, the optimal minipublic equalizes the marginal

informativeness across all inner citizens i∗3, . . . , i∗n−2 and makes their (ED) constraints bind by plac-

ing each of them δ∗ away from one neighbor and ∆∗ away from the other. Any other pattern—be

that one that rearranges the two distances differently or one that features three or more distinct dis-

tances between inner citizens—is guaranteed to have at least some inner citizen from {i∗3, . . . , i∗n−2}
strictly willing to be active, which leaves room for improvement for the policymaker.

If the first-best minipublic is not feasible, the marginal informativeness of its peripheral citizens

is excessively high. The policymaker distorts the composition of the minipublic by just enough so as

to make the peripheral citizens i∗1 and i∗n indifferent between being active and being passive. Thus,

their (ED) constraints must bind in the optimal minipublic. Moreover, any minipublic distorted in

the ways described in parts (i) and (ii) must be symmetric around the median citizen; otherwise,

the (ED) constraint of the peripheral citizen closer to the periphery would be slack, in which case

the policymaker could strictly improve minipublic informativeness by shifting all citizens uniformly

either to the left or to the right. Therefore, in the optimal minipublic the left half of the unit mass

of citizens continues to be represented to the same extent as the right half.

Computing the optimal minipublic. From a computational perspective, this characterization

greatly simplifies the task of solving for the optimal minipublic because it reduces the number of
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choice variables from n (citizens) to at most two (adjacent distances).

In any candidate solution of the ∆-equidistant pattern, the inner citizens are pinned down by

the distance ∆ and the symmetry about 1/2, whereas the peripheral citizens exactly maximize

informativeness given ∆.20 Therefore, the entire minipublic can be expressed solely in terms of

∆, i.e., m(∆) = {i1(∆), . . . , in(∆)}. To identify a candidate solution, we search for the smallest

∆ ∈ (∆f
n, 1/(n− 3)) that makes the (ED) constraint for the peripheral citizens bind, i.e.,

VC (Σ(m(∆))) = VC (Σ (m(∆) \ i1(∆)))

and satisfies the (ED) constraints of the inner citizens. Relative to the first-best minipublic, the

optimal minipublic shifts towards the periphery just enough to leave i∗1 and i∗n indifferent.

Similarly, in any candidate solution of the (δ,∆)-alternating pattern, all citizens, including the

peripheral ones, are fully described by the pair of distances (δ,∆). In order to identify such candidate

solutions, we solve for (δ,∆) using two binding (ED) constraints, that of the peripheral citizens i∗1
and i∗n and that of the inner citizens i∗3, . . . , i∗n−2, respectively,

VC (Σ(m(δ,∆))) = VC (Σ (m(δ,∆) \ i1(δ,∆))) = VC (Σ (m(δ,∆) \ i3(δ,∆))) ,

and select the solution that leads to the highest minipublic informativeness Σ(m(δ,∆)).

Finally, Lemma D.2 shows that if a ∆-equidistant minipublic is feasible, then the optimal

minipublic must be of the ∆-equidistant pattern.21 This further simplifies the computation as

it warrants the search procedure starting with the ∆-equidistant pattern first: once a solution of

the ∆-equidistant pattern is identified, there is no need to continue searching for a candidate solution

of the (δ,∆)-alternating pattern.22 Moreover, in Section 5 we establish that the (δ,∆)-alternating

pattern is optimal for at most one capacity n—for all other capacities, it suffices to search for

the ∆-equidistant pattern only. For these two reasons, the equidistant pattern is the predominant

pattern of distortions.

Demographic diversity and representativeness. Given the characterization of Proposition

4.3, we can address the extent to which the optimal minipublic is representative of the citizenry.

Representativeness and diversity are often referred to as desirable features of a minipublic in the

20From the first-order condition, i1(∆) must satisfy 1−e−i1(∆)/` = tanh
(
i2(∆)−i1(∆)

2`

)
. In any optimal minipublic

of the ∆-equidistant pattern, the peripheral citizens must maximize informativeness given the rest of the minipublic,
whereas in any optimal minipublic of the (δ,∆)-alternating pattern, either both peripheral citizens satisfy such an
equation or they both are δ away from i∗2 and i∗n−1, respectively. This is an immediate corollary of Proposition 4.3(ii).

21Appendix D.3.1 presents additional results on the characterization depending on whether n is odd or even and
depending on which (ED) constraints are violated in the first-best minipublic. For example, we show that for n odd
the optimal minipublic can only be of the ∆-equidistant pattern.

22For example, for n = 6, ` = 1, τ = 1
2
and B̄ = 2.19375, no ∆-equidistant minipublic is feasible, but there exist

feasible (δ,∆)-alternating minipublics. Thus, the optimal minipublic is of the (δ,∆)-alternating pattern.
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literature on minipublic design (Flanigan et al. (2021), Steel et al. (2020), Fishkin (2011), Brown

(2006)). However, as Steel et al. (2020) points out, “both of these concepts can be interpreted in

more than one way, and furthermore the two can lead in different directions.” In what follows, we

present several natural measures of representativeness, discuss their implications for demographic

diversity understood as distances between demographics in the minipublic, and evaluate how the

first-best minipublic mf
n and the optimal minipublic m∗ compare according to such measures. The

formal results for this discussion can be found in Appendix D.3.2.

A protocol often cited as leading to a statistically representative minipublic is that of random

sampling of minipublic citizens, with all citizens having an equal chance of being sampled (Fishkin,

2009). Such uniform sampling of n citizens has 1/(n+ 1) as the expected leftmost citizen, 2/(n+ 1)

as the expected second leftmost citizen, and so on up to n/(n + 1) as the expected rightmost cit-

izen. Lemma D.4 shows that each first-best citizen is further away from the median citizen than

his counterpart in the expected minipublic from such uniform sampling. Moreover, any optimal

minipublic of the ∆-equidistant pattern is even further away. Then, according to any representa-

tiveness measure that decreases with each citizen’s distance from their counterpart in the minipublic

{1/(n+ 1), . . . , n/(n+ 1)}, any optimal minipublic m∗ of the ∆-equidistant pattern is always less

representative than the first-best minipublic. However, such uniform sampling entirely disregards

correlation in local impact, and so would any representativeness measure that relies on it. Our model

of minipublics builds on the premise that local impact is correlated across demographics: a citizen

is more representative of another citizen the stronger the correlation between their demographics.

We turn now to notions of representativeness that take this into account.

The minipublic informativeness Σ measures how well the local impact of minipublic citizens

predicts the average local impact across citizens, i.e., how well it approximates the estimate that

the public would hold about the policy if all local evidence were available. In the minipublics

literature, Steel et al. (2020) refer to this as “approximating the counterfactual public will” (p.

46). As such, minipublic informativeness maps the demographics of a minipublic into a measure

of representativeness and introduces a benchmark for how dispersed the minipublic citizens should

be in order for the minipublic to be maximally representative. By definition, then, any distorted

minipublic is always less representative than the first-best minipublic according to this measure Σ.

Another plausible measure of representativeness captures how well the local impact of the

minipublic citizens predicts the local impact of any randomly drawn citizen from [0, 1]. That is, to

what extent would the local evidence gathered by the minipublic represent the local evidence of a

hypothetical citizen who, as if behind a Rawlsian veil of ignorance, does not know his demographic

belonging? Formally, this measure quantifies the average uncertainty explained by β(m) about a
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Figure 8: Ranking of m∗ and mf
4 with respect to Ψ-representativeness

citizen’s local impact, i.e., the representativeness of m is

Ψ(m) :=

∫ 1

0
(1− var [β(i) | β(m)]) di. (5)

While Ψ is a well-defined measure of representativeness for any correlation structure in our baseline

model, for the case of the Ornstein-Uhlenbeck correlation we derive an explicit expression for it in

terms of the composition of m. The Ψ-maximal minipublic—i.e., the minipublic that maximizes

this representativeness measure—is more spread out than the first-best minipublic, in the sense that

each citizen is further away from the median citizen, as shown in Figure 8. This might suggest that

an optimal minipublic is more Ψ-representative than the first-best minipublic. However, we show

that this ranking can go either way, as illustrated in Figures 8a and 8b for a minipublic of four

citizens. Intuitively, what drives the ranking is the extent to which i∗2 and i∗3 are distorted relative

to the first-best minipublic and the Ψ-maximal minipublic: for a large distortion in which i∗2 is

sufficiently to the left of both if2 and his counterpart in the Ψ-maximal minipublic, the first-best

minipublic is more representative than the optimal minipublic even though all its citizens are closer

to the median citizen.

Lastly, the measure Ψ weighs citizens equally: the explained uncertainty about each citizen’s

local impact contributes in the same way to representativeness. In certain contexts, it might be

reasonable to ask that citizens closer to the median citizen be more important for representativeness;

other contexts might justify a greater weight for citizens at the margins of the society. Such weighting

can be modeled, for instance, through a Beta distribution over citizens in (5). Naturally, this

different weighting can reverse the ranking of the optimal minipublic and the first-best minipublic

in terms of representativeness compared to the ranking under Ψ.

5 Comparative statics

We now turn to analyzing how the type of the optimal minipublic and the distortions in its compo-

sition vary with the primitives of the environment: political uncertainty, minipublic capacity, policy

sentiment, and homogeneity of the citizenry. The formal results for this section are gathered in

Appendix C.
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Political uncertainty. Political uncertainty has a nonmonotonic effect on the type of the optimal

minipublic. From the citizen’s perspective, greater political uncertainty implies greater agency loss,

and hence a lower expected payoff for any level of informativeness. A first intuition might suggest

that the greater the political uncertainty that the citizens face, the more challenging it is for the

policymaker to motivate evidence discovery. However, contrary to this intuition, Proposition 5.1

shows that the optimal minipublic is a first-best one for either sufficiently low or sufficiently high

political uncertainty. The curse of too little information disappears at either extreme.

Proposition 5.1 (No distortions under high or low political uncertainty). Fix all parameters other

than τ . There exist cutoffs 0 < τ 6 τ̄ <∞ such that m∗ ∈ Mf
n if political uncertainty is either (i)

sufficiently low (i.e., τ 6 τ) or (ii) sufficiently high (i.e., τ > τ̄).

Political uncertainty determines the payoff-minimizing level of informativeness Σ for the citizen’s

payoff, which is single-peaked in τ . For τ either sufficiently close to zero or sufficiently high, Σ

is exactly zero, so the citizen’s payoff is strictly increasing in informativeness. As a result, any

minipublic, and in particular any first-best one, is feasible. However, the intuition for why a citizen

is willing to be active fundamentally differs across the two cases.

Under low political uncertainty, the expected misalignment vanishes for any realized post-

minipublic value. All players’ expected payoffs converge to max{Bm, 0}, which would be the citizen’s

payoff if they were in charge of adoption. In such a case, the citizens would always benefit from

higher informativeness. By contrast, under high political uncertainty, the policymaker’s decision

becomes fully unpredictable from the citizens’ perspective. The policy is adopted with probabil-

ity close to 1/2 for any post-minipublic value and the citizens can hardly affect the probability

of adoption by being passive. As τ → +∞, the citizens’ interim payoff in Figure 1a approaches

Bm/2, whereas the interval for which this interim payoff is convex Bm ∈ (−
√

2τ,
√

2τ) expands

to (−∞,∞). Due to this convexity, although the expected misalignment of all post-minipublic

values becomes unboundedly high as τ → +∞, on the margin any mean-preserving spread of the

prior value decreases expected misalignment. For τ sufficiently high, further increases in political

uncertainty result in a weakly more informative minipublic.

Therefore, what hampers evidence discovery and forces the policymaker to distort the optimal

minipublic is the presence of moderate, rather than high, political uncertainty. Unlike in the cases

of excessively high or low political uncertainty, under moderate political uncertainty the expected

misalignment varies substantially across post-minipublic values, thus discouraging further evidence

discovery at prior values with low expected misalignment. Not only the expected misalignment is

nonnegligible across all post-minipublic values but also each citizen’s evidence can significantly influ-

ence the expected misalignment that is realized. Hence, the optimal minipublic might be distorted
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Figure 9: Optimal minipublic for n = 5, ` = 1, B̄ = 2.168.

in composition, or even be empty. Figure 9 illustrates the distortions in the optimal minipublic

relative to the first-best one for the Ornstein-Uhlenbeck correlation structure from Section 4.2.2.

For n = 5, the optimal minipublic is always of the ∆-equidistant pattern. As τ becomes more

moderate, the distortion—that is, the distance between adjacent inner citizens relative to that in

the first-best minipublic—becomes larger, until the optimal minipublic collapses to the empty one.

Minipublic capacity. In the general model of Section 2, the set of feasible minipublics weakly

expands as minipublic capacity increases. This suggests that distortions are more likely to arise for

small minipublic capacity. On the one hand, if the optimal minipublic is empty for some capacity, it

is empty for any lower capacity as well. On the other hand, however, the policymaker cannot always

overcome the curse of too little information even with arbitrarily high capacity. The informativeness

of any minipublic of any size is bounded above by the prior uncertainty about the policy var(B) =σ2.

If this uncertainty is lower than the payoff-minimizing level of informativeness Σ in the citizen’s

expected payoff, no minipublic is active. Even a minipublic of arbitrarily large size—namely, a

referendum—cannot overcome the curse of too little information.

The Ornstein-Uhlenbeck structure of local evidence allows us to specify further how the type

and the pattern of the optimal minipublic varies with the capacity. We establish that there exist

cutoff capacities 0 6 n∅ 6 nf 6 +∞ such that the optimal minipublic is empty for capacities

n 6 n∅, distorted in composition for capacities between n∅ and nf , and a first-best minipublic for

capacities n > nf (Proposition C.1). Once a first-best minipublic is feasible for some capacity, then

the corresponding first-best minipublic for any higher capacity is also feasible since it attains higher

active informativeness while assigning lower marginal informativeness to each citizen. Moreover, the

(δ,∆)-alternating pattern, if it ever arises, does so for at most one capacity, n∅ + 1 (Lemma C.3).

For all other capacities n∅+ 2, . . . , nf −1, the optimal minipublic has the ∆-equidistant pattern. In
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these distorted ∆-equidistant minipublics, the distance between adjacent inner citizens decreases in

n: with more citizens available, the policymaker does not need to spread the inner citizens as far

out in order to reduce the marginal informativeness of the peripheral citizens (Proposition C.2).

Policy sentiment. A stronger policy sentiment—that is, a higher |B̄|—makes it more challenging

to incentivize evidence discovery. We show that there exist cutoff values 0 < b 6 b̄ < ∞ such that

the optimal minipublic is a first-best one for |B̄| 6 b, distorted in composition for |B̄| ∈ (b, b̄], and

empty for |B̄| > b̄ (Proposition C.3). If the policy sentiment is extremely strong, no minipublic,

no matter its size or composition, is ever active. Strikingly, no minipublic is feasible precisely for

policies with low expected misalignment.

The intuition follows from the shape of the interim payoff from Section 3.1. Weak policy senti-

ment goes hand in hand with high expected misalignment and locally convex interim payoff. Any

mean-preserving spread of the prior value B̄, both locally in this convex region but also to more

distant post-minipublic values with low expected misalignment in the concave regions, increases the

citizen’s expected payoff. Therefore any citizen is willing to be active in any minipublic, so the

first-best minipublic is feasible. In contrast, strong policy sentiment corresponds to low expected

misalignment and a locally concave interim payoff. In the absence of any evidence, the citizens’

preferred decision is made with high probability. For extremely strong policy sentiment, the prior

value is so far out in the concave region of the interim payoff that even the maximal mean-preserving

spread—the one corresponding to prior variance var(B) = σ2 which resolves all uncertainty about

the policy— lies mostly in the concave region of the interim payoff. Therefore, no citizen is active

in any minipublic for extremely strong policy sentiment.

Furthermore, in the context of the Ornstein-Uhlenbeck correlation structure we derive how the

composition of an optimal minipublic of the ∆-equidistant pattern varies with policy sentiment.

The optimal minipublic expands further away from the first-best one as |B̄| increases (Proposition
C.4). This is because the set of feasible minipublics shrinks with |B̄|, hence the policymaker has to

resort to larger distortions in order to incentivize evidence discovery by the peripheral citizens.

Homogeneity of the citizenry. In the context of the Ornstein-Uhlenbeck correlation structure,

for which ` proxies the homogeneity of the citizenry, the incentives for evidence discovery are

weaker in a less homogeneous citizenry. We show that there exist cutoff levels of homogeneity

0 < ` 6 ¯̀ < +∞ such that the optimal minipublic is empty for a sufficiently heterogeneous

citizenry ` < `, distorted in composition for a moderately heterogeneous citizenry ` ∈ [`, ¯̀), and a

first-best minipublic for a sufficiently homogeneous citizenry ` > ¯̀ (Proposition C.5).23 The key

23The parameter ` does not enter VC and Σ, but only Σ(m) and Σ(m \ {i}). To restrict attention to nontrivial
cases, Proposition C.5 imposes that Σ ∈ (0, 1). Otherwise, the citizens’ payoff is either globally increasing or globally
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observation is that the informativeness of any minipublic strictly increases in `. Since this implies

both greater passive informativeness and greater active informativeness for any minipublic citizen,

incentives to be active become stronger the more homogeneous the citizenry is.

The marginal informativeness of any citizen in a non-singleton minipublic approaches zero both

in an arbitrarily heterogeneous citizenry (`→ 0) and in an arbitrarily homogeneous one (`→ +∞)—

in the former because any citizen’s evidence is uninformative and in the latter because the evidence

of any citizen beyond the first is redundant. However, what makes the two cases fundamentally

different is the fact that the informativeness of any minipublic collapses to zero as ` → 0 but

approaches the unit variance of a single citizen’s evidence as ` → +∞. This determines whether

the curse of too little information arises. As ` → 0, any minipublic carries a negligible amount

of information and any single citizen in it contributes little to informativeness, hence the curse of

too little information arises in any minipublic. In contrast, as ` → +∞, the rest of the minipublic

resolves all uncertainty about the policy, hence the citizen escapes the curse of too little information.

Therefore, distortions in composition arise if and only if the citizenry is neither too homogeneous

nor too heterogeneous. Focusing on the optimal minipublics of the ∆-equidistant pattern, we show

that the size of the distortion decreases with ` (Proposition C.6). The more homogeneous the

citizenry is, the closer inner citizens are to each other and to the first-best minipublic. This is

because the set of feasible minipublics strictly expands as ` increases. Therefore, smaller distortions

relative to the first-best minipublic will suffice to restore incentives for evidence discovery.

6 Discussion and extensions

6.1 Practical implications for minipublic design

The question of how to optimally select minipublic citizens so as to strike tradeoffs between rep-

resentativeness and other considerations—such as, for instance, guaranteeing equality in selection

probabilities or counteracting historical inequities—has recently received increasing attention across

disciplines (Flanigan et al. (2021), Steel et al. (2020)). Our focus is on how incentivizing evidence

discovery in the face of political uncertainty imposes constraints on representativeness. Jacquet

(2017) identifies “minipublic’s lack of impact on the political system” as one of the key reasons why

citizens choose not to participate in minipublics. In line with this insight, a recent report by OECD

(2020) identifies policy impact and representativeness as two desiderata for minipublic design, where

impact means that “the commissioning public authority should publicly commit to responding to

or acting on participants’ recommendations,” and representativeness means that “the participants

decreasing in informativeness and citizens in any minipublic are either always active or always passive for any `.
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should be a microcosm of the general public.” Our analysis, which proxies policy impact by political

uncertainty, sheds light on the intricate interaction between these two desiderata.

Our results suggest that, on the one hand, there is no tension between the two desiderata under

either sufficiently high or sufficiently low impact on the policy decision. Arguably, the CCC faced

low political uncertainty when it was formed, as it was preceded by the Grand Débat National, a

national effort that confirmed Macron’s commitment to a greener economy, and as it was backed

by his promise to enact the CCC’s proposals “without filter.” Our findings suggest that such low

uncertainty might have contributed to citizens engaging with evidence in the CCC, which was

arguably representative of the larger citizenry. On the other hand, it is when the minipublic’s

impact is moderately uncertain that part of a representative minipublic—starting with citizens at

the margins of the society—self-selects out by not contributing its local evidence, ultimately leading

to a poorly informed policy decision. This implies that if the policymaker can guarantee some, but

not sufficient, impact, she has to sacrifice representativeness. If the tension is sufficiently severe so

that no citizen engagement is possible, she finds it impossible to initiate a minipublic altogether.

The two desiderata, impact and representativeness, must go hand in hand. Our findings further

imply that this tension is easier to overcome the more resources the society has to afford a larger

minipublic, as well as the more homogeneous the society is and the weaker the public sentiment is

on the policy issue.

An example that suggests the presence of distortions in the minipublic composition is that of

the UK Climate Assembly (CAUK). Shortly before CAUK was formed, there was a general election

that “led to a change of Chairs and members of the six CAUK commissioning committees, with

some of the newcomers less supportive of CAUK and the net zero target,” which created a volatile

political environment.24 The selection process for CAUK aimed at a representative minipublic, but

with some important caveats. First, about 5% of the seats were reserved for marginal groups more

likely to drop out, such as citizens from Northern Ireland. Second, unlike in the case of CCC,

attitudes towards climate change were used as an additional selection criterion—which likely led

to more diversity in the sample—and citizens who are “not at all” or “not very concerned” ’ about

climate change were over-represented relative to the UK population. Third, the process oversampled

citizens with both low education (“No Qualification / Level 1”) and high education (“Level 4 and

above”), so CAUK was more diverse than the UK population in terms of educational background.25

Such oversampling is consistent with our finding that a distorted minipublic generically includes a

strictly larger range of demographics.

24See “How has the UK Climate Assembly impacted Parliament” (https://www.wfd.org/commentary/how-has-uk-
climate-assembly-impacted-parliament-0).

25All data comes from https://www.climateassembly.uk/detail/recruitment/.
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6.2 Robustness and extensions

The following discussion examines the robustness of the results, in particular the curse of too little

information, with respect to several important modeling choices: the nature and the observability

of evidence discovery, ex ante bias in the policymaker’s threshold, preference heterogeneity among

citizens, and opportunities for coordination in evidence discovery and delegation of the adoption

decision. All formal results are gathered in Appendix D.4.

Noisy evidence discovery. The baseline model assumes that minipublic citizens either discover

their local evidence or not, but does not allow for noise in the discovery. However, assuming away

partial evidence might stack the deck against evidence discovery: citizens who are otherwise willing

to discover some partial evidence might remain passive when only perfect evidence is available. To

assess this conjecture, we consider an alternative setting in which each minipublic citizen i ∈ m

publicly discovers a noisy signal s(i) = β(i)+ εi, where εi ∼ N (0, ξ2
i ) and the noise ξ2

i ∈ R+
0 ∪{+∞}

is chosen by citizen i. In the baseline model, ξ2
i = 0 (or ξ2

i = +∞) corresponds to the citizen being

active (or passive). We continue to assume that any choice of ξ2
i is entirely costless to the citizen.

This richer noisy discovery model reveals that the all-or-nothing nature of evidence in the baseline

model is in fact without loss. The informativeness of any minipublic continues to be the same as

in the baseline model, and therefore the optimal minipublic is the same as well. This is due to the

quasiconvexity of the citizens’ payoff in informativeness. If a citizen has already escaped the curse

of too little information for some finite ξ2
i > 0, then he prefers to increase informativeness even

further by choosing the least noisy signal available ξ2
i = 0. Citizens never prefer to discover their

outcomes partially if they can discover them perfectly.

Communication of a policy recommendation with private evidence discovery. Our base-

line model imposes that all evidence discovery is public: citizens cannot withhold any discovered

evidence from the policymaker. If only the empty minipublic is feasible in our baseline model of

public evidence discovery, can some information be elicited from a minipublic that discovers evi-

dence privately instead and communicates with the policymaker? We show that private discovery

can partially overcome the curse of too little information. The optimal minipublic under private

evidence discovery is a first-best one and all its citizens are active. Across all informative equilib-

ria, this first-best minipublic communicates to the policymaker, through a binary recommendation,

whether the realized post-minipublic value is positive or negative (Proposition D.3). In fact, the

equilibrium recommendations in any informative equilibrium within any minipublic can be ranked

strictly, up to relabeling, according to the probability of adoption that they induce. Any minipublic

seeks to maximize the probability of adoption if the post-minipublic value that was discovered pri-

vately is positive and minimize it otherwise. Hence, any informative equilibrium in any minipublic,
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not just the first-best one, generically features two on-path recommendations, which correspond to

policymaker’s beliefs E[B | Bm > 0] and E[B | Bm < 0].26 Binary recommendations is a feature

of all nontrivial equilibria under private discovery. For this reason, while private discovery helps

the policymaker if only the empty minipublic is feasible with public discovery, it also hurts her if a

first-best minipublic is already feasible with public discovery by coarsening information about the

post-minipublic value.27

Biased policymaker and uncertain thresholds for citizens. Appendix D.4.2 analyzes a

richer environment in which (i) the policymaker is ex ante biased, in the sense that E[c] = c̄ 6= 0

and (ii) not only the policymaker, but also the citizens have uncertain thresholds (centered at zero

to capture ex ante alignment across citizens) which are realized at the same time as that of the

policymaker. Although we allow for the citizens’ thresholds to have heterogeneous variances, such

heterogeneity turns out to be inconsequential for the citizen’s payoff due to his ex post payoff be-

ing linear in his own threshold: the only payoff-relevant uncertainty is the political uncertainty τ

about the policymaker’s threshold. Importantly, the citizens’ payoff continues to be quasiconvex in

informativeness and the policymaker’s payoff continues to be strictly increasing. Because the char-

acterization of the distortions in the optimal minipublic in Proposition 4.3 depends on the players’

payoffs only through such monotonicity, this characterization is still valid. What the presence of

a bias does affect is whether any first-best minipublic is feasible. To see this, consider a baseline

environment (B̄, τ, `) with no bias c̄ = 0 in which no first-best minipublic is feasible. In any other

environment with the same (B̄, τ, `) but a large enough bias—that is, c̄ > B̄ > 0 for an ex ante

favorable policy and c̄ < B̄ < 0 for an ex ante unfavorable one—any first-best minipublic is feasible.

That is, for any degree of political uncertainty and any prior value of the policy, a sufficiently biased

policymaker restores evidence discovery within any first-best minipublic.

Private interest. Citizens have common interest in the baseline model. In many contexts, how-

ever, it is realistic that citizen i’s adoption payoff is a convex combination of both common and

private interest, i.e., of the average impact B and the local impact β(i). To the extent that this

mixture puts sufficient weight on B, our qualitative results still hold. However, to understand the

intricacies of modeling private interest, Appendix D.4.3 derives the (ED) constraints of a minipublic

under pure private interest for the Ornstein-Uhlenbeck structure in Section 4.2.2. Unlike in the case

of common interest, the expected payoff of citizen i depends on the minipublic m not only through

26Citizens are perfectly aligned on the best response communication strategy. This resonates with the fact
that the citizens of CCC were almost unanimous on most of the issued recommendations (https://democracy-
international.org/final-propositions-french-citizens-convention-climate).

27In Appendix D.4.5, we consider a disclosure game with hard evidence between the citizens in the minipublic and
the policymaker. In contrast to the above results with private evidence discovery, we show that with hard evidence
the policymaker can attain at least the same informativeness as in our baseline model.
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its informativeness Σ(m) but also through the covariance between β(i) and the post-minipublic

value Bm (Proposition D.5). As a result, the (ED) constraint of citizen i depends not only on

the active informativeness Σ(m) and the passive informativeness Σ(m \ i), but also on the active

covariance cov(β(i), Bm) and the passive covariance cov(β(i), Bm\i). This introduces a substantial

increase in the dimensionality of the policymaker’s problem. For n = 1, any nonempty optimal

minipublic is the same both under private interest and under common interest: mf
1 = {1/2}. Two

or more citizens are necessary for the composition of the optimal minipublic, whenever nonempty, to

differ across the two models. Numerical examples with n = 2 suggest that the policymaker obtains

weakly higher informativeness under private interest. The first-best minipublic can be feasible under

private interest even if not under common interest (Example 4), and the optimal minipublic under

private interest can be distorted even if no minipublic is feasible under common interest (Example

5). Such preliminary simulations suggest that private interest helps the policymaker in alleviating

the curse of too little information.

Coordination within a minipublic. Since minipublic citizens are aligned in their preferences, a

natural question is whether they can be strictly better off from coordinating their evidence discovery

rather than playing the policymaker-preferred equilibrium. By the quasiconvexity of the citizens’

payoff, such a collusive outcome—that is, the outcome that maximizes all citizens’ welfare—in

any minipublic m must correspond to either Σ(∅) = 0 or Σ(m).28 If m is feasible, so that the

policymaker-preferred equilibrium outcome is Σ(m), coordination strictly benefits the citizens if and

only if VC(Σ(∅)) > VC(Σ(m)). In such a case, each minipublic citizen is sufficiently “informationally

small” so as to prefer being active if all others are active, but he strictly benefits from all citizens

remaining collectively passive. On the other hand, the citizens in any minipublic that is not feasible

in our model cannot be made better off by coordinating: in equilibrium, at least some citizen

finds that his passive informativeness leads to a higher payoff, which means that Σ(∅) must lead

to even higher payoff. Coordination, therefore, shrinks the set of active minipublics and leaves the

policymaker worse off. Because coordination reduces all evidence discovery to a single collective

decision, the optimal minipublic under coordination is either empty or a first-best one. In practice,

coordination into remaining collectively silent, especially in large minipublics, is challenging to

achieve due to deliberation formats that encourage participation. These formats often feature

deliberation in small groups (as was the case in the CCC). To the extent that citizens coordinate

their evidence discovery within, but not across, these small groups, our analysis is valid for deriving

28This comparison between the informativeness of the collusive outcome and that of the equilibrium outcome is
reminiscent of Gentzkow and Kamenica (2017b)—the minipublic citizens are senders, each with access to an experi-
ment about their local evidence. We find that the collusive outcome is weakly less informative than the equilibrium
one, similarly to their Proposition 1 (pg. 307), even though our informational environment is not Blackwell-connected.
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the policymaker-preferred equilibria in the evidence discovery game across small groups.

Delegation of decisional authority. The curse of too little information arises because deci-

sional authority rests with the policymaker rather than the minipublic. Transferring such authority

to the minipublic induces any minipublic to be active, since there is no downside to discovering

evidence. In that case, would the policymaker benefit from delegating the adoption decision to a

first-best minipublic mf
n ∈ Mf

n? Consider the extreme case in which the optimal minipublic is

empty. Without delegation the policymaker is bound to act based on the prior value B̄, whereas

with delegation the policy is adopted if and only if B
mf
n
> 0. In such a case, we show that the

ratio τ2/Σ(mf
n) determines whether the policymaker benefits from delegating decisional authority:

delegation is preferred if and only if this ratio is less than one (Proposition D.6). By delegating,

the policymaker trades her ability to fine-tune the adoption decision to her realized threshold for

a more informed decision. Such ability to fine-tune is most valuable when political uncertainty is

high relative to how informative the first-best minipublic is.29 Therefore, delegation is a partially

effective instrument in resolving the conflict between the policymaker and the citizens.

7 Related literature

Our work connects to several strands of the existing literature. First, it builds on a large literature

on the optimal choice of statistical experiments. The evidence discovery game among minipublic

citizens relates to models of Bayesian persuasion with one and multiple senders (Kamenica and

Gentzkow, 2011; Gentzkow and Kamenica, 2017b,a; Li and Norman, 2018), since citizens do not

have private information about the policy but can commit to experiments about its value. Our

focus is on a class of experiments that are not Blackwell-connected: each citizen’s experiment is

either perfectly informative about his local evidence or entirely uninformative.30 In this respect,

our model shares with Koessler, Laclau and Tomala (2018), Boleslavsky and Cotton (2018), and Au

and Kawai (2019, 2020) the premise that each sender designs information about only one dimension

of a multidimensional state (in our case, infinite-dimensional).31 As in Au and Kawai (2019), the

dimensions in our model are positively correlated. Despite key modeling differences, one recurring

focus that we share with this literature is whether the equilibrium becomes more informative as the

number of senders increases.

The policymaker too designs a statistical experiment through her choice of minipublic. Absent

evidence discovery constraints, her problem as posed in Section 4.2.2 is one of selective learning about

29Per Proposition 5.1, for τ2 sufficiently high, the first-best minipublic is feasible even without delegation.
30The experiments are not Blackwell-connected because each citizen can discover his local evidence but not the

evidence of others, hence our setting is not a special case of Gentzkow and Kamenica (2017b).
31It also shares this feature with the model of advocacy in Dewatripont and Tirole (1999), where each agent

explores only one cause. Our model differs in that evidence is costless and transfers are assumed away.
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multiple correlated attributes, where each citizen is an attribute and his local impact is the attribute

realization. Our main difference with this line of work (Bardhi (2022), Liang, Mu and Syrgkanis

(2020)), which also models attributes as jointly Gaussian, is that each attribute is a strategic player

in our framework: attributes need to be incentivized to reveal their respective realizations. Our

first-best benchmark for the Ornstein-Uhlenbeck correlation structure was solved in Bardhi (2022).

Moreover, Bardhi (2022) also studies a principal-agent sampling game in which the principal has

decisional authority and the agent has authority over which attributes are sampled. When cast in

the attribute terminology, the main differences between this sampling game in Bardhi (2022) and the

setting in Section 4.2.2 is that in our setting: (i) distortions arise in sampling despite the fact that

all players weigh attribute realizations in the same way, (ii) the player in charge of adoption, i.e.,

the policymaker, also partakes in deciding which attributes are discovered through her minipublic

choice, and (iii) the attributes chosen by the policymaker play an evidence discovery game in which

each decides whether to reveal its realization. The sampling authority, thus, is shared between the

policymaker and the citizens.

Because each citizen’s local evidence is predictive of the local evidence of others, minipublic

evidence is an example of social data as defined in Bergemann, Bonatti and Gan (2020), which

studies data intermediation in a product market with correlated consumer preferences. Despite our

vastly different settings, their design of a data policy is similar to our design of a minipublic insofar

as consumers must be induced to volunteer their data while being aware of such data externality.

As in our analysis, they also leverage the tractability of Gaussian data.

Second, in modeling correlation in local evidence through an Ornstein-Uhlenbeck process, our

work is methodologically connected to a literature starting with Jovanovic and Rob (1990) and

Callander (2011) that adopts the Brownian motion to model uncertainty over a continuum of corre-

lated alternatives in a search framework. Agents choose which alternatives to explore sequentially so

as to identify the best one. Callander and Clark (2017) is closer to us in that it studies the optimal

selection of legal cases by a higher court under resource constraints, so as to guide decisions about

all possible cases by a lower court. In contrast to the friction between citizens and the policymaker

in our model, frictions between the two courts are assumed away. Callander, Lambert and Ma-

touschek (2018) models expert advice over a large space of uncertain decisions through disclosure of

hard evidence, whereas we model a binary policy decision and commitment in evidence discovery.

Carnehl and Schneider (2022) models exploration in the knowledge space by a single researcher.

Notably, both the Ornstein-Uhlenbeck process, which is a better fit for our application, and the

Brownian motion are special cases of a large class of Gaussian processes recently explored in Bardhi

(2022).
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Third, our questions closely relate to those in the literature on the optimal composition of a

team of experts. What differentiates our paper from this literature is (i) our focus on the citizens’

incentives to discover evidence, and (ii) our rich modeling of the correlation between citizens’ local

evidence. Lamberson and Page (2012) considers the optimal composition of a team of forecasters

from one of two statistical groups. In contrast to our model, the group forecast is assumed to weigh

individual forecasts equally. Hong and Page (2001) studies the optimal diversity of a problem-solving

team, in which agents differ in both perspectives and heuristics. Although our citizens also vary in

perspectives, their task is one of evaluation rather than problem-solving. Prat (2002) also studies the

optimal diversity of a team in the context of workforce recruitment and complementarities across

workers. Chade and Eeckhout (2018) studies sorting of experts into teams in a model in which

the precision of an expert’s signal is his expertise and the correlation between any two experts is

a constant, whereas we allow for flexible precision and correlation of the citizens’ local evidence.

Dong and Mayskaya (2022) studies the optimal composition of a team of two correlated experts in

a setting with private information and communication costs.

Fourth, our paper shares themes with a large literature on deliberation in voting committees

and collective evaluation of multi-attribute proposals, and in particular on committee models with

interdependent values and heterogeneous information (Austen-Smith and Banks, 1996; Feddersen

and Pesendorfer, 1997; Visser and Swank, 1999; Moldovanu and Shi, 2013; Gradwohl and Feddersen,

2018; Name Correa and Yildirim, 2020; Roesler, 2022, among others). The presence of private

information and voting are two key differences with this line of work. Related work on endogenous

collective information acquisition in committees and teams includes Gerardi and Yariv (2008), Cai

(2009), Chan et al. (2018), Tan and Wen (2020), and Cetemen, Urgun and Yariv (2022).

Our paper also adds to a vast social science literature on minipublics (Dahl, 1989; Fishkin,

2011; Warren and Gastil, 2015), in particular to work that studies non-participation in minipublics

(Jacquet, 2017). For a recent model of information acquisition in citizens’ assemblies that consist of

a single rationally inattentive representative citizen, see Kwiek (2020). To the best of our knowledge,

we offer the first formal model of optimal minipublic composition. More broadly, our work relates

to a growing economics literature on direct democracy and citizen participation (see, among others,

Matsusaka and McCarty (2001), Matsusaka (2005), and Prato and Strulovici (2017)).

8 Concluding remarks

This paper studies how political uncertainty dampens the incentives of minipublic citizens to discover

local evidence and thus limits the representativeness of the optimal minipublic. It does so in a

framework with costless and transparent evidence, civic-minded citizens, and no initial conflict of
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interest between the citizens and the policymaker. We find that incentivizing evidence discovery

is more challenging under moderate political uncertainty, in smaller minipublics, for strong policy

sentiment, and in more heterogeneous citizenries. To restore incentives for evidence discovery, the

policymaker distorts the minipublic composition relative to first-best minipublics in such a way that

all citizens are less marginally informative than the passive first-best citizens. Under the Ornstein-

Uhlenbeck structure of local evidence, this implies only two possible patterns of distortions: the

equidistant pattern and the alternating pattern. Of the two, the former is predominant and features

a greater range of demographics than the first-best minipublic, overrepresenting demographics at

the margins of the citizenry while selecting more diversely around the median demographic.

Our framework can prove useful for answering several policy-relevant questions that are beyond

the scope of this paper. First, in many minipublics, citizens vote on the policy recommendation. Our

baseline model sidesteps this question since all minipublic citizens are fully aligned and would vote

in the same way. But in a richer environment in which minipublic citizens face uncertainty regarding

each other’s preferences and thresholds of adoption, how does this voting stage impact the incentives

of citizens to discover their local evidence? Second, a policymaker’s consultation with a minipublic

often precedes a citizenry-wide referendum in which all citizens vote on the policy decision. Examples

include the Irish referendums on same-sex marriage in 2015 and on abortion in 2018, as well as a

referendum which was tentatively planned for 2021 in France on a recommendation of the CCC

to add environmental protection to the French constitution but eventually dropped.32 It would

be fruitful to study how the format of the referendum, as well as potential conflict among citizens

of different backgrounds regarding the threshold for policy adoption, might curtail a minipublic’s

ability to discover useful evidence. Third, in our framework, the policymaker does not benefit from

randomizing over minipublics. Yet, most sampling protocols for minipublics involve some form of

randomization. Are there features of real-world minipublics that would rationalize randomization

by the policymaker, or is randomization observed in practice because the policymaker cannot target

citizens with arbitrary precision? We leave these questions for future work.
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A Proofs for Section 3

Lemma A.1 (Players’ payoffs). Fix an active minipublic m̂ with informativeness Σ(m̂). The expected payoff
of the policymaker is

VP (Σ(m̂)) := B̄Φ

(
B̄√

τ2 + Σ(m̂)

)
+
√
τ2 + Σ(m̂)φ

(
B̄√

τ2 + Σ(m̂)

)
, (6)

and the expected payoff of every citizen i ∈ m̂ is

VC (Σ(m̂)) := B̄Φ

(
B̄√

τ2 + Σ(m̂)

)
+

Σ(m̂)√
τ2 + Σ(m̂)

φ

(
B̄√

τ2 + Σ(m̂)

)
. (7)

Proof of Lemma A.1. Because c and Bm̂ are independent Gaussian variables, the policymaker’s ex post
payoff Bm̂ − c is distributed according to Bm̂ − c ∼ N (B̄, τ2 + Σ(m̂)). The policymaker observes Bm̂ − c
and adopts the policy if Bm̂ − c > 0. Hence, the probability of adoption is

Pr [Bm̂ − c > 0] = 1− Φ

(
−B̄√

τ2 + Σ(m̂)

)
= Φ

(
B̄√

τ2 + Σ(m̂)

)
.

Let λ(x) := φ(x)/(1−Φ(x)) denote the inverse Mills ratio. The following is a standard result about the
conditional expectation of a joint Gaussian distribution.

Lemma A.2. Let X,Y be two jointly Gaussian random variables with respective means µx, µy, respective
variances σ2

x, σ
2
y, and covariance Cov[X,Y ]. Then, E[X|Y > y] = µx + Cov[X,Y ]

σy
λ
(
y−µy

σy

)
.

Applying Lemma A.2 for X = Y = Bm̂−c and y = 0, the expected payoff of the policymaker conditional
on adoption is

E[Bm̂ − c|Bm̂ − c > 0] = B̄ +
√
τ2 + Σ(m̂)λ

(
−B̄√

τ2 + Σ(m̂)

)
.

Applying Lemma A.2 for X = Bm̂, Y = Bm̂ − c and y = 0 (and thus, Cov[Bm̂, Bm̂ − c] = Σ(m̂)), the
expected payoff of the citizens conditional on adoption is

E[Bm̂|Bm̂ − c > 0] = B̄ +
Σ(m̂)√
τ2 + Σ(m̂)

λ

(
−B̄√

τ2 + Σ(m̂)

)
.

The unconditional expected payoff is Pr [Bm̂ − c > 0] E[Bm̂ − c|Bm̂ − c > 0] for the policymaker, and
Pr(Bm̂ − c > 0)E[Bm̂|Bm̂ − c > 0] for the citizens. Plugging in the above expressions yields the result. �

Proof of Lemma 3.1. (i) From Lemma A.1, payoffs VP and VC are continuous and differentiable. Differ-
entiating the expected payoff of the policymaker with respect to Σ, we obtain

∂VP (Σ)

∂Σ
=
φ
(

B̄√
τ2+Σ

)
2
√

Σ + τ2
> 0.
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(ii) Differentiating the expected payoff of the citizen with respect to Σ, we obtain

∂VC(Σ)

∂Σ
=
φ
(

B̄√
τ2+Σ

)
2
√

Σ + τ2

(
Σ2 − (B̄2 − 3Σ)τ2 + 2τ4

)
.

Because Σ > 0, the only admissible root of the quadratic
(
Σ2 − (B̄2 − 3Σ)τ2 + 2τ4

)
is

Σroot =
1

2

(√
τ4 + 4B̄2τ2 − 3τ2

)
,

which is positive if and only if B̄2 > 2τ2. Therefore, the payoff minimum is reached at 0 if Σroot < 0 and
Σroot otherwise. VC is strictly decreasing over [0,Σ) and strictly increasing over (Σ,∞). �

Lemma A.3. Fix Σ and Σ̃ such that Σ < Σ̃.

(i) Suppose that VC(Σ) > VC(Σ̃). Then, for any Σ1 and Σ2 such that Σ1 6 Σ, Σ2 6 Σ̃ and Σ1 < Σ2, it
holds that VC(Σ1) > VC(Σ2).

(ii) Suppose that VC(Σ) 6 VC(Σ̃). Then, for any Σ1 and Σ2 such that Σ1 > Σ, Σ2 > Σ̃ and Σ1 < Σ2, it
holds that VC(Σ1) 6 VC(Σ2).

Proof. Suppose VC(Σ) > VC(Σ̃) for Σ < Σ̃. By Lemma 3.1, VC must be strictly quasiconvex with a
minimum at Σ > Σ. If Σ2 6 Σ, the statement follows by the fact that VC is strictly decreasing to the left
of Σ. If Σ2 ∈ (Σ, Σ̃] instead, then by the strict quasiconvexity of VC , it follows that VC(Σ1) > VC(Σ) =

max
{
VC(Σ), VC(Σ̃)

}
> VC(Σ2). This establishes part (i). Part (ii) follows by a similar argument. �

Proof of Lemma 3.2. First, we show that the restriction to deterministic minipublics is without loss.
Consider a lottery with at least two distinct minipublics m 6= m′ in its support. Given a minipublic m,
the citizen’s equilibrium strategy δ induces a lottery over subsets of m. Let m̂ and m̂′ denote the random
subset of active citizens in m and m′, respectively. The citizens observe the realized minipublic from the
policymaker’s lottery. Hence, the policymaker randomizes over minipublics only if she is indifferent between
them, i.e., Em̂[Vp(m̂)] = Em̂′ [Vp(m̂

′)]. But then, the policymaker obtains the same payoff by choosing either
m or m′ deterministically.

Next, we show that the restriction to pure strategies at the evidence discovery stage, δi(m) ∈ {0, 1}
for all m ∈ Mn and for all i ∈ m, is without loss. Consider a minipublic m ∈ Mn and an equilibrium
δ in which δi ∈ (0, 1) for at least some i ∈ m. Let mA := {i ∈ m : δi = 1} be the set of active citizens,
mP := {i ∈ m : δi = 0} the set of passive citizens, and mM := {i ∈ m : δi ∈ (0, 1)} the set of citizens who
strictly mix between being active and passive, such that m = mA ∪mP ∪mM . For the same minipublic m,
we can construct an alternative equilibrium δ̃ in which δ̃i = 1 for all i ∈mA∪mM . With positive probability
the set of active citizens under δ̃ is a strict superset of the active citizens in δ, therefore δ̃ guarantees a strictly
higher informativeness with positive probability.

We claim that such a profile δ̃ is an equilibrium. First if mM 6= ∅ then VC(Σ(mA ∪mM )) > VC(Σ(mA∪
mM\i)) for every i ∈mA∪mM . By contradiction, suppose there exists i ∈mA∪mM such that VC(Σ(mA∪
mM )) < VC(Σ(mA ∪mM\i)). For any realized subset of active citizens S ⊂mM in the original equilibrium
δ, it holds that (i) Σ(mA∪mM ) > Σ(mA∪S), (ii) Σ(mA∪mM\i) > Σ(mA∪S\i), and (iii) Σ(mA∪S\i) <
Σ(mA ∪ S). Lemma A.3(i) then implies that for any S ⊂ mM , VC(Σ(mA ∪ S\i)) > VC(Σ(mA ∪ S)). So
citizen i has a strictly profitable deviation in δ. We have thus reached a contradiction. Thus, in the strategy
profile in which δ̃ where δ̃j = 1 if δj ∈ (0, 1] and δ̃i = 0 if δi = 0, none of the active citizen can profit from
being passive.
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However, it might be that the passive citizens in δ are active under δ̃ and can distort the incentives of
mA ∪mM . Lemma A.4 establishes that even if a subset of passive citizens in δ prefer to be active in δ̃, this
will not distort the incentives of the active citizens in δ̃. Therefore, we have identified an equilibrium δ̃ that
is strictly preferred to δ, which contradicts the optimality of δ.

Lemma A.4. Suppose citizen i prefers to be active when the set of active citizens is m̂. Then, citizen i

prefers to be active for any larger set of active citizens m̂′ such that m̂′ ) m̂.
Proof. By the premise, VC(Σ(m̂)) > VC(Σ(m̂\i)). For any m̂′ ) m̂, Assumption 1(ii) implies that Σ(m̂′) >

Σ(m̂), Σ(m̂′\i) > Σ(m̂\i), and Σ(m̂′\i) < Σ(m̂′). Then, Lemma A.3(ii) implies that for any m̂′ ) m̂,
VC(m̂′\i) 6 VC(m̂′). �

Finally, it is without loss to include only active citizens in the minipublic. Letm be an optimal minipublic
in which a deterministic subset m̂ ( m is active. Consider the alternative minipublic m′ := m̂. If every
citizen in m̂ is active, then for each i ∈ m̂, Σ(m′) = Σ(m) and Σ(m′\i) = Σ(m\i). Hence, the (ED)
constraint of i ∈ m̂ is the same in both minipublics and VP (Σ(m)) = VP (Σ(m̂). �

B Proofs for Section 4

Proof of Proposition 4.1. First, observe that for n = 1, the optimal minipublic is either empty or it
consists of one citizen, so the statement holds trivially. Next, let n > 2. By contradiction, suppose that the
optimal minipublic consists of n′ < n distinct citizens, m∗ = {i1, . . . , in′}, where i1 < . . . < in′ and n′ > 1.
Consider a modified minipublic m̃ := m∗ ∪ {̃i}, where ĩ /∈ m∗. First, this modified minipublic m̃ is strictly
more informative than m∗ by Assumption 1(ii). Moreover, for any ik ∈m∗, Σ(m̃ \ ik) > Σ(m∗ \ ik) because
m̃ \ ik = (m∗ \ ik) ∪ {̃i}. Therefore, by Lemma A.3(ii), all citizens in m∗ continue to be active in m̃. On
the other hand, note that Σ(m∗ \ ik) < Σ(m̃ \ ĩ) = Σ(m∗) < Σ(m̃). Again invoking Lemma A.3(ii), because
ik ∈m∗ is active in m∗, ĩ is also active in m̃. Hence, all citizens are active in m̃ and the policymaker strictly
prefers m̃ to m∗, which contradicts the optimality of m∗. �

Proof of Proposition 4.2. Fix any mf
n ∈ Mf

n and let if ∈ arg maxi∈mf
n
Mi(m

f
n). By the premise that

m∗ /∈ Mf
n ∪ {∅}, it must be that Σ ∈ (Σ(mf

n \ if ),Σ(mf
n)). Because each citizen is active in the optimal

minipublic, it must be that for any i ∈m∗, Σ(m∗ \ i) > Σ(mf
n \ if ). Moreover, by the definition of the first-

best minipublic and the fact that all first-best minipublics inMf
n are not feasible, Σ(m∗) < Σ(mf

n). Hence,
for any i ∈m∗, Mi(m

∗) < max
i∈mf

n

Mi(m
f
n). Because this is true for all mf

n ∈Mf
n, the result follows. �

Lemma B.1 (Minipublic informativeness for the Ornstein-Uhlenbeck correlation). Let m̂ = {i1, . . . , ik},
where 1 6 k 6 n and 0 6 i1 < . . . < ik 6 1, and let dj := ij+1 − ij where i0 = 0 and in+1 = 1. The
minipublic informativeness is given by

(i) for k = 0, Σou(∅) = 0;

(ii) for k = 1, Σou({i1}) := `2
(
2− e−i1/` − e−(1−i1)/`

)2
;

(iii) for k > 2,

Σou(m̂) =

k∑
j=1

γj(m̂)
√

Σou({ij}), (8)
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where Σou({ij}) is the informativeness of the singleton minipublic {ij}, and the weights γj(m̂) are
given by

γj(m̂) =



`

(
1− e−i1/` + tanh

(
i2 − i1

2`

))
if j = 1;

`

(
tanh

(
ij − ij−1

2`

)
+ tanh

(
ij+1 − ij

2`

))
if j ∈ {2, . . . , k − 1};

`

(
1− e−(1−ik)/` + tanh

(
ik − ik−1

2`

))
if j = k.

(9)

Proof of Lemma B.1. From Lemma 3.4 in Bardhi (2022), the post-minipublic value Bm̂ is

Bm̂ = B̄ +

k∑
j=1

γj(m̂)
(
β(ij)−B̄

)
,

with weights γj(m̂) as in (9). Because the pairwise covariance of β(ij) and β(ih) is e−|ij−ih|/`, the variance
of the linear combination Bm̂ is

Σ(m̂) =

k∑
j=1

k∑
h=1

γj(m̂)γh(m̂)e−|ij−ih|/`.

The informativeness induced by the active minipublic m̂ can be rewritten as

Σ(m̂) =

k∑
j=1

γj(m̂)

γj(m̂) +
∑
h 6=j

γh(m̂)e−|ih−ij |/`

 .

We distinguish two cases, based on whether j ∈ {1, k} or j ∈ {2, . . . , k − 1}. First, let j = 1.γ1(m̂) +
∑
h>2

γh(m̂)e−|ih−i1|/`

 = `

(
1− e−i1/` + tanh

(
i2 − i1

2`

))

+

k−1∑
h=2

e−(ih−i1)/``

(
tanh

(
ih − ih−1

2`

)
+ tanh

(
ih+1 − ih

2`

))
+ e−(ik−i1)/``

(
1− e−(1−ik)/` + tanh

(
ik − ik−1

2`

))
= `

(
1− e−i1/` − e−(1−i1)/`

)
+ e−(ik−i1)/``

+

k∑
h=2

`
(
e−(ih−1−i1)/` + e−(ih−i1)/`

)
tanh

(
ih − ih−1

2`

)
= `

(
1− e−i1/` − e−(1−i1)/`

)
+ e−(ik−i1)/``

+

k∑
h=2

`
(
e−(ih−1−i1)/` − e−(ih−i1)/`

)
= `

(
2− e−i1/` − e−(1−i1)/`

)
,

where the second equality rearranges the last additive term γk(m̂)e−|ik−i1|/` and the third equality uses the

44



observation that for any h > 2,(
e−(ih−1−i1)/` + e−(ih−i1)/`

)
tanh

(
ih − ih−1

2`

)
=
(
e−(ih−1−i1)/` − e−(ih−i1)/`

)
.

The last equality follows from cancelling opposite-sign terms. For any singleton minipublic {i1}, the infor-
mativeness is

Σou({i1}) = `2
(

2− e−i1/` − e−(1−i1)/`
)2

.

This gives us the result. The case of j = k is similar and hence omitted. Next, suppose j ∈ {2, . . . , k − 1}.
Rearranging terms in a similar way to the case of j = 1, we obtainγj(m̂) +

∑
h 6=j

γh(m̂)e−|ih−ij |/`


= `(1− e−i1/`)e−(ij−i1)/` + `

(
1− e−(1−ik)/`

)
e−(ik−ij)/` +

k∑
h=2

`
(
e−|ih−ij |/` + e−|ih−1−ij |/`

)
tanh

(
ih − ih−1

2`

)

= `
(
e−(ij−i1)/` + e−(ik−ij)/` − e−ij/` − e−(1−ij)/`

)
+

j∑
h=2

`
(
e−(ij−ih)/` − e−(ij−ih−1)/`

)
+

k−1∑
h=j

`
(
e−(ih−ij)/` − e−(ih+1−ij)/`

)

+

j∑
h=2

`
(
e−(ij−ih)/` − e−(ij−ih−1)/`

)
+

k−1∑
h=j

`
(
e−(ih−ij)/` − e−(ih+1−ij)/`

)
= `

(
2− e−ij/` − e−(1−ij)/`

)
.

�

Proof of Lemma 4.1. Let dj := ij+1− ij where i0 = 0 and in+1 = 1. First, we establish the monotonicity
for inner citizens. Let dj−1 > 0, dj > 0. For any j ∈ {2, . . . , n − 1}, the marginal informativeness depends
only on dj−1 and dj , and it simplifies to

Mj(m) = 4`2 tanh

(
dj−1

2`

)
tanh

(
dj
2`

)
tanh

(
dj−1 + dj

2`

)
.

Differentiating with respect to dk ∈ {dj−1, dj}, we obtain

∂Mj(m)

∂dk
= −2`

(
sech2

(
dj−1 + dj

2`

)
− sech2

(
dk
2`

))
> 0

which is strictly positive because sech(x) strictly decreases in x ∈ R+ and dj−1 + dj > dk.
Second, consider the peripheral citizen i1 with d0 > 0 and d1 > 0. The argument for in is symmetric.

The marginal informativeness of i1 simplifies to

M1(m) =
`2e−

2(d0+d1)
`

(
e

d1
` − 1

)(
1 + e

d1
` − 2e

d0+d1
`

)2

1 + e
d1
`

.

Differentiating with respect to d0, we obtain

∂M1(m)

∂d0
= 2`e−

2(d0+d1)
`

(
e

d1
` − 1

)(
e

d1
`

(
2e

d0
` − 1

)
− 1
)
> 0.
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Hence, M1 strictly increases in distance from citizen i = 0. On the other hand,

∂M1(m)

∂d1
= 2`e−

2d1
`

(
e−

2d0
` − 2e

d1−d0
` +

4e3d1/`

(1 + ed1/`)2

)
.

When evaluated at d0 = 0, the RHS simplifies to

2`

(
e−

2d1
` +

4(sinh(d1

` )− 1)

(1 + ed1/`)2

)
> 0

because sinh(x) > 1 for x > 0. Moreover,

∂

∂d0

(
∂M1(m)

∂d1

)
= 4e−2(d0+d1)/`

(
e(d0+d1)/` − 1

)
> 0

hence ∂M1(m)
∂d1

is strictly positive at any d0 > 0 as well. Therefore, M1 strictly increases in distance of i1
from i2 as well. �

Remark 1 (Outline of argument for Corollary 4.1). We outline here the main steps of the proof for
Corollary 4.1, which is implied by the characterization (i)-(iii) in Proposition 3.5 of Bardhi (2022).

Minipublic informativeness Σou as derived in Lemma B.1 is differentiable in any minipublic citizen.
By the first-order condition with respect to any inner citizen ifj for j = 2, . . . , n − 1, it must be that
ifj − i

f
j−1 = ifj+1 − i

f
j , which by a recursive argument implies that the distance between any two adjacent

citizens in mf
n is constant. This establishes part (ii) of Corollary 4.1.

Moreover, by the first-order conditions with respect to the leftmost citizen and rightmost citizen, we
obtain that for any i2, . . . , in−1, informativeness is maximized at some i1 > 0 and in < 1 such that i1 = 1−in.
Therefore, mf

n is symmetric, which establishes part (i) of Corollary 4.1.
This reduces the problem of maximizing Σou with respect to n citizens to one of maximizing Σou with

respect to the leftmost citizen if1 . Combining first-order conditions, part (ii) of Proposition 3.5 of Bardhi
(2022) derives the condition that pins down the leftmost citizen:

1− e−i
f
1/` = tanh

(
1− 2if1

2`(n− 1)

)
.

Substituting this into the expressions in (9) of Lemma B.1 above, it is immediate that γ1(mf
n) = γ2(mf

n) =

. . . = γn(mf
n).

Proof of Lemma 4.2. We first show that for any j, k ∈ {2, . . . , n− 1}, the passive informativeness of ifj is
equal to that of ifk . From Corollary 4.1, distance ∆ := ifj+1 − i

f
j is the same for all j ∈ {1, . . . , n− 1}. The

claim holds vacuously for n 6 3. Let n > 3. Pick any four consecutive citizens {ifj , i
f
j + ∆, ifj + 2∆, ifj + 3∆},

where j > 1. We compare the informativeness of the minipublic mf
n \ (ifj + ∆) with that of mf

n \ (ifj + 2∆).
Note that removing ifj + ∆ or ifj + 2∆ from mf

n does not affect γk for citizens outside this set of four
consecutive citizens k /∈ {j, j + 1, j + 2, j + 3}. Therefore, using the characterization in Lemma B.1,

Σ(mf
n \ (ifj + ∆))− Σ(mf

n \ (ifj + 2∆)) =

= `

(
tanh

(
2∆

2`

)
− tanh

(
∆

2`

))(√
Σ(ifj )−

√
Σ(ifj + 3∆)

)
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+ `

(
tanh

(
2∆

2`

)
+ tanh

(
∆

2`

))(√
Σ(ifj + 2∆)−

√
Σ(ifj + ∆)

)
= `2e−(1+3∆+ifj )/`

(
e3∆/` − 1

)(
e(3∆+2ifj )/` − e1/`

)
sech

(
∆

`

)
tanh

(
∆

2`

)
− `2e−(1+2∆+ifj )/`

(
e∆/` − 1

)(
e(3∆+2ifj )/` − e1/`

)(
tanh

(
∆

2`

)
+ tanh

(
2∆

2`

))
= 0,

where the second equality uses
√

Σ(i) = `
(
2− e−i/` − e−(1−i)/`) and the last equality follows from the

trigonometric identities sech(x) = 2/(ex + e−x) and tanh(x) = (ex − e−x)/(ex + e−x). We proved that the
passive informativeness of any two adjacent citizens k and k + 1 such that 1 < k < n − 1 is the same.
Therefore, any two non-adjacent citizens j, k ∈ {2, . . . , n− 1} have the same passive informativeness as well.

The fact that Σ(mf
n \ i

f
1 ) = Σ(mf

n \ ifn) follows from the symmetry of mf
n about 1/2. To rank the

passive informativeness of a peripheral citizen and that of an inner citizen, without loss we consider the
difference Σ(mf

n \ (if1 + ∆))−Σ(mf
n \ i

f
1 ). For this difference, we need to only consider the subset of citizens

{if1 , i
f
1 + ∆, if1 + 2∆}. That is,

Σ(mf
n \ (if1 + ∆))− Σ(mf

n \ i
f
1 )

= `

(
1− e−i

f
1/` + tanh

(
2∆

2`

))√
Σ(if1 ) + `

(
tanh

(
∆

2`

)
+ tanh

(
2∆

2`

))√
Σ(if1 + 2∆)

− `
(

1− e−(if1 +∆)/` + tanh

(
∆

2`

))√
Σ(if1 + ∆)− `

(
tanh

(
∆

2`

)
+ tanh

(
∆

2`

))√
Σ(if1 + 2∆)

From Corollary 4.1, the first-best if1 and ∆ are given by

1− e−i
f
1/` = tanh

(
1− 2if1

2`(n− 1)

)
, ∆ =

1− 2if1
n− 1

.

Therefore,

e−i
f
1/` = 1− tanh

(
∆

2`

)
.

This allows us to simplify the expression for Σ(mf
n \ (if1 + ∆)) − Σ(mf

n \ i
f
1 ). First, the coefficient in front

of
√

Σ(if1 + ∆) becomes

`

(
1− e−(if1 +∆)/` + tanh

(
∆

2`

))
= 2`(1− e−∆/`).

Second, the coefficient in front of
√

Σ(if1 ) becomes

`

(
1− e−i

f
1/` + tanh

(
2∆

2`

))
= `

(
tanh

(
∆

2`

)
+ tanh

(
2∆

2`

))
.

Therefore,

Σ(mf
n \ (if1 + ∆))− Σ(mf

n \ i
f
1 ) = `

(
tanh

(
∆

2`

)
+ tanh

(
2∆

2`

))(√
Σ(if1 ) +

√
Σ(if1 + 2∆)

)
−2`(1− e−∆/`)

√
Σ(if1 + ∆)− 2` tanh

(
∆

2`

)√
Σ(if1 + 2∆)
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=
2`2e−(2∆+if1 )/`(e∆/` − 1)2(1 + e2∆/` − 2e(∆+if1 )/`)

1 + e2∆/`
.

This difference is strictly positive because 1 + e2∆/` − 2e(∆+if1 )/` = 1 + e2∆/` − 2e∆/`

1−tanh( ∆
2` )

> 0. This implies

that Σ(mf
n \ i

f
j ) > Σ(mf

n \ i
f
1 ) for any j = 2, . . . , n− 1. �

Proof of Lemma 4.3. By contradiction, suppose that i∗2 > if2 and all citizens i3(i∗2), . . . , in(i∗2) are placed
so as to maximize the informativeness of the minipublic {i∗2, i3(i∗2), . . . , in(i∗2)} (if i∗2 = if2 , then ij(i

f
2 ) = ifj

for any j > 3). If the capacity were (n − 1) instead of n, the leftmost citizen in mf
n−1 would be to the left

of if2 in mf
n, hence the informativeness of {i∗2, i3(i∗2), . . . , in(i∗2)} strictly decreases in i∗2 ∈ [if2 , 1). Therefore,

the passive informativeness of i∗1 in m∗ is weakly lower than the passive informativeness of if1 in mf
n. But

Σ(m∗) < Σ(mf
n) as well. Therefore, if if1 is passive in mf

n, then i∗1 must be passive in m∗, which contradicts
the optimality of m∗. This means that i∗2 < if2 . By a similar argument, i∗n−1 > ifn−1 as well. �

Proof of Proposition 4.3. We first prove four auxiliary lemmata that are repeatedly invoked in this proof.

Lemma B.2. Fix an arbitrary minipublic m = {i1, . . . , in} with adjacent citizens ij < ij+1. The infor-
mativeness Σ(m ∪ {i}) of the extended minipublic m ∪ {i} is single-peaked in i ∈ (ij , ij+1), with the peak
attained at i∗ = (ij + ij+1)/2.

Proof of Lemma B.2. From the proof of Lemma 4.1, the marginal informativeness of citizen i in m∪ {i}
is

Mi(m ∪ {i}) = 4`2 tanh

(
i− ij

2`

)
tanh

(
ij+1 − i

2`

)
tanh

(
ij+1 − ij

2`

)
,

which is strictly increasing for i ∈ (ij , i
∗) and strictly decreasing for i ∈ (i∗, ij+1). On the other hand, the

active informativeness of m ∪ {i} is Σ(m ∪ {i}) = Σ(m) +Mj+1(m ∪ {i}) and Σ(m) does not depend on i,
hence Σ(m ∪ {i}) is single-peaked in i ∈ (ij , ij+1) as well, with a peak at i∗. �

Lemma B.3. Fix an optimal minipublic m with ik−1, ik, ik+1 ∈m such that ik−1 < ik < ik+1. If ik−ik−1 <

ik+1 − ik (ik − ik−1 > ik+1 − ik), then the ED constraint of ik−1 (of ik+1) binds.

Proof of Lemma B.3. Towards a contradiction, suppose ik − ik−1 < ik+1 − ik and the (ED) constraint of
ik−1 is slack. By Lemma B.2, shifting ik to the right to ik + ε for a sufficiently small ε > 0 strictly increases
the active informativeness of m while satisfying the (ED) constraint of ik−1. By the same Lemma, it also
strictly increases the passive informativeness of ik+1 since ik + ε is closer to (ik−1 + ik+2)/2, hence if ik+1

is active in m, he continues to be active after the shift as well. The (ED) constraints of all other citizens
in m \ {ik−1, ik+1} are the same as before the shift. We have thus identified a strict improvement which
contradicts the optimality of m. So if ik− ik−1 < ik+1− ik then the (ED) constraint of ik−1 must bind. That
ik − ik−1 > ik+1 − ik implies that the (ED) constraint of ik+1 is binding follows by a similar argument. �

For the next results, let i−(j) := arg maxi6j Σ({j, i}) and i+(j) := arg maxi>j Σ({j, i}).

Lemma B.4. In any optimal minipublic, i1 > i−(i2) (with equality if the (ED) constraint of i2 is slack),
and in 6 i+(in−1) (with equality if the ED constraint of in−1 is slack).

Proof for Lemma B.4. Fix an optimal minipublicm. It is sufficient to show that i1 > i−(i2), as the argument
for in 6 i+(in−1) is symmetric. Suppose, by contradiction, that i1 < i−(i2). Shifting i1 to i1 + ε, for ε > 0

sufficiently small, strictly increases both the active informativeness Σ(m) and the passive informativeness
Σ(m\{i2}) of citizen i2. If i1 and i2 are active in m, then i1 + ε and i2 are active in this modified minipublic
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too. This contradicts the optimality of m. Moreover, if the (ED) of i2 is slack in m but i1 < i−(i2), this
improvement is available to the policymaker—hence, it must be that i1 = i−(i2). �

Lemma B.5. For any j ∈ [0, 1], (i) i−(j) and j − i−(j) are increasing in j, and (ii) i+(j) increases in j

and i+(j)− j decreases in j.

Proof of Lemma B.5. By the characterization of the first-best minipublic in Corollary 4.1, we know that
i−(j) is pinned down by the equation 1 − e−i/` = tanh

(
j−i
2`

)
. The RHS is increasing in j and decreasing

in i, whereas the LHS is increasing in i. Therefore, i−(j) must be increasing in j. Moreover, substituting
d(j) := j − i⇒ i = j − d(j) into the equation and implicitly differentiating with respect to j, we obtain

d′(j) =
1

1 + 2ej/`

(1+ed(j)/`)2

> 0.

By a symmetric argument, i+(j) increases in j and i+(j)− j decreases in j. �

Now we turn to the proof of the proposition statement.

(i) By Lemma 4.3, i∗n−1 − i∗2 > ifn−1 − i
f
2 . Next, we rule out all but two patterns for inner citizens.

∆-equidistant pattern: Suppose i∗k+1 − i∗k = i∗k+2 − i∗k+1 =: ∆ for some k ∈ {2, . . . , n − 3}. We show that
i∗k+1 − i∗k = ∆ for all k. Suppose first that i∗k − i∗k−1 > ∆. From Lemma B.3, it must be that the (ED) of
i∗k+1 binds. But by Lemma 4.1, Mk(m∗) > Mk+1(m∗), hence the (ED) of i∗k is violated. We have reached
a contradiction, hence i∗k − i∗k−1 6 ∆. By a similar argument, we conclude that i∗k+3 − i∗k+2 6 ∆ as well.
Next, suppose that k > 2 and i∗k − i∗k−1 < ∆. Lemma B.3 implies that the (ED) constraint of i∗k−1 must
bind. In order for the (ED) of i∗k not to be violated, it must be thatMk(m∗) 6Mk−1(m∗) which, by Lemma
4.1, implies that i∗k−1 − i∗k−2 > ∆. By Lemma B.3, this means that the (ED) for i∗k binds, which in turn
implies that the (ED) of i∗k+1 must be violated because Mk+1(m∗) > Mk(m∗). We have thus reached a
contradiction, so it must be that for k > 2, i∗k− i∗k−1 = ∆. A similar argument establishes that for k < n−3,
i∗k+3 − i∗k+2 = ∆ as well. Finally, by Lemma 4.3, it is immediate that ∆ > ∆f

n.

(δ,∆)-alternating pattern: Let i∗k+1 − i∗k =: δ < ∆ := i∗k+2 − i∗k+1 for some k ∈ {2, . . . , n − 3}. We show
that the distances between adjacent inner citizens consecutively alternate between δ and ∆. By Lemma
B.3, the (ED) of i∗k must be binding. Consider first i∗k − i∗k−1. For the (ED) of i∗k+1 to be satisfied, it
must be that Mk+1(m) 6 Mk(m). By Lemma 4.1, this implies that i∗k − i∗k−1 > ∆. Lemma B.3 again
implies that the (ED) constraint of i∗k+1 must bind, which means that Mk+1(m) = Mk(m) and hence
i∗k − i∗k−1 = i∗k+2 − i∗k+1 = ∆. In particular, this argument also implies that if i∗3 − i∗2 = δ, then i∗2 − i∗1 = ∆.
Next, consider i∗k+3 − i∗k+2. Because the (ED) constraint of i∗k+1 binds by the previous argument, it must
be that Mk+2(m∗) 6 Mk+1(m∗), which in turn implies that i∗k+3 − i∗k+2 6 δ and the (ED) constraint of
i∗k+3 binds. In particular, this means that i∗n − i∗n−1 6 δ if i∗n−1 − i∗n−2 = ∆. If k < n − 3, on the other
hand, then by the first case we considered it must be that i∗k+4 − i∗k+3 = ∆ and the (ED) constraint of
i∗k+2 binds. Therefore Mk+2(m∗) = Mk+1(m∗), which, because i∗k+2 − i∗k+1 = ik+4 − ik+3 = ∆, implies that
i∗k+3− i∗k+2 = δ. Finally, we show that in any optimal minipublic of (δ,∆)-pattern, i∗3− i∗2 = i∗n−1− i∗n−2 = ∆.
By contradiction, let i∗3− i∗2 = δ < ∆. Then, by the same argument as above, i∗2− i∗1 = ∆. However, because
∆ > ∆f

n by Lemma 4.3, this implies i∗1 < i−(i∗2), which contradicts Lemma B.4. By the same argument,
i∗n−1 − i∗n−2 = ∆.

(ii) By Lemma 4.3, i∗2 < if2 . Combining this with Lemma B.4 and Lemma B.5 yields i∗2 − i∗1 6 i∗2 − i−(i∗2) <

if2 − i
f
1 . Furthermore, i∗2 − i∗1 < ∆f

n < ∆ = i∗3 − i∗2, where the second inequality and the last equality follow
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by part (i). Then, i∗2 − i∗1 < i∗3 − i∗2, and so the (ED) constraint of i∗1 binds by lemma B.3. By the same
arguments, i∗n − i∗n−1 < ifn − i

f
n−1, and the (ED) constraint of i∗n binds.

Next, we prove that i∗1 = min{i∗2 − δ, i−(i∗2)}. If i∗1 6= i−(i∗2), then the (ED) constraint of i∗2 binds by
Lemma B.4. In an optimal ∆-equidistant minipublic, M2(m∗) < M3(m∗), so the (ED) constraint of i∗2
is slack, therefore i∗1 = i−(i∗2). In the (δ,∆)-equidistant minipublic, i∗2 − i∗1 6 δ as established in part (i).
Moreover, because the (ED) constraint of i∗3 binds by the argument in part (i), the (ED) constraint of i∗2
binds if and only if i∗2 − i∗1 = δ, in which case M2(m∗) = M3(m∗). If i∗2 − i−(i∗2) < δ, then by Lemma B.4,
i∗1 > i

−(i∗2). Thus, the (ED) constraint of i∗2 is slack which in turn implies that i∗1 = i−(i∗2). If i∗2− i−(i∗2) > δ,
then i∗1 > i−(i∗2). In this case, because i∗2 − i∗1 6 δ and by the argument above, the (ED) constraints of i2
ought to bind which requires i∗2 − i∗1 = δ. By the same argument, i∗n = min{i∗n−1 + δ, i+(i∗n−1)}.

(iii) To establish symmetry, we distinguish between three cases, depending on whether the (ED) constraints
of i∗2 and i∗n−1 bind or are slack. First, let the (ED) constraints of both i∗2 and i∗n−1 bind. This is only
possible if m∗ is of the (δ,∆)-alternating pattern and i∗2 − i∗1 = i∗n − i∗n−1 = δ. Without loss, let i∗1 < 1− i∗n.
But then, M1(m∗) < Mn(m∗), contradicting the fact that the (ED) constraints of i1 and in always bind by
part (ii). Hence, i∗1 = 1− i∗n: the minipublic is symmetric.

Next, let the (ED) constraints of i∗2 and i∗n−1 be slack. By the same argument as that in part (ii), this
implies that i∗1 = i−(i∗2) and i∗n = i+(i∗n−1). Let i∗2 < 1− i∗n−1. By Lemma B.5, this implies that i∗1 < 1− i∗n
and i∗2 − i∗1 < i∗n − i∗n−1. Hence, M1(m∗) < Mn(m∗), contradicting that i∗1 and i∗n both have binding (ED)
constraints. By the same argument, i∗2 > 1 − i∗n−1 is not possible in an optimal minipublic. Hence, if the
(ED) constraints of both i∗2 and i∗n−1 are slack in m∗, then m∗ is symmetric.

Finally, let the (ED) constraint of i∗2 bind, and that of i∗n−1 be slack (the reverse case is without loss.) By
the arguments in part (ii), i∗2− i∗1 = δ and i∗n = i+(i∗n−1). This implies that i+(i∗n−1)− i∗n−1 6 δ 6 i

∗
2− i−(i∗2),

and by Lemma B.5, i∗2 > 1 − i∗n−1. We conclude that i∗2 > 1 − i∗n−1, for otherwise both (ED) constraints
are either binding or slack. Note that M1(m∗) > Mn(m∗): the distances from i∗1 to i∗2 and to 0 are higher
than the distances of i∗n to i∗n−1 and 1. But this contradicts that the (ED) constraint of i∗1 and i∗n both bind.
Hence, it cannot be that the (ED) of i∗2 binds while that of i∗n−1 is slack in m∗. �

Proposition B.1.

1. Let n ∈ {1, 3}. The optimal minipublic cannot be distorted in composition, i.e., m∗ ∈ {∅,mf
n}.

2. Let n = 2 and m∗ 6∈ {∅,mf
n}. Then, the optimal minipublic is symmetric, m∗ = {i∗, 1 − i∗}, and

if1 < i∗ < 1
2 .

3. Let n = 4 and m∗ 6∈ {∅,mf
n}. Then, the optimal minipublic is symmetric, m∗ = {i∗1, i∗2, 1− i∗2, 1− i∗1},

and i∗2 < if2 and i∗2 − i∗1 < if2 − i
f
1 .

Proof of Proposition B.1. 1. The argument is in the main text.
2. For n = 2, by Lemma 4.3, i∗2 < if2 and i∗1 > if1 . Without loss, let i∗1 < 1− i∗2, and hence, Σ(m∗\i∗2) <

Σ(m∗\i∗1). Let m̃ = {i∗1+ε, i∗2+ε} for ε > 0 sufficiently small such that i∗1+ε < 1−i∗2−ε. Then, Σ(m̃) > Σ(m∗)

and Σ(m̃\̃i) > Σ(m∗\i∗2) for all ĩ ∈ m̃. Because citizen i∗2 is active in m∗, by quasiconvexity of VC , both
citizens are active in m̃. But then, because m̃ is feasible, m∗ cannot be optimal. Hence, i∗1 = 1− i∗2.

3. For n = 4, by Lemma 4.3, i∗2 < if2 and i∗3 > if3 . Then, by Lemmata B.4 and B.5, i∗2 − i∗1 < if2 − i
f
1

and i∗n − i∗n−1 < ifn − i
f
n−1. Finally, we establish symmetry. Without loss, let i∗2 < 1 − i∗3. If (ED) of i∗3

is slack, then i∗1 > i−(i∗2) and i∗4 = i+(i∗3) and M1(m∗) < Mn(m∗) by Lemma B.5. But by Lemma B.3,
(ED) of i∗1 and i∗4 must both bind, leading to a contradiction. Hence, (ED) of i∗3 binds. This implies
that i∗2 − i∗1 6 i∗4 − i∗3, because otherwise M3(m∗) < M2(m∗) and (ED) of i∗2 is violated. But note that
Σ(m∗\i∗4) = Σ({i∗1, i∗2, i∗3}) < Σ({i∗2, i∗3, i∗3 + (i∗2 − i∗1)}) 6 Σ({i∗2, i∗3, i∗4}) = Σ(m∗\i∗1), which contradicts that
(ED) of i∗1 and i∗4 both bind. �
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C Formal results and proofs for Section 5

Proof of Proposition 5.1. First, we examine how the VC-minimizing informativeness Σ varies with τ2.

Lemma C.1. Let τ2
x := ( 3√

2
− 2)B̄2 and τ2

y := 1
2 B̄

2. Then, Σ is
(i) strictly increasing in τ2 ∈ (0, τ2

x), and Σ→ 0 as τ2 → 0;
(ii) strictly decreasing in τ2 ∈ (τ2

x , τ
2
y ), and for τ2 ∈ [τ2

y ,∞), Σ = 0.

Proof. Let g(τ2) := 1
2

√
τ4 + 4B̄2τ2−3τ2 and Σ = max{0, g(τ2)} as in (4). The first derivative of g(τ2) with

respect to τ2 is
1

2

(
4B̄2 + 2τ2

2
√

4B̄2τ2 + τ4
− 3

)
,

which is negative (positive) if and only if τ2 > (<)( 3√
2
− 2)B̄2 =: τ2

x . First, as τ2 → 0, g(τ2) → 0 from
above, hence Σ → 0. Moreover, the positive derivative of g implies that Σ strictly increases in τ2 ∈ [0, τ2

x).
Second, g is strictly positive over [τ2

x , τ
2
y ) and strictly decreasing for τ2 > τ2

x . Hence, Σ strictly decreases
for τ2 ∈ (τ2

x , τ
2
y ). For τ2 = τ2

y , Σ = 0 because g(τ2
y ) = 0. Therefore, because g(τ2

y ) 6 0 for τ2 ∈ [τ2
y ,∞),

Σ = 0. �

If B̄ = 0, then Σ = 0 for any τ2. This implies any citizen in any minipublic is active. Hence, m∗ ∈ Mf
n

for any τ2, so τ2 = τ̄2. If B̄ 6= 0, let τ̄2 = τ2
y as in lemma C.1. By lemma C.1(ii), for any τ2 > τ̄2, Σ = 0 so

any citizen is active in any minipublic. Therefore, any m ∈Mf
n is feasible, and hence, optimal.

Pick any mf
n ∈Mf

n, and let ifk ∈ arg maxi∈mf
n
Mi(m

f
n) be among the citizens with the highest marginal

informativeness. If ifk is active in mf
n then mf

n is feasible. By Lemma C.1(i), for any Σ(mf
n \ i

f
1 ) > 0, there

exists τ2 sufficiently small so that 0 < Σ < Σ(mf
n\i

f
k) for all τ2 6 τ2. Thus, for τ2 sufficiently small, mf

n is
feasible and hence, optimal. �

Proposition C.1. Fix τ, B̄, ` and consider the Ornstein-Uhlenbeck correlation structure as in Section 4.2.2.
There exist unique n∅, nf ∈ N ∪ {0,+∞} such that (i) m∗ = mf

n for n > nf , (ii) m∗ = ∅ for n 6 n∅, (iii)
m∗ 6= {∅,mf

n} for n ∈ [n∅ + 1, nf − 1], and (iv) m∗ is ∆-equidistant for n ∈ [n∅ + 2, nf − 1].

Proof of Proposition C.1. We prove this in three steps.

Lemma C.2. Suppose the Ornstein-Uhlenbeck structure in Section 4.2.2. If mf
n is active for some n ∈ N,

then mf
n′ is active for all n′ > n as well.

Proof. First, it is immediate that if mf
1 = {1/2} is active, then any mf

n for n > 1 is active as well. Fix n > 2.
Suppose mf

n for some n > 1 is active. For any n′ > n, if1 (n′) < if1 (n) and d(n′) < d(n). This implies that
M1(mf

n′) < M1(mf
n) and M2(mf

n′) < M2(mf
n). But Σ(mf

n′) > Σ(mf
n). Hence, the active informativeness

is strictly higher, and the marginal informativeness for if1 (n′) and if2 (n′) are strictly lower in the larger
minipublic mf

n′ ; this implies that their passive informativeness are strictly higher in mf
n′ than in mf

n. Hence,
if if1 (n) and if2 (n) are active in mf

n, then i
f
1 (n′) and if2 (n′) must be active in mf

n′ as well. By Lemma 4.2,
(i) if i1f (n′) is active, then ifn′(n

′) is active as well, (ii) if if2 (n′) is active, then all inner citizens in mf
n′ are

active as well. Hence mf
n′ is active. �

Lemma C.3. Suppose the correlation structure of β(·) is as in Section 2. If m∗n = ∅, then m∗n′ = ∅ for all
n′ 6 n.

Proof. By contradiction, assume that there exists n′ < n such that m∗n′ 6= ∅. Then, the minipublic m∗n′ is
also feasible with a capacity of n and gives strictly higher payoff to the policymaker than ∅, contradicting
the optimality of m∗n = ∅. �
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Lemma C.4. Suppose the Ornstein-Uhlenbeck structure in Section 4.2.2. There is at most one n ∈ N such
that m∗ is the (δ,∆)-alternating minipublic.

Proof. Let n be the lowest capacity at which an optimal (δ,∆)-alternating minipublic m∗(n) arises. By
Lemma D.3, n is even, and m∗(n+ 1) cannot be (δ,∆)-alternating because n+ 1 is odd. We show that for
all ñ > n+ 2, the optimal minipublic cannot be of the (δ,∆)-alternating type. By the proof of Lemma 3.2,
m∗(n+1) is either a first-best minipublicmf

n+1 or a ∆-equidistant onem∗(n+1) with generic citizen ij(n+1).
If it is mf

n+1, the result is immediate by Lemma C.2. If it is m∗(n+ 1), we first show that for any ñ > n+ 2,
the following ∆-equidistant minipublic is feasible: it has the same two left-most citizens (i1(ñ) = i1(n+ 1)

and i2(ñ) = i2(n+ 1)) and right-most citizens (iñ−1(ñ) = in(n+ 1) and iñ(ñ) = in+1(n+ 1)), and all other
citizens are equidistantly allocated in the interior. Then, Σ(m∗(ñ)) > Σ(m∗(n + 1)), and M1(m∗(ñ)) =

Mñ(m∗(ñ)) = M1(m∗(n+ 1)) and Mj(m
∗(ñ)) < Mj(m

∗(n+ 1)) for all other j ∈m∗(ñ). Hence, all citizens
in m∗(ñ) are active. Finally, by Lemma D.2, the optimal minipublic cannot be (δ,∆)-alternating for any ñ
because there exists a feasible equidistant one. �

�

Proposition C.2. Let n < n′ and m∗(n) and m∗(n′) be both ∆-equidistant minipublics in the Ornstein-
Uhlenbeck correlation structure as in Section 4.2.2. Then, ∆(m∗(n)) > ∆(m∗(n′)).

Proof of Proposition C.2. Let ij(n) denote a generic citizen in m∗(n). Consider the following minipublic
m̃ with n′ citizens as constructed in the proof of Lemma C.4: ĩ1 = i1(n), ĩ2 = i2(n), ĩn′−1 = in−1(n) and
ĩn′ = in(n), and all other n′−4 citizens are equidistantly allocated in the interior. Then, Σ(m̃) > Σ(m∗(n)),
M1(m̃) = Mn′(m̃) = M1(m∗(n)) and Mj(m̃) < Mj(m

∗(n+ 1)) for all other j ∈ m̃. Hence, all citizens in m̃

are active. First, let i2(n) > if2 (n′). But then, since m̃ is feasible, so is mf
n′ . This is because Σ(m̃) < Σ(mf

n′),
M1(m̃) > M1(mf

n′) > M2(mf
n′), so all citizens are active in mf

n′ because citizen 1 is active in m̃. Second, let
i2(n) < if2 (n′). Note that i1(m̃) is slack in the feasible minipublic m̃. Hence, the optimal minipublic m(n′)

must have smaller distance between inner citizens than in the feasible minipublic m̃ for the (ED) of citizen
1 to bind and to achieve a higher informativeness than m̃. Finally, let i2(n) = if2 (n′). Then, m̃ = mf

n′ , so
m∗(n′) cannot be a distorted ∆-equidistant minipublic. �

Proposition C.3 (Distortions arise under strong policy sentiment). Fix capacity n. There exist unique
cutoffs 0 < b 6 b̄ <∞ such that:

(i) the optimal minipublic is a first-best one, m∗ ∈Mf
n, if and only if |B̄| 6 b;

(ii) the optimal minipublic consists of n citizens but is distinct from the first-best minipublics, m∗ 6∈ Mf
n,

if and only if |B̄| ∈ (b, b̄];
(iii) the optimal minipublic is empty if and only if |B̄| > b̄.

Proof of Proposition C.3. The following lemma will be invoked in the proof.

Lemma C.5 (Single crossing in |B̄|). For any given 0 6 Σ˜ < Σ̃, there exists a unique cutoff b > 0 such that
VC(Σ̃) > VC(Σ˜) if and only if |B̄| 6 b.

Proof. Without loss, let B̄ > 0. Consider the function D(B̄) := VC(Σ̃) − VC(Σ˜), which is continuously
differentiable in B̄. We claim that D crosses zero exactly once from above.

The payoff-minimizing informativeness Σ in (4) is nondecreasing in B̄. Fix 0 6 Σ˜ < Σ̃, and define
b := {B̄ : Σ = Σ˜}, and b := {B̄ : Σ = Σ̃}. From equation (4), it immediately follows that b > 0 and b > 0.

By Lemma 3.1, for any 0 6 B̄ 6 b, the payoff-minimizing Σ is weakly lower than Σ˜. Hence, a higher
informativeness yields a higher expected payoff, so D(B̄) > 0. Similarly, for any B̄ > b, Σ is weakly to the
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right of both Σ˜ and Σ̃, and hence, D(B̄) < 0. This implies that the function D crosses zero k times in the
interval (b, b), where k > 1 and k odd.

We claim that k = 1. By contradiction, suppose that k > 1. By the continuous differentiability of D,
the derivative D′ must be switching sign at least three times, so there exist at least two different values of
B̄ ∈ (b, b̄) at which D′(B̄) = 0. We next show that at most one such value can exist, which generates the
desired contradiction. The first derivative of D(B̄) is

D′(B̄) = h(B̄; Σ̃)− h(B̄; Σ˜)

where h(B̄; Σ) := Φ( B̄√
Σ+τ2

) + φ( B̄√
Σ+τ2

) B̄τ2√
(Σ+τ2)3

. The partial derivative of h with respect to B̄ is

∂h(B̄; Σ)

∂B̄
= φ(

B̄√
Σ + τ2

)

[
1√

Σ + τ2
+

τ2√
(Σ + τ2)3

− B̄2τ2√
(Σ + τ2)5

]

= φ(
B̄√

Σ + τ2
)

[
Σ2 − τ2(B̄2 − 3Σ) + 2τ4√

(Σ + τ2)5

]
.

From (4), VC increases in Σ if and only if Σ > Σ, or equivalently if Σ2 − (B̄2 − 3Σ)τ2 + 2τ4 > 0. As
Σ˜ < Σ < Σ̃ for every B̄ ∈ (b, b), it holds that Σ˜2 − (B̄2 − 3Σ˜)τ2 + 2τ4 < 0 and Σ̃2 − (B̄2 − 3Σ̃)τ2 + 2τ4 > 0.

Hence, ∂h(B̄;Σ̃)
∂B̄

> 0 and
∂h(B̄;Σ˜)

∂B̄
< 0.

To sum up, on the entire domain B̄ ∈ (b, b), h(B̄; Σ̃) is increasing in B̄ and h(B̄; Σ˜) is strictly decreasing
in it. Hence, there is at most one B̄′ that satisfies D′(B̄′) = 0. We have reached a contradiction, so k = 1. �

(i) A first-best minipublic mf
n ∈ Mf

n is optimal if and only if each i ∈ mf
n is active, i.e., VC(Σ(mf

n)) >
VC(Σ(mf

n \ i)). By Lemma C.5 and the fact that Σ(mf
n \ i

f
k) < Σ(mf

n) for any k ∈ {1, . . . , n}, there exists a
threshold bk > 0 such that ifk is active if and only if |B̄| 6 bk. Define b to be the lowest among all such bk
for k ∈ {1, . . . , n}. By construction, each ifk ∈ mf

n is active if |B̄| 6 b. On the other hand, if |B̄| > b, there
exists at least one citizen in mf

n who prefers to be passive.

(ii) The optimal minipublic is empty if and only if no minipublic m ∈ Mn is active. First, we establish the
sufficiency of |B̄| > b̄ for the optimal minipublic to be empty, then its necessity.

As |B̄| → +∞, the limit payoff VC is strictly decreasing over the relevant domain [0,Σ(mf
n)] because

Σ→ +∞. That is, for |B̄| sufficiently large, for all m ∈Mn each i ∈m is passive. Therefore, there exists a
cutoff b̄ < +∞ such that the optimal minipublic is empty if |B̄| > b̄.

Suppose there exist b < b̃ < b̄ such that (i) if |B̄| = b the optimal minipublic is empty, and (ii) if |B̄| = b̃

the optimal minipublic, denoted by m̃, is nonempty. Then, each i ∈ m̃ is active, which means that D(b̃) > 0,
and hence D is strictly decreasing at |B̄| = b̃. Because b < b̃, it must be that D(b) > D(b̃) > 0, hence m̃ is
active when |B̄| = b as well. This contradicts the empty optimal minipublic for |B̄| = b. Hence, the optimal
minipublic is empty only if |B̄| > b̄. �

Proposition C.4. Consider the Ornstein-Uhlenbeck structure of Section 4.2.2. For any two optimal minipublics
of the ∆-equidistant pattern corresponding to |B̄|, |B̄′| ∈ (b, b̄) such that |B̄| < |B̄′|, where b, b̄ are as defined
in Proposition C.3, the distance between inner citizens increases in policy sentiment, i.e., ∆∗(B̄) 6 ∆∗(B̄′).

Proof of Proposition C.4. Letm∗(B̄) andm∗(B̄′) denote the two optimal minipublics of the ∆-equidistant
pattern, with corresponding distance between inner citizens ∆∗(B̄) and ∆∗(B̄′). By Lemma C.5, any
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minipublic that is feasible for B̄′ is also feasible for B̄. Therefore Σ(m∗(B̄)) > Σ(m∗(B̄′)). But the in-
formativeness of a ∆-equidistant minipublic that is more spread out than the first-best minipublic mf

n

strictly decreases in ∆. Hence, it must be that ∆∗(B̄) 6 ∆∗(B̄′). �

Proposition C.5. Consider the Ornstein-Uhlenbeck structure of Section 4.2.2, and suppose 0 < Σ < 1.
There exist ` and ` with 0 < ` 6 ` <∞ such that (i) for ` 6 `, m∗ = ∅, (ii) for ` ∈ (`, ¯̀), m∗ /∈ {∅,mf

n} is
distorted in composition, and (iii) for ` > ¯̀, m∗ = mf

n.

Proof of Proposition C.5. The following lemma is useful for the argument.

Lemma C.6. For any m ∈M, Σ(m) strictly increases in `. Moreover, Σ(m)→ 0 as `→ 0+ and Σ(m)→ 1

as `→ +∞.

Proof. Consider Σ({i}) = `(2− e−i/` − e−(1−i)/`) for i ∈ [0, 1]. Differentiating with respect to `,

∂Σ({i})
∂`

=
2`− e−i/`(i+ `)− e−(1−i)/`(1− i+ `)

`
.

From the power series of the exponential function e−x < 1−x, hence e−i/`(i+`) <
(
1− i

`

)
(i+`) = `−i2/` < `.

By a similar reasoning, e−(1−i)/`(1 − i + `) < ` as well. Hence this derivative is strictly positive. Next, we
show that γj for each j = 1, . . . , n is strictly increasing in `, where γj are as derived in Lemma B.1. Observe
that we can break γ1(m) down into

∂γ1(m)

∂`
=
∂(`(1− e−i1/`))

∂`
+
∂
(
`(tanh

(
i2−i1

2`

)
)
)

∂`
=

(
1− e−

i1
` (`+ i1)

`

)
+

(
i1 − i2 − ` sinh((i1 − i2)/`)

`+ ` cosh((i1 − i2)/`)

)
The first term in the RHS is strictly positive by the reasoning above. The second term in the RHS is
strictly positive because sinh(x) > x for any x > 0. As established above, e−i1/`(` + i1) < `. The function
h(x) := exsech(x/2)2 is strictly increasing in x, and h(0) = 1. Hence `e(i2−i1)/`sech((i2 − i1)/2`))2 > `. For
j = 2, . . . , n− 1:

∂γj(m)

∂`
=

2`
(
tanh

(
ij−ij−1

2`

)
+ tanh

(
ij+1−ij

2`

))
− (ij − ij−1)sech

(
ij−ij−1

2`

)2

− (ij+1 − ij)sech
(
ij+1−ij

2`

)2

2`
.

The function g(x) := tanh(x)−xsech(x)2 is strictly increasing for x > 0 and g(0) = 0. Hence, the derivative
above is strictly positive for ij−1 < ij < ij+1. By the characterization of Σ in Lemma B.1, if Σ({i}) increasing
in ` for any i and γj(m) increasing in ` for any j and m, then Σ(m) is increasing in ` for any m.

Fix m. As `→ 0+, Σ({ik})→ 0 for any ik ∈ [0, 1] and γk(m)→ 0 for any ik ∈m. Therefore by Lemma
B.1, Σ(m) → 0 as ` → 0. As ` → +∞, using L’Hôpital’s rule, Σ({ik}) → 1 for any ik ∈ m. Furthermore,
` tanh( d2` ) →

d
2 as ` → ∞ for any distance d > 0. Using this observation and L’Hôpital’s rule, the limit of

γk as given by (9) is

lim
`→+∞

γk(m) =


i1
2

+
i2
2

if k = 1,

ik+1

2
− ik−1

2
if k = 2, ..., n− 1,

1− in−1

2
− in

2
if k = n.

(10)

Thus, the limit of informativeness of any minipublic with n > 1 is

lim
`→+∞

Σ(m) = lim
`→+∞

∑
k

γk(m)Σ({ik}) = 1.

�
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Because 0 < Σ and Σ(m) → 0 as ` → 0+ for any m ∈ Mn, there exists ` sufficiently small such that
for any m ∈ Mn, Σ(m) < Σ. Hence, the set of feasible minipublics is empty and m∗ = ∅. But if m∗ = ∅
for some ` > 0, then for any `′ < `, any m ∈ Mn, and any i ∈ m, it must be that Σ(m; `′) < Σ(m; `) and
Σ(m \ {i}; `′) < Σ(m \ {i}; `), so m is not feasible for `′ either. Hence, m∗ = ∅ for `′ < ` as well.

Moreover, by Lemma C.6 above, both Σ(mf
n \ i

f
k) for any ifk ∈mf

n and Σ(mf
n) converge to 1 as `→ +∞.

Hence, for ` sufficiently high, Σ < Σ(mf
n \ i

f
k) < Σ(mf

n) because Σ < 1 by the premise. Therefore, there
exists ` > 0 for which m∗ = mf

n is optimal. But then for any `′ > `, it must be that Σ(mf
n; `′) > Σ(mf

n; `)

and Σ(mf
n \ {i

f
j }; `′) > Σ(mf

n \ {i
f
j }; `) for any ifj ∈ mf

n. Therefore mf
n is feasible, and hence optimal, for

any `′ > ` as well. �

Proposition C.6. Consider the Ornstein-Uhlenbeck structure of Section 4.2.2. For any two optimal minipublics
of the ∆-equidistant pattern corresponding to `, `′ ∈ (`, ¯̀) such that `′ > `, where `, ¯̀ are as in Proposition
C.5, the distance between inner citizens decreases in the homogeneity of the citizenry, i.e., ∆∗(`) > ∆∗(`′).

Proof of Proposition C.6. Let m∗(`) and m∗(`′) be the optimal minipublics for ` and `′, respectively. By
contradiction, suppose ∆∗(`) < ∆∗(`′), hence under any `′′ > 0, Σ(m∗(`′); `′′) < Σ(m∗(`); `′′). By Lemma
C.6, it must be that m∗(`) is also feasible under `′, because for every i ∈m∗(`), Σ(m∗(`); `′) > Σ(m∗(`); `)

and Σ(m∗(`) \ {i}; `′) > Σ(m∗(`) \ {i}; `). Hence, m∗(`′) is suboptimal under `′. �
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D For Online Publication

D.1 Axiomatization of the Ornstein-Uhlenbeck structure

The Ornstein-Uhlenbeck process introduced in Assumption 2 uniquely satisfies the following set of natural
axioms on the outcome mapping β.

A.1 (Principle of maximal ignorance) For any group of citizens {i1, . . . , in}, outcomes {β(i1), . . . , β(in)}
follow a multivariate Gaussian distribution.

A.2 (Similar citizens, similar outcomes) β(·) is almost surely continuous.

A.3 (Identical outcome uncertainty) For each i ∈ [0, 1], β(i)− B̄ ∼ N (0, 1).

A.4 (Distance-based correlation) For any two i1, i2 ∈ [0, 1], the correlation between β(i1) and β(i2) depends
only on the distance |i1 − i2|.

A.5 (Look to your left, look to your right) For any i1 < . . . < ik < . . . in, the distribution of β(ik) depends
on the outcomes of other citizens in the set only through β(ik−1) and β(ik+1).

Axiom A.1 imposes a general Gaussian structure, whereas Axioms A.2-A.5 specify additional properties.
A.1 can also be interpreted as a maximal-ignorance desideratum. The Gaussian distribution maximizes
entropy among all unbounded distributions of a fixed mean and variance, therefore the Gaussian structure
allows one to draw the weakest conclusions possible from a set of outcomes. A.2 requires that for any two
citizens that are arbitrarily close to each other, their realized outcomes are also close. A.3 requires that
all citizens face the same uncertainty about their outcomes. In understanding how informative a citizen’s
outcome is for the rest of the citizenry, this axiom allows us to isolate the role of the citizen’s position in [0, 1]

from the role of the outcome uncertainty that he faces. Axioms A.4 and A.5 specify how a citizen’s position
determines his correlation to other citizens. Correlation between any two citizens’ outcomes depends only
on how far the two citizens are from each other (A.4). Moreover, given a set of citizens the outcomes of
which are observed, the best conjecture for the outcome of any citizen outside this set depends only on the
outcomes of his closest neighbors in this set (A.5).

Corollary D.1, which follows from Theorem 1.1 of Doob (1942), establishes that not only does the
Ornstein-Uhlenbeck process satisfy this set of natural axioms A.1-A.5, but it is the only stochastic process
that does so.

Corollary D.1 (Doob (1942)). The Ornstein-Uhlenbeck process on domain [0, 1] uniquely satisfies assump-
tions A.1 - A.5.

D.2 General distributions

Let F denote the distribution of the policymaker’s threshold of adoption over (−∞,∞) with continuously
differentiable density f . The citizen’s interim payoff for a realized post-minipublic value B̃ ∈ R is

v(B̃) := B̃ Pr(c 6 B̃) = B̃F (B̃).

Note that v(0) = 0, v′(B̃) > 0 for B̃ > 0, limB̃→+∞ v(B̃) = +∞, and limB̃→−∞ v(B̃) = 0 from below.
Moreover, v′(B̃) < 0 for B̃ � 0. The following lemma identifies a sufficient condition for v to be U-shaped.
We say that a function h(x) is concave-convex-concave in x if there exists x1, x2 ∈ R∪{−∞,+∞} such that
h(x) is concave for x 6 x1 and x > x2, and convex for x ∈ (x1, x2).
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Lemma D.1. Let f be log-concave. Then v(B̃) is (i) U-shaped in B̃ and (ii) concave-convex-concave in B̃.

Proof. (i) The interim payoff v is first decreasing and then increasing if its derivative v′(B̃) := B̃f(B̃)+F (B̃)

is single-crossing in B̃, in the sense that if v′(B̃) > 0, then v′(B̃′) > 0 for any B̃′ > B̃. First, note that
v′(B̃) > 0 for any B̃ > 0. Consider B̃ < B̃′ < 0. Because f is log-concave, F is also log-concave and the
ratio f/F is nonincreasing.33 Hence, if v′(B̃) > 0 then

B̃′
f(B̃′)

F (B̃′)
> B̃

f(B̃′)

F (B̃′)
> B̃

f(B̃)

F (B̃)
> −1

which implies that v′(B̃) > 0 as well. This, together with the fact that v′(B̃) < 0 for B̃ � 0, implies that v′

is single-crossing in B̃ from below.
(ii) We need to inspect the sign of v′′(B̃) = 2f(B̃) + B̃f ′(B̃) ⇒ v′′(B̃)/f(B̃) = 2 + B̃f ′(B̃)/f(B̃). By
the log-concavity of f , the ratio f ′(B̃)/f(B̃) is decreasing in B̃. The log-concavity of f implies that f is
unimodal, so f ′ changes sign only once from above—suppose without loss that the mode is at B̃0 > 0.
Consider first B̃ < 0. Then B̃f ′(B̃)/f(B̃) is increasing in B̃ < 0. But v′′(0) > 0, so v′′ changes sign at
most once over B̃ ∈ (−∞, 0). For B̃ ∈ (0, B̃0), B̃f ′(B̃)/f(B̃) > 0 > −2, so v′′(B̃) > 0. For B̃ > B̃0,
B̃f ′(B̃)/f(B̃) < 0 and decreasing, so v′′ changes sign at most once over (B̃0,∞). If limB̃→−∞ B̃f ′(B̃) < −2

(limB̃→+∞ B̃f ′(B̃) < −2) then v is strictly concave for B̃ sufficiently negative (positive). �

Some log-concave distributions that are widely used in economic applications are the Laplace distribu-
tion, the extreme value distribution, the exponential distribution, and the Gamma distribution. For more
examples, see Bagnoli and Bergstrom (2005).

Consider a family of distributions over post-minipublic values {Gb(B̃)}b∈[0,∞) such that each G has a
binary support over {B̄ − b, B̄ + b̄}, where b, b̄ > 0, with probabilities p and 1 − p, respectively. For Bayes
rule to hold, it must be that b̄ = bp/(1 − p). The support expands, in the sense that both post-minipublic
values are further away from B̄, as b increases. Hence, b is a proxy for spread. The expected payoff of the
citizen is

ṼC(b) = p(B̄ − b)F (B̄ − b) + (1− p)(B̄ + b̄)F (B̄ + b̄).

Analogously to our baseline analysis, we seek to understand the monotonicity of ṼC in the spread b in
this setting with a log-concave threshold distribution and binary distribution over post-minipublic values.
The shape of the citizen’s expected payoff is qualitatively the same as in our baseline Gaussian model for b
sufficiently close to zero and sufficiently far from zero. We first show that for b sufficiently large, the citizen’s
expected payoff increases in b and the citizens prefer the lottery over post-minipublic values {B̄ − b, B̄ + b̄}
to no lottery.

Proposition D.1. Let f be log-concave. There exists β > 0 such that for all b > β, ṼC(0) < ṼC(b) and
∂ṼC(b)/∂b > 0.

Proof. Because lim
B→−∞

v(B) = 0 and lim
B→+∞

v(B) =∞, it holds that lim
b→∞

(1−p)v(B̄+bp/(1−p))+pv(B̄−b)→

+∞ for any p ∈ (0, 1). Hence, for any B̄ and any p, there exists β such that (i) (1− p)v(B̄ + βp/(1− p)) +

pv(B̄ − β) > B̄, (ii) v(B̄ + βp/(1− p)) > 0, and (iii) v(B̄ − β) < x1. This implies that for all b > β, v(B̄ − b)
and v(B̄ + bp(1− p)) are both increasing in b. Hence, ṼC is increasing in b for any b > β. �

33For standard properties of log-concave densities, see Bagnoli, Mark, and Ted Bergstrom (2005) “Log-concave
probability and its applications.” Economic Theory, 26: 445-469.
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By the same effect which led to the curse of too little information in the baseline model, here, a small
amount of information (via a small mean preserving spread) can strictly harm the citizens if the prior value
B̄ corresponds to low expected misalignment.

Proposition D.2. Let f be log-concave and B̄ lie in a concave region of v, i.e., B̄ < x1 or B̄ > x2. Then,
there exist β > 0 such that ∂ṼC(b)/∂b < 0 for all b < β.

Proof. By the premise, because B̄ lies strictly in the concave region, there exists β sufficiently small such
that for all b < β, B̄− b and B̄+ bp/(1−p) lie both in the same concave region around B̄. The result follows
because a higher b corresponds to a mean preserving spread along a concave interim payoff, which reduces
the expected payoff ṼC . �

When is ṼC quasiconvex on the entire domain? Beyond our Gaussian baseline model, this remains an
open question for a general framework, even with a log-concave threshold density f . The following example
points out one instance in which, among two available experiments π1 and π2 such that π2 is a mean-
preserving spread of π1, the citizen strictly prefers π1 to both the uninformative experiment {B̄} and π2;
hence ṼC is not quasiconvex in this example.

Example 1 (Single-peaked payoff over ordered experiments). Suppose the policymaker has a deterministic
threshold c̄ = 5 and the prior value is B̄ = 8. Let π0 denote the uninformative experiment with degenerate
distribution at {B̄}. We consider two experiments π1 and π2 that induce the following distributions over
post-minipublic values B̃:

π1 :

{
−2 w.p. 1/3

13 w.p. 2/3
, π2 :


−12 w.p. 1/9

3 w.p. 4/9

18 w.p. 4/9

.

It is straightforward to verify that the distribution corresponding to π2 is a MPS of that corresponding to
π1. Then, ṼC(π1) = 1/3 · 0 + 2/3 · 13 = 26/3 > 8, so the citizen prefers π1 to no information. However,
ṼC(π2) = 4/9 · 18 = 8 = ṼC(π0). Therefore, the citizen strictly prefers π1 to both π0 and π2, so ṼC is no
longer quasiconvex over a sequence of ordered experiments {π0, π1, π2}.

D.3 Additional results for Section 4.2

D.3.1 General characterization

Lemma D.2. If m∗ has the (δ,∆)-alternating pattern, then no ∆-equidistant minipublic is feasible.

Proof of Lemma D.2. We prove the contrapositive. Suppose the set of feasible ∆-equidistant minipublics
is nonempty, and let ∆′ be the smallest distance across all minipublics in this set, corresponding to m′ =

{i′1, i′2, ..., i′n}. First, consider a (δ,∆)-alternating minipublic with i′′2 6 i′2 and i′′n−1 = 1− i′′2 > i′n−1 = 1− i′2.
Such a minipublic has strictly lower informativeness than the ∆′′-equidistant minipublic with the same i′′2
and i′′n−1. In turn, this ∆′′-equidistant minipublic is less informative than the ∆′−equidistant minipublic
because ∆′′ > ∆′. Hence, any (δ,∆)-alternating minipublic with i′′2 6 i′2 is suboptimal. Second, consider a
(δ,∆)-alternating minipublic with i′′2 > i′2 and i′′n−1 = 1 − i′′2 < i′n−1 = 1 − i′2. The passive informativeness
of i′′1 in this minipublic is strictly lower than the passive informativeness of the leftmost citizen in the
∆′′− equidistant minipublic with the same i′′2 and i′′n−1. But the leftmost citizen is passive in the ∆′′-
equidistant minipublic because ∆′′ < ∆′. Hence, i′′1 must be passive in the (δ,∆)-alternating minipublic as
well. Therefore, (δ,∆)-alternating minipublic with i′′2 > i′2 is not feasible. �

58



Lemma D.3. Let n > 5 odd and m∗ 6= mf
n. The optimal minipublic is either of the ∆-equidistant pattern

or empty. Moreover, if the (ED) constraints of all citizens are violated in mf
n, then m∗ = ∅.

Proof. By Proposition 4.3, any optimal (δ∗,∆∗)-alternating minipublic has i∗3 − i∗2 = i∗n−1 − i∗n−2 = ∆∗. For
n odd, this is impossible since there is an even number of alternating distances between i∗2 and i∗n−1. Hence,
if m∗ 6= ∅ then m∗ is ∆-equidistant with ∆ > ∆f . This implies that M3(m∗) > M3(mf

n). But if3 is passive
in mf

n, so i∗3 is passive in m∗ as well. �

D.3.2 Formal results for “Demographic diversity and representativeness”

Lemma D.4. For any j = 1, . . . , n, ifj < j/(n+ 1) for ifj < 1/2 and ifk > k/(n+ 1) for ifk > 1/2.

Proof of Lemma D.4. In order to show that if1 < 1/(n+ 1), we invoke the first-order condition of Σ with
respect to if1 . The function

g(i1) := 1− e−i1/` + tanh

(
1− 2i1

2`(n− 1)

)
is strictly increasing in i1. Moreover, g(1/(n+1)) > 0. Because g(if1 ) = 0 by FOC, then if1 < 1/(n+1). By a
similar argument, ifn > n/(n+1). The rest of the claim follows because bothmf

n and {1/(n+1), . . . , n/(n+1)}
are symmetric about 1/2 and ifn − i

f
1 > (n− 1)/(n+ 1). �

Lemma D.5. Let m = {i1, . . . , in}. Then, Ψ is given by

Ψ(m) =
1

2
`
(

1− e−2i1/`
)

+
1

2
`
(

1− e−2(1−in)/`
)

+

n∑
j=2

`+ (ij − ij−1)

(
1− coth

(
ij − ij−1

`

))
.

Proof of Lemma D.5. For each i ∈ [0, 1], the distribution of β(i) conditional on β(m) is Gaussian and it
depends only on i’s closest neighbors in m. By Gaussian updating, the conditional variance of β(i) given
β(m) is e−(i1−i)/` for i ∈ [0, i1], e−(i−in)/` for i ∈ [in, 1], and

csch
(
ij − ij−1

`

)(
sinh

(
ij − i
`

)
e−(i−ij−1)/` + sinh

(
i− ij−1

`

)
e−(ij−i)/`

)
for i ∈ [ij−1, ij ]. Integrating over each interval [0, i1], [i1, i2], . . . , [in, 1] and adding up these terms gives the
desired expression. �

Example 2 (mf
4 more Ψ-representative than m∗). Fix ` = 3 and n = 4. Figure 8a plots the first-best

minipublic, the Ψ-maximal minipublic, and the optimal minipublic for τ = 1/2 and B̄ = 2.5182. Using the
characterization in Lemma D.5, it is straightforward to compute Ψ(mf

4 ) = 0.968946 and Ψ(m∗) = 0.968806.
Therefore, the first-best minipublic is more representative than the optimal minipublic with respect to Ψ.
This is because in the optimal minipublic, the citizens i∗2 and i∗3 are shifted outwards towards the periphery
by a large margin relative to the respective second and third citizen in the Ψ-maximal minipublic.

Example 3 (m∗ more Ψ-representative than mf
4 ). Following up on Example 2, we keep all parameters the

same except for B̄ = 2.517. The first-best minipublic and the Ψ-maximal minipublic continue to be the same
as before, because they depend only on `. The optimal minipublic is distorted in such a way that each citizen
in the optimal minipublic is between their counterpart in the first-best minipublic and their counterpart in
the Ψ-maximal minipublic (Figure 8b). By a similar calculation, Ψ(m∗) = 0.969053 > 0.968946 = Ψ(mf

4 ).
This is an instance in which the optimal minipublic is more representative than the first-best one with respect
to the measure Ψ.
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D.4 Formal results for Section 6.2

D.4.1 Private evidence discovery

We consider an alternative game of private evidence discovery in which the timing is as follows: (i) the
policymaker chooses m ∈Mn, (ii) each citizen i ∈m decides whether to discover β(i), which is observed by
the rest of m but not the policymaker, (iii) a citizen j is drawn randomly with uniform probability from m,
(iv) citizen j sends a message x ∈ R about the post-minipublic value B̃ ∈ R to the policymaker, and (v) the
policymaker makes an adoption decision based on her belief E[B | x]. A communication strategy for citizen
j in (iv) is a distribution α(· | B̃) over x ∈ R. Without loss, each equilibrium message x̃ can be relabelled so
that x̃ = E[B | x̃]. An equilibrium is informative if there exists at least two equilibrium messages x̃0 6= x̃1 .

Proposition D.3. In the private evidence discovery game described above: (i) the optimal minipublic is
m∗ = mf

n; (ii) there exists an informative equilibrium in mf
n; (iii) in any informative equilibrium in mf

n,
each citizen ifj ∈ mf

n is active, each citizen follows the same communication strategy α∗, and there exist
on-path messages x∗0, x∗1 such that α∗(x∗0 | Bmf

n
) = 1 for Bmf

n
< 0 and α∗(x∗1 | Bmf

n
) = 1 for Bmf

n
> 0.

Proof. Fix an arbitrary minipublic m ∈ Mn and let m̂ ⊆ m be the active minipublic with post-minipublic
value Bm̂. Consider the following communication strategy: α(x0 | Bm̂) = 1 for Bm̂ < 0 and x0 = E[B |
Bm̂ < 0], and α(x1 | Bm̂) = 1 for Bm̂ > 0 and x1 = E[B | Bm̂ > 0]. Then x1 > 0 > x0. Also, suppose the
policymaker assigns off-path belief E[B | Bm̂ = 0] = 0 to any other message x 6= x0, x1. It is straightforward
that this strategy is a best response for any randomly drawn citizen i ∈ m. Therefore, an informative
equilibrium exists for any m, m̂, and i ∈m. Now, given m, m̂, and i ∈m, consider an arbitrary informative
equilibrium α∗ that assigns nonzero probability to messages X ∗ := {x0, x1, . . . , xN}. Without loss, we can
relabel these messages so that E[B | x0] < E[B | x1] < . . . < E[B | xN ], or equivalently, x0 < x1 < . . . < xN .
If α∗(xk | Bm̂) > 0 for Bm̂ < 0, then it must be that xk ∈ arg minx∈X∗ E[B | x] because the probability of
adoption Pr(c 6 xk) is increasing in xk. This implies that xk = x0. Hence, α∗(x0 | Bm̂) = 1 for any Bm̂ < 0.
By a similar argument, α∗(xN | Bm̂) = 1 for any Bm̂ > 0. Hence the policymaker learns the sign of Bm̂. For
Bm̂ = 0, which is realized with zero probability, the citizens are indifferent across all messages. Therefore,
in any informative equilibrium, any randomly drawn citizen generically (i.e., up to the message for Bm̂ = 0)
sends at most two messages: x0 = E[B | Bm̂ < 0] for Bm̂ < 0 and x1 = E[B | Bm̂ > 0] for Bm̂ > 0.

Next, we establish that in any m and for any informative equilibrium in the continuation game, every
citizen i ∈ m is active with probability one. First, for any m̂ ⊆ m, the distribution of Bm̂∪i is a mean-
preserving spread of Bm̂. Second, the interim payoff is Bm̂ Pr(c 6 E[B | Bm̂ > 0]) if Bm̂ > 0 and Bm̂ Pr(c 6
E[B | Bm̂ < 0]) if Bm̂ < 0. Because this is a piecewise linear function with a lower slope for Bm̂ < 0,
the interim payoff is convex. Hence any citizen i ∈ m prefers to be active for any active subset m̂ ⊆ m.
Therefore, any m ∈Mn is active for any informative equilibrium in the continuation game.

Finally, we show that m∗ = mf
n for some mf

n ∈Mf
n. For any m ∈Mn and mf

n ∈Mf
n, the distribution

of Bmf
n
is a mean-preserving spread of Bm. Correspondingly, the distribution that assigns probability 1/2 to

two posterior values
{

E[B | Bmf
n
< 0],E[B | Bmf

n
> 0]

}
is a mean-preserving spread of the distribution that

assigns probability 1/2 to two posterior values {E[B | Bm < 0],E[B | Bm > 0]}. Therefore, the policymaker
strictly prefers the distribution with support

{
E[B | Bmf

n
< 0],E[B | Bmf

n
> 0]

}
. Hence, m∗ = mf

n.
�

D.4.2 Biased policymaker and uncertain thresholds for citizens

We enrich the baseline model in two ways. First we let the policymaker’s threshold be drawn from c ∼
N (c̄, τ2), where c̄ ∈ R is the ex ante bias of the policymaker. Second, we let citizen i’s threshold be drawn
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from ci ∼ N (0, τ2
i ), where τi > 0 is arbitrary across i and ci is independent from c. We derive the players’

payoffs in this general environment and argue that the dependence of the payoffs on Σ continues to be
qualitatively the same as in Lemma 3.1 in the baseline model.

Proposition D.4 (Dependence of payoffs on informativeness).
(i) The expected payoff of the policymaker is strictly increasing in Σ.
(ii) The expected payoff of any citizen i does not depend on τi and it is strictly quasiconvex in Σ, with a

minimum at

Σ = max

{
0,

1

2

(
(B̄ − c̄)c̄− 3τ2 +

√
(B̄ − c̄)2c̄2 + 2(2B̄ − 3c̄)(B̄ − c̄)τ2 + τ4

)}
.

Proof of Proposition D.4. (i) Following steps similar to the proof of Lemma A.1, we observe that

Pr [Bm̂ − c > 0] = Φ

(
B̄ − c̄√
τ2 + Σ(m̂)

)
, E[Bm̂ − c|Bm̂ − c > 0] = B̄ − c̄+

√
τ2 + Σ(m̂)λ

(
c̄− B̄√
τ2 + Σ(m̂)

)

where λ is the inverse Mills ratio. Therefore, taking the product of the two expressions, the expected payoff
of the policymaker is (suppressing the dependence on m̂)

VP (Σ) =
(
B̄ − c̄

)
Φ

(
B̄ − c̄√
Σ + τ2

)
+
√

Σ + τ2φ

(
B̄ − c̄√
Σ + τ2

)
.

Differentiating VP with respect to Σ gives

∂VP (Σ)

∂Σ
=
φ
(

B̄−c̄√
τ2+Σ

)
2
√

Σ + τ2
> 0.

(ii) Citizen i’s expected payoff is

Vi(Σ(m̂)) :=

∫ ∞
−∞

∫ +∞

−∞
Pr [Bm̂ − c > 0] E [Bm̂ − ci|Bm̂ − c > 0] dΦ

(
c− c̄
τ

)
dΦ

(
ci
τi

)
= V̄C(Σ(m̂))−

(∫ ∞
−∞

Pr [Bm̂ > c] dΦ

(
c− c̄
τ

))∫ ∞
−∞

ci dΦ

(
ci
τi

)
= V̄C(Σ(m̂))

= B̄Φ

(
B̄ − c̄√
τ2 + Σ(m̂)

)
+

Σ(m̂)√
Σ(m̂) + τ2

φ

(
B̄ − c̄√

Σ(m̂) + τ2

)

where V̄C is the expected payoff of citizen i if all citizens’ thresholds are deterministically zero, i.e., τi = 0

for all i ∈ [0, 1], and hence it is the same for all citizens. The second equality follows from EBm̂
[ci | Bm̂− c >

0] = ci and the third equality uses E[ci] = 0. Therefore, the expected payoff of citizen i does not depend on
τi. The expression for V̄C follows from a similar reasoning to part (i), using the fact that the probability of
adoption is the same but the conditional expectation of Bm̂ is

E[Bm̂|Bm̂ − c > 0] = B̄ +
Σ(m̂)√
τ2 + Σ(m̂)

λ

(
c̄− B̄√
τ2 + Σ(m̂)

)
.
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Taking the derivative of V̄C(Σ) with respect to Σ gives

∂V̄C(Σ)

∂Σ
=

φ
(

B̄√
τ2+Σ

)
2 (τ2 + Σ)

5/2

(
Σ2 + 2τ4 + 3τ2Σ + (c̄− B̄)(Σc̄+ τ2B̄)

)
. (11)

Then, V̄C strictly increases in Σ if and only if Σ2 + 2τ4 + 3τ2Σ + (c̄ − B̄)(Σc̄ + τ2B̄) > 0. Because Σ > 0,
the only admissible root of Σ2 + 2τ4 + 3τ2Σ + (c̄− B̄)(Σc̄+ τ2B̄) = 0 is

Σ0 :=
1

2

(
(B̄ − c̄)c̄− 3τ2 +

√
(B̄ − c̄)2c̄2 + 2(2B̄ − 3c̄)(B̄ − c̄)τ2 + τ4

)
,

so Σ = max {0,Σ0} . Therefore, the citizen’s expected payoff is strictly decreasing at Σ ∈ [0,Σ) and strictly
increasing at Σ ∈ (Σ,∞). �

The following corollary establishes that if the policymaker’s bias is such that she takes a different decision
from what citizens prefer ex ante if no evidence is discovered, then any citizen in any minipublic prefers to
be active in order to overturn the policymaker’s default decision. Therefore, a necessary condition for a
distorted optimal minipublic to arise is for the policymaker and the citizens to prefer the same decision ex
ante, i.e., B̄ 6 min{0, c̄} or B̄ > max{0, c̄}.

Corollary D.2. Fix c̄ ∈ R.

(i) If the citizens and the policymaker prefer different decisions ex ante, i.e., c̄ < B̄ < 0 or 0 < B̄ < c̄,
then m∗ ∈Mf

n.

(ii) There exists b̄ > |c̄| such that if |B̄| > b̄ and sgn(B̄) = sgn(c̄), then m∗ = ∅.

Proof of Corollary D.2. (i) If c̄ < B̄ < 0 or if 0 < B̄ < c̄, then (c̄ − B̄)(Σc̄ + τ2B̄) > 0. Because also
Σ2 + 2τ4 + 3τ2Σ > 0, we have that ∂Vi(Σ)/∂Σ > 0 in equation (11). Hence Vi strictly increases in Σ for any
i. This means that in any m, each citizen i ∈m strictly prefer being active to being passive. Therefore, any
mf
n ∈Mf

n is feasible so m∗ ∈Mf
n.

(ii) Without loss, let B̄ > 0 and c̄ > 0. Then, for B̄ sufficiently high, ∂Vi(Σ)/∂Σ < 0 in equation (11) for
any Σ ∈ [0, σ2]. Since citizens’ expected payoff is strictly decreasing in informativeness, no minipublic can
be incentivized to be active. �

Suppose τ = 0 and c̄ > 0, so there is no political uncertainty and the policymaker follows a more
demanding threshold on the adoption decision. The citizen’s expected payoff is strictly decreasing for low
levels of informativeness if and only if Σ = c̄(B̄−c̄) > 0, i.e., if and only if the players are in ex ante agreement
about their preferred adoption decision and the citizens lean more strongly toward it. If B̄ � c̄ > 0 or
B̄ � c̄ < 0, then Σ is sufficiently high and the curse of too little information arises even in the absence of
any political uncertainty.

D.4.3 Private interest

This appendix considers a variation of the model in Section 4.2.2 in which citizen i obtains β(i) if the policy
is adopted (instead of the policy value B) and 0 otherwise. The rest of the structure is the same as in the
model of Section 4.2.2. Proposition D.5 shows that a citizen’s expected payoff from a minipublic depends
on two sufficient statistics: (i) its minipublic informativeness, and (ii) the covariance induced between the
citizen’s local evidence and the post-minipublic value.
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Proposition D.5. Consider an active minipublic m = {i1, . . . , in} ∈ Mn. The expected payoff of any
citizen i ∈ [0, 1] from minipublic m is

Vi(m) = B̄Φ

(
B̄√

τ2 + Σ(m)

)
+

σ(i,m)√
τ2 + Σ(m)

φ

(
B̄√

τ2 + Σ(m)

)
=: ṼC(σ(i,m),Σ(m)),

where Σ(m) is the minipublic informativeness of m as derived in Lemma B.1 and

σ(i,m) := cov(β(i), Bm) =

{√
Σ(i) if i ∈m∑n
j=1 γj(m)e−|i−ij |/` if i /∈m.

Proof of Proposition D.5. Fix a post-minipublic value Bm. Observing that the joint distribution of β(i)

and Bm is Gaussian, the interim payoff of citizen i is

vi(Bm) = E[β(i) | Bm] Pr(c 6 Bm)

=

(
B̄ +

σ(i,m)

Σ(m)
(Bm − B̄)

)
Φ

(
Bm

τ

)
=

Σ(m)− σ(i,m)

Σ(m)
B̄Φ

(
Bm

τ

)
+
σ(i,m)

Σ(m)
BmΦ

(
Bm

τ

)
Integrating with respect to the distribution of Bm ∼ N (B̄,Σ(m)), we obtain the expected payoff

Vi(m) =
Σ(m)− σ(i,m)

Σ(m)
B̄

∫ ∞
−∞

Φ

(
Bm

τ

)
1√

Σ(m)
φ

(
Bm − B̄√

Σ(m)

)
dBm +

σ(i,m)

Σ(m)
VC(Σ(m))

=
Σ(m)− σ(i,m)

Σ(m)
B̄Φ

(
B̄√

τ2 + Σ(m)

)
+
σ(i,m)

Σ(m)
VC(Σ(m))

= B̄Φ

(
B̄√

τ2 + Σ(m)

)
+

σ(i,m)√
τ2 + Σ(m)

φ

(
B̄√

τ2 + Σ(m)

)
,

where VC is the citizen’s expected payoff from our baseline model of common interest. The first line uses
the fact that VC(Σ(m)) = EBm [BmΦ(Bm/τ)], the second line follows from identity (10, 010, 8) in Owen
(1981), and the third line uses the expression for VC(Σ(m)). Because m enters Vi(m) through two suffi-
cient statistics—namely, σ(i,m) and Σ(m)—we can express it as ṼC(σ(i,m),Σ(m)). Next, if i ∈ m, then
supposing that he is the jth citizen in it, we have

σ(i,m) = cov

(
β(ij),

n∑
k=1

γk(m)β(ik)

)
= γj(m) +

∑
k 6=j

γk(m)e−|ij−ik|/` =
√

Σ(ij)

where the last equality follows from calculations in the proof of Lemma B.1. By a similar calculation, if
i /∈m, then

σ(i,m) = cov

(
β(i),

n∑
k=1

γk(m)β(ik)

)
=

n∑
k=1

γk(m)e−|i−ik|/`.

�

Note that ṼC(Σ,Σ) = VC(Σ). In terms of monotonicity, it is immediate that ṼC is strictly increasing in
its first argument and, similarly to our baseline analysis, quasiconvex in the second argument. We can now
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rewrite the (ED) constraints for a citizen ij ∈m based on the payoff characterization of Proposition D.5:

ṼC

(√
Σ(ij),Σ(m)

)
> ṼC (σ(ij ,m \ ij),Σ(m \ ij)) . (ED)

There is a substantial increase in dimensionality of this problem relative to our baseline analysis. The set of
(ED) constraints for a minipublic of size n depends on the minipublic through (3n+1) variables (rather than
n+1 variables under common interest): the active informativeness Σ(m), n terms of passive informativeness
{Σ(m \ i1), . . . ,Σ(m \ in)}, n terms of singleton informativeness {Σ(i1), . . . ,Σ(in)}, as well as n covariance
terms {σ(i1,m \ i1), . . . , σ(in,m \ in)}.

For a singleton minipublic m = {i}, σ(i,m) =
√

Σ(i) and σ(i, ∅) = 0. The (ED) constraint simplifies
to ṼC

(√
Σ(i),Σ(i)

)
> ṼC(0, 0) = VC(0). Because Σ(1/2) > Σ(i) for any i 6= 1/2, the incentives to discover

evidence are strongest for this median citizen. Hence, if n = 1, the optimal minipublic is either m∗ = {1/2}
or empty.

For a two-citizen minipublic m = {i1, i2}, the (ED) constraints for i1 and i2 are

ṼC

(√
Σ(i1),Σ(m)

)
> ṼC

(√
Σ(i2)e−(i2−i1)/`,Σ(i2)

)
,

ṼC

(√
Σ(i2),Σ(m)

)
> ṼC

(√
Σ(i1)e−(i2−i1)/`,Σ(i1)

)
,

respectively, whereas the (ED) constraints from our common interest model can be rewritten as

ṼC(Σ(m),Σ(m)) > ṼC(Σ(i2),Σ(i2)), ṼC(Σ(m),Σ(m)) > ṼC(Σ(i1),Σ(i1)).

Example 4. This is a numerical example in which the optimal minipublic is the first-best one under private
interest but it is a distorted minipublic under common interest. Let n = 2, ` = 1/2, τ = 1, and B̄ = 1.861.
The first-best minipublic is given bymf

2 = {if1 , i
f
2} = (0.274589, 0.725411). This first-best minipublic satisfies

the (ED) constraints under private interest, hence the optimal minipublic is exactly m∗PI = mf
2 . However,

it violates the (ED) constraints under common interest. The optimal minipublic under common interest is
the distorted minipublic m∗ = {0.2778, 0.7222}.

Example 5. This is a numerical example in which the optimal minipublic is distorted under private interest
but it is the empty minipublic under common interest. Let n = 2, ` = 1/2, τ = 1, as in Example 4, but now
B̄ = 3.02. The first-best minipublic is not feasible under either private or common interest. Moreover, the
prior value B̄ is so extreme that the optimal minipublic is m∗ = ∅ under common interest. However, the
optimal minipublic under private interest is m∗PI = {0.285883, 0.714117}.

D.4.4 Delegation of decisional authority

We consider an alternative delegation game, that varies from our baseline model in who has decisional
authority: at the minipublic choice stage, the policymaker also decides whether to delegate (d = 1) decisional
authority to the minipublic or retain it (d = 0). If d = 0, the continuation game coincides with our baseline
model. If d = 1, then at the adoption stage, a randomly drawn citizen (as opposed to the policymaker) in
the minipublic decides whether to adopt the policy.34 We denote the optimal strategy of the policymaker at
the minipublic choice stage as d∗ and m∗del.

Proposition D.6. Let m∗ = ∅ in the baseline model, and mf
n ∈Mf

n. Then, in the delegation game,
34All citizens are perfectly aligned on which adoption decision they prefer for any post-minipublic value. The

assumption of a randomly citizen having decisional authority is for concreteness.
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1. if τ2 < Σ(mf
n), then d∗ = 1 and m∗del = mf

n. The policymaker is strictly better off than in the baseline
model.

2. if τ2 > Σ(mf
n), then d∗ = 0 and m∗del = ∅. The policymaker has the same payoff as in the baseline

model.

Proof. By the premise, m∗ = ∅ in the baseline model and Σ(∅) = 0. Hence, the policymaker’s payoff if the
decision is not delegated is VP (0) = Pr[c < B̄]E

[
B̄ − c|c < B̄

]
= B̄Φ

(
B̄/τ

)
+ τφ

(
B̄/τ

)
. If the policymaker

delegates the decision to a minipublic m, then all citizens in m are active. Then, the policy gets adopted if
and only if Bm > 0, so the policymaker’s payoff is

V delP (Σ(m)) = Pr [Bm > 0] E [Bm − c|Bm > 0] = B̄Φ

(
B̄√

Σ(m)

)
+
√

Σ(m)φ

(
B̄√

Σ(m)

)
.

By the same argument as in Section D.4.2, the policymaker’s payoff does not depend on τ since E[c | Bm >
0] = 0. The policymaker’s payoff V delP is strictly increasing in Σ(m). Therefore, if d∗ = 1, then m∗del ∈Mf

n.

Finally, we observe that VP (0) > V delP (mf
n) if and only if τ2 > Σ(mf

n). �

D.4.5 No commitment in evidence disclosure

The game of Section 2, which the discussion below refers to as the commitment game, assumes commitment in
evidence disclosure: the outcome of each active citizen is disclosed publicly regardless of its realization. The
citizen cannot withhold unfavorable outcome realizations. We examine here the robustness of our analysis to
this commitment assumption. To do so, we consider the following no-commitment game which differs from
the commitment game only at the evidence discovery stage: (i) each minipublic citizen simultaneously decides
whether to discover evidence,35 (ii) each citizen who discovers evidence observes his outcome privately, and
(iii) citizens decide simultaneously whether to disclose or conceal their privately observed outcomes. That
is, citizens’ evidence is verifiable (e.g., as in Milgrom and Roberts (1986)).

Proposition D.7 establishes that for any feasible minipublic in the commitment game, there exists an
equilibrium in the no-commitment game in which the policymaker perfectly infers all minipublic outcomes.
In particular, this equilibrium guarantees that in the no-commitment game the policymaker can attain at
least the same level of informativeness as that of the optimal minipublic in the commitment game.

Assumption 3. For any m and i ∈m, the post-minipublic value Bm is strictly increasing in β(i).

Proposition D.7. Suppose that Assumption 3 holds. Let m be any feasible minipublic in the commitment
game. Then, in the no-commitment game, there exists an equilibrium for minipublic m in which (i) all
citizens in m discover evidence, and (ii) the policymaker infers all outcomes β(m) perfectly.

Proof of Proposition D.7. We prove that the following constitutes an equilibrium: (i) each citizen i ∈m

discovers evidence, (ii) each citizen i ∈ m discloses β(i) 6= xi and conceals β(i) = xi, where xi uniquely
solves E[B | β(i) = xi] = 0, and (iii) the policymaker adopts the policy if and only if her post-minipublic
value is higher than her realized threshold of adoption c.

First, (iii) is a best response for the policymaker. Because there is a single outcome realization β(i) =

xi which citizen i ∈ m conceals and both disclosure and no disclosure are on the equilibrium path, the

35We assume that discovery decisions are observable to the policymaker: she can distinguish between a citizen
with no evidence and one who conceals evidence. Yet this assumption is without loss for proposition D.7. If the
decision were instead unobservable, it would be weakly dominant for each i ∈m to discover evidence.
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policymaker perfectly infers β(m) and the post-minipublic value Bm = E[B | β(i), β(m \ i)]. Therefore, she
best responds as in the commitment game.

Second, we show that it is a best response for citizen i to disclose β(i) if β(i) 6= xi conditional on i

having discovered β(i) and all other citizens following strategy (ii). Consider first β(i) 6= xi. For simplicity
of notation, let µ := E[B|β(i)]. The distribution of the post-minipublic value from the perspective of citizen
i with evidence β(i) is denoted by Bm|β(i). Using the law of iterated expectations, we have E[Bm|β(i)] =

E[E[B|β(m\i), β(i)]|β(i)] = E[B|β(i)] = µ. Let Σ̃ be the variance of Bm|β(i), which does not depend on
the realization of β(i).36 The random variable Bm|β(i) is distributed according to Bm|β(i) ∼ N (µ, Σ̃). If
citizen i discloses β(i), the policymaker’s post-minipublic value is Bm. By standard Gaussian updating, the
post-minipublic value is linear in local evidence. Hence, if i conceals β(i), the policymaker’s post-minipublic
value is B̂m = Bm−λ for some λ ∈ R. That is, concealing β(i) shifts the policymaker’s post-minipublic value
either up or down by |λ|. By similar calculations as in the proof of Lemma A.1, we calculate the expected
payoff of citizen i if he discloses or conceals β(i). If he discloses β(i), he obtains

VC(β(i)) := E[Bm|Bm > c, β(i)] Pr[Bm > c|β(i)] = µΦ

(
µ√

τ2 + Σ̃

)
+

Σ̃√
τ2 + Σ̃

φ

(
µ√

τ2 + Σ̃

)

Similarly, if he conceals β(i) 6= xi, he obtains

ṼC(β(i)) := E[Bm|B̂m > c, β(i)] Pr
[
B̂m > c|β(i)

]
= µΦ

(
µ− λ√
τ2 + Σ̃

)
+

Σ̃√
τ2 + Σ̃

φ

(
µ− λ√
τ2 + Σ̃

)

The function f(a) := µΦ( a√
τ2+Σ̃

) + Σ̃√
τ2+Σ̃

φ( a√
τ2+Σ̃

) varies in a depending on the sign of µ and the relation

between µ and a:

∂f(a)

∂a
= φ

(
a√

τ2 + Σ̃

)
µ(τ2 + Σ̃)− aΣ̃

(τ2 + Σ̃)
3
2

{
> 0 if µ > 0 and a < µ,

< 0 if µ < 0 and a > µ.

Next, we show that VC(β(i)) > ṼC(β(i)) for every β(i) 6= xi. Let β(i) > xi. Then, by the definition of xi
and Assumption 3, µ > 0 and λ > 0. This means that disclosing evidence in favor of the policy yields a
higher payoff than concealing it, as f(a) is increasing in a for these parameters and µ − λ < µ. Similarly,
let β(i) < xi. In this case, µ < 0 and λ < 0. Disclosing evidence in favor of the status quo yields a higher
payoff than concealing it. If β(i) = xi, then λ = 0. Then, concealing is a weak best response because
VC(β(i)) = ṼC(β(i)).

Finally, we show that (i) holds: it is a best response for citizen i to (privately) discover β(i) if all other
citizens in m discover their respective outcomes. Because in the continuation equilibrium (ii) and (iii) all
minipublic outcomes β(m) are perfectly inferred by the policymaker, citizen i discovers β(i) if and only if
his (ED) in the commitment game holds. By the premise, every i ∈ m in the commitment game is active,
hence citizen i prefers to discover β(i) in the no-commitment game as well. �

In this equilibrium, each minipublic citizen i ∈m discloses all but a single outcome realization β(i) = xi,
which is pinned down by E[B | β(i) = xi] = 0. This is the unique realization that leaves him indifferent
between the policy and the status quo. To see that this is indeed an equilibrium, consider a minipublic of two
citizens {i, j}. If citizen i conceals evidence in favor of the policy β(i) > xi, this encourages the policymaker

36The variance Σ̃ is independent of β(i) because the joint distribution of B and β(i) is Gaussian. The functional
form of Σ̃ is inconsequential for this proof and therefore omitted.
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to be more demanding on β(j) for adoption because she incorrectly believes that β(i) = xi. This has two
opposing effects on i’s payoff: the expected value of the policy conditional on its being adopted increases, but
the probability of such an adoption decreases. The latter effect dominates. Some policies that are preferable
to the status quo, given i’s favorable evidence, are forgone. Because citizen i’s preference is aligned with the
policymaker’s ex ante, he does not benefit from inducing false pessimism by concealing favorable evidence
about the policy. The reasoning is analogous if citizen i holds unfavorable evidence β(i) < xi instead. False
optimism from concealing β(i) would lead to policy adoption with too high of a probability.

Thus, for any minipublic that is feasible in the commitment game, the policymaker is not worse off if
citizens lack commitment in disclosure. However, there might exist minipublics which are not feasible in
the commitment game but are informative in the no-commitment game. Therefore, the policymaker attains
weakly higher informativeness in the no-commitment game.
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