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ABSTRACT

One way to control for the heterogeneity in panel data is to allow for
time-invariant, individual specific parameters. This fixed effect approach
introduces many parameters into the model which causes the “incidental
parameter problem”: the maximum likelihood estimator is in general
inconsistent. Woutersen (2001) shows how to approximately separate the
parameters of interest from the fixed effects using a reparametrization. He
then shows how a Bayesian method gives a general solution to the incidental
parameter for correctly specified models. This paper extends Woutersen
(2001) to misspecified models. Following White (1982), we assume that the
expectation of the score of the integrated likelihood is zero at the true values
of the parameters. We then derive the conditions under which a Bayesian
estimator converges at rate /N where N is the number of individuals.
Under these conditions, we show that the variance-covariance matrix of the
Bayesian estimator has the form of White (1982). We illustrate our approach
by the dynamic linear model with fixed effects and a duration model with

Jixed effects.
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1. INTRODUCTION

In applied work, economist rarely have data that can be viewed as being generated
by an homogeneous group. That is, firms or individuals differ in observed and
unobserved ways. These unobserved differences are usually referred to as hetero-
geneity and one can control for the heterogeneity in panel data by allowing for
time-invariant, individual specific parameters. Accounting for heterogeneity using
such individual or fixed effects avoids distributional and independence assump-
tions (which are usually not supported by economic theory), see Chamberlain
(1984, 1985), Heckman et al. (1998) and Arellano and Honoré (2001).

This fixed effect approach introduces many parameters into the model which
causes the “incidental parameter problem” of N eyman and Scott (1948): the maxi-
mum likelihood estimator is in general inconsistent. Chamberlain ( 1984), Trognon
(2000) and Arellano and Honoré (2001) review panel data techniques that give
good estimators for specific models. Woutersen (2001) derives a general solution
that approximately separates the parameters of interest from the fixed effects using
a reparametrization. After the reparametrization, the fixed effects are integrated
out with respect to a flat prior. This yields a Bayesian estimator for the parameter
of interest, w. that has a low bias, O(T~2) where T is the number of observations
per individual. Moreover, the asymptotic distribution of B has the following form,

VNT@ — Bp) 3N, I(B)™Y).

where I(B) is the information matrix and T ox N* where o > 1/3. Thus, the
asymptotic variance of f8 is the same as the asymptotic variance of the infeasible
maximum likelihood estimator that uses the true values of the fixed effects.

This paper extends the analysis of Woutersen (2001) by allowing for misspeci-
fication of the likelihood. Following White ( 1982), we assume that the expectation
of the score is zero at the true values of the parameters. We then derive the
primitive conditions under which the Bayesian estimator converges at rate +/N.
In particular, we assume the “score” of the integrated likelihood to be zero at the
true value of the parameter of interest. Under these conditions, we show that the
variance-covariance matrix of the Bayesian estimator has the form of White (1982).

Lancaster (2000, 2002) does not derive asymptotic variances and another new
feature of this paper is that it derives the asymptotic variance of the integrated
likelihood in a fixed T, increasing N asymptotics. We illustrate our approach by

the dynamic linear model with fixed effects and a duration model with fixed effects..

This paper is organized as follows. Section 2 reviews information-orthogonality
as a way to separate the nuisance parameters from the parameter of interest;
Section 3 discusses the integrated likelihood approach. Section 4 gives the
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conditions for consistency and derives the variance-covariance matrix under
misspecification. Section 5 discusses the dynamic linear model and a duration
model and Section 6 concludes.

2. INFORMATION-ORTHOGONALITY

The presence of individual parameters in the likelihood can inhibit consistent
estimation of the parameters of interest, as shown by Neyman and Scott
(1948). For example, the dynamic linear model with fixed effects cannot be
consistently estimated by maximum likelihood, as shown by Nickell (1981).!
Information-orthogonality reduces the dependence between the parameters of
interest and the individual parameters. We introduce more notation so that we
can be specific. Suppose we observe N individuals for T periods. Let the log
likelihood contribution of the rth spell of individual  be denoted by L”. Summing
over the contributions of individual ; yields the log likelihood contribution,

L' ) =) L@, N,
t
where B is the common parameter and A; is the individual specific effect. Suppose
that the parameter B is of interest and that the fixed effect \; is a nuisance
parameter that controls for heterogeneity. We can approximately separate B from
A={\, ..., My} by using an information-orthogonal parametrization of the
quasi likelihood. In particular, information-orthogonality reduces this dependence
between B and \ by having cross derivatives of the quasi log-likelihood being
zero in expectation. That is,

ELg\(Bg, M) =0

ie.

v.::.x
\nm:mo.g::?é&up
Ymin
where y denotes the dependent variable, ¥ € [yin, Ymax] and {Bo, Ao} denote
the true value of the parameters. Cox and Reid (1987) and Jeffrey (1961) use
this concept and refer to it as “orthogonality.” Lancaster (2000, 2002) applies
this orthogonality idea to panel data and Woutersen (2000) gives an overview of
orthogonality concepts.

Chamberlain (1984) and Arellano and Honoré (2001) review panel data
econometrics in their handbook chapters. All but two of their models can be
written in information-orthogonal form.2
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Suppose that a quasi-likelihood is not information-orthogonal. In that case we
reparameterize the quasi-likelihood to make it information-orthogonal. Let the
individual nuisance parameter that is not information-orthogonal be denoted by f.
We can interpret f as a function of B and information-orthogonal A, f(B, \), and
write the log likelihood as L(B, f(B, \)). Differentiating L(B, f(B, \)) with respect
to B and \ yields

L(B.fB.N) of

&L(B,f(B, M) of o of &f

=Lp—> +Lp2 Y 1. T
N3P Loy T Lron B T op

where Ly is a score and therefore EL¢ = 0. Information-orthogonality requires the
cross-derivative 32L(B, J(B, \))/3\3B to be zero in expectation, i.e.

of of of
ELp\ = m.h\w% + m.hh,.%%. =

This implies the following differential equation

Nﬁ\w -+ Nﬁ.%.%m =0. (0}

If Eq. (1) has an analytical solution then J(-) can be written as a function of {8, A}.
If Eq. (1) has an implicit solution, then the Jacobian o\ /df can be recovered from
the implicit solution. The Jacobian 9\ /8f is all we need for a reparametrization in a
Bayesian framework. The general nonlinear model and the single index model have
an information-orthogonal parametrization that is implicit, as shown in Woutersen
(2001). For the remainder of the paper, we assume information-orthogonality.

The “invariance result” of the maximum likelihood estimator implies that
reparametrizations do not change the estimates. In particular, an information-
orthogonal parametrization would yield the same estimates for B as a parametriza-
tion that is not information-orthogonal. However, the integrating out ‘method
does not have this invariance property and this paper shows that information-
orthogonality can yield moment functions that are robust against incidental
parameters, even under misspecification.
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3. THE INTEGRATED LIKELIHOOD

After ensuring information-orthogonality, we integrate out the fixed effects and
use the mode of the integrated likelihood as an estimator, That is,

B =arg Bmu& ®)

where
@)=Y I A \ %..a.znzv :

Misspecification has been, so far, not considered in combination with the inte-
grated likelihood approach as is apparent from the overviews of Gelman et al.
(1995) and Berger et al. (1999). The point of this paper, however, is to consider
misspecification. In particular, L’ (B, \) does not need to be a fully specified like-
lihood. It is sufficient that we specify, as an approximation, a density for y;, that is
conditional on x;; and \;. The likelihood contribution L (B, M) is the logarithm of
this conditional density and L' B, N=3,L¥B,\).In particular, the distribution
of the fixed effects is left unrestricted. Thus, in this set-up we can think of the Data
Generating Process as follows. First, the fixed effects, Jf1s . fy, are generated
from an unknown and unrestricted distribution. As a second step, X11y...,XN] 1S
generated from another unknown distribution that can depend onf, ..., fy. Then
Y11s - - -+ Yy is generated by a conditional distribution? thatis approximated by the
econometrician. For period ¢ = 2, the distribution of X12, ..., Xxy2 can depend on
Jio oS X1, ..., xn. Alternatively, x; can allowed to be endogenous in which
case the econometrician specifies a density for Yir thatis conditional on x; ,_; andf;.

4. ASSUMPTIONS AND THEOREM

In this section, we consider estimation while allowing for misspecification of the
model. The clearest approach seems to impose the assumptions directly on the
integrated likelihood function. White (1982, 1993) assumes that the expectation
of the score is zero at the true value of the parameter. Similarly, we assume that
the score of the integrated likelihood has expectation zero at the truth.

Assumption 1. (i) Let {x;, y;} be i.i.d. and (i) let mﬂw = 0 for every i.

This assumption implies, by independence across individuals, that MBmk QW =
for i # j. Note that the regressor x; = {xj1,x;2, ..., xi7} and dependent variable
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¥i = {Vi1:Yi2s - - -, i} are not required to be stationary and that x; is not required
to be exogenous.

Assumption2. (i) B € ® where whichis compactor (ii) hm ®Y hm (B)is concave
in B.

This is a regularity condition that is often assumed.
Assumption 3. (i) EL{(B) = 0 is uniquely solved for B = Bos; (i) LF(B) is

continuous at each B € ® with probability one; and (iii) E E@mm@:bm Bl <
0Q.

Information-orthogonality, ELg) (Bo, Ao) = 0, does not imply ELG(B) = Obutthe
stronger condition Lg\ (B, \) = 0 does. However, imposing this stronger condition
excludes many interesting models. Thus, it could be that ELpg\(Bg, Mo) =0 is
not a necessary condition for mmmav =0 but we do not know examples for

which QO B)=0 and ELgx(Bg, Ao) # 0. We therefore recommend to first
reparameterize the model so that ELpxr(Bg, M) = 0 and, as a second step, check
Assumptions 1-3.

Assumption 4. (i) Bo € interior(®); (ii) hmav is continuously differen-
tiable in a meighborhood M of By; (iii) m.hmmﬁv is continuous at B, and

Supgem| _mnmm@ -~ mnmm@_ I-50; and (iv) mnmmaw% is nonsingular.

Theorem 1. Suppose 8 = arg aam:um@\zﬁﬁ@\zé. Let Assump-
tions 1-4 hold. Let N — oo while T is fixed. Then

VNT @ - Bg) - N, )
where
-1 -1
w= | Lg PEE BNELB} | | L2 (Bo)
= | n7ELes(Bo) N7 LB L (Bo NrLepBo)| -

Proof: See Appendix A. a

The theorem shows that the integrated likelihood as a convenient tool to derive

moments that are robust against incidental parameters as well as robust against

misspecification of the parametric error term.
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5. EXAMPLES

In this section we discuss two examples that illustrate the integrated likelihood
approach.

5.1. Dynamic Linear Model

Consider the dynamic linear model with fixed effects,
Yit =Yi4—1B+f; + e where Egy =0, m.mw < 00
for Esgiep =0 for s#t and t=1,...,T.

This model is perhaps the simplest model that nests both state dependence and
heterogeneity as alternative explanations for the variation in the values of ¥, across
agents. As such, the dynamic linear model is popularin the development and growth
literature. For a discussion and further motivation of this model, see Kiviet (1995),
Hahn, Hausman and Kuersteiner (2001), Arellano and Honoré (2001) as well

" as the references therein. Lancaster (2002) suggests the following information-

orthogonal parametrization,

T
- 1 T—1t
Ji =yl =B+ N e™®®  where b(p) = 7 ﬁmlw 4@#

However, Lancaster (2002) does not derive the asymptotic variance of the inte-
grated likelihood estimator. Woutersen (2001) shows that, under normality of g,
the integrated likelihood estimator is adaptive for an asymptotic with T oc N* and
o > 1/3. That is, the asymptotic variance does not depend on knowledge of A in
this asymptotic. We now consider the case where the normality of &;; fails to hold
and only assume normality in order to derive the integrated likelihood estimator.
Note that

. 1 —
Ely = 5E ) elyiei —yo b @®he™®) = 0
t

. wamvnlzmv
MNHHI E =0.

The log likelihood contribution has the following form,

. 1 1 _ -
L=l = 5= 3 Gi ~ 51-1B ~Ae?®)  where 5, =1, —y,.
t
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Integrating with respect to A gives the integrated likelihood contribution,
et = L [ o) L,5-5mipredp o)

=75
1 ze\ ~(1/26%) X, (=3 B2
= ——¢ e t 0=y 1B Q\.
Vo2
= lHlnEmT:\u%vMv@_lSLQN \. e~ T2 ~2(,—y,_1B)} daf
N
o

o nzmTEw%xq\s@,é-_B~+M.9|s-_ex,

where we omit the subscript i and a\/9f = e®?® does not depend on f. Taking
logarithms and differentiating with respect to 3 yields

, 1 -

I
Ly =b'®)+ - D o - Yi—1BWim1 = TQu — ¥~ 1B 1

t

. 1 1

N 2
Lig =b"®) = 5 D i1+ 5T

t

whete b(B) = 1/TS_ (T ~1/0B', b@Y = 1/TYT (T np-", by =
T (T— (¢t — 1B Note that EL{'/NT=0 for any N,T and
that the mode of L/(B)/NT is a consistent estimator for B for N in-
creasing. Analogue to the quasi-maximum likelihood estimator of White
(1982), the asymptotic variance has the form of Theorem 1, ¥=
[a \zsm&m#_ [ \zsﬂﬁmxnmé:c \N,Smnmm_n_. The author views the in-
tegrated likelihood as a convenient way to derive moments that can be robust
against misspecification of the parametric error term. In particular, the parametric
assumptions on the error term are irrelevant for the models with additive error
terms that are discussed in Arellano and Honoré (2001).

3.2. Duration Model with Time-Varying Individual Effects

Consider a duration model in which the hazard depends on an individual effect f;,
a spell-specific effect u;; and observable regressors x;. In particular, consider the
following hazard,

Bis(1) = efi s @

where the subscript i refers an individual and the subscript s refers to a spell of
that individual. This hazard depends on two unobservable stochasts, f; and u;;.
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In particular, the individual specific effect f; can depend on the regressors Xx;s.
We avoid distributional assumption on the spell-specific effect u;; but we assume
that u;; is independent of x;s and Ee " < oo. Thus, the hazard of Eq. 2)is a
generalization of the fixed effect hazard model with regressors where the hazard
is fit*sB_ Chamberlain (1984) developed an estimator for the last model and Van
den Berg (2001) gives a current review of duration models. A common criticism
of the model with hazard e/i+*isB s that it assumes that variations in the hazard can
all be explained by variations in the regressor x;;. In other words, the unobservable
effectis constant over time, see Van den Berg (2001) for this argument. Equation (2)
extends this model by allowing for a spell-specific effect u;;. As an approximation
of the model of (2) we consider

0; = eMitxisB

where Mun xis = 0. This hazard implies a log likelihood and the normalization,
Y s Xis = 0, ensures that the log likelihood is information-orthogonal. In particular,

L'(B, M) =T — N Y evisByy
s
BB M) = —eM 3 "y eioby,,
s
and

on (B A = —eM 3y by,
&
Note that e*isPos;; is exponentially distributed with mean e~ M0.+uis). This implies,
m.hwao, Nig) = ~EeMi MR..._ e—(haituis) Im.Mk.w e Uis =
s 5

since ) x;; = 0 and u;; is independent of x;;. Similarly, m.hw?. (Bogs Mi0) = 0.
Integrating A; with respect to the likelihood gives

L —1n \mﬁ. d\=In \n_.?.o|Mw etisPHhig d\=In _H 2.5 L.
AMU.,. Oka.mﬁ.hw

see Appendix B for details. Thus,

il .
Lg 30, xisetisPyy
T Ma erisBg;
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and

Ly ¥ X, xis by

NI~ N Y, e%by

Wmm _ i « X5 € Py — (1, xi eXisPryg)?2

NT N (%, e, 2

In Appendix C, it is shown that (1/NT)ELL =0 for any N and any T > 2.
Thus, the mode of L/(B)/NT is a consistent estimator for B for N in-
creasing. Moreover, the asymptotic variance has the form of Theorem 1,

¥ = [(1/NDELg 1™ [(1/NDE{TLYLEY I /NDELL 1.

3.2.1. Simulation
Let the data be generated by the following hazard model,

Bis(t) = efitisBhu, &)

This hazard implies that the expected duration, conditional on Jisxis, and u;g
equals* 1/efitxisB+uis_j e E(tislfi, xis, uis) = 1/efi+xisB+uis 1 et the exponent of
the individual effect, /i, have a unit exponential distribution and let the indi-
vidual spell effect, u;;, be normally distributed with mean zero and variance o.m
Suppose that we observe a group of N individuals and that we observe an un-
employment spell before and after treatment, that is x;; = 0 for all i and x;» = 1
for all i. Heckman, Ichimura, Smith and Todd (1998) discuss the estimation of
treatment effect models and conclude that the fixed effect model performs very
well. This simulation study extends the fixed effect duration model by allow-
ing for an spell specific effect Uis,i=1,...,.Nands=1,2.In particular, the
model of Eq. (3) also extends both Chamberlain (1985) and Ridder and Woutersen
(2003) by allowing for both random and fixed effects. We first assume that the
treatment has no effect on the hazard out of unemployment, that is, B = 0. We
then assume that the hazard out of unemployment increases by factor 2.7, That s,
B =1 and eP =e ~ 2.7. The estimator developed in this subsection is denoted
by “integrated likelihood estimator”” A naive Bayes estimator that just integrated
out the fixed effects and then uses the posterior mode is denoted by “naive Bayes
estimator.” We use flat priors for all parameters and base inference on the pos-
terior mode after integrating out the fixed effects Jisi=1,...,N. The model is
misspecified in the sense that the individual spell effect, u;;, is ignored.
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Bias(B=0) RMSE((B=0) Bias B=1) RMSE@B=1)

Integrated likelihood estimator
oi=35  —0.0008 0.1334 0.0039 0.1298
o2 =1 0.0145 0.1451 —0.0010 0.1467
oZ=2 —0.0008 0.1790 —0.0042 0.1826
Naive bayes estimator
o2=1 1.1346 1.1424 1.1308 1.1394
o2 =1 1.2197 1.2288 1.2188 1.2285
o2=2 13739 1.3856 1.3674 1.3795

Note that the two estimators use the same likelihood and priors. However, the
“info-ortho Bayes estimator” separates the nuisance parameter from the parameter
of interest before integrating out Jii=1,...,N. Asa consequence, the bias is
much lower, by about factor 8, for the “integrated likelihood estimator.” Note that,
for both estimators, the Root Mean Squared Error (RMSE) is increasing in qw and
that the bias of the “naive Bayes estimator” does not strongly depend on the value
of B. We conclude that separating the nuisance parameter from the parameter of
interest works well for this misspecified model.

6. CONCLUSION

This paper extends the integrated likelihood estimator to misspecified models.
Using information-orthogonality, we approximately separate the nuisance para-
meter from the parameter of interest. We use a Bayesian techniques since
reparametrization of a nuisance parameter only requires an expression of the
Jacobian in a Bayesian framework. Under the condition that the score of the
integrated likelihood has expectation zero at the truth, we show that the variance-
covariance matrix of the Bayesian estimator has the form of White (1982). Thus,
Emonu»mou-on&omoummq combined with the integrated likelihood is a promising
approach which solves the incidental parameter problem of Neyman and Scott
(1948) for a class of misspecified models. We illustrate our approach by two
misspecified models with individual effects. In the dynamic linear model, we
allow the error term to be non-normal and in the hazard model we allow the
individual effect to change over time.
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NOTES

1. The dynamic linear mode] assumes that y, = Yi1-1B +f; + & and we discuss this
model in Section 5.1.

2. The transformation model of Abrevaya (1998) and one discrete choice model by
Honor’e and Kyriazidou (2000) are not information-orthogonal. Both models require infinite
support for the regressor, can be estimated using a sign function and will be discussed in a
separate paper that deals with “information-orthogonality” of sign functions.

3. Thatis, conditional onf, ... Jyandxg, ..., xy.

4. Note that ¢;; is exponentially distributed if we condition on Jfis xis, and u;,.
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APPENDIX A
THEOREM 1
To be shown
VN@ - ) - NO, ¥)
where

1 Ira 1 -1
v= ﬁﬂﬁma& ﬁﬁmﬁrmaxﬁ_woi ﬁﬁﬁ%& :

Proof:

Let Assumptions 1, 2(i), and 3 hold. Then all the conditions of Newey and
McFadden (1994, Theorem 2.6) are satisfied and consistency follows. Assuming
that, in addition Assumption 4 holds then the assumptions of Newey and McFadden
(1994, Theorem 3.2) are satisfied and asymptotic normality follows where the
identity matrix is used a the weighting matrix,

Instead of assuming that the parameter space is compact as in 2(ii) we can
assume that we assume that @ is an element of the interior of a convex set ® and
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Amv is concave for all i as in Assumption 2(ii) and 4(i). All the requirements of

ewey and McFadden (1994, Theorem 2.7) are satisfied and consistency of the

integrated likelihood estimator follows. Asymptotic normality is again implied by
Newey and McFadden (1994, Theorem 3.2).

APPENDIX B
DURATION EXAMPLE, INTEGRATED LIKELIHOOD
To be shown,
i _ TN o= X, 5B Hhin g l:slg
L In \, ﬁn € Q7~ In ﬁﬁMh OH_....WH-.MWN.

where I'(-) denotes the Gamma function
Proof: Define v; = eMi.

i1 _
l=n \ L Sdu= \ o ~lemu Kbt gy,

F H._Q.v AM.,..ouamn_.Lﬂcwlnls Mhn:um:q Q.
AM.,. oa..a_wna.wﬂ.\. (T vig.

Note that ({3, e*isPt;; wﬂcwlnl... L, efisbrys )/T'(T) is a gamma density with param-
eters Tand ), e*isPt;; and that this density integrates to one. The result follows.
Q.E.D.

APPENDIX C
DURATION EXAMPLE, SCORE
To be shown,
1 hm i X xisetisPor;g
lm.hm =0 where ﬂ = ﬂ Mu ou:wsa
for any N and any T > 2.
Proof:
1 MU M Ha.naamoua. M.. Ma Rh.awk_.umo+>on..u
|m~xm E=Z=_—__ — _fg&t :
NT N Mw e~isBoy;, N Mua g¥isBothoy,
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Note that e¥isBotro; s exponentially distributed with mean e~*is. Also note that
Ea mx@noﬁmnou of e¥isPothoy; /S~ exiBothor, doesnot depend on x;;. Thus, define
= E(e"sPothog )/ S~ ?p,iea This yields

qu Hm Mka. lm.lr.. Muxa =0

since ) x;; = 0. QE.D.



