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Abstract

This paper proposes a general theory of dominance among choices that encom-

passes strict and weak dominance among strategies in games, Blackwell dominance

among experiments, and first or second-order stochastic dominance among monetary

lotteries. One choice dominates another if in a variety of situations the former choice

yields higher expected utility than the latter. We then investigate whether, in a finite

set of possible choices, all undominated choices are optimal in some situation. We

present a formal framework in which the answer to this question is positive, and we

show that within this framework the set of undominated choices is the smallest set

to which the decision maker can restrict attention ex ante without running the risk

of not having an optimal choice in the particular situation in which she finds herself.

For this result it is crucial that the dominating alternatives are allowed to be convex

combinations (in games: mixed strategies). A detailed analysis of dominance in game

theory, Blackwell dominance, and first or second-order stochastic dominance in one

common framework also allows us to compare the properties of these concepts, and

to obtain insights into why certain versions of our result apply only to some, but not

all of these concepts.
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1. Introduction

In many economic contexts a robust prediction implied by the rationality hypoth-

esis is that agents will not choose “dominated” options. For example, rational agents

won’t choose “dominated insurance plans,” and rational players won’t choose “domi-

nated strategies” in games. In all these contexts one option “dominates” another one

if the former is better than the latter regardless of some specifics. What these specifics

are depends on the context. For example, the relevant specifics may be an agent’s

risk attitude, or they may be a player’s beliefs about other players’ behavior. The

prediction that rational agents won’t choose dominated strategies is robust because

it is true regardless of these specifics.

But can these predictions be further narrowed down without giving up robustness?

The answer is “no” if for every undominated option there are some specifics in which

these options are the best choice. In other words, if “not being dominated” and

“being potentially optimal” are equivalent, then the best robust prediction is indeed

that agents don’t choose dominated strategies. In this paper we prove several general

theorems that assert such equivalences. We then apply our general theorems to vari-

ous economic settings. We obtain some new results and re-prove some known results.

Our general theory also illuminates when the equivalence of “not being dominated”

and “being potentially optimal” may fail.

One of the new results that we obtain is that under some assumptions a signal is not

Blackwell dominated (Blackwell, 1951, 1953) by other signals drawn from a given set

of signals if and only if there is a decision problem such that, in this decision problem,

the signal is the optimal choice from the given set. Examples of dominance notions

that are covered by our theorems and for which some versions of our results are known

from previous literature apply to strict and weak dominance in games Pearce (1984)

and to first-order (Quirk and Saposnik, 1962) and second-order stochastic dominance

(Rothschild and Stiglitz, 1970) among monetary lotteries.

Our proofs of our general results are based on separating hyperplane theorems

for finite-dimensional Euclidean spaces. Separating hyperplane theorems in finite-

dimensional Euclidean space can be illustrated in simple graphs, and therefore we

hope that our proofs are easily accessible.

An important detail in our theorems is that these results hold only if one considers

the possibility that one option is dominated not by another option by itself alone, but

by a convex combination of other options. Indeed, the typical game theory textbook
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will provide examples that show that a strategy may not be strictly dominated by any

other pure strategy, yet not be a best response for any belief that a player may hold

about other players’ behavior (see Figure 61.1 in Osborne and Rubinstein (1994)).

This is a general theme that also matters in the other applications that we consider,

and that we shall emphasize throughout.

It is a familiar fact from Pearce (1984) that the details of the notion of dominance

among actions and also of the notion of optimality matter for the results that we are

aiming for. That is also true in our context. We introduce different notions of being

“not dominated” and relate them to a variety of notions of “being optimal.” Some of

our results will be based on assumptions that hold in some, but not in all applications.

The most general result that will hold in all applications characterizes those alterna-

tives that are, for some specification of the details of the decision problem, the only

optimal choice of the decision maker. We call such alternatives “uniquely optimal.”

Thus, our most general result establishes an equivalence between an alternative not

being dominated by convex combinations of other alternatives, and an alternative

being a uniquely optimal choice.

One might question our focus on uniquely optimal choices. Of course, sometimes

decision makers will face situations in which they are indifferent between several

optimal choices. But we shall provide sufficient conditions such that, when there are

multiple optimal choices in a decision problem, then at least one of those choices is,

in some other decision problem, the uniquely optimal choice. Therefore, the set of

uniquely optimal choices is the minimal set of alternatives to which a decision maker

may restrict attention such that this set includes an optimal choice regardless of the

specifics of the decision maker’s decision problem. Thus, it is a robust prediction that

the decision maker will make a choice from this set provided that the decision maker

has some very small attention cost.

The general results on which we build our analysis are presented in Section 2. We

motivate a focus on uniquely optimal actions in Section 3. In the subsequent sections

we apply our general analysis first to dominance relations in games (Section 4), then

to dominance relations among experiments (Section 5), and finally to dominance

relations among monetary lotteries (Section 6). We postpone a discussion of the

previous results concerning these applications to Sections 4, 5 and 6.
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2. General Results

Let X and Y be two non-empty sets. Here, we interpret X as the set of actions x

that a decision maker can choose from, while we interpret Y as the set of “situations”

y that this decision maker might find herself in. In the applications that we shall

consider, X is, depending on the context, a player’s set of strategies in a game, or a

set of experiments, or a set of monetary lotteries. Y is, depending on the context, the

set of beliefs the decision maker might hold, the set of value functions corresponding

to the decision problems the decision maker might face, or the set of Bernoulli utility

functions the decision maker might have. Throughout this paper, unless otherwise

stated, we shall make the following assumption:

Assumption 1. X is finite. Y is a subset of a nontrivial real vector space Y.

The assumption that X is finite greatly simplifies the analysis below. In the ap-

plications listed above it is, on the other hand, convenient to allow Y to be infinite.

Moreover, in these examples Y is naturally embedded into a real vector space.

We also assume that a function u : X ×Y → R is given. When y ∈ Y then u(x, y)

is the decision maker’s utility if she chooses action x in situation y. We define the

domain of the utility function u to be X×Y rather than X×Y because this definition

makes it slightly more convenient to express some technical arguments below.

The decision maker first observes the situation y ∈ Y and then chooses an action

x ∈ X.

Definition 1. An action x ∈ X is optimal1 if there exists a y ∈ Y such that:

u(x, y) ≥ u(x′, y) for all x′ ∈ X.

We denote by XO the set of optimal actions.

Definition 2. An action x ∈ X is interior optimal if there exists a y ∈ ri(Y ) (where

ri(Y ) denotes the relative interior of Y )2 such that:

u(x, y) ≥ u(x′, y) for all x′ ∈ X.
1A more accurate phrase is: “potentially optimal,” but, to shorten the terminology, we drop

“potentially.”
2Here, we mean by “relative interior” the algebraic relative interior; see Ok (2007, p. 438)
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We denote by XIO the set of interior optimal actions. It may not be intuitively

obvious why it is relevant whether the situation y in which an action x is a best choice

is interior or not. Consider the example where Y represents a set of all beliefs, i.e.

probability distributions over, say, a finite set. Then the relative interior of Y is the

set of full support beliefs. Having beliefs with full support has been interpreted in

the game theoretic literature as a sign of caution by the decision maker. This is why

interior situations y will receive special attention.

Definition 3. An action x ∈ X is uniquely optimal if there exists a y ∈ Y such that:

u(x, y) > u(x′, y) for all x′ ∈ X such that x 6= x′.

We denote by XUO the set of uniquely optimal actions. It is not immediately

obvious why the set of uniquely optimal actions should receive special attention. We

address this issue therefore in detail in the next section.

Our objective in this section is to characterize the sets of optimal, interior optimal,

and uniquely optimal actions in terms of dominance notions. We therefore next

introduce the dominance notions that we are considering.

Definition 4. An action x ∈ X is strictly dominated if there are a set {x1, x2, . . . , xn}
⊆ X \ {x} and a vector (λ1, λ2, . . . , λn) ∈ Rn

+ with
∑n

i=1 λi = 1 such that:

n∑
i=1

(λiu(xi, y)) > u(x, y) for all y ∈ Y.

We denote by XNSD the set of all actions that are not strictly dominated. It is

essential that we consider the possibility here that an action is dominated not by a

single action but by a convex combination of actions. We shall illustrate this point

in the applications that we consider later in the paper. One may think of the convex

combination of actions as a “mixed action” in analogy to mixed strategies in game

theory.

Definition 5. An action x ∈ X is weakly dominated if there are a set {x1, x2, . . . , xn}
⊆ X \ {x} and a vector (λ1, λ2, . . . , λn) ∈ Rn

+ with
∑n

i=1 λi = 1 such that:

n∑
i=1

(λiu(xi, y)) ≥ u(x, y) for all y ∈ Y

with strict inequality for at least one y ∈ Y .
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We denote by XNWD the set of all actions that are not weakly dominated.

Strict and weak dominance are familiar from game theory. We will use a third

concept that is less familiar, but that will prove crucial for some of our results.

Definition 6. An action x ∈ X is redundant if there are a set {x1, x2, . . . , xn} ⊆
X \ {x} and a vector (λ1, λ2, . . . , λn) ∈ Rn

+ with
∑n

i=1 λi = 1 such that:

n∑
i=1

(λiu(xi, y)) = u(x, y) for all y ∈ Y.

Thus, an action is redundant if it is equivalent in expected utility to a convex

combination of the other actions. Denote by XNR the set of actions that are not

redundant.

We are now ready to state Theorems 1 and 2, our main results in this section.

These results generalize some results familiar from game theory.

Theorem 1. test

(i) If an action is optimal, then it is not strictly dominated: XO ⊆ XNSD.

(ii) If u is linear on Y, then an action that is interior optimal is not weakly

dominated: XIO ⊆ XNWD.

(iii) If an action is uniquely optimal then it is not weakly dominated and not re-

dundant: XUO ⊆ XNWD ∩XNR.

Proof. We first prove (i). The proof is indirect. Suppose x were optimal for some ȳ ∈
Y , but that x were strictly dominated. Let {x1, x2, . . . , xn} ⊆ X \ {x} be the actions

in the support of the strictly dominating convex combination, and let (λ1, λ2, . . . , λn)

be the corresponding weights. We have:
∑n

i=1 (λiu(xi, y)) > u(x, y) for all y ∈ Y .

But this implies that for some i we have: u(xi, ȳ) > u(x, ȳ), contradicting that x is

optimal in situation ȳ.

We next prove (ii). The proof is indirect. Suppose x were optimal for some

ȳ ∈ ri(Y ), but that x were weakly dominated. Let {x1, x2, . . . , xn} ⊆ X \ {x}
be the actions in the support of the weakly dominating convex combination, and let

(λ1, λ2, . . . , λn) be the corresponding weights. We then have:
∑n

i=1 (λiu(xi, y)) ≥
u(x, y) for all y ∈ Y and

∑n
i=1 (λiu(xi, y

∗)) > u(x, y∗) for some y∗ ∈ Y . Because x is

optimal at ȳ, we must have:
∑n

i=1 (λiu(xi, ȳ))−u(x, ȳ) = 0. Define: ŷ ≡ (1+ε)ȳ−εy∗.
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Because ȳ is in the relative interior of Y , we have ŷ ∈ Y for sufficiently small ε > 0.

Now note that:
n∑
i=1

(λiu(xi, ŷ))− u(x, ŷ)

= (1 + ε)

(
n∑
i=1

(λiu(xi, ȳ))− u(x, ȳ)

)
− ε

(
n∑
i=1

(λiu(xi, y
∗))− u(x, y∗)

)

= −ε

(
n∑
i=1

(λiu(xi, y
∗))− u(x, y∗)

)
< 0,

This contradicts the assumption that the convex combination weakly dominates x.

We finally prove (iii). The proof is indirect. Suppose x were uniquely optimal for

some particular ȳ ∈ Y but that x were weakly dominated. Let {x1, x2, . . . , xn} ⊆
X \ {x} be the actions in the support of the weakly dominating convex combination,

and let (λ1, λ2, . . . , λn) be the corresponding weights. We have:
∑n

i=1 (λiu(xi, y)) ≥
u(x, y) for all y ∈ Y . But this implies that for some i we have: u(xi, ȳ) ≥ u(x, ȳ),

contradicting that x is uniquely optimal in situation ȳ. The same argument proves

that a uniquely optimal action cannot be redundant. �

Theorem 2. Assume Y is convex and u is linear on Y.

(i) If Y can be endowed with a topology such that u is continuous on Y and Y is

compact, then an action that is not strictly dominated is optimal: XNSD ⊆ XO.

(ii) An action that is not weakly dominated is optimal: XNWD ⊆ XO.

(iii) If Y is finite-dimensional, then an action that is not weakly dominated is

interior optimal: XNWD ⊆ XIO.

(iv) An action that is not weakly dominated and not redundant is uniquely optimal:

XNWD ∩XNR ⊆ XUO.

The assumptions that Y is convex and that u is linear on Y set the stage for

the application of the separating hyperplane theorems which will be used to prove

Theorem 2. Note that results (i) and (iii) are based on additional assumptions. Of

course, the theorem does not claim that these additional assumptions are necessary.

However, if these additional assumptions do not hold, the conclusions of parts (i)

and (iii) may fail. The appendix contains an example that demonstrates this for

part (i). In Section 6 we illustrate how the conclusion of (iii) may fail if Y is not

finite-dimensional.
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The separating hyperplane theorems that we use are elementary in that they apply

in finite-dimensional Euclidean space. The idea on which these proofs are based is

borrowed from the proofs of Theorems 1 and 2 in Fishburn (1975).3 We illustrate

the idea of the proofs geometrically after presenting the formal proof. We also ex-

plain there how Fishburn’s approach differs in an important way from the textbook

approach to similar results that is also based on the separating hyperplane theorem,

and that is exemplified by the proof of Theorem 2.2 in Fudenberg and Tirole (1991).

Corollary 1 in Battigalli et al. (2016) is a more general version of those parts of our

Theorems 1 and 2 that apply to strict dominance. Their Corollary 1 is more general

than our results because it allows the action set X to be infinite. An earlier, closely

related result is the main proposition in Zimper (2005). Like Battigalli et al. (2016)

and Zimper (2005) also Shah (2022) allows for infinite action set X. Shah (2022)

proves versions of our results on strict and weak dominance.4 None of these papers

has a result relating the property of being not dominated to being uniquely optimal.

All three papers use proof strategies that are different from our own. Zimper’s proof is

based on a separating hyperplane argument that is similar to the textbook approach

we mentioned in the previous paragraph. Battigalli et. al.’s proofs are based on the

minimax theorem, and Shah’s proof is based on Browder’s coincidence theorem.

Proof. We first prove (i). The proof is indirect. Let x be an action that is not optimal

for any y ∈ Y . We prove that then a convex combination of actions strictly dominates

x. Consider the following set:

C ≡ {(u (x1, y)− u (x, y) , u (x2, y)− u (x, y) , ..., u (xn, y)− u (x, y)) |y ∈ Y } ,

where we take x1, x2, . . . , xn to be an enumeration of the elements of the set X \ {x}.
If x is not optimal in any situation y ∈ Y , then:

C ∩Rn
− = ∅.5

Observe that C is non-empty, convex, and compact (convex because of the linearity

of u and the convexity of Y and compact because of the continuity of u and the

compactness of Y ). We can then apply the following separating hyperplane theorem

which, to make this paper self-contained, we briefly prove:

3We explain in the last paragraph of Section 6 the relation between our Theorem 2 and Theorems

1 and 2 in Fishburn (1975).
4The first version of our paper and Shah (2022) were circulated simultaneously.
5We denote by Rn

− the set of all vectors x = (x1, x2, . . . , xn) ∈ Rn such that xi ≤ 0 for all i.
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Separating Hyperplane Theorem 1: Suppose C ⊆ Rn is non-empty, convex,

and compact. If C ∩Rn
− = ∅ then there exists λ ∈ Rn

+ with λ 6= 0 such that λ · c > 0

for all c ∈ C.

Proof. The strict separating hyperplane theorem for finite-dimensional Euclidean

spaces (for example Proposition 5 in Ok (2007, p. 485)) implies that there are λ ∈ Rn

with λ 6= 0 and ε ∈ R such that λ · c < ε for all c ∈ Rn
− and λ · c > ε for all c ∈ C. It

easily follows that λ ∈ Rn
+ and that ε > 0. Therefore, λ · c > ε for all c ∈ C implies

λ · c > 0 for all c ∈ C. �

Obviously, we may normalize the vector λ to which the theorem refers so that its

components add up to 1. Applying the theorem to our setting, we therefore find that

there is a convex combination of actions such that:
n∑
i=1

[λi (u(xi, y)− u(x, y))] > 0 for all y ∈ Y.

This means that the convex combination of the actions x1, x2, . . . , xn with weights

λ1, λ2, . . . , λn strictly dominates x.

We next prove (ii). The proof is indirect. Suppose x were not optimal for any

y ∈ Y . We prove that then a convex combination of actions weakly dominates x. Let

C be defined as before. If x is not optimal in any situation y ∈ Y , then:

C ∩Rn
− = ∅.

Observe that C is non-empty and convex (because of the linearity of u and the

convexity of Y ). We can then apply the following separating hyperplane theorem:

Separating Hyperplane Theorem 2: Suppose C ⊆ Rn is non-empty and con-

vex. If C ∩ Rn
− = ∅ then there exists λ ∈ Rn

+ with λ 6= 0 such that λ · c ≥ 0 for all

c ∈ C and λ · c > 0 for at least one c ∈ C.

This is Lemma 5 in Fishburn (1975).

We normalize again the vector λ to which the theorem refers so that its components

add up to 1. Applying the theorem to our setting, we therefore find that there is a

convex combination of actions such that:
n∑
i=1

[λi (u(xi, y)− u(x, y))] ≥ 0 for all y ∈ Y,



9

with strict inequality for at least one y ∈ Y . This means that the convex combination

of the actions x1, x2, . . . , xn with weights λ1, λ2, . . . , λn weakly dominates x.

We next prove (iii). Because Y is a nontrivial finite-dimensional vector space, it is

isomorphic to Rm for some m ∈ N.6 It is then without loss of generality to assume

that Y = Rm for some m ∈ N. Define the set C as before. Because Y is a convex

subset of Rm, by Exercise 21 in Ok (2007, p. 444), the algebraic relative interior

of Y is the same as the topological relative interior of Y . Because C is the image

of Y in Rn under a linear mapping, it is convex, and therefore, again, the algebraic

relative interior of C is the same as the topological relative interior of C. Moreover,

by Theorem 6.6 in Rockafellar (1970), the topological relative interior of C is the

image under the linear mapping of the topological relative interior of Y . Therefore

we have:

ri(C) ∩Rn
− = ∅.

We now apply the following separating hyperplane theorem:

Separating Hyperplane Theorem 3: Suppose C ⊆ Rn is non-empty and con-

vex. If ri(C) ∩ Rn
− = ∅ then there exists λ ∈ Rn

+ with λ 6= 0 such that λ · c ≥ 0 for

all c ∈ C and λ · c > 0 for at least one c ∈ C.

Proof. By Theorem 6.2 of Rockafellar (1970), ri(C) is non-empty and convex. By

Separating Hyperplane Theorem 2, there exists a λ ∈ Rn
+ with λ 6= 0 such that

λ · c ≥ 0 for all c ∈ ri(C) and λ · c > 0 for at least one c ∈ ri(C). By continuity,

λ·c ≥ 0 for all c in the topological closure of ri(C), and by Theorem 6.3 in Rockafellar

(1970), the topological closure of ri(C) is a superset of C. Therefore, λ · c ≥ 0 for all

c ∈ C. Finally, because ri(C) ⊆ C, we have λ · c > 0 for at least one c ∈ C. �

Normalizing again the vector λ to which the theorem refers so that its components

add up to 1, we find that there is a convex combination of actions such that:
n∑
i=1

[λi (u(xi, y)− u(x, y))] ≥ 0 for all y ∈ Y,

with strict inequality for at least one y ∈ Y . This means that the convex combination

of the actions x1, x2, . . . , xn with weights λ1, λ2, . . . , λn weakly dominates x.

6Corollary 3 in Ok (2007, p. 391).
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We finally prove (iv). The proof is indirect. Suppose x were not uniquely optimal

for any y ∈ Y . Defining the set C as before, this means that:

C ∩Rn
−− = ∅.7

We now apply the following separating hyperplane theorem:

Separating Hyperplane Theorem 4: Suppose C ⊆ Rn is non-empty and con-

vex. If C ∩ Rn
−− = ∅ then there exists λ ∈ Rn

+ with λ 6= 0 such that λ · c ≥ 0 for all

c ∈ C.

For completeness, we briefly derive this result from a standard separating hyper-

plane theorem:

Proof. Minkowski’s separating hyperplane theorem (Ok (2007, p. 483)) implies that

there are λ ∈ Rn with λ 6= 0 and ε ∈ R such that λ · c ≤ ε for all c ∈ Rn
−− and

λ · c ≥ ε for all c ∈ C. It easily follows that λ ∈ Rn
+ and ε ≥ 0. Therefore, λ · c ≥ ε

for all c ∈ C implies λ · c ≥ 0 for all c ∈ C. �

Normalizing again the vector λ to which the theorem refers so that its components

add up to 1, we find that there is a convex combination of actions such that:
n∑
i=1

λiu(xi, y) ≥ u(x, y) for all y ∈ Y.

Thus, the convex combination of actions x1, . . . , xn with weights λ1, . . . , λn either

weakly dominates x or is equivalent to x, which contradicts the assumption with

which we began this indirect proof. �

The key idea of the proof of Theorem 2 is to construct for any action that is not

optimal a convex combination of all other actions that dominates it. An alternative

approach that we refer to as the “classical approach” is to prove for every action that

is not dominated the existence of a situation in which it is optimal. The approach that

we take here is borrowed from Fishburn (1975). The alternative, classical approach

is exemplified by the proof of Theorem 2.2 in Fudenberg and Tirole (1991). We now

illustrate both approaches, and explain why it is crucial that we rely in the proof of

Theorem 2 on Fishburn’s approach rather than the classical approach.

For concreteness, we shall focus in this discussion on the proof of the claim that in

a finite two-player game every pure strategy of player 1 that is not strictly dominated

7We denote by Rn
−− the set of all vectors x = (x1, x2, . . . , xn) ∈ Rn such that xi < 0 for all i.



11

is a best response to some belief about player 2’s strategies. This is a special case

of part (i) of Theorem 2. Adopting Fishburn’s approach, one proves this result by

showing the contrapositive: every pure strategy that is not a best response to some

belief about player 2’s strategy is strictly dominated by a mixed strategy of player

1. Consider the game in Table 1. In this game, player 1’s strategy M is not a best

response to any belief about player 2’s choices.

L R

T 0 1

M 0.4 0.4

B 1 0

Table 1. Player 1’s utility in a two-player game

Figure 1 illustrates the idea that underlies the proof of part (i) of Theorem 2.

u (T, σ2)− u (M,σ2)

u (B, σ2)− u (M,σ2)

0
R

L

Figure 1. Illustrating the proof of Theorem 2

Letting σ2 denote any element of the set ∆ ({L,R}), the probability measures that

reflect player 1’s beliefs about player 2’s pure strategies, and denoting by u(T, σ2),

u(M,σ2), and u(B, σ2) the expected utility of player 1 if he chooses any of his three

pure strategies, the set C defined in the proof of Theorem 2 can be written as:

C ≡ {(u (T, σ2)− u (M,σ2) , u (B, σ2)− u (M,σ2)) |σ2 ∈ ∆ ({L,R})} .

In the example, the set C corresponds to the blue line segment in Figure 1. We

have colored the non-positive orthant in red in Figure 1. That M is never a best

response is reflected by the fact that the blue set and the red set in Figure 1 don’t

intersect. The black line in Figure 1 is one example of a hyperplane that separates
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the two sets. The normalized orthogonal vector of this hyperplane corresponds to the

convex combination of T and B that places weight 0.5 on both. That this convex

combination strictly dominates M is reflected by the fact that the blue line is strictly

above the separating hyperplane and the hyperplane itself is above the origin.

An alternative approach, the “classical approach,” is to prove for every action that

is not dominated the existence of a situation in which it is optimal. Consider the

example in Table 2. In this game, strategy M is not strictly dominated.

L R

T 0 1

M 0.7 0.7

B 1 0

Table 2. Player 1’s utility in a two-player game

Figure 2 illustrates the approach taken in the “classical proof.”

u (σ1, L)

u (σ1, R)

T

B

M

0

Figure 2. Illustrating the classical proof

Denoting by σ1 the mixed strategies of player 1, the red area in Figure 2 corresponds

to the set:

{(u(σ1, L), u(σ1, R)) |σ1 ∈ ∆({T,M,B})}.
The blue area corresponds to the set of all two-dimensional utility vectors that are

greater in both components than the vector (0.7, 0.7) that represents the utility combi-

nation that player 1 obtains when choosing M . Because M is not strictly dominated,
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the blue and the red areas don’t intersect. A hyperplane that separates the two areas

is indicated in Figure 2 in black. Its normalized orthogonal vector corresponds to a

belief about player 2’s actions that renders M expected utility maximizing. That M

is expected utility maximizing is reflected by the fact that the red area is below the

hyperplane.

Observe that in Figure 2 we focus on strict dominance with respect to the set of

pure strategies of player 2 only. But in this application Y is in fact the set of all

probability distributions over this set. We can focus on the pure strategies because Y

is the convex hull of its extreme points, and the pure strategies are the extreme points.

Strict dominance with respect to these extreme points implies strict dominance for the

whole set Y . The classical approach can therefore use finite-dimensional separating

hyperplane theorems as long as the set Y is the convex hull of a finite number of its

elements. However, in some applications that we consider below the set Y does not

have the property that it can be written as the convex hull of a finite number of its

elements. To extend the classical approach we would therefore have to use separating

hyperplane theorems in infinite dimensions. By contrast, as long as the set of actions

is finite, Fishburn’s approach allows us to work with finite-dimensional separating

hyperplane theorems. This is what we do in the proof of Theorem 2.

3. Limited Attention Without Loss of Optimality

We now provide a rationale for focusing on uniquely optimal actions as defined in

the previous section. Specifically, we state conditions under which the set of uniquely

optimal actions is the smallest set of actions that the decision maker can limit atten-

tion to if she wants to choose an optimal action in every situation. We thus envisage

the following scenario: the decision maker first restricts attention to some subset X̂ of

the set of all actions. Then she observes the situation y, and then she picks an action

x from the subset of actions X̂ to which she has restricted attention. We assume that

attention is costly: the decision maker wants to restrict attention to a set that is small

(in terms of set-inclusion). Finally, attention cost is of second-order importance: the

decision maker’s first priority is to take an optimal action in every situation.8

8One may think of the set X̂ as a “consideration set” in the sense of the recent decision literature.

For a model in which attention cost leads to consideration sets that are so small that material payoff

may be lost see Caplin et al. (2019).
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To formalize this, we introduce some additional notation. For every y ∈ Y the set

of optimal actions is:

O (y) = {x ∈ X|u (x, y) ≥ u (x′, y) for all x′ ∈ X} .

In the following definition, the key term that we define is “minimal sufficiency.”

Definition 7. A set X̂ ⊆ X is sufficient if for every y ∈ Y :

O(y) ∩ X̂ 6= ∅.

A set X̂ ⊆ X is minimally sufficient if it is sufficient and there is no sufficient set

X̄ ⊆ X such that:

X̄ ( X̂.

A minimally sufficient set of actions is thus a smallest set of actions to which the de-

cision maker may restrict attention if she wants to choose optimally in every situation

y.9

It is obvious that every sufficient set of actions must include the uniquely optimal

actions. The following result provides sufficient conditions for the set of uniquely

optimal actions to be the unique minimally sufficient subset of the set of all actions.

These conditions imply in other words that, whenever there are multiple optimal

actions in a decision problem, at least one of these will also, in some other decision

problem, be the unique optimal action.

We assume for this result that no two actions x and x′ are identical. Without this

assumption, one can obviously not expect the minimally sufficient set to be unique.

Theorem 3. If X is finite, if for any x, x′ ∈ X with x 6= x′ there is a y ∈ Y such

that u(x, y) 6= u(x′, y), and if:

XUO = XNWD ∩XNR,

then XUO is the unique minimally sufficient subset X̂ of X.

9The literature on statistical decision theory refers to the concepts of “complete classes” and

“minimal complete classes” of decision rules and contains characterizations of such classes. That

literature also defines “essentially complete classes” and “minimal essentially complete classes” of

decision rules. These concepts are related to our concepts of sufficiency and minimal sufficiency,

but different. In particular, they are defined using notions of dominance, whereas our concepts are

defined using the notion of optimality.
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Among the three assumptions of this theorem, the condition XUO = XNWD ∩XNR

is not formulated in terms of the primitives of our model. However, Theorems 1 and

2 show assumptions for the primitives of our model that imply XUO = XNWD ∩XNR.

The proof of Theorem 3 describes an algorithm for finding the set XNWD ∩ XNR

that may be of independent interest.

Proof. It is obvious that every sufficient set must include XUO. What remains to be

shown is that XUO contains for every situation y ∈ Y an optimal action. Because the

proposition assumes that XUO = XNWD ∩ XNR, this is equivalent to the statement

that XNWD ∩XNR contains for every situation y ∈ Y an optimal action.

To prove this, we first observe thatXNWD∩XNR can be constructed by the following

algorithm. Set X1 = X. For k = 2, 3, . . . , |X| (where |X| is the number of elements

of X), if no action x ∈ Xk−1 is either weakly dominated by, or equivalent to, a convex

combination of the actions in Xk−1 \ {x}, then set Xk = Xk−1. Otherwise, pick

arbitrarily some such xk−1 ∈ Xk−1, and set Xk = Xk−1 \ {xk−1}. Note that after

at most |X| steps no further actions are eliminated. We claim that the final set is

X |X| = XNWD ∩XNR. It is clear that X |X| includes all actions in XNWD ∩XNR. It

thus remains to show that any action x /∈ XNWD ∩ XNR is eliminated in some step

of this algorithm.

To prove the claim we show that if x is weakly dominated by, or equivalent to, a

convex combination of the actions in Xk−1 \ {x}, and if x ∈ Xk, then x it is also

weakly dominated by, or equivalent to, a convex combination of the actions inXk\{x}.
Let the elements of Xk−1 \ {x} be {x1, x2, . . . , xn}, and let the weights of the convex

combination be λ1, λ2, . . . , λn. Without loss of generality assume that x1 is eliminated

in step k, that is: xk−1 = x1. This means that x1 is either weakly dominated or

equivalent to, a convex combination of the elements of the set {x2, . . . , xn}∪{x}. Let

the weights of the convex combination be: λ̂2, . . . , λ̂n, λ̂x. It is then obvious that x is

also weakly dominated, or equivalent to, a convex combination of {x2, . . . , xn} ∪ {x}
with weights: λ2 + λ1λ̂2, . . . , λn + λ1λ̂n, λ1λ̂x.

We next show: λ1λ̂x < 1. Suppose the opposite: λ1λ̂x = 1, hence λ1 = λ̂x = 1.

This means that x1 is either weakly dominated or equivalent to x, and that x is either

weakly dominated or equivalent to x1. But this means that x1 and x are duplicates,

which is a case that we ruled out in the assumptions of Theorem 3.
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Now observe that, if x is weakly dominated by, or equivalent to, a convex combi-

nation of {x2, . . . , xn} ∪ {x} with weights:

λ2 + λ1λ̂2, . . . , λn + λ1λ̂n, λ1λ̂x

it is also weakly dominated by, or equivalent to, a convex combination of {x2, . . . , xn}
with weights:

λ2 + λ1λ̂2

1− λ1λ̂x
, . . . ,

λn + λ1λ̂n

1− λ1λ̂x
.

The division by 1− λ1λ̂x is well-defined because, as we showed in the previous para-

graph, λ1λ̂x < 1. We have now concluded the proof that the algorithm that we have

described terminates with the set XNWD ∩XNR.

Now consider any situation y ∈ Y and suppose x ∈ X is optimal in situation y.

Obviously, x ∈ X1. Also, either x ∈ X2, or x is weakly dominated by, or equivalent

to, a convex combination of the actions in X1 \ {x} = X2. Then one of the actions in

X2 must also be a best response to y. Iterating this argument leads to the conclusion

that one of the actions in X |X| = XNWD ∩XNR is optimal in situation y. �

We now provide an example in which XUO 6= XNWD ∩XNR, and in which XUO is

not the unique minimally sufficient subset of X. In this example X = {x1, x2, x3, x4}
and Y = {y1, y2}. The utility function is given in the following table:

y1 y2

x1 0 2

x2 1 2

x3 2 0

x4 2 1

Table 3. An example where XUO is not minimally sufficient

In this example, XUO = ∅ and XNWD ∩ XNR = {x2, x4}. Obviously, XUO is not

sufficient. The minimally sufficient sets of actions are all sets with two elements such

that one of the elements is x1 or x2, and the other element is x3 or x4.
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4. Dominance and Optimality of Strategies in Games

We now explain how to apply the results of Section 2 to games. We focus on a player

i in a strategic game who has to choose one strategy from a finite set of strategies

Si. There are finitely many other players j 6= i and the Cartesian product of their

strategy sets is S−i which we also assume to be finite. Player i’s utility function is

ui : Si × S−i → R. Player i’s belief about the other players’ choices is a probability

measure µi on S−i. Denote the set of all such probability measures by ∆(S−i).
10

Player i’s expected utility when she has belief µi and chooses strategy si is:∑
s−i∈S−i

ui(si, s−i)µi(s−i).

In the notation of Section 2 in this application the set X of actions is the set Si
of strategies, the set Y of situations is the set ∆(S−i) of beliefs, and the vector space

Y is R|S−i|. Note that the set of beliefs is a convex subset of R|S−i|, and that the

expected utility function ui can be extended to R|S−i| as a linear function. We endow

Y with the Euclidean metric. Then ui is continuous and ∆(S−i) is compact.

The notions of strict and weak dominance introduced in Section 2 correspond to

the thus named notions in game theory. Note that when checking dominance relations

among two strategies si and sj in games we typically only compare expected utility

for any given pure strategy combination of the other players, that is, we only consider

beliefs that are Dirac measures on S−i. This is sufficient because ∆(S−i) is the convex

hull of the set of Dirac measures on S−i and because of the linearity of expected utility.

This is a general point: The properties of actions x ∈ X defined in Definitions 4, 5,

and 6 would not change if one replaced the expression “for all y ∈ Y ” by the expression

“for all y ∈ Y ∗” where Y ∗ is a subset of Y such that the convex hull of Y ∗ equals Y .

All parts of Theorems 1 and 2 apply in this setting. In particular, note that part

(i) of Theorem 2 applies because the set ∆(S−i) is compact, and part (iii) of Theorem

2 applies because R|S−i| is finite-dimensional. Part (i) in Theorems 1 and 2, if applied

to finite strategic games, are the same as Lemma 3 in Pearce (1984) whose proof

was different from ours, however. Pearce’s proof was built on the existence of Nash

equilibria in zero sum games. As regards part (ii) of Theorem 1 and part (iii) of

Theorem 2 note that an element of the relative interior of ∆(S−i) is a full support

10From now on, for any finite or compact set A, we denote by ∆(A) the set of all (Borel-)

probability distributions on A.



18

belief, and therefore part (ii) of Theorem 1 and part (iii) of Theorem 2 correspond to

Lemma 4 in Pearce (1984). Again, the proof in Pearce (1984) is different from ours.

Finally, part (iii) of Theorem 1 and part (iv) of Theorem 2, if applied to strategic

games, are a special case of Proposition 3 in Weinstein (2020), who, like Pearce,

presents a proof that is built on the theory of zero-sum games.11

There are several other applications of Theorems 1 and 2 in which the set Y of

situations is the set of all probability distributions on some finite set Y ∗, and u is

expected utility. As above, Definitions 4, 5, and 6 would then not change if one

replaced the expression “for all y ∈ Y ” by the expression “for all y ∈ Y ∗.”

If Y ∗ is some abstract set of states of the world, Theorems 1 and 2 can be inter-

preted as providing necessary and sufficient conditions for the existence of a subjec-

tive probability distribution over Y ∗ that makes a particular act x an expected utility

maximizing choice.

Another re-interpretation of the framework of this section considers a decision

maker who faces some unknown state of the world which is contained in a finite set of

possible states of the world. The decision maker observes a signal that has a known

conditional distribution for each state of the world and has finitely many possible

realizations. The decision maker has to choose an action from a given finite set, and

has a utility function that depends on the action and the state of the world.

Let us call a mapping that assigns to each signal realization an action a “statistical

decision rule.” We can then interpret the set X as the set of statistical decision rules,

and the set Y ∗ as the set of possible states of the world.12 Theorems 1 and 2 can be

used to derive results that relate statistical decision rules that are not dominated to

statistical decision rules that are optimal for some prior over the set of states of the

world. Decision rules that are not weakly dominated are called “admissible” in the

literature on statistical decision theory, and decision rules that are optimal for some

prior are called “Bayesian” in the literature on statistical decision theory.

Theorem 2.3.2 in Ferguson (1967) stating that a Bayesian decision rule with respect

to a full support belief is admissible corresponds to part (ii) of our Theorem 1 and

11We are grateful to Duarte Gonçalves for bringing Weinstein (2020) to our attention. Amanda

Friedenberg pointed out to us that Weinstein’s Proposition 3 is a straightforward implication of

Lemmas D.2 and D.4 in Brandenburger et al. (2008).
12Kuzmics (2017) observes an analogy between statistical decision rules and Anscombe-Aumann

acts in decision theory.
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Theorem 2.10.1 in Ferguson (1967) stating that every admissible decision rule is

Bayesian with respect to some belief is part (ii) of our Theorem 2.13 14

As a final example, one may interpret the set X as the set of alternatives chosen by a

social planner, and the set Y ∗ as the finite set of individuals in society, so that u(x, y) is

the (cardinal) utility of some agent y ∈ Y ∗ if social alternative x is chosen. Suppose

that the social planner is utilitarian, and seeks to maximize a weighted utilitarian

welfare function:
∑

y∈Y ∗ w(y)u(x, y). Then the weights w(y) play the same role as

the probability measure µi in our game theoretical application. Theorems 1 and 2

can then be applied to obtain several results about the connection between utilitarian

optimal social alternatives and social alternatives that are not Pareto dominated by

any lottery over the other social alternatives. We omit the details.15

5. Dominance and Optimality of Experiments

In this section we apply the results of Section 2 to experiments. Let Ω be a finite

set of states of the world, and let µ ∈ ∆(Ω) be a decision maker’s prior belief about

the state which has full support. The decision maker can observe a signal about the

state of the world before making a decision. Here, we mean by a signal a mapping:

s : Ω → ∆(Ms), where Ms is a finite set of signal realizations and s(ω) ∈ ∆(Ms) is

the distribution of signal realizations conditional on ω. There is a finite set S of such

signals from which the decision maker must choose one. Signals are costless.16

The decision maker faces a decision problem (A, u). Here, A is a finite set of actions

and u : A × Ω → [0, 1] is a Bernoulli utility function. The assumption that the co-

domain is the interval [0, 1] is a normalization. We denote by D the set of all such

decision problems.

For every signal s ∈ S we denote by µs ∈ ∆(∆(Ω)) the corresponding distribution

of posterior beliefs. We denote the support of µs by Γs. Define ΓS = ∪s∈SΓs to be the

13It does not seem to have been noted in the statistics literature (see, for example, Duanmu and

Roy (2021)) that the belief can be taken to have a full support, which is part (iii) of our Theorem 2.
14The “complete class theorems” in statistical decision theory (Wald (1947) and Ferguson (1967))

are also closely related to our results in this paper, but, given the differences between our framework

and that of the complete class literature which we pointed out in footnote 9, a precise description

of the connections is complicated and does not seem to add much insight.
15We are grateful to Yaron Azrieli for suggesting this application to us.
16We could allow signals to be costly. But then the dominance order that we consider would no

longer correspond to the classic Blackwell dominance.
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union of all supports. For every decision problem (A, u) we denote by vA,u : ΓS → [0, 1]

the value function:

vA,u(γ) = max
a∈A

∑
ω∈Ω

(u(a, ω)γ(ω)) .

Here, γ stands for an arbitrary posterior belief in ΓS . If the decision maker faces

decision problem (A, u), has access to signal s before choosing an action, and chooses

an action that maximizes her expected utility, she obtains ex ante expected utility:∑
γ∈Γs

vA,u (γ)µs (γ)

Blackwell introduced a partial order over signals. Blackwell (1951) and Blackwell

(1953) showed various conditions all to be equivalent to the original definition of the

Blackwell order. In Definition 8, we don’t present Blackwell’s original definition of

the order, but we use one of the conditions that Blackwell showed to be equivalent to

the original definition to define the Blackwell order. This is more in line with the way

in which dominance orders in other areas of economics are conventionally defined.

Definition 8. Signal s Blackwell dominates signal ŝ if for every decision problem

(A, u) ∈ D: ∑
γ∈Γs

vA,u (γ)µs (γ) ≥
∑
γ∈Γŝ

vA,u (γ)µŝ (γ)

We now explain how to fit Blackwell dominance into our framework. The set X is

S. The set Y is the set of all value functions that correspond to a decision problem in

D. In fact, Y is the set of all convex functions with domain ΓS and co-domain [0, 1].

To clarify our terminology, we define convexity explicitly.

Definition 9. A value function v : ΓS → R is convex if for all {γ1, γ2, . . . , γn} ⊆ ΓS
and (λ1, λ2, . . . , λn) ∈ Rn

+ with
∑n

i=1 λi = 1, if

γ =
n∑
i=1

λiγi ∈ ΓS ,

we have:

v (γ) ≤
n∑
i=1

λiv (γi)

When the inequality is strict for all (λ1, λ2, . . . , λn) ∈ Rn
+ with

∑n
i=1 λi = 1 and λi < 1

for all i ∈ {1, 2, . . . , n}, then we call the value function v strictly convex.
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We set Y to be R|ΓS |. The utility function u(x, y) from Section 2 is in the setting

of this section the expected utility
∑

γ∈Γs
vA,u (γ)µs (γ) . Note that Y is convex,17 and

that u can be extended to R|ΓS | as a linear function. We endow Y with the Euclidean

metric. Then u is continuous and Y is compact.

In this setting convex combinations of signals can be interpreted as signals in them-

selves. For the purposes of this discussion we assume that no two signals in S have

overlapping message sets: Ms ∩Mŝ = ∅ for every s, ŝ ∈ S with s 6= ŝ. This is not a

substantial assumption. Rather, this assumption allows us to simplify the notation

in the following definition.

Definition 10. Suppose {s1, s2, . . . , sn} ⊆ S and assume that the vector (λ1, λ2, . . . , λn)

∈ Rn
+ satisfies

∑n
i=1 λi = 1. The convex combination of the signals {s1, s2, . . . , sn}

with weights (λ1, λ2, . . . , λn) is the signal

s : Ω→ ∆

(
n⋃
i=1

Msi

)
such that for every ω ∈ Ω, every i ∈ {1, 2, . . . , n}, and every msi ∈Msi, we have:

s(msi |ω) = λisi(msi |ω).

Intuitively, a convex combination of the signals in set {s1, s2, . . . , sn} with weights

(λ1, λ2, . . . , λn) is the following signal: The decision maker observes the message of

signal si with probability λi. This signal yields for the decision maker the expected

utility that we attribute to the convex combination of actions in Section 2. Therefore,

in our context, we can interpret a convex combination of signals as another signal.

A signal is then not Blackwell dominated if and only if it is neither weakly dom-

inated by a convex combination of the other signals, nor redundant in the sense

introduced in Section 2.

All parts of Theorems 1 and 2 apply. However, parts (i) of Theorems 1 and 2 are

vacuously true. The reason for this is that we have not ruled out from consideration

those decision problems (A, u) ∈ D in which the utility function u does not depend

on the state ω. For such a decision problem, the value function is constant, and all

17 The convex combination of two value functions with given weights corresponds to the decision

problem in which the decision maker chooses a contingent plan, i.e. actions for each of the two cor-

responding decision problems, and the utility is the expected utility from the two decision problems,

where each decision problem is relevant with probability equal to the given weight.
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signals are optimal. Therefore, no signal, nor any convex combination of signals, is

ever strictly better than another signal for all value functions. As regards part (ii) of

Theorem 1 and part (iii) of Theorem 2 note that the relative interior of Y is the set

of all strictly convex value functions v with domain ΓS and co-domain [0, 1].

Part (iii) of Theorem 1 and part (iv) of Theorem 2 exactly correspond to Blackwell

dominance. We seek to state explicitly the bottom line of these two parts. We first

re-state the definition of unique optimality in our setting:

Definition 11. A signal s ∈ S is a uniquely optimal choice in decision problem (A, u)

if: ∑
γ∈Γs

vA,u (γ)µs (γ) >
∑
γ∈Γŝ

vA,u (γ)µŝ (γ) for all ŝ ∈ S with ŝ 6= s.

Part (iii) of Theorem 1 and part (iv) of Theorem 2 say in our setting:

Proposition 1. Signal s ∈ S is a uniquely optimal choice in some decision problem

(A, u) if and only if it is not Blackwell dominated by any convex combination of signals

in S \ {s}.

This result describes a property of Blackwell dominance that, to our knowledge,

has not been noticed before. We now show by means of an example that the result

would not be true if we did not allow the Blackwell dominating signal to be a convex

combination of the other signals, but required the Blackwell dominating signal to be

one of the other signals. Consider the following example: Ω = {ω1, ω2, ω3}, µ(ω) =
1
3

for all ω ∈ Ω, S = {s1, s2, s3, s4}. Mi = {m1
i ,m

2
i } for i = 1, 2, 3, and M4 =

{m1
4,m

2
4, . . . ,m

6
4}. For each of the signals s1, s2, and s3, and for each state of the

world, the corresponding row in Table 4 below indicates the conditional probability

of observing each signal realization.

s1 m1
1 m2

1

ω1 1 0

ω2 0 1

ω3 0 1

s2 m1
2 m2

2

ω1 0 1

ω2 1 0

ω3 0 1

s3 m1
3 m2

3

ω1 0 1

ω2 0 1

ω3 1 0

Table 4. Conditional distributions of s1, s2, and s3

Table 5 provides the same information for signal 4.
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s4 m1
4 m2

4 m3
4 m4

4 m5
4 m6

4

ω1
1
4

0 0 3
8

3
8

0

ω2 0 1
4

0 3
8

0 3
8

ω3 0 0 1
4

0 3
8

3
8

Table 5. Conditional distributions of s4

We claim that s4 is not Blackwell dominated by any of s1, s2, s3, but that it is

Blackwell dominated by the convex combination of these three signals that places

weight 1/3 on each of these signals. To see that s4 is not Blackwell dominated by

s1 note that signal s4 has a realization (m2
4) which reveals that the true state is

ω2, whereas s1 has no such realization. This implies that s4 cannot be Blackwell

dominated by s1. Analogous arguments show that s4 is not Blackwell dominated by

s2 or s3.

To see that s4 is Blackwell dominated by the convex combination of signals s1, s2,

and s3 that places probability 1/3 on each of these signals we consider the distribution

of posterior beliefs generated by s4 and compare it to the distribution of posterior

beliefs generated by the convex combination. For each state in Ω signal s4 generates

with probability 1/12 a posterior belief that is a Dirac measure on this state. Also,

for each pair of states in Ω, signal s4 generates with probability 1/4 a posterior belief

that places probability 1/2 on each of the two states in this pair. For each state in Ω

the convex combination of signals s1, s2, s3 generates with probability 1/9 (> 1/12) a

posterior belief that is a Dirac measure on this state. Also, for each pair of states in

Ω, the convex combination of signals s1, s2, and s3 generates with probability 2/9 (<

1/4) a posterior belief that places probability 1/2 on two of the three states. We can

thus obtain the poster distribution for the convex combination of signals s1, s2, and s3

from the posterior distribution for s4 by replacing, for each pair of states, probability

mass 1/36 placed on the belief that assigns probability 0.5 on each of the two states

by probability mass 1/72 placed on the Dirac measures for each of the two states.

Thus the distribution of posterior beliefs under the convex combination of signals is

a mean-preserving spread of the distribution of posterior beliefs that is generated by

signal s4. By standard results, this implies that s4 is Blackwell dominated by the

convex combination of signals s1, s2, s3 that places probability 1/3 on each of these

signals.
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Because s4 is Blackwell dominated by a convex combination of s1, s2 and s3 in every

decision problem one of signals s1, s2, or s3 yields at least as high expected utility as

s4. Therefore s4 will never be uniquely optimal. Yet s4 is not Blackwell dominated

by any single of the signals s1, s2 and s3. This shows that Proposition 1 would not be

true had we not allowed the Blackwell dominating signal to be a convex combination

of the other signals.

We conclude this section by briefly considering some alternatives to the Blackwell

order and the applicability of the results in Theorems 1 and 2 to these orders. Suppose

that the set of states Ω is a finite lattice. We can then restrict attention to decision

problems such that set of actions A is a finite lattice and the utility function u is

supermodular in the product lattice on Ω × A. Let us call such decision problems

“monotone,” and let us denote the set of all such decision problems by M.

Definition 12. Signal s monotonically dominates signal ŝ if for every monotone

decision problem (A, u) ∈M:∑
γ∈Γs

vA,u (γ)µs (γ) ≥
∑
γ∈Γŝ

vA,u (γ)µŝ (γ)

Suppose again that the decision maker has to choose one from a finite set S of

signals. One can again embed this setting in the model of Section 2. The set Y is

convex for the same reason as it was convex in the case of the Blackwell order. We

can again use part (iii) of Theorem 1 and part (iv) of Theorem 2 to conclude:.

Proposition 2. Signal s ∈ S is a uniquely optimal choice in some monotone deci-

sion problem (A, u) if and only if it is not monotonically dominated by any convex

combination of signals in S \ {s}.

The order that we have introduced in Definition 12 is closely related to the orders

introduced in Lehmann (1988) and Athey and Levin (2018) but it does not coincide

with either of these. Lehmann, and also Athey and Levin, assume the action set to

be a subset of the set of real numbers, and thus they assume the action set to be

completely ordered. With this assumption the argument that we used above to show

that the set Y of value functions is convex no longer applies.18 This is because that

18This is because a contingent plan for two decision problems, as referred to in footnote 17, is

multi-dimensional, not single dimensional.
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argument involved creating a new decision problem from two given decision problems

in which the decision maker’s action set was the Cartesian product of the original

action sets. It was important that this new decision problem was included in the set

of admissible decision problems. But if action sets have to be one-dimensional, this

argument no longer holds. Quah and Strulovici (2007) and Kim (2022) allow multi-

dimensional action sets but imposes joint conditions on signals and decision problems.

A detailed consideration of their orders is outside of the scope of this paper.

One might also modify the Blackwell order by considering only strictly convex value

functions. With this construction, the concept of strict dominance among signals is

no longer vacuous. For example, a perfectly informative signal will strictly dominate

a completely uninformative signal. A statistical characterization of this dominance

relation among signals is left for future work.

6. Dominance and Optimality of Monetary Lotteries

Consider an expected utility maximizer who chooses one lottery ` from a finite set

L of lotteries. We shall assume that there is some ζ > 0 such that the support of all

lotteries in L is a subset of the interval [0, ζ]. The elements of [0, ζ] are interpreted as

money payments. One lottery “first-order stochastically dominates” another lottery

if the former lottery yields at least as high expected utility as the latter for all possible

Bernoulli utility functions provided that the decision maker’s utility function is non-

decreasing in money. One lottery “second-order stochastically dominates” another

lottery if the former lottery yields at least as high expected utility as the latter

provided that the decision maker’s utility is non-decreasing and (weakly) concave in

money.19

We consider two cases. In the first case each lottery ` ∈ L has finite support Q`.

Define QL = ∪`∈LQ` to be the union of all supports. To apply the results of Section

2 we let the set X of actions be L. We let the set Y be the set of non-decreasing (in

the case of first-order stochastic dominance), or the set of non-decreasing and concave

(in the case of second-order stochastic dominance) Bernoulli utility functions u with

domain QL and co-domain [0, 1]. The assumption that the co-domain is the interval

[0, 1] is a normalization. To clarify our terminology, we define concavity explicitly.

19Our definitions of the stochastic dominance orders are taken from Definition 6.13 in Kreps

(2013).
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Definition 13. A Bernoulli utility function u : QL → [0, 1] is concave if for all

{q1, q2, . . . , qn} ⊆ QL and (λ1, λ2, . . . , λn) ∈ Rn
+ with

∑n
i=1 λi = 1, if

q =
n∑
i=1

λiqi ∈ QL,

we have:

u (q) ≥
n∑
i=1

λiu (qi)

When the inequality is strict for all (λ1, λ2, . . . , λn) ∈ Rn
+ with

∑n
i=1 λi = 1 and λi < 1

for all i ∈ {1, 2, . . . , n}, then we call the utility function u strictly concave.

We set Y to be R|QL|. The utility function u from Section 2 is then the expected

utility, that is, if x is the lottery ` and y is the utility function u, then

u(x, y) =
∑
q∈Q`

u (q) ` (q)

where ` (q) is the probability of the realization being q in lottery `. In this specification

the space Y is finite-dimensional, and the expected utility function u can be extended

to Y as a linear function. We endow Y with the Euclidean metric. The set Y is convex

and compact, and u is continuous on Y , for both the case of first-order stochastic

dominance and the case of second-order stochastic dominance.

As was the case with signals, convex combinations of lotteries have again an intu-

itive interpretation. The convex combination that attaches weight λ to the lottery

with cumulative distribution function F1 and weight 1 − λ to the lottery with cu-

mulative distribution function F2 is the lottery with cumulative distribution function

λF1 + (1 − λ)F2. This new lottery yields exactly the expected utility specified in

Section 2 for convex combinations.

A lottery is first or second-order stochastically dominated by a convex combination

of other lotteries if it is either weakly dominated by the convex combination, or if it

is made redundant by the convex combination of the other lotteries.

All parts of Theorems 1 and 2 apply. However, parts (i) of Theorems 1 and 2 are

vacuously true. The reason for this is that we have not ruled out from consideration

the constant Bernoulli utility function. For such a utility function, all lotteries are

optimal, and also no lottery, nor any convex combination of lotteries, is ever strictly

better than another lottery for all Bernoulli utility functions. As regards part (ii) of

Theorem 1 and part (iii) of Theorem 2 note that the relative interior of Y is the set

of all strictly increasing or strictly increasing and strictly concave Bernoulli utility
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functions u with domain QL and co-domain [0, 1]. Part (iii) of Theorem 1 and part

(iv) of Theorem 2 exactly correspond to first- and second-order stochastic dominance.

We provide in Table 6 an example that demonstrates that part (iv) of Theorem 2

would not hold had we not considered convex combinations. We focus on first-order

stochastic dominance. We display three lotteries, `1, `2 and `3. Each row corresponds

to a Dollar amount, each column corresponds to a lottery, and the entry in the table

indicates the probability of the given dollar amount.

`1 `2 `3

0$ 1
2

0 4
9

1$ 0 1 1
3

2$ 1
2

0 2
9

Table 6. Payoffs of three lotteries

0

1/3
4/9
1/2

2/3

7/9

1

1 2 $

F ($)

Figure 3. Cumulative distribution functions of lotteries

The cumulative distributions functions of the lotteries are illustrated in Figure 3

where the red line indicates `1, the blue line indicates `2, the black line indicates `3,

and the purple line indicates the convex combination of `1 and `2 that attaches weight

2/3 to `1 and weight 1/3 to `2. Note that neither `1 nor `2 first-order stochastically



28

dominates `3.20 However, the convex combination of `1 and `2 that attaches weight

2/3 to lottery 1 and weight 1/3 to lottery 2 attaches probability 1/3 each to 0 Dollars,

1 Dollar, and 2 Dollars. This convex combination first-order stochastically dominates

lottery 3. For every utility function that is non-decreasing, one of lotteries `1 or

`2 yields at least as high expected utility as lottery `3. Yet lottery `3 is not first-

order stochastically dominated by either of the two other lotteries. Thus part (iv) of

Theorem 2 would not hold had we not considered convex combinations (nor would,

as is easily seen from this example, part (iii) of Theorem 2).

After the analysis for the case of finite support lotteries, we next turn to the case

where all the lotteries the decision maker can choose have full supports on [0, ξ]. To

apply the results of Section 2 we let the set X of actions be L, and we let the set

Y be the set of continuous and non-decreasing (in the case of first-order stochastic

dominance), or the set of continuous, non-decreasing, and concave (in the case of

second-order stochastic dominance) Bernoulli utility functions u with domain [0, ξ]

and co-domain [0, 1]. Moreover, we set Y equal to the set of Lebesgue-measurable

and bounded functions ũ with domain [0, ξ]. The utility function u from Section 2

is then the expected utility, that is, if x is the lottery with cumulative distribution

function F , and y is the utility function u, then:

u(x, y) =

ξ∫
0

u(q)dF.

In this specification, the set Y is a convex set, and the utility function u is linear

on Y . Next, we list some facts that we use in the following and whose proofs are in

the appendix: The relative interior of Y is empty. If we endow Y with the supremum

norm (inducing the topology of uniform convergence), then u is continuous on Y .

However, the set Y is not compact.

We can now apply Theorem 1 in this setting. Part (i) of Theorem 1 is vacuously

true for the same reason as in the case of lotteries with finite support. The assumption

of part (ii) of Theorem 1 holds, but part (ii) of Theorem 1 is vacuous. This is because

the relative interior of Y is empty. Thus, the only part of Theorem 1 that is not

vacuous in our setting is part (iii): if a lottery is uniquely optimal, then it is not

first/second-order stochastic dominated.

20In the graph, one lottery first-order stochastically dominates another lottery if the former’s

cumulative distribution function is everywhere below the latter’s cumulative distribution function.
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We now turn to Theorem 2. Note that the background assumptions of the first

sentence of Theorem 2 hold. Although the assumption of part (i) is not satisfied, the

conclusion of part (i) of Theorem 2 is trivially true for the same reason as in the case

of lotteries with finite support. Part (ii) of Theorem 2 is trivially true for the same

reason. Because Y is not finite-dimensional, part (iii) of Theorem 2 does not apply.

Its conclusion is false because the relative interior of Y is empty. The only part of

Theorem 2 that is non-trivial and that applies to this setting is thus part (iv) which

says that a lottery that is not first/second-order stochastic dominated is uniquely

optimal.

Results that are closely related to some of the results described in this section

have been obtained by Fishburn (1975). Under more general assumptions about the

lotteries considered and the utility functions allowed Fishburn (1975) showed in his

Theorem 1 a result that corresponds to part (iii) of our Theorem 1 and part (iv) of

our Theorem 2.21 Making the additional assumption that XNSD = XNWD, Fishburn

showed in his Theorem 2 a result that corresponds to part (i) of our Theorem 1 and

part (ii) of our Theorem 2. Fishburn (1975) did not consider what we call “interior

optimality.”

7. Conclusion

We have investigated for various dominance orders in economics the relation be-

tween an action not being dominated and an action being optimal in some situation.

Our investigation has uncovered shared properties of, as well as differences among,

dominance orders in economics. Our paper has emphasized the importance of con-

sidering convex combinations of actions in dominance relations.

Our investigation has sometimes suggested modifications of the definition of dom-

inance relations. For example, for dominance relations among signals, we have sug-

gested a modification of the definition of monotone dominance. It remains an open

problem whether one can provide simple characterizations of these modified domi-

nance relations.

In some contexts, previous literature has perhaps not sufficiently emphasized the

importance of convex combinations. In the theory of the optimal choice of investment

portfolios it is of interest to investigate “efficient” portfolios where such portfolios are

defined as those that are not dominated by convex combinations of other portfolios.

21Assuming that all lotteries qi (using Fishburn’s (1975) notation) are the same.
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This point was made by Post (2017) who gave a real world example of a stock port-

folio that is second-order stochastically dominated by a convex combination of other

portfolios, but not by any single one of those portfolios. In the theory of information

acquisition, when discussing the choice of signals of an expected utility maximizing

decision maker, it seems worthwhile to investigate which signals are undominated

within particular sets of signals. In a forthcoming companion paper we shall tackle

this latter problem in a setting in which a signal is two-dimensional, and the marginal

distributions of signals are given and fixed. We characterize joint distributions are

not Blackwell dominated by convex combinations of other signals. Results of this

type yield insight into optimal choices of decision makers without relying on specific

assumptions about their environment or their preferences. This seems of particular

interest in the context of theoretical statistics. Our results for two-dimensional sig-

nal distributions, for example, have implications for the theory of efficient sampling

methods.
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Appendix A. Counterexample for part (i) of Theorem 2 when Y is not

compact

Let X = {x1, x2, x3} and Y = {(y1, y2) ∈ R|y1 ≤ 1, y2 ≤ 1, y1 + y2 > 0} ∪
{(y1, y2) ∈ R| − 1 ≤ y1 < 0, y2 = −y1}. We set for all y ∈ Y :

u (x1, y) = y1, u (x2, y) = y2, u (x3, y) = 0.

The set Y is the blue area in Figure 4 where the dashed edge is excluded. Observe that

Y is not closed, hence not compact. All other assumptions of part (i) of Theorem 2

hold: Y is convex, and, if we set Y = R2, then the above definition of u can obviously

be extended to all of Y such that u is linear on Y . Obviously u is then also continuous

on Y .

We claim that x3 is not strictly dominated by any convex combination of x1 and x2

and yet x3 is not optimal for any y ∈ Y . To see that x3 is not strictly dominated note

that any convex combination that places weight greater than 0.5 on x1 yields negative

payoffs for y ∈ Y that are sufficiently close to (−1,+1), and any convex combination

that places weight less than 0.5 on x1 yields negative payoffs for y ∈ Y that are

sufficiently close to (+1,−1). Finally, the convex combination that places weight 0.5

on x1 and x2 yields payoff 0 whenever y1 + y2 = 0. Therefore, no convex combination

of x1 and x2 strictly dominates x3. On the other hand, x3 is never optimal. This is

because for all y ∈ Y we have that at least one of y1 and y2 is strictly positive, and

therefore at least one of x1 and x2 is better than x3.

y1

y2

0

Figure 4. The set Y in the counterexample for part (i) of Theorem 2

when Y is not compact
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Appendix B. Proofs of the claims in Section 6

In the second half of Section 6 we let X be a finite subset of the set of all lotteries

with full support [0, ξ] for some ξ > 0. We obtain first-order stochastic dominance if

we let Y in the framework of our paper be the set of continuous and non-decreasing

Bernoulli utility functions with domain [0, ξ] and co-domain [0, 1]. We embedded Y

in Section 6 in the vector space Y of all Lebesgue-measurable and bounded functions

with domain [0, ξ]. We claimed in the main text:

Claim 1. ri (Y ) = ∅.

Proof. Pick any u ∈ Y . By Lebesgue’s Theorem (Ok (2007, p. 212)) u is differentiable

almost everywhere. Suppose it is differentiable at τ ∈ (0, ξ). Consider the function

ūτ given by:

ūτ (q) = (q − τ)
1
3 for all q ∈ [0, ξ].

There is obviously a positive affine transformation that we can apply to ūτ to obtain

a function uτ which has co-domain [0, 1]. For any β > 0 now define ũ by setting:

ũ(q) = (1 +β)u(q)−βuτ (q) for all q ∈ [0, ξ]. Because u′τ (τ) =∞, there exists ∆ such

that
ũ (τ + ∆)− ũ (τ)

∆
< 0.

which implies that ũ is not nondecreasing and therefore ũ /∈ Y . Because this holds

for arbitrarily small β it follows that u /∈ ri (Y ). �

In Section 6 we endowed Y with the topology of uniform convergence, and then

claimed:

Claim 2. u is continuous on Y .

Proof. Consider any sequence (un)n∈N of functions in Y that uniformly converges to

u ∈ Y . Because for any n ∈ N and any q ∈ [0, ξ], |un (q)| ≤ |û (q)|, where û (q) ≡ 1

for all q ∈ [0, ξ], we can apply the dominated convergence theorem and conclude:

lim
n→∞

ζ∫
0

un(q)dF =

ζ∫
0

u(q)dF.

With the supremum norm, Y is a metric space, so the above equation implies that u

is continuous on Y (Theorem 21.3 in Munkres (2014)). �

Claim 3. Y is not compact.



34

Proof. We show that Y is not compact in the topology of pointwise convergence.

Because the topology of uniform convergence is finer than the topology of point-

wise convergence, it follows that Y is also not compact in the topology of uniform

convergence.

To facilitate the proof that Y is not compact with the topology of pointwise

convergence, we first establish that Y , if endowed with the topology of pointwise

convergence, is a Hausdorff space. Consider any two distinct functions u1 and u2.

So there exists q ∈ [0, ξ] such that u1 (q) 6= u2 (q). And there exists ε such that

(u1 (q)− ε, u1 (q) + ε) and (u2 (q)− ε, u2 (q) + ε) are disjoint. Consider the following

two sets:

U1 = {u|u ∈ Y and u (q) ∈ (u1 (q)− ε, u1 (q) + ε)}
and

U2 = {u|u ∈ Y and u (q) ∈ (u2 (q)− ε, u2 (q) + ε)}
By Munkres (2014, p. 281) these two sets belong to the subbasis of the topology

of pointwise convergence, and therefore are open sets in the topology of pointwise

convergence. Note that u1 ∈ U1, u2 ∈ U2, and U1 and U2 are disjoint. Therefore Y , if

endowed with the topology of pointwise convergence, is a Hausdorff space.

We now prove that Y is not compact in Y if we endow Y with the topology of

pointwise convergence. For every n ∈ N let:

{un (q)} ≡

{(
q

ξ

) 1
n

}
for all q ∈ [0, ξ]. The sequence (un)n∈N converges pointwise to u where u (q) = 0 for

q = 0 and u (q) = 1 for q ∈ (0, ξ]. u ∈ Y , but it is not continuous, so u /∈ Y , and

thus Y is not sequentially closed. But in a Hausdorff space a compact set must be

closed, and a closed set must be sequentially closed. Therefore, in a Hausdorff space,

a compact set must be sequentially closed. Recall that Y is a Hausdorff space with

the topology of pointwise convergence. So Y is not sequentially closed implies that

Y is not compact. �

Next, we turn to second-order stochastic dominance. In this case we defined in

Section 6 the set Y to be the set of all continuous, non-decreasing, and concave

Bernoulli utility functions with domain [0, ξ] and co-domain [0, 1]. We embedded Y

again in the vector space Y of all Lebesgue-measurable and bounded functions with

domain [0, ξ].

Claim 4. ri (Y ) = ∅.
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Proof. By Alexandrov’s Theorem (Theorem 3.12.3 in Niculescu and Persson (2018))

every u ∈ Y is twice differentiable almost everywhere. Suppose it is twice differen-

tiable at τ ∈ (0, ξ). Consider the function ūτ that satisfies for all q ∈ [0, ξ]:

ūτ (q) = q(ξ − τ)
1
3 − 3

4
(q − τ)

4
3 .

We have:

ū′τ (q) = (ξ − τ)
1
3 − (q − τ)

1
3 .

Note that ū′τ is decreasing and non-negative on [0, ξ]. There is obviously a positive

affine transformation that we can apply to ūτ to obtain a function uτ which has co-

domain [0, 1]. For any β > 0 now define ũ by setting: ũ(q) = (1 + β)u(q)− βuτ (q) for

all q ∈ [0, ξ]. Because u′′τ (τ) = −∞, there exists ∆ such that

ũ (τ + ∆)− 2ũ (τ) + ũ (τ −∆)

∆2
> 0

which implies ũ is not concave and thus ũ /∈ Y .Because this holds for arbitrarily small

β it follows that u /∈ ri (Y ). �

We also claimed in Section 6 that u is continuous on Y and that Y is not compact.

The proofs are the same as those of Claims 2 and 3, and are therefore omitted.
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