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Abstract 

This paper investigates the cognitive antecedents of individual search behavior in a combinatorial, 

complex landscape. We present results from 3 studies where 375 individuals solve a gamified 

problem-solving task. We complement these with measurements of cognitive styles and established 

neuropsychological tests of the players’ cognitive abilities. The task environment allows us to 

distinguish between local and global search, and also to identify directed global search that takes 

departure in an understanding of the underlying problem structure. We document systematic 

heterogeneity of search, showing that individuals with certain cognitive styles and cognitive abilities 

engage in more local, systematic search and less undirected, global search. The archetypical 

assumptions of an NK model thus relies upon a particular conception of individual cognition. 

Integrating insights from both cognitive psychology and management, we contribute to research on 

the microfoundations of search, highlighting that cognitive antecedents can be as important a factor 

for explaining various kinds of search, as the external performance feedback that is the core of the 

adaptive search mechanism. These insights into the role of cognition have implications for what 

assumptions simulation models should rely upon and how managers can influence the search behavior 

of individuals. 

1. Introduction 

Organizations and individuals constantly face the decision of either doing the same, or doing something 

new in the pursuit of improving their performance. For example, an organization might consider if it 

should refine and market (i.e. exploit) a current technology or invest further into R&D to explore new 
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options (He & Wong 2004), while an individual may ponder if she should choose a known or new 

restaurant (Schulz et al. 2019). 

Recent research emphasizes adaptive search as a key mechanism via which individuals and 

organizations alternate between exploitation and exploration. According to this research, positive 

performance feedback leads actors to focus on doing the same, while negative performance leads them 

to try new options (Greve 2003, Billinger et al. 2014, Vuculescu 2017). In alignment with this line of 

thought, simulation studies have assumed homogeneous individual search behavior solely contingent 

on performance feedback, and heterogeneity is therefore set to stem from external factors only 

(Baumann et al. 2019; Smith & Rand 2018). Individuals are conceptualized as mainly carrying out local 

search (exploitation), while relatively rare jumps constitute undirected global search (exploration). 

Importantly these jumps are assumed to be in a random direction, unrelated to any understanding of the 

problem at hand. The above outlined research perspective on how organizations and individuals balance 

the trade-off, is prevalent in management (Greve 2003), biology and behavioral economics (Nowak & 

Sigmund 1993) as well as cognitive psychology (Cohen et al. 2007). Yet, while we acknowledge the 

usefulness of this type of explanation, we see two core challenges. 

First, a simple binary distinction between either local or global search does not capture that global 

search can be of fundamentally different types. To illustrate, simulation studies have had to assume that 

global search is due to an undirected jump landscape (e.g. Levinthal 1997, although see Gavetti & 

Levinthal 2000). In contrast, studies of how individuals actually search in controlled lab-settings or in 

the real world, document that individuals do not merely adapt mindlessly to performance feedback, but 

can rely on their cognitive abilities to make sense of the environment and engage in a directed global 

search move (Doll et al. 2016; Gary & Wood 2011; Wilson et al. 2014). When having a poor restaurant 

experience, we do not merely pick out a randomly selected new restaurant the next time, but one that 

fits our priors and is different in type to the one that disappointed us (Schulz et al. 2019).  

Second, an emerging stream of research on the microfoundations of search behavior (Felin et al. 2015) 

has re-established March’s (1991) original focus on the heterogeneity of individuals as an important 

source of organizational heterogeneity. In March’s simulation, it was the turnover of heterogeneous 

individuals that led to various degrees of exploration and exploitation. After more than two decades, 
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this idea has been brought forward again, this time bringing quantitative evidence. A range of empirical 

studies document individual heterogeneity, questioning the assumption about homogeneous, adaptive 

search; risk preferences (Hills & Hertwig 2010), emotional valence (Døjbak et al. 2015) and cognitive 

factors (Laureiro-Martínez & Brusoni 2018; Levine et al. 2017) shape individuals’ tendency to engage 

in local or global search. While cognitive psychology has clearly established how cognition is strongly 

related to a wide range of important real-world behaviors and outcomes such as job performance and 

happiness (Ritchie 2015), surprisingly little of this research is related to human propensities to explore 

or exploit (O'Doherty et al. 2017). This leaves open ample opportunities to investigate such relations in 

order to benefit both cognitive psychology and management research on search. We claim that 

identifying particular cognitive antecedents of individuals has the potential to shed further light on when 

and why individuals break free from local, adaptive search, enabling us to further theorize how a 

homogeneous explanation based solely on performance feedback is going to be inadequate. We 

therefore want to examine if individual variations in the core ability to process information (cognitive 

ability) and differences in how individuals process this information (cognitive style) are important 

factors shaping the propensity to engage in search. In contrast to previous work, which looks at 

measures of analytical and reasoning ability (such as the critical reflection test (Levine et al. 2017)), the 

Raven’s test (Steyvers et al. 2009), we focus on a more fine-grained measure of cognition (Lezak et al. 

2012), allowing us to distinguish between particular cognitive building blocks such as memory, ability 

to sustain attention, executive functions etc.  

We present data from three studies involving 375 individuals trying to solve a novel, game-based 

problem-solving task (Vuculescu 2017). Like the NK, the setup is a rugged fitness landscape. Yet, in 

the NK any global (exploration) search is necessarily undirected, since the search space is not based on 

any meaningful, underlying structure (Levinthal 1997). Therefore, and in contrast to the NK framework, 

participants can in the present task learn the underlying problem structure, which opens up the 

opportunity to track: i) local search, ii) undirected global search (i.e. random), and iii) directed global 

search (i.e. model-based) that is aligned with the identified problem structure (Doll et al. 2016; 

Vuculescu 2017). This allows meaningful global search that is not just a random, long jump. 
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We present three interrelated findings on how cognitive characteristics constitute antecedents of search 

in a rugged fitness landscape. First, we document a systematic heterogeneity of search, in contrast to 

the homogeneous assumptions established in the literature (Billinger et al. 2014; Smith & Rand 2018). 

Search is partially driven by individuals’ information processing approach, both in terms of their 

cognitive ability (Lezak et al. 2012) as well as their cognitive style (Kirton 1976). Therefore, if 

managers want to shape what search behavior individuals are to engage in, cognitive factors appear as 

important as the main mechanism of adaptive search; external, performance-based feedback. On a more 

general level, insight into cognitive antecedents can also help one in assessing if one has the right match 

between the crowd at hand and the type of problem to be solved (Felin & Zenger 2014). Second, and 

more particularly, the stronger one’s ability to sustain attention, executive functions and aggregated 

overall cognitive ability, the more individuals prioritize local search over global undirected search, i.e. 

engage in search behaviors more akin to the assumptions in NK simulations (Levinthal 1997; Baumann 

et al. 2019). Such individuals carry out the more persistent search, that Billinger et al. (2014) argued 

individuals, usually, should prioritize. These findings have substantial, theoretical implications for how 

to implement behavioral assumptions in simulation models, since the more empirically realistic 

assumptions are likely to shape the simulated outcomes (Puranam et al. 2015; Smith & Rand 2018). 

Furthermore, we expand cognitive psychology theories on how cognitive antecedents shape behavior 

(Chan et al. 2019), by specifying what cognitive antecedents influence search for novelty (Helfat & 

Peteraf 2015). Third, we provide proof of concept that an inherent ability to learn a problem structure 

can shape future search behavior, which can be considered a microfoundational basis for Gavetti & 

Levinthal’s (2000) simulations on the role of cognitive representations. Overall, we move beyond the 

more generic insight that cognition matters for search, to a more fine grained theory on how particular 

cognitive building blocks shape search behavior, as called for by O’Doherty et al. (2017) and Helfat 

and Peteraf (2015). 

In the following section we present how cognitive psychology and management has approached the 

challenge of studying search, as well as their attempts to identify relevant antecedents of variation in 

search strategies. In the methods section we present the experimental task as well as the variables relied 
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upon. We then present the results of how cognitive abilities and styles relate to search behavior and 

finally discuss the theoretical implications these findings. 

2. Organizational search 

Theorizing on organizational search is shaped by March’s (1991) seminal paper on the challenge of 

balancing exploration and exploitation. A stream of empirical research has focused on identifying how 

organizational search strategies depend on industrial contexts (Yamakawa et al. 2011), performance 

feedback and aspiration levels (Greve 2003) or the nature of the problem to be solved (Felin & Zenger 

2014; Lakhani et al. 2013). In addition to this macro-level perspective, a more recent stream of literature 

focuses on individuals, the ones who are carrying out the search within organizations (Li et al. 2013), 

and describes e.g. how their organizational roles (Nigam et al. 2016), their networks (Fleming 2002) or 

the search environment (MacAulay et al. 2017) influence search trajectories. The results from these 

studies challenge traditional simulation assumptions, where agents’ behavior is assumed to be 

homogenous (Knudsen et al. 2019; Smith & Rand 2018) and largely engaged in local search (e.g. 

Levinthal 1997). We take departure in this tension and in the following sections present management’s 

and cognitive psychology’s perspective on studying search. 

2.1. Perspectives on search: Management and cognitive psychology 

Experimental and simulation-based studies of exploration vs. exploitation in management have 

generally relied upon one of two search models; the armed bandit that allows for the study of the trade-

off between few uncertain options, or the fitness landscape which allows for the study of how agents 

adapt to feedback in a large, complex landscape (Puranam et al. 2015; Knudsen et al. 2019). An 

exploitation move is local; either staying at the same arm in the armed bandit (Laureiro-Martínez et al. 

2015; Steyvers et al. 2009), or searching myopically in the vast search space (Billinger et al. 2014; 

Reypens & Levine 2018). Explorative search is, thus, categorized as all search moves that are non-local 

(undirected global), since these search environments generally have not allowed the participant in the 

experiment to create a meaningful model of how to engage in directed global search. 

Cognitive psychology and life science studies in general also have a strong interest in the exploration 

vs. exploitation trade-off, since it constitutes the basis for how organisms are to adapt to their dynamic 
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environments, a problem that allows no final solution (Cohen et al. 2007). However, compared to a 

typical approach in management, cognitive psychology employs – in some sense - a more sophisticated 

conceptualization of the search options that agents face. Computational models of how individuals have 

meaningful mental representations of the world have recently been developed, allowing for the 

discovery of how underlying patterns can shape future search decisions and thereby engage in more 

efficient search (Doll et al. 2016; Doll et al. 2012). Cognitive psychology has, thus, developed a 

framework where global search can both be undirected (i.e. random in simulation terminology 

(Kauffman 1993; Levinthal 1997)) or directed (i.e. model-based). 

While relying on insights from cognitive psychology is useful, we note that the field often relies on 

relatively simple problems characterized by uncertainty, such as armed bandits (Doll et al. 2012; 

Steyvers et al. 2009) or, literally, selecting dots on a screen (Bahrami et al. 2010). The problems are, 

thus, rarely complex involving interdependence across search options. Since the field’s aim is to 

uncover basic cognitive processes and structures, such problems are useful since they allow researchers 

to isolate the mechanisms of interest. Yet, in response to this perspective, Smaldino & Richerson (2012) 

point out that this is not entirely uncontroversial, because even when solving a relatively mundane 

problem such as how to navigate in a restaurant, individuals often have to generate options rather than 

merely selecting among pre-established options. Most situations require some form of option generation 

(Smaldino & Richerson 2012). Furthermore, the viable options to be generated will rarely be arbitrarily 

global, but meaningful new options that reflect the focal actor’s understanding of the environment; as 

Smaldino & Richerson (2012) point out, hardly any of us consider ‘punching the waiter’ as a viable 

solution among the set of options, while we might try to engage in non-local search and explore a 

completely different menu. The importance of the difference between selecting between pre-defined 

options vs. shaping meaningful new options is further supported by recent developments in 

neuroscience: “choice behavior […}differ[s] between self-generated and externally provided options” 

(Kaiser et al. 2013: p. 815). When studying individual search behavior, we can’t necessarily expect to 

transfer insights form one search paradigm to another. 

Rather than targeting the nature of the internal cognitive structures and processes of individuals, the 

aim of management is to be able to account for more complex scenarios. The NK fitness landscape has 
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been widely used to understand how individuals and organizations should search, since it presents a 

context-independent, large combinatorial search space and allows for complexity in terms of 

interdependence between choices (Baumann et al. 2019). Similar to findings at the organizational level 

(Greve 2003), empirical studies reveal that individuals engage in performance dependent adaptive 

search. Individuals make small (local) adjustments when doing well and bigger (global) jumps when 

performing poorly (Billinger et al. 2014; Vuculescu 2017). In this framework, however, the adaptive 

search concept is model-free (undirected global), in the sense that there is no underlying problem 

structure, which prohibits any form of model-based (directed global) search that relies on a meaningful 

mental representation of the problem. Nevertheless, one can find support for implementing rationalized 

assumptions about search behavior, where agents primarily engage in local search and occasionally 

explore (Levinthal 1997). 

The importance of studying directed global search is also recognized in management research, since 

scholars have discussed the importance of acknowledging that individuals and organizations do not 

merely do something (anything) different, but are able to follow a mental map (cf. Gary & Wood 2011; 

Helfat & Peteraf 2015). The creator of the NK model, Stuart Kauffman, makes a similar point when 

arguing that individuals do not merely make a random choice among a range of options, but choose 

what is considered the best option (Gabora & Kauffman 2016). Furthermore, Gavetti & Levinthal 

(2000) presented simulations where cognition is conceptualized as forward-looking search, i.e. agents 

were encoded with a priori representations of the search space which enabled directed global search 

behavior. 

Cognition has been speculated to enable this different and more efficient search. A long tradition of 

research in psychology has uncovered how a range of basic cognitive abilitiesi shape an individual’s 

ability to engage in higher level reasoning when solving complex problems (Dams-O'Connor & Gordon 

2013; Luria 1976; Murray et al. 2017; Ritchie 2015). In other words, stronger cognitive abilities should 

lead to an improved ability to generate useful mental models, further facilitating more efficient search 

(Chan et al. 2019; Helfat & Peteraf 2015). However, a clear link between cognitive abilities and model-

based search behavior has been difficult to establish, since the applied empirical frameworks (be it 

experimental or qualitative) have not allowed for a quantitative categorization of global directed search. 
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The thorny problem is that even when we have categorized a participant’s search behavior, it is difficult 

to reverse engineer from this individual’s behavior to their internally hidden mental model. Therefore, 

cognitive scientists have favored artificial and simple tasks that not only allow for an exhaustive 

mapping of all available actions, but also for a mathematical approximation of how available 

information can lead to different models of the world, which in turn are directly linked to certain actions. 

Moving beyond the artificial laboratory setup, a recent study enabled physicists and citizen scientists to 

engage with a highly complex, real world physics landscape (Heck, Vuculescu et al. 2018). In this 

study, participants were asked to cool down atoms via a gamified and remote interface. In line with 

previous findings, it was documented that adaptive search is a key driver of search behavior, even in 

this – both to the physicists and citizen scientists - unknown landscape. Now, the citizen scientists did 

not have relevant theoretical maps, but the physicists could engage in model-based search based on 

their theoretical insight into the behavior of ultra-cold atoms. Interestingly, citizen scientists engaged 

in far more explorative search than the model-based algorithms used by experts (Heck, Vuculescu et al. 

2018). This setup illustrates the challenge that management research faces; to quantitatively study how 

agents search in an environment where meaningful mental models of the underlying problem-structure 

can be generated (Helfat & Peteraf 2015). 

Vuculescu (2017) presented a further step towards this goal, since the experimental task used in her 

study allows for meaningful search. Based on a rugged fitness landscape, one can trace search strategies 

employed and distinguish, not merely between local and global search, but also between undirected 

(random) global search and directed (model-based) global search. While microfoundational antecedents 

of engaging in either local or global undirected search have been established (Steyvers et al. 2009; 

Laureiro-Martinez et al. 2015; Døjbak et al. 2015; Levine et al. 2017; Reypens & Levine 2018), we are 

not aware of any empirical studies that have investigated heterogeneous individual propensities to 

engage in these three search strategies. In other words, what are the cognitive microfoundations of 

search behavior in a combinatorial, rugged fitness landscape that also allows directed global search? 

Being able to identify which cognitive microfoundations (e.g. cognitive abilities) are related to a certain 

type of search behavior, may help a manager optimize the organization of search. For example, 

individuals with poorer executive functions may be less prone to engage in local, systematic search and 
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less able to shift their search, requiring managerial intervention in order to enable this (see Chan et al. 

(2019) for a literature review on the role of executive functions in management. 

2.2. Individual antecedents of search behavior  

As pointed out by Laureiro-Martinez et al. (2010), the original March (1991) study took departure in 

individual heterogeneity in order to simulate variations in organizational outcomes. An emerging stream 

of research has investigated the microfoundations of this heterogeneity of search (Reypens & Levine 

2018), the idea being that one can understand higher level outcomes by understanding micro-level 

processes and antecedents (Felin et al. 2015). Empirical research on individual antecedents of 

managerial search behavior has shown how variation in age, education and experience influences 

performance (Finkelstein et al. 2009; Hambrick & Mason 1984). Helfat & Peteraf (2015) further ask 

what the cognitive underpinnings of managerial capabilities are, and call for empirical research to 

explore and validate such links. The importance of individual antecedents is well established by now, 

since neurological activity (Laureiro-Martinez et al. 2015), risk sensitivity (Hills & Hertwig 2010), the 

emotional valence (Døjbak et al. 2015), cognitive flexibility (Laureiro-Martínez & Brusoni 2018) and 

analytical ability (Levine et al. 2017) shape search behavior. 

We again draw upon cognitive psychology to advance the paradigmatic approach of studying how 

variation in cognition might influence organizational search behavior. Cognitive- and neuropsychology 

has a long history of mapping cognitive abilities. Whereas the aforementioned studies have mapped 

brain activity (Laureiro-Martinez et al. 2015), proxies for analytical skills such as the critical reflection 

test (Levine et al. 2017) and cognitive flexibility (Laurerio-Martinez & Brusoni 2018), less focus has 

been on identifying which lower or higher level cognitive building blocks that constitute the foundation 

for complex problem solving reasoning processes that we are interested in (Lezak et al. 2012). Even 

though cognitive psychology has carried out extensive work on search behavior, curiously little is 

known about how cognitive antecedents are related to exploration vs. exploitation: “Almost nothing is 

known about the role played by the brain's varied control systems with respect to exploration… Issues 

pertinent to the brain's engagement with exploratory decision making are ripe for both theoretical and 

experimental research.” (O’Doherty et al. 2017: p. 91). We therefore intend to draw upon the 
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methodological insights from cognitive psychology, in order to examine individual antecedents of 

search behavior. Such antecedents can refer to variation in cognitive ability but also variation in 

cognitive style, both of which will be covered in the following two sections. 

2.3. Cognitive styles 

The concept of cognitive styles has been developed to capture how individuals differ in how they 

perceive and process information (Miron-Spektor et al. 2011; Sternberg & Grigorenko 1997) and 

integrate this information in their “mental models” (Hayes & Allinson 1998: p. 850), rather than 

capturing creativity in a quantitative sense, e.g. in terms of number of ideas created. The concept thus 

has explicit links to our conceptualization of how individuals search. 

A number of measures of cognitive styles have been developed, e.g. the adaption-innovation (Kirton 

1976), analytic-intuitive (Hayes & Allinson 1998) and field dependence-independence (Witkin & 

Goodenough 1977). All show that cognitive styles are similar in kind to personality traits, in that they 

are stable over time and involve no one optimal style. The Adaptors-Innovators theory (Kirton 1976) is 

developed in the context of problem-solving and allows for a distinction between adaptors and 

innovators as given by an individual’s preferred strategy for problem-solving: ‘highly adaptive’ people 

tend to rely on established solutions (‘do things better’) while ‘highly innovative’ people tend to do the 

reverse (‘do things differently’) (Kirton 1976). Innovators are more likely to reframe the given problem, 

while adaptors are more likely to accept and be preoccupied with how the problem is represented at the 

moment (Kirton 2003). Importantly, cognitive styles appear unrelated to cognitive ability (Kirton 2003). 

The cognitive style measure has become widely used in organizational theory, since it has been 

repeatedly shown to influence behavior and performance in organizations (Carnabuci & Dioszegi 2015; 

Miron-Spektor et al. 2011). 

In this study, we aim to investigate whether individual differences in information processing styles are 

related to how individuals tend to navigate (i.e. search) a solution landscape, rather than assessing 

creativity or the final ability to solve the problem as such. More specifically, we theorize that the ‘wider 

search’ associated with innovators not only leads to a more divergent output (Kirton 2003) but translates 

into a continuous lower propensity to engage in local search during an ongoing search process (or higher 
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propensity to engage in global search). In contrast, individuals that focus on ‘doing things’ better have 

a higher propensity to engage in local search (or less propensity to engage in global search). 

2.4. Cognitive ability 

Cognitive abilities are considered to be hierarchical in nature as lower-level cognitive building blocks 

such as processing speed, attention, and working memory have been shown to facilitate the ability to 

engage in more complex, higher level reasoning (Lezak et al. 2012; Luria 1976). A wide range of studies 

have shown that strong cognitive abilities lead to better individual outcomes such as higher job 

performance (F. L. Schmidt & Hunter 1998), higher grade point averages, higher salary and even longer 

life expectancy (Ritchie 2015). 

In terms of search more specifically, a recent stream of studies has shown that individuals with better 

cognitive abilities are able to identify and cope with strategic uncertainty more efficiently (Benito-

Ostolaza et al. 2016), e.g. when engaged in an armed bandit scenario (Steyvers et al. 2009) or making 

sequential investment decisions in a market (Levine et al. 2017). However, these studies have relied on 

the Cognitive Reflection test (Frederick 2005), which is a measure of an individual’s tendency to 

override one’s intuitive response, or general intelligence tests such as the Raven’s test, which is a non-

verbal assessment of fluid intelligence (Raven et al. 2003). While the Raven’s test has been shown to 

be a relatively strong predictor of intelligence (capturing 50% of the variance (Gignac 2015)), it is a 

measure of higher order reasoning ability. These kinds of tests capture a general ability to problem solve 

and reasoning, and not the underlying microfoundations and building blocks of higher-level cognitive 

abilities. Chan et al. (2019) emphasize that one should not conflate general intelligence with more fine-

grained cognitive abilities and call for more nuanced insights. Granted, cognitive abilities are generally 

correlated, but first of all, systematic variation across abilities do exist, and second, cognitive efforts 

can be improved by framing or training (Chan et al. 2019), which opens up the potential for managerial 

interventions. 

Overall, research has clearly documented that cognitive abilities impact behavior and can improve 

search performance. However, to the best of our knowledge, no studies have linked the widely used NK 

framework with any measure of cognitive abilities such as the Raven’s test, not to mention more fine-
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grained neurocognitive tests. It is therefore an important open question if the prevalent assumption in 

NK models of individuals individual’ adaptive search behavior is dependent on cognitive ability. This 

also implies that no studies have linked the underlying building blocks of higher-level cognitive abilities 

with any rugged fitness landscape.  

One can theorize that higher-level cognitive abilities such as reasoning (a general high intelligence score 

and executive functions) should facilitate the generation of a more appropriate model of the problem-

structure and, thus, reduce inefficient search. That is, these individuals will engage in less undirected 

global search, searching more akin to the relatively greedy, local search portrayed in the NK model 

(Levinthal 1997). Furthermore, people with a strong ability to learn should not merely identify that 

undirected global search is inefficient but have a bigger likelihood to uncover the underlying problem-

structure, and thus engage in directed global search. 

3. Experimental setting, methods and data 

We utilize four different types of data from three different studies in order to quantitatively analyze how 

375 individuals navigate the search landscape in the ‘Alien Game’ (see Vuculescu 2017). One type of 

data is based on a quantitative coding of the search behaviour of individuals trying to solve the 

experimental task. A second type of data is based on a quantitative survey on cognitive styles that 336 

individuals completed just before playing the game. In order to also capture cognitive ability we added 

another round of data collection where we included a third type of data, which captures the cognitive 

ability of 39 individuals, relying on established neuropsychological tests. Finally, we have also 

interviewed 40 individuals just after they finished the game, in order to complement (Greene et al. 1989) 

and validate our quantitative analysis as well as provide qualitative insight into the search process. 

Insights from interviews are anecdotally reported in the paper, as well as in more detail in appendix 2. 

3.2. Participants in the studies 

In the first study we relied on Amazon’s Mechanical Turk (Mturk) platform to collect data on 270 

participants’ cognitive style as well as how they navigated the Alien Game. Mturk is a web-based 

outsourcing platform which is widely used in behavioural research, due to the ease of access to a 

relatively large group of people that has a closer resemblance to the general (US) population than a 
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student sample (Berinsky et al. 2012; Hauser et al. 2019) and relatively low costs in setup. Before the 

statistical analysis was carried out, 28 participants were dropped from the Mturk sample (leading to an 

N of 244), since an inspection of their answers and game play revealed they had not actually engaged 

in the game (e.g. submitted the same solution many times in a row) or they provided incoherent replies 

to the survey, e.g. clicking the same options throughout the survey. The Mturk participants (42% 

women, average age 34, 9.89 SD) report that 98% have completed at least their secondary education, 

while 48% have at least a bachelor degree, indicative of a relative high level of education, which is 

consistent with previous work on Mturk demographics (Berinsky et al. 2012). In the second study we 

replicated study 1 in the lab and collected data from 97 participants, who were students at a large 

European University. The study was conducted by research assistants, not co-authoring our paper nor 

familiar with any research expectations. Participants are recruited using an internal recruitment system. 

Three lab participants were dropped based on the same criteria as in the Mturk study (leading to an N 

of 94). The lab-sample were all students at the university and consists of 49% women, with an average 

age of 24 years (5.84 SD), which matches the overall pool of participants at the lab. On average 

participants spent 20 min. on the game and survey. In the third study we collected data from 39 

participants at the same university. Participants first played the game in one lab-session, and at least 

five days later came back to the lab to complete six batteries of neuropsychological tests of cognitive 

ability, which took approximately 45 min. to complete and were administered by two trained research 

assistants under the supervision of one of the co-authors, an expert in neuropsychology. Individuals 

were paid a flat-rate for the cognitive ability test. 

3.2. Experimental task 

Before playing the Alien Game, participants watched a video with game instructions and played a 

tutorial level to become familiar with the game environment. Participants have 25 attempts to toggle 8 

tiles in any of two positions. They could decide to change one tile at a time, or all 8, which in total 

allows 256 possible combinations (see Figure 1 and https://youtu.be/b8BCkq93ovc for an illustration 

of how the game is played). After each attempt players get feedback in the form of a points score, which 

ranges from 18 to 42 points. 

https://youtu.be/b8BCkq93ovc
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The underlying function of the experimental task is an 8-bit ‘hierarchical exclusive OR’ (H-XOR) 

(Watson & Pollack 1999). This function implies an underlying structure to the landscape, in contrast to 

setups that rely on the NK model, where solutions depend on random draws from a uniform distribution 

(Billinger et al. 2014). The solver is not directly informed about the H-XOR function, but merely sees 

the sequence of eight tiles and can attempt to learn from the variation in points obtained for the solutions 

submitted. In other words, participants could extrapolate from their past attempts. Players were paid 

based on performance when playing the game; i.e. the higher the score and the quicker the high score 

is achieved, the better the reward. In order to eliminate variance due to different performance 

expectations, players are informed in advance about the maximum score as well as the monetary 

performance reward. Depending on performance participants received between 8 and 20 Euros. 

Qualitative studies have studied how individuals rely on mental models to navigate a complex 

environment (Gary & Wood 2011), but our game design allows an opportunity to study how mental 

models might influence subsequent search behaviours in a quantitative framework. The design positions 

us somewhere in between the two extremes of previous quantitative work: Participants don’t merely 

select between very few options (Laureiro-Martinez et al. 2015), but in contrast to Heck, Vuculescu et 

al.’s (2018) problem of how to cool down atoms, the space of solution is mapped out and there is an 

optimal solution and an efficient way of navigating towards it. Therefore, our task involves options that 

are not all obvious from the start but have to be shaped in a sequential, feedback-based process. This 

also makes our task computationally demanding, since it involves (exponentially) many combinations 

of future actions. While the experimental task relied upon is artificial, limiting external validity, we note 

that our ambition is to study the search strategies employed while navigating the search space, rather 

than who ends up at a certain solution. Unless solvers due to sheer luck find the optimal solution in their 

first attempt, they have to try out a number of actions to understand a) what the solution space looks 

like and b) how to search this solution space. 

3.3. Variables: Search strategies 

In order to study how individual antecedents explain variation in human search behavior, we first need 

to distinguish between different types of search strategies. Building on recent cognitive psychology 
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literature (Doll et al. 2012) and previous research on this type of game (Vuculescu 2017) we rely on the 

following three strategies: local, directed global (model-based) and (undirected) global search. We thus 

differentiate between two fundamentally different search mechanisms: model-free mechanisms (local, 

undirected global) which operate without an internal representation of the problem space and model-

based (directed global) mechanisms which rely on the agent having (acquired) an approximate 

representation of the problem space (Doll et al. 2012). We code local search moves as moves involving 

exactly one-bit flip from their reference point (be it their own best score so far or their most recent 

solution), model-based (or directed global) moves as moves involving exactly two-bit flips from their 

reference point without violating the underlying problem structureii, and global undirected search as 

everything else. We attempt to capture the fact that solvers can form a model of the problem they are 

attempting to solve and let their subsequent moves attempt to exploit that. One limitation in this coding 

is that directed global search is not normative. Participants can engage in directed global search moves 

that violate the underlying problem structure and thus will not be captured by the coding. However, this 

scheme is preferred since it is the most conservative. 

We thus have three binary variables (one for each search strategy) which constitute our dependent 

variables. Note that the dependent variable does not refer to performance in the game as such, but how 

individuals navigate the solution space. We only analyse submissions 3-25, where all three search 

strategies are availableiii. 

3.4. Variables: AI cognitive styles 

We use Miron et al.’s (2004) 12-item scale to capture the adaptors-innovators constructs. Their 

questionnaire relies on a 7-point Likert-type scale that captures the three factors that Kirton (1976) also 

identifies: 1) creativity 2) conformity and 3) efficiency which Miron et al. (2004) label ‘attention-to-

detail’. Since we have used the instrument exactly as it is presented in their work we also borrow their 

terminology. Table 1 lists the questions. 

Following a first analysis of the three factors, one item has been dropped, as it results in a relatively low 

Cronbach’s alpha (0.64)iv for the respective factor as well as contributing to an overall poorer fit for the 

model (RMSEA = 0.0848 and GFI=0.923). The deleted item is related to the ‘conformity’ factor; “I 
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avoid cutting corners” (see table 1 for item loadings). We attribute the poor fit to social desirability bias. 

The resulting Cronbach’s alpha for the revised factor is 0.69 which is satisfactory given our sample size 

and the exploratory nature of this work (Flynn et al. 1994). The Cronbach’s alpha score for the other 

two factors indicate reliable measures: 0.859 for ‘attention to detail’ and 0.90 for ‘creativity’, 

respectivelyv.  

This resulted in a model with acceptable fit (𝛸2 = 110.67, d.f.=41, goodness-of-fit index (GFI)=0.94, 

root-mean-square error of approximation (RMSEA) = 0.0682). While a RMSEA of 0.05 or less would 

indicate a close fit, our values are still below 0.08 and this indicates a “reasonable error in 

approximation” (Browne & Cudeck 1992: p. 239). Item loadings are all highly significant (p<0.001, cf. 

table 1). 

[Insert table 1 around here] 

3.5. Variables: Cognitive abilities 

Cognitive abilities (or functions) are assessed with a battery of standardized neurocognitive tests. 

Neurocognitive testing with standardized administrations and available normative data remains the gold 

standard for the examination of cognitive functions in both clinical and healthy populations (Casaletto 

& Heaton 2017). The test battery consisted of six independent tests assessing different cognitive 

domains. The tests were chosen based on a hierarchical understanding of cognition with lower level 

cognitive abilities being foundational for higher-level and more complex cognitive processes (Lezak et 

al., 2012). For example, processing speed and attention are lower-level abilities, which higher-level 

cognitive processes such as executive functions rely upon. The cognitive domains assessed are 

processing speed (i.e. the ability to rapidly process information), sustained attention (the ability to 

sustain cognitive focus), working memory (i.e. the ability to manipulate temporarily stored 

information), learning and memory (i.e. the ability to learn and retain novel information), long-term 

memory (i.e. the ability to retain information for a longer period of time), and executive functioning 

(i.e. the ability to plan, organize, regulate, and monitor goal-directed behaviour (Denckla 1994)). 

Processing speed was assessed with the Trail Making Test (TMT) – Part A (Reitan 1958) and the Coding 

subtest of Wechsler’s Adult Intelligent Scale - fourth edition (WAIS-IV) (Wechsler 2008). Attention 
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was assessed with the Paced Auditory Serial Addition Test (PASAT) (Wiens et al. 1997); working 

memory was assessed with the Digit Span subtest of WAIS-IV (Wechsler, 2008); Learning & memory 

(trial 1 to 5) and long-term memory (30 min delayed trial) was assessed with the RAVLT test (Schmidt 

1996); executive functioning was assessed with TMT – part B (Reitan, 1958) and a computerized 

version of the Wisconsin Card Sorting Test (Heaton 1993). Both tests are widely considered valid 

measures of executive functions. In addition to these cognitive domains we also calculated a global 

cognition score based on performance scores from each of the individual cognitive tests. 

4. Results 

4.1. Cognitive styles and search behavior 

As a simple descriptive measure, we report that the average search (Hamming) distance is 2.68 (1.98 

SD), i.e. on average players toggle more than two (out of the eight) tiles at a given time. This result is 

remarkably similar to Billinger et al. (2014), who report an average search distance of 2.65 (1.99 SD) 

in a game with 10 tiles and 1024 options. Overall out of 7223 categorized search moves (excluding 

move 1), 52.7% were local, 18.4% directed global, while 28.7% were undirected global. 

To explore whether cognitive style (as expressed by the three A-I factors) has an impact on each of the 

three search strategiesvi, we first analysed the Mturk dataset. Tables 2, 3 and 4 report results from the 

analysis, for each of these three dependent variables. The first model we analyse is a standard 

generalized model for independent binomial counts. In the second model, we assume that one possible 

source of correlations among observations is time and we model time as a random effect. Since the 

variance from the random effect is rather small (e.g. for undirected global search the estimate is = 

0.01069 and the standard error = 0.01384), we estimate a third model, a marginal logistic regression 

model. To account for potential autocorrelation in the observations, we included a multiplicative over-

dispersion parameter in our model.  

The same model was fitted for directed and undirected global search. The within-subject association 

among the vector of responses is modelled by specifying time as an R-side effect for each participant, 

with a standard compound symmetric structure.  

[Insert tables 2, 3 and 4 around here] 
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The same marginal logistic model is subsequently applied on data collected in the university lab and 

we are thus able to re-test the results from the Mturk sample. 

[Insert table 5 around here] 

Table 5 illustrates the lab results which replicate results from the Mturk study. Participants who score 

high on ‘creativity’ are less likely to engage in local search and more likely to engage in undirected 

global search. Note that undirected global search is not necessarily deleterious to problem solving 

processes, since it can potentially help a solver escape from local optimal solutions, i.e. solutions where 

no minor changes can lead to an improvement. Additionally, we find that individuals who score low on 

attention to detail are more likely to do undirected global search moves, while individuals who score 

high on attention to detail are more likely to do local search. These results seem consistent with the 

description of ‘innovators’ (i.e. individuals who score high on creativity) as having a less structured 

approach to problem solving, while ‘adaptors’ (i.e. individuals who score low on creativity) prefer a 

more systematic approach. Indeed, in interviews some respondents equate local search moves with 

‘systematic search’. Although the first (Mturk) dataset does not reveal the same pattern with respect to 

the second result, the lab results are supported by the multinomial modelling of the combined dataset 

(Appendix 1). Results from this analysis show that players who score high on attention to detail are, 

relative to undirected global search, less likely to do either local search or directed global search. We 

attribute this discrepancy to the particular nature of our first sample: Mturkers receive ratings according 

to their performance in a given task, which shapes their chances of being approved for future tasks. For 

this particular study, we chose a sub-sample of the Mturker population with a high acceptance rate 

(>99%). We conjecture that either successful Mturkers are simply higher on this dimension or they are 

more likely to self-report higher levels of attention. Indeed the scores on this factor differ significantly 

across samples (lab average = 5.1, Mturk average = 5.47, p=0.0013, t-test), a discrepancy which we do 

not find for our other predictor (creativity). 

4.2.  Cognitive ability and search behavior 

With respect to the relationship between cognitive abilities and search strategies, we first report here, 

similarly as with cognitive styles, a simple generalized model for each of the three search strategies and 
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search distance (using as before a standard binomial model). Table 6 reports all p values obtained by 

investigating the potential effect of every cognitive ability on the likelihood of choosing each of the 

search strategies. 

[Insert table 6 around here] 

The main results in table 6 show that individuals with strong executive functions and individuals that 

have a strong global cognition score (an aggregation of all cognitive ability scores), engage in more 

local search behavior, and less undirected global search behavior. Undirected global search can help an 

individual escape from a local optimum, but is generally an inefficient form of search. Yet, not only 

higher level cognitive abilities shape behavior, since sustained attention is strongly related to undirected 

global search. The less one is able to continuously pay attention to the current task, the less systematic 

and the more undirected search becomes. The fact that working memory does not play a role, is likely 

due to the fact that the game interface clearly shows the players’ last attempts (see figure 1), which 

means that an ability to memorize the past few attempts is less useful. In contrast, learning and memory 

turns out to be important for engaging in search behavior that is aligned with the underlying problem 

structure (i.e. global directed search). Learning & memory is based on a test that requires the participant 

to learn and memorize 15 words across 5 trials, while long-term memory requires the participant to 

retain as many words as possible after a period of 30 minutes. Since the game play lasted about 10 min., 

it was expected that learning & memory outcomes would be the most meaningful. 

We engaged in more in-depth analysis of the relationship between sustained attention, learning and 

memory, executive functions and global cognition score by subjecting the above outlined relationships 

to further robustness checks. We employ the same approach as when analysing cognitive styles, taking 

time and the individual into account. Specifically, we first report a generalized linear model with the 

cognitive abilities as independent variables (Model 1 in tables 7-9) and subsequently we fit a marginal 

logistic model (Models 2 and 3 in Table 7 and 2-5 in Tables 8, 9).  

[Insert table 7-9 around here] 

In general, the relationships are robust and reveal similar significance levels, however, they also paint 

a more nuanced picture. Thus, while a high global cognition score is a good predictor for a diminished 
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likelihood of engaging in local search, it seems that the executive functions component is mainly driving 

these results. Table 9 (model 5) outlines that feedback is a far stronger predictor for undirected global 

search than any of the higher or lower level cognitive factors (cf. the estimates). In other words, if one 

is not doing well, the propensity to engage in global undirected search overwhelms cognitive tendencies, 

in line with the adaptive search hypothesis. In contrast, Table 8 (model 5) shows that cognitive factors 

(executive functions) are more important factors for explaining local search, than the performance 

feedback one receives. The relative impact on behavior of feedback vs. cognitive factors is thus 

dependent on the kind of search behavior one sets out to predict. 

5. Discussion 

A central question in strategy research is how to switch from local, adaptive search to global search that 

can facilitate innovation. Based on a NK environment, mindless feedback-based search algorithms can 

be effective. In order to be able to capture the role of cognitive heterogeneity, we rely on a search 

framework where such an adaptive search mechanism is relatively ineffective (Vuculescu 2017). We 

integrate insights from cognitive psychology to identify both lower and higher level building blocks of 

complex problem solving abilities (Lezak et al. 2012), as well as measurements of cognitive style 

(Kirton 1976). To our knowledge, we are the first to investigate the individual cognitive antecedents of 

search behavior in a rugged, combinatorial landscape that also provides a quantitative, empirical basis 

for the cognitive representations Gavetti & Levinthal (2000) argue facilitate efficient search. This 

enables us to study the cognitive microfoundations of search, providing insight into the relative 

importance of individual antecedents and a more fine-grained understanding of how to shape 

individuals’ search processes. 

We present three interrelated findings and their associated theoretical contributions. First, we document 

substantial variation in search behavior dependent on the cognitive style of how one processes 

information. To illustrate, participants who score high on creativity (vs. those that score low) are about 

40% more likely to engage in undirected global search than local (45%) or directed global search (38%), 

cf. table 2 in appendix 1. Second, to our knowledge we are the first to show a link between specific 

building blocks of cognitive ability and propensities to search in a rugged landscape. Individuals with 
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low abilities to sustain attention, strong executive functions and overall high cognition scores carry out 

less undirected global search, engaging in more ‘systematic’ local search. These two findings have four 

important theoretical implications. 

First, we contribute to research on the role of microfoundations in explaining the adaptive nature of 

search. In a controlled, combinatorial landscape we identify that it is not merely external performance 

feedback that shapes search behavior, since cognitive factors appear as important a variable as the 

feedback received from the environment. In other words, an unexplained residual in a statistical model 

based on performance feedback is not just noise, but can be partially attributed to the heterogeneity of 

cognitive antecedents, providing further empirical support for the microfoundational insistence on 

understanding how individuals shape macro-level behavior (Felin et al. 2015). 

Second, in addition to shedding light on the relative importance of microfoundations, the above outlined 

empirical findings on the heterogeneity of search contribute to a discussion about the assumptions that 

agent-based models in management rely on when investigating how to optimize search (March 1991; 

Levinthal 1997; Puranam et al. 2015). While individuals in general might tend to stop local search 

prematurely (Billinger et al. 2014), we are the first to identify that individuals with higher cognitive 

abilities or certain cognitive styles constitute more persistent (local) searchers, more akin to the 

assumptions in the seminal NK model (Levinthal 1997). For example, those with strong executive 

functions and ability to maintain sustained attention are less sensitive to immediate negative feedback, 

and thus seem to engage in a more long-term search strategy. Put differently, these individuals are less 

likely to do undirected global search, a kind of search that might be inefficient depending on search 

costs and the size of the landscape (Heck, Vuculescu et al. 2018) or the complexity of the search tasks 

(Billinger et al. 2014). Granted, assumptions about individual behavior in simulation models have to 

simplify reality to some degree (Davis et al. 2007; Knudsen et al. 2019; Puranam et al. 2015) and 

Billinger et al. (2014) provided support for the generic adaptive search assumption. However, we offer 

further, valuable insight on relevant, cognitive antecedents of the heterogeneity of search that would 

likely impact simulation results on optimization of search. For example, a collective of cognitive diverse 

solvers are likely to be more efficient than the homogeneous searchers simulations usually rely on, since 

more diverse search behaviors would be represented. We consider this an opportunity to compare 
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simulations that rely on different assumptions, by contrasting the rationalized, adaptive searcher with 

more empirically informed parameters (cf. Puranam et al. 2015; Smith & Rand 2018). 

Third, we contribute to research on how managers can optimize the organizational context of search. 

Incentives can of course influence search behavior (Ederer & Manso 2013), yet managerial 

interventions can also shape what type of search individuals engage in. If systematic, local search is the 

goal, then factors that impair the ability to engage in sustained attention and executive functions should 

be considered. For one, some cognitive abilities can be improved by training, e.g. ability to shift or 

maintain attention, Chan et al. (2019). Furthermore, how the search process is organized can also 

alleviate interruptions, shaping not only the performance but potentially also the kind of search behavior 

being conducted. Finally, recent studies indicate that sustained attention and executive functions can be 

shaped by contextual factors (Chan et al. 2019): Sleep (Lowe et al. 2017) and physical activity (Radel 

et al. 2018) can benefit an individual’s ability to sustain attention and engage their executive functions, 

further influencing their likelihood to generate new, good ideas (Gish et al. 2019). Insight into cognition 

thus opens up opportunities for organizations to not merely manage search directly (e.g. via incentives), 

but also indirectly by realizing the importance of certain cognitive factors. Individual search behavior 

thus turns out be shaped by a complex interplay between external performance feedback, cognitive 

antecedents and external factors shaping how individual cognition unfolds. Overall, we speculate that 

this more persistent search behavior could constitute one path through which the stronger cognitive 

ability leads to superior individual performance outcomes, as macro-level data clearly documents 

(Ritchie 2015; Hunter & Schmidt 1998). 

Fourth, our study also contributes to an emerging stream of research on matching the governance of 

search with the type of problem one is facing (Afuah & Tucci 2012; Felin & Zenger 2014; Lakhani et 

al. 2013). Organizations like InnoCentive or TopCoder that rely on crowds to generate relevant 

perspectives on how to solve problems (Boudreau & Lakhani 2013) could, based on a relatively short 

survey (the A-I scale) or established cognitive ability tests, map how employees or crowds are likely to 

navigate a given search space. For example, individuals categorized as creative would engage in more 

undirected global search, while those with strong executive functions would engage in the 

aforementioned, persistent local search. Based on this insight, one can either match the crowd to the 
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given problem, or decompose and formulate the problem differently (von Krogh et al. 2013) in order to 

create a better match with the kind of search one can expect to obtain.  

The third main finding is that individuals who score high on the variable ‘learning and memory’ seem 

to grasp the underlying problem structure, a result that an unstructured problem task does not allow. 

While we remind the reader about the nature of the exploratory analysis, we still consider it a proof-of-

concept of the experimental task. We thus provide an empirical foothold for studying how individuals 

search a combinatorial, rugged, non-random landscape (Csaszar & Levinthal 2016; Gavetti & Levinthal 

2000). This constitutes a methodological contribution to studying directed global search and allows 

more realistic simulations, which fit how people rely on models to navigate the world. Computer science 

grapples with a related challenge, when developing machine-learning based algorithms able to search 

– for the algorithm – unknown landscapes. Recent successful solutions have relied on a model-free 

approach, being able to beat humans in relatively complex games such as Chess, Go and Dota (Guez et 

al. 2019; Silver et al. 2018). However, a different perspective argues that the algorithms should be 

inspired by the human ability to create relevant causal, mental models and extrapolate from small 

samples (Marcus 2018). In any case, this endeavor might benefit from the field of management’s insight 

into how to identify directed search behavior and organize search in unknown solution spaces. 

6. Conclusion and future work 

We elaborate on how cognition shapes not just overall search performance or a generic exploration vs. 

exploitation tendency, but offer a more fine-grained theory on how particular cognitive antecedents 

shape individual search in rugged landscapes (cf. O’Doherty et al. 2017; Helfat & Peteraf 2015). We 

propose that the insights provided in this study can help pave the way for developing further 

experimental tasks and a simulation framework that allows directed global search for innovation 

(Gavetti & Levinthal 2000). The setup also points to the opportunity to move beyond homogeneous, 

rationalized assumptions about search behavior and integrate empirically informed insights into 

simulation models (Smith & Rand 2018). In order to not solely rely on this particular search framework, 

future studies could vary the complexity of search frameworks (Levinthal 1997), consider how benign 

the search environment is (MacAulay et al. 2017) as well as draw upon less artificial problems (cf. 
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Heck, Vuculescu et al. 2018). Furthermore, in order to isolate the mechanism of interest we excluded 

social context. Yet, organizational problems are often solved in a social context and future studies could 

develop further insight into how individuals engage in model-based social learning. Finally, while a 

well-defined task such as the Alien Game or physics challenges (Heck, Vuculescu et al. 2018) imply 

the benefit of being able to track search behavior, one could also develop how to identify search 

behaviors in real-world organizational datasets, such as the online coding platform TopCoder 

(Boudreau & Lakhani 2013). 

 

 

Figure 1. Screenshot of the game 
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Table 1. Item loadings for the KAI 3-Factor model 

 

Factor Loading Matrix:  Estimate (StdErr)    

  conformity detail creativity 

I try not to oppose team 

members 0.658*** (0.86)     

I adapt myself to the system 0.669*** (0.064) 
  

I adhere to accepted rules in 

my area of work 0.876*** (0.064) 
  

Thorough when solving 

problems 
 

0.790*** (0.05) 
 

Addresses small details 

needed to perform the task 
 

0.866*** 

(0.052) 
 

Performs the task precisely 

over a long time 
 

1.004*** 

(0.054) 
 

Good in tasks that require 

dealing with details 
 

0.941*** 

(0.058) 
 

I have a lot of creative 

ideas 
  

1.268*** 

(0.064) 

I prefer tasks that enable 

me to think creatively 
  

1.370*** 

(0.063) 

Innovative 
  

1.249*** (0.06) 

I like to do things in an 

original way 
  

1.019*** 

(0.061) 

N=336, *** p<0.001    
 

 

Table 2. Effect of the three A-I factors on the likelihood of doing undirected global search 

(Mturk study) 

Response variable = undirected global search (binomial) 

   

   

Estimate  

(StdErr)  p value -2LL 

Cov param 

(StdErr) 

Model 1 creativity(ref=low) -0.289 (0.095) 0.0024   4332.03 

  4331.21 

  4328.04 

 detail(ref=low) 0.100 (0.111) 0.3683   

 conformity(ref=low) 0.152 (0.10) 0.1582 

Model 2 creativity(ref=low)  -0.289 (0.095) 0.0024   0.01 (0.002) 

 conformity(ref=low) 0.153 (0.11) 0.1557  0.01 (0.014) 

 detail(ref=low) -0.062 (0.097) 0.5207  0.01 (0.014) 

Model 3 creativity(ref=low   -0.289 (0.095) 0.0024  1.00 (0.02) 

 conformity(ref=low) 0.152 (0.11) 0.1080  0.99 (0.02) 

 detail(ref=low) 0.059 (0.114) 0.6079  0.99 (0.02) 

N=242 
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Table 3. Effect of the three A-I factors on the likelihood of local search (Mturk study) 

Response variable = local search (binomial)  

   

Estimate 

(StdErr) p value -2LL 

Cov param 

(StdErr) 

Model 1 creativity(ref=low) 0.212 (0.072) 0.0032 6960.02   

 detail(ref=low) 0.105 (0.071) 0.1383 6966.45  

 conformity(ref=low)  -0.038 (0.076) 0.6198 6968.39  

             

Model 2 creativity(ref=low) 0.213 (0.072) 0.0033 0.0005 (0.001) 

0.0005 (0.001) 

0.0005 (0.001) 

 detail(ref=low) 0.100 (0.071) 0.1568 

 conformity(ref=low) -0.044 (0.076) 0.5634 

Model 3 creativity(ref=low) 0.213 (0.072) 0.0033   1.000 (0.02) 

 detail(ref=low) 0.007 (0.081) 0.9311  1.001 (0.02) 

 conformity(ref=low) -0.08 (0.078) 0.3009  1.001 (0.02) 

    N=242 

 

 

Table 4. Effect of the three A-I factors on the likelihood of directed global search (Mturk study) 

 

    Response variable = directed global search (binomial) 

 

Estimate 

(StdErr) 

   p-

value     -2LL 

Cov par 

(StdErr) 

Model 1 creativity(ref=low) -0.079 (0.083) 0.3377 5716.15   

 detail(ref=low) -0.086 (0.080) 0.2825 5715.92  

 conformity(ref=low) -0.049 (0.086) 0.5641 5716.74  

Model 2 creativity(ref=low) -0.0784 (0.083) 0.3449 0.001 (0.002) 

 detail(ref=low) -0.08 (0.081) 0.3237 0.001 (0.002) 

 conformity(ref=low) -0.041 (0.086) 0.6375 0.001 (0.002) 

Model 3 creativity(ref=low) -0.079 (0.082) 0.3377  1.0004 (0.02) 

 detail(ref=low) -0.086 (0.08) 0.2825  1.0004 (0.02) 

 conformity(ref=low) -0.049 (0.086) 0.5642  1.0004 (0.02) 

        N=242 
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Table 5. Effect of the three A-I factors on the likelihood of the three search strategies: (Lab 

study, Marginal logistic model) 

Type of search 

behaviour/KAI Factor Local search 

Directed global 

search 

Undirected global 

search 

Creativity (Low)       

estimate 0.2444* 0.2732 -0.3660*** 

standard deviation 0.1069 0.1691 0.1087 

p value 0.0223 0.1063 0.0008 

Detail(low)    

estimate -0.3542*** 0.2648 0.3574** 

standard deviation 0.09837 0.1524 0.1329 

p value 0.0003 0.0825 0.0072 

Conformity (low)    

estimate 0.02859 0.07902 -0.08792 

standard deviation 0.1014 0.1532 0.1056 

p value 0.7781 0.6061 0.4052 

N=94, * p<0.05, **p<0.01, *** p<0.001 

 

 

Table 6. Cognitive abilities and search strategies 

 

Cognitive ability 
Directed 

global 

Local 

search 

Undirected 

global 

Processing speed 0.55 0.058 0.22 

Sustained attention 0.21 0.075 0.009- 

Working memory 0.64 0.616 0.713 

Learning & memory 0.018+ 0.87 0.282 

Long-term memory 0.267 0.807 0.500 

Executive functions 0.607 0.0004+ 0.004- 

Global cognition score 0.231 0.032+ 0.024- 

N=39, p values 

 

Marginally significant values (<0.10) are highlighted in light grey, while statistically significant values 

(<0.05) are highlighted in dark grey. 

- Negatively correlated, i.e. a significant p value indicates that a higher cognitive ability score leads to 

a lower likelihood of engaging in the particular search behavior. 

+ Positively correlated, i.e. a significant p value indicates that a higher cognitive ability score leads to 

a higher likelihood of engaging in the particular search behavior. 
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Table 7. Effect of cognitive abilities on the likelihood of directed global search 

 

Response variable = directed global search (binomial)     

  Estimate (StdErr) p value -2LL Cov param (StdErr) 

Model 1 Learning memory 0.259 (0.1094) 0.0180 661.088    

Model 2 Learning memory 0.259 (0.1097) 0.0186   10.052  (0.0531) 

Model 3 Learning memory 0.253 (0.1098) 0.0213   10.074  (0.0533) 

 Feedback (ref = 0) -0.473 (0.2079) 0.0233    

N=39 
 

 

 
Table 8. Effect of cognitive abilities on the likelihood of local search   

Response variable = local search (binomial)      

  Estimate (StdErr) p value -2LL Cov param (StdErr) 

Model 1 Global cognition score 0.351 (0.163) 0.0320 910.23     

Model 2 Global cognition score 0.354 (0.163) 0.0297   0.096 (0.053)  

Model 3 Executive functions 0.469 (0.134) 0.0005  0.098 (0.074)  

Model 4 Global cognition score -0.333 (0.268) 0.2150   0.097 (0.074)  

 Executive functions 0.674 (0.215) 0.0018    
Model 5 Executive functions 0.470 (0.135) 0.0005   0.085  (0.701) 

 Feedback (ref = 0) -0.335 (0.180) 0.0639    
N=39 

 

 

 
Table 9. Effect of cognitive abilities on the likelihood of undirected global search 

Response variable = undirected global search (binomial)      

    Estimate (StdErr) p value -2LL Cov param (StdErr) 

Model 1 Global cognition score -0.344 (0.152) 0.0243 965.09     

Model 2 Global cognition score -0.348 (0.152) 0.0224   0.106 (0.0731)      

Model 3 Executive functions -0.309 (0.111) 0.0057   0.104 (0.0727)      

Model 4 Sustained attention  -0.210 (0.083) 0.0121   0.106 (0.0730)      

Model 5 Global cognition score 0.324 (0.327) 0.3226     

 Executive functions -0.383 (0.196) 0.0507  0.012 (0.048)       

 Sustained attention  -0.191 (0.119) 0.1080    

 Feedback (ref = 0) 0.943 (0.186) <0.0001    
N=39 
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Appendix 1: Multinomial modelling of dependent variable. Robustness check 

In this approach, the dependent variable has three possible outcomes corresponding to the three possible 

search behaviours: local, directed and undirected global search. We use the third strategy (undirected 

global) as the reference category, because we consider the distinction between local and directed global 

on the one hand and undirected global search on the other to be more meaningful given our theoretical 

framework. In addition, even though local search moves can be both model-free and model-informed, 

players often describe local search as “systematic”, in interviews carried out after game play. We thus 

expect to find a significant difference between undirected global search and the two other categories. 

The predictor variables are the same as in the marginal logistic regression model.  

      
Table I. Frequencies of the response variable categories. Pooled data (N=336) 

Ordered Value Strategy Total frequency    

Directed global 1 1336    

Local search  2 3809    

Undirected global 3 2076    
In modelling category probabilities, strategy='3' serves as the reference category. 

 

In the multinomial model, the estimate for the parameter can be identified compared to the baseline 

category. We further introduce time as a fixed effect and model subject variance as a random effect. 

Thus the equation is: 

𝑙𝑜𝑔 {
𝜋𝑖𝑗𝑟

𝜋𝑖𝑗1
} = ß1 + ß2𝑐𝑟𝑒𝑎𝑡𝑖𝑣𝑖𝑡𝑦𝑖 + ß3𝑐𝑜𝑛𝑓𝑜𝑟𝑚𝑖𝑡𝑦𝑖 + ß4𝑑𝑒𝑡𝑎𝑖𝑙𝑖 + ß5𝑡𝑖𝑚𝑒 + 𝑏𝑖 + 𝑒𝑖𝑗 

𝜋𝑖𝑗𝑟 = 𝑃(𝑌𝑖𝑗 = 𝑟) are the response probabilities for individual i to choose strategy r at time j,. The 

influence of the covariates is assessed, as before, through the coefficients ß𝑖. The random effect 𝑏𝑖 is 

assumed to have a univariate normal distribution with zero mean and compound symmetric covariance 

matrix.  
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Table II. Relative effect of cognitive style on the odds of choosing one of the three strategies.  

Results from multinomial regression. Pooled data (N=336) 

creativity (ref=LOW) Estimate StdErr P value Odds Ratio  95% Conf Limits 

Directed global (ref=Undir global) 0.3275 0.1098 0.0029 1.387 1.119 1.721 

Local search (ref=Undir global) 0.3774 0.147 0.0103 1.458 1.093 1.945 

         

detail (ref=LOW)        

Directed global (ref=Undir global) -0.3251 0.1184 0.0061 0.722 0.573 0.911 

Local search (ref=Undir global) -0.3197 0.1566 0.0412 0.726 0.534 0.987 

         

conformity (ref=LOW)       

Directed global (ref=Undir global) -0.181 0.1076 0.0926 0.834 0.676 1.03 

Local search (ref=Undir global) -0.07779 0.144 0.5892 0.925 0.698 1.227 

 

This alternative modelling strategy serves as a robustness check for the quantitative results presented in 

the main text. They show that players who score high on ’creativity’ would be more likely to engage in 

undirected global than local or directed global search (45% and 38%) and likewise, players who score 

high on ’attention to detail’ will be more likely to engage in directed global or local search than 

undirected global. Although we acknowledge that this model formulation a) makes unwarranted 

assumptions regarding the fact that players have a stable and intransitive preference structure for the 

three search strategies and b) that a marginal rather than a mixed model is more meaningful given our 

dataset and this generates relatively larger estimates (cf. Fitzmaurice, Laird et al. 2012) we think these 

results further support our overall findings. 

 

Appendix 2: Insights from interviews 

Method and data 

Following lab sessions, we randomly selected 40 participants to take part in a short (on average 7.5 

minutes) semi-structured interview. According to Greene’s et al.’s (1989) conceptualization of different 

mixed methods approaches, we rely on a complementary approach, aiming to “increase the 

interpretability, meaningfulness and validity of constructs and inquiry results…” (Greene et al. 1989: 

p.259). We thus explore how players create mental models of the solution space and aim to validate that 

solving the experimental task is meaningful for the players in order to make sure they did not perceive 

themselves to be stumbling around in a random solution space. Furthermore, we establish face validity 
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of the search behaviour constructs, by matching the quantitative coding with player accounts. Half of 

these interviews are collected with the participants sitting in front of their game play history, which 

allowed us to ask specific questions regarding various submissions and mitigates recall bias. By 

allowing participants to refer to solutions they have tried out as well as transitions from one submission 

to the next, we are able to get a better grasp of what influences their search behaviours. The interviews 

are semi-structured and contain five main questions which address: i) overall search strategies, ii) how 

players switch strategies, iii) what information players sample, iv) how they try to mentally represent 

the problem and v) changes in such mental representation. The interviews were collected by the two 

authors, who both individually and collaboratively listened to and analysed the interviews, in order to 

extract main patterns (Miles & Huberman 1994). 

Analysis of qualitative interviews 

We explored if players actually reflect upon and follow any of the search strategies that we argue to 

have identified in the quantitative coding of game plays. We compared the database with the actual 

accounts of the participants and found no large discrepancies between the coding and the players’ 

explanations, thus finding qualitative support for the coding. When verbalizing their search strategies, 

very few participants make a two-fold distinction between local and distant search (cf. the traditional 

exploration vs. exploitation division). Furthermore, what respondents characterize as undirected global 

search fairly seldom was random; comparing interview responses with actual game-play behaviour 

reveals that undirected global search usually would be ‘systematic’ in some sense, e.g. all green 

[1,1,1,1,1,1,1,1] or all blue [0, 0, 0, 0, 0, 0, 0, 0], or alternating green-blue [0,1,0,1,0,1,0,1]. A participant 

e.g. reports he “randomly tap[ped] whatever”, but his actual game-play in that particular situation was 

[0,1,0,1,0,1,0,1]. In any case, what they usually describe as a random submission is a solution that is 

not anchored in the feedback they have received so far. One respondent did acknowledge the difficulty 

of truly random behaviour, and actually “looked away from the screen” to take 4-5 guesses in order to 

diversify his search path. The reference points that players rely on are usually the last submitted attempt 

or their best attempt so far: “What I did was mostly based on the immediately preceding one...but if my 

score goes down too much I went back to the notes [the virtual clipboard, cf. figure 1]…”. 
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Most of our respondent formed articulate mental models of the underlying problem, without necessarily 

revealing ‘the logic’ of the game. For instance, some players report testing typical priors such as all 

green or all blue options. Some had very sophisticated (albeit wrong) mental models, e.g. “So each 

square is a letter, spelling: ‘I am smart’”. We also encountered more abstract representations, such as 

the solution is “a Fibonacci sequence”. We note that at least one player correctly inferred that the 

solution would have to be (inversely) symmetrical and managed to solve the game in 11 moves. A 

couple of players realize that the game had many (256) combinations and thus the entire search space 

could not be covered in the limited number of attempts they had (25) so they tailored their strategies 

accordingly, e.g. avoiding solely engaging in local-search strategies. 

Another distinction is worth emphasizing: Some of these mental representations are clearly top-down: 

“...such games usually involve a structured solution”, but others were feedback based as the following 

passages from different interviewees highlight: “...at the seventh attempt I noticed”, “...I [realized] you 

can’t have too many tiles in a row green”, “...there should be four of each”. The degree of flexibility 

with respect to these representations also varies since a number of players continuously develop and 

adapt a model, e.g. keep the first five tiles constant and adapt the last three or focusing on that four 

should be green, and the rest blue. Therefore, the behaviour is not merely based on the current condition 

and the received feedback, but an overall idea and mental representation of what the core pattern of the 

game could be. This difference is difficult to capture in the complex settings of organizational strategy-

making where it is not immediately obvious whether mental models reflect acquired experience or prior 

expectations with respect to the environment. 

Overall, players followed the adaptive rational model outlined in Puranam et al. (2015); they generally 

created representations of the task, responded to the feedback they received based on their actions, and 

either maintained or changed their former representation, dependent on the feedback. However, in 

contrast to typical simulation models (Levinthal 1997; Lazer & Friedman 2007; Csaszar & Levinthal 

2016) one-bit flips are not the only strategy and certainly not the baseline behaviour for human search. 

We find consistent evidence that individual search behaviours are much more heterogeneous than 

typically assumed in the literature and that players’ submissions are primarily based on some form of 

mental model, rather than trying to adapt the last solution (cf. a one-bit flip ‘hill-climber’). These mental 
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models influence search behaviours and determine, for instance, how “patient” (Winter et al. 2007) a 

solver will be with respect to negative feedback or how distant search moves are carried out. 
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i Since we depend on cognitive psychology construct, we use the term cognitive ability, rather than 

the more management oriented term cognitive capabilities (Helfat & Peteraf 2015; Levine et al. 

2017).  
ii In the H-XOR function the first four and last four variables (the halves) have a stronger 

interdependence within vs. between each other. Thus, ‘first four’ and ‘last four’ is a natural problem 

decomposition. While the problem is very difficult, interviews show that at least one participant 

managed to learn the basic structure of the problem and generate an appropriate mental representation, 

leading the participant to solve the game in just 11 attempts. 
iii Since the coding of search moves involved search distances, the first submission would serve as 

reference point, while due to the coding scheme the only possible search strategy that could be 

identified in the second attempt would be local search.  
iv Such a coefficient is considered to be “acceptable” (Flynn et al. 1994), but in order to have a more 

conservative measure we have decided to remove the item. 
v As a robustness check, subsequent analyses were conducted both including and excluding the item 

and resulting estimates do not change. 
vi The operationalization of how search behavior was transformed into three search strategies was 

provided in section 3.3. Local search moves: 1 bit flip, model-based (or directed global) search: 2 bit 

flips that don’t violate underlying problem structure, random (undirected global) search: Everything 

else. 

                                                            


