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Abstract

We study the characterization of the identified set of parameters in infinite time horizon
dynamic games, with only imposing weak assumptions on the information structure. In
particular, we impose an assumption on the minimum amount of information the agents
have about the payoff types. Our goal is to obtain a sharp identified set of parameters
consistent with the observed distribution of actions and the minimum amount of potentially
available information. We characterize the sharp identified set by extending the notion
of Bayes Correlated Equilibrium in Bergemann and Morris (2016) to a dynamic setting.
We propose a tractable estimation method building on this characterization result. Monte
Carlo exercises demonstrate that our structural parameter estimates are inconsistent when
the information structures on payoff types are misspecified. We then show that the identified
sets obtained by the proposed approach contain the true parameter values without specifying
the information structure on payoff types.
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1 Introduction

Dynamic games are essential tools in empirical industrial organization, e.g., entry/exit model
and capacity competition model (Aguirregabiria et al., 2021). Dynamics matter because firms
canmake entry, exit, or change of production capacity decisions potentially every period, and the
costs of these options naturally depend on their past choices or current states. A common strategy
for solving dynamic games is to impose a simple information structure. Agent draws additively
separable i.i.d. payoff types every period, which is supposed to be the only private information.
The simple information structure enables researchers to solve dynamic games by solving many
independent single-agent dynamic discrete choice problems. Structural parameters are then
estimated to match the implied probabilities of taking actions conditional on payoff-relevant
states to those in the data.

We propose a framework for estimating the structural parameters of dynamic games, leaving
the information structure on payoff types unspecified. The information structure covers the cases
where players know their payoff types and may receive signals that inform them about others’
payoff types. In static games,Magnolfi andRoncoroni (2022) estimates the structural parameters,
leaving the information structure unspecified. We extend their framework to dynamic games.
We adopt Markov Perfect Bayesian Nash Equilibrium (MPBNE, Aguirregabiria et al., 2021), as
an equilibrium concept, but with a general information structure on payoff types. We assume
that, for the true structural parameters and information structure, 1) at least one equilibrium
exists, and 2) a single stationary MPBNE play generates the data.

We develop a sharp identified set of the structural parameters for dynamic games, where
we leave the information structure on payoff types unspecified in constructing the identified
set. To make the approach computationally tractable, we introduce Markov Perfect Bayes
Correlated Equilibrium (MPBCE) by adopting the notion of Bayes Correlated Equilibrium
(BCE, Bergemann and Morris, 2013, 2016) to dynamic games, restricting agents’ strategies to
Markov strategies. We show that the sharp identified set under weak assumptions on payoff
type information can be obtained by instead computing the identified set under MPBCE. In
static games, Magnolfi and Roncoroni (2022) shows that the sharp identified set under weak
assumptions on information can be obtained by calculating the identified set under BCE. The
idea of our proof is analogous to Magnolfi and Roncoroni (2022) except that we need to
deal with the terms associated with the continuation value. An additional piece we need to
show there is the equality of the continuation value implied by the MPBCE and that of the
corresponding MPBNE, which follows using Bergemann and Morris (2016)’s approach of
selecting an information structure and an MPBNE strategy profile so that the joint distribution
of actions and payoff types are the same as that of MPBCE.

We convert the problem of calculating the sharp identified set under weak assumptions on
payoff type information to computing the identified set under MPBCE because it is impractical
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to solve for the MPBNE with various information structures on payoff types. In static games, the
identified set under BCE can be calculated using linear programming (Magnolfi and Roncoroni,
2022). However, in our case, the continuation value, which involves the expected values of
payoff types conditional on the actions chosen, complicates the situation. The linear constraints
in Magnolfi and Roncoroni (2022) become quadratic constraints in our case. The quadratic
constraints make the problem intractable because the problem of solving a system of equations
with many non-convex quadratic constraints is NP-hard in general (Park and Boyd, 2017). We
devise a constrained minimization problem that can be solved using linear programming by
adding nuisance parameters for the values of the expected values of payoff types conditional on
states.

In Monte Carlo experiments with a duopoly capacity competition game, we demonstrate
that our structural parameter estimates are inconsistent when the information structures are
misspecified. We use a simplified version of the quantity competition model in Besanko and
Doraszelski (2004). There are two firms in a market of homogeneous products. Firms choose
the next period’s production capacity between “low” and “high” for each period, where changing
the capacity from the current period is costly. Firms want to avoid their capacity to be both
high because the competitive market results in a low product price, hurting their profits. Thus,
when firms have a signal about their competitor, they try to avoid choosing high capacity if
the competitor is likely to choose high capacity. Consequently, there would be an upward bias
in the parameter estimate of the upgrading cost when we assume that firms only know their
payoff types, but the truth is they have the opponent’s payoff type information. We need to set
the parameter value for the upgrading cost to be high to justify the observed firm choices of
avoiding increasing their capacity because of the information about the opponent’s payoff types.
In contrast, the identified sets obtained by the proposed approach contain the true parameter
values without specifying the information structure on payoff types.

Our research contributes to the literature on estimating dynamic games in empirical indus-
trial organization. There is an extensive literature of estimating static games with a specific
information structure (e.g., Bresnahan and Reiss, 1991; Berry, 1992; Tamer, 2003; Rysman,
2004; Bajari et al., 2010), and, recently, several researchers started to discuss about “weak
assumptions on information” in static games (Magnolfi and Roncoroni, 2022; Syrgkanis et al.,
2021; Bergemann et al., 2022). Similarly in dynamic games, researchers have been estimated
dynamic games with a specific information structure on payoff types (e.g., Rust, 1994; Ericson
and Pakes, 1995; Pakes et al., 2007; Aguirregabiria and Mira, 2007; Bajari et al., 2007; Gallant
et al., 2018). We aim to start the discussion of weak assumptions on information in dynamic
games. We note that our research is different from those that estimate dynamic games with other
equilibrium concepts to reduce computational burden (Weintraub et al., 2008; Benkard et al.,
2015; Ifrach and Weintraub, 2016) or to relax the assumption of Markov strategy (Fershtman
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and Pakes, 2012; Aguirregabiria and Magesan, 2019).

2 Model

2.1 Dynamic Games With Information Structure on Payoff Shocks

We consider discrete time and infinite time horizon dynamic games. Game is played by a
finite set of players indexed by i = 1, 2, . . . , N . The following primitives, which we formally
introduce below, are the same across markets and periods: the number of players N ; set of
actions of all players A; set of states of all players X ; flow payoff function π̄; discount factor β;
information structure on payoff types S; joint distribution of private payoff types for all players
Fε; and state transition function given all players’ actions G. The game structure is common
knowledge among players.

Every period t = 1, 2, . . . , player i observes the state sit and chooses an action ait from a
finite set Ai = {1, . . . , Ai} to maximize the expected discounted payoff:

Et

[
∞∑
τ=0

βτ π̄(at+τ , sit+τ )

∣∣∣∣∣ ait, sit
]
,

where π̄(·) is the flow payoff function, at = (a1t, . . . , aNt) ∈ A = {A1, . . . , AL}, L < ∞ is a
vector of actions for all players, and β ∈ [0, 1) is a discount factor.

Player’s state sit contains three elements: observable public states xt, unobservable pri-
vate payoff types εit, and unobservable private signals zit. Observable public states xt =

(x1t, . . . , xNt) ∈ X = {X1, . . . , XK}, K < ∞, include the observable states for all players.
Unobservable private payoff types for player i at time t are denoted as εit = (ε1,i,t, . . . , εA,i,t).
Unobservable private payoff types for all players εt = (ε1t, . . . , εNt) ∼ Fε(ε; θε) are i.i.d. across
markets and periods, where E is the support of εt, and the cdf Fε(ε; θε) is parameterized by a
finite dimensional vector θε ∈ Θε.

Public states xt and private payoff types εit enter into the payoff function, and the payoff
function is additively separable in the payoff types:

π̄(at, sit) = π(at, xt) + εait,i,t.

The payoff function net of payoff types, π(at, xt; θπ), is parameterized by a finite dimensional
vector θπ ∈ Θπ. We do not consider the additive separability assumption necessary for the
characterization result, but it makes the estimation procedure more manageable.

Unobservable private signals for player i at time t are denoted as zit ∈ Zi. The signals are
intended to cover the cases where the players know their payoff types and may receive noisy
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signals that inform them about the others’ payoff types. Thus, we restrict the possible values
of zit, Zi, to a set of vectors that contain εit as the first element, i.e., zit = (εit, z̃it), where
z̃it ∈ Z̃i is a component of the signal that may inform the player i about the opponents’ payoff
type. The possible values of z̃it, Z̃i, determines the possible values of zit as Zi = E × Z̃i.
Signals z̃it for all players z̃t = (z̃1t, . . . , z̃Nt) ∈ Z̃ =×N

i=1
Z̃i are created from a fixed function

Z̃ : X × E 7→ ∆(Z̃), where ∆(Z̃) is the all possible distributions over Z̃ . We denote the
conditional distribution of players’ signals z̃t given the public states xt and private payoff types
εt as Z̃(z̃t|xt, εt). The conditional distribution Z̃(·|xt, εt) determines the conditional distribution
of unobserved private signals for all players zt = (z1t, . . . , zNt) ∈ Z =×N

i=1
Zi given (xt, εt)

since the first element of each unobserved private signal is deterministic given the payoff types:

Z(zt|xt, εt) = Z(eit, z̃it|xt, εt)

= 1(eit = εit)Z̃(z̃t|xt, εt),

where we denote the conditional distribution of players’ signals zt given the public states xt and
private payoff types εt as Z(zt|xt, εt).

Information structure on payoff types S is formally defined as S = (Z, Z), and the set S
contains all such information structures that give players their payoff types as the first element
of the signals. Players take their signals zit into account in their strategy, although the signals
do not directly enter into the payoff function.

For instance, the set of information structure on payoff typesS defined here includes perfectly
private information S, complete information S, and privileged information SP . Perfectly private
information is the case where players only know their own payoff types: for all i and t,

zit = εit with probability 1.

Perfectly private information is commonly adopted in the estimation of dynamic games.
Complete information is the case where payoff types of all players are observed by them: for

all i and t,

zit = εt with probability 1.

Gallant et al. (2018) adopts complete information in their estimation of dynamic games of
generic drug industry.

Privileged information is the case where some players i ∈ N p know their opponents’ type:
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for all t,

zit =

εt i ∈ N p

εit i 6∈ N p
with probability 1.

The examples above allow players to know their opponents’ payoff types for sure if they can. We
can also think of various information structures on payoff types that convey noisy information
about their opponents’ payoff types to the players.

Example. (Duopoly capacity competition model) We use a simplified version of the quantity
competition model in Besanko and Doraszelski (2004) throughout the paper. There are two
players or firms i = 1, 2 in a market of homogeneous products. Firms choose next period’s
production capacity between “low” (ait = 1) and “high” (ait = 2) for each period. Hence,
the action space is A = {(a1, a2) : (low,low), (low,high), (high,low), (high,high)}. The state
xt is the firms’ current capacities, which is determined by their previous choice, xt = at−1 =

(a1t−1, a2t−1). We denote firm i’s opponent firm as −i in what follows.
The flow payoff for firm i at time t is

π̄it = ptait−1 − C(ait−1, ait) + εait,i,t,

where pt is the price of the homogeneous product determined by the inverse demand function

pt = b0 − b1(a1t−1 + a2t−1),

the adjustment cost function C is defined as

C(ait−1, ait) =


0 if ait−1 = ait

c12 if ait−1 < ait

c21 if ait−1 > ait

,

and the cost shocks εa,i,t ∈ E0, |E0| <∞ are, for all e ∈ E0,

Pr(εa,i,t = e) = θεe ∈

{
θεe ∈ (0, 1] :

∑
e∈E0

θεe = 1

}
for all a, i, and t.

The support of εt is E = (E0)2×2.
Thus, given competitor’s state a−it−1, the flow payoff can be rewritten as:

π̄it = b0ait−1 − b1a2it−1 − b1ait−1a−it−1 − C(ait−1, ait) + εait,i,t
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or

πit(at, xt) = πit(a1t, a2t, a1t−1, a2t−1) = b0ait−1 − b1a2it−1 − b1ait−1a−it−1 − C(ait−1, ait).

The competitor’s action a−it is not included in i’s flow payoff in this example.
The payoff parameters are θπ = (b0, b1, c12, c21) and the payoff type distribution parameters

are θε = {θεe}e∈E0 . We prespecify the discount factor to be β = 0.75 and set the true parameter
values to be (b0, b1, c12, c21) = (10, 2.2, 2.9, 2.1), E0 = {1, 3, 6, 10}, and (θε1, θε3, θε6, θε10) =

(0.3, 0.3, 0.3, 0.1) in the Monte Carlo simulations below. We focus on estimating upgrade cost
c12, assuming the other parameters fixed at the true values.

We consider three information structures on payoff types. The first is perfectly private
information S, where firms only know their own payoff types: for i = 1, 2,

zit = εit with probability 1.

The second is complete information S, where payoff types of all firms are observed by them:
for i = 1, 2,

zit = (εit, ε−i,t) with probability 1.

The third is privileged information SP , where player i = 1 knows i = 2’s payoff types:

zit =

(εit, ε−i,t) i = 1

εit i = 2
with probability 1.

If the firms happen to choose high capacity simultaneously, their profits dramatically decrease
in our parameter specification. Thus, the firms try to avoid upgrading when the opponent is
likely to upgrade if they have the opponent’s payoff type information. Consequently, when we
assume firms only know their payoff types, the upgrade cost estimate needs to be high to justify
firms avoiding upgrading because of the opponent’s payoff type information. Therefore, we
expect an upward bias when we assume firms only know their payoff types, but the truth is they
have the opponent’s payoff type information.

2.2 Strategy and Equilibrium

The timing of the game is

1. Agents privately observe zit = (εit, z̃it) and publicly observe xt.

2. Agents simultaneously choose actions ait.
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3. Period payoffs realize π̄(at, xt, εit).

4. State evolves according to Fx,ε(xt+1, εt+1|at, xt, εt) = G(xt+1|at, xt)Fε(εt+1),

where G(xt+1|at, xt) is the probability of transitioning to state xt+1 from the current state xt
given the actions of the players at.

We restrict players’ strategy to pure Markov strategies σi : X ×Zi 7→ Ai and adopt Markov
Perfect Bayesian Nash Equilibrium (MPBNE) as a solution concept. We slightly modify the
standard notion of MPBNE to accomodate the signals. We define the alternative specific value
function Vait(xt, zit) as

Vait(xt, zit)

=

∫
Z−i

∑
a−it∈A−i

{
πi(at, xt, εit) + β

∫
X
Vi(xt+1)dG(xt+1|xt, at)

}{∏
j 6=i

σj(ajt|xt, zjt)

}
dZ(z−it|xt, zit),

where the value function Vi(xt) solves the integrated Bellman equation:

Vi(xt) =

∫
E

∫
Zi

{
max
ait

Vait(xt, zit)

}
dZ(zit|xt, εt)dFε(εt).

A strategy profile σ = (σ1, . . . , σN) is an MPBNE of game G(θ, S), if, for every i, t, xt, and
zit and ait ∈ A with σi(ait|xt, zit) > 0, then:

Vait(xt, zit) ≥ Va′it(xt, zit),∀a
′
it ∈ A.

Player i’s policy function is the action that takes the maximum of the alternative specific value
function Vait(xt, zit),

σi(ait|xt, zit) = arg max
ait

Vait(xt, zit).

We neither discuss the existence nor uniqueness conditions of dynamic games with a general
information structure on payoff types under the MPBNE.
Example. (Duopoly capacity competition model) Firms have pure Markov strategies

σi(ait|xt, zit) = σi(ait|ait−1, a−it−1, zit)

to decide actions ait given the players’ previous actions and the signals they receive. The
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alternative specific value function is

Vait(xt, zit)

=

∫
Z−i

∑
a−it∈A−i

{
πi(at, xt, εit) + β

∫
X
Vi(xt+1)dG(xt+1|xt, at)

}{∏
j 6=i

σj(ajt|xt, zjt)

}
dZ(z−it|xt, zit)

=
∑

z−it∈Z−i

∑
a−it∈A−i

{πi(ait, xt) + εait,i,t + βVi(at)}σ−i(a−it|z−it, xt)Z(z−it|xt, zit)

= πi(ait, xt) + εait,i,t + β
∑

z−it∈Z−i

∑
a−it∈A−i

Vi(at)σ−i(a−it|z−it, xt)Z(z−it|xt, zit),

where the integrated Bellman equation is

Vi(xt) =
∑

εt∈E2×2
0

∑
zit∈Zi

{
max
ait∈Ai

Vait(xt, zit)

}
Z(zit|xt, εt)F (εt).

3 Identification

3.1 MPBNE Predictions

Parameter θ and information structure on payoff types S characterize game G(θ, S). Denote
the set of all MPBNE strategy profiles for G(θ, S) as MPBNE(θ, S). An equilibrium σ ∈
MPBNE(θ, S) induces joint conditional choice probability (CCP) predictions for all observable
states x ∈ X :

qσ(a|x) =

∫
E

∫
Z

(
N∏
i=1

σi(ai|x, zi)

)
dZ(z|x, ε)dFε(ε).

We define the MPBNE predictions as the set of predictions induced by all equilibria of the game
G(θ, S):

QMPBNE
θ,S = {{q(·|x) ∈ ∆(A)}x∈X : ∃σ ∈ MPBNE(θ, S) such that,∀x, q(·|x) = qσ(·|x)},

where ∆(A) is the all possible distributions over the possbile values of players’ actions A.

3.2 Sharp Identified Set

We study the identified set for parameters θ from data on actions a and observable states x.
Payoff types ε are unobservable to the econometrician. The setup is summarized in Assumption
1.

Assumption 1 (Observables). The econometrician observes the joint conditional choice prob-
abilities (CCPs) given observable states, P (a|x), for all actions a ∈ A and observable states
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x ∈ X .

We assume that, for the true payoff parameters θ0 ∈ Θ and true information structure on
payoff types S0 ∈ S, 1) at least one equilibrium in MPBNE(θ0, S0) exists, and 2) the data are
generated by a single stationary MPBNE play in game G(θ0, S0). The properties of the data
generating process are summarized by Assumption 2.

Assumption 2 (Data generating process). The set MPBNE(θ0, S0) is non-empty and actions a
are generated by a single stationary MPBNE play of the game G(θ0, S0), so that {P (·|x)}x∈X ∈
QMPBNE
θ0,S0

.

Given the link between the game-theoretic model predictions and observables, we want to
recover θ0 without knowing (nor attempt to recover) the true information structure on payoff
types S0. Under Assumptions 1 and 2, the sharp identified set under weak assumptions on payoff
type information, ΘMPBNE

I (S), is a set of parameters θ that yields joint CCP predictionsQMPBNE
θ,S

that matches the observed joint CCPs {P (·|x)}x∈X for some S ∈ S:

ΘMPBNE
I (S) =

{
θ ∈ Θ : ∃S ∈ S such that {P (·|x)}x∈X ∈ QMPBNE

θ,S

}
.

Set ΘMPBNE
I (S) captures all the restrictions on parameters implied by assuming players know

at least their own payoff types.
The prevalent approach in the literature on the estimation of dynamic games is to prespecify

information structure S ′ and collect parameters θ that yield MPBNE predictions QMPBNE
θ,S′ that

matches the observed joint CCPs:

ΘMPBNE
I (S ′) =

{
θ ∈ Θ : {P (·|x)}x∈X ∈ QMPBNE

θ,S′

}
.

This approach may yield inconsistent estimators when the information structure is misspecified,
i.e., the prespecified information structure S ′ is not the same as the true information structure
S0.

3.3 Markov Perfect Bayes Correlated Equilibrium (MPBCE)

Consider the perfectly private information structure on payoff types S, where players only know
their own payoff types. Let ∆(A× E) be the all possible distributions over the possbile values
of players’ actions and payoff types A × E . Markov Perfect Bayes Correlated Equilibrium
(MPBCE) for game G(θ, S) is a set of conditional distributions φ = {φ(·|x) ∈ ∆(A× E)}x∈X
that is
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1. Consistent with the prior: for all ε ∈ E and x ∈ X ,

∑
a∈A

∫
e≤ε

φ(a, e|x)de =

∫
e≤ε

dFε(e).

2. Incentive compatibile: for all i, t, ait ∈ Ai, aoit ∈ Ai, εit ∈ Ei, and xt ∈ X ,∫
E−i

∑
a−it∈A−i

(
vφi (ait, a−it, εit, xt)− vφi (aoit, a−it, εit, xt)

)
φ(ait, a−it, εt|xt)dε−i ≥ 0,

where

vφi (ait, a−it, εit, xt) = πi(ait, a−it, xt) + εait,i,t + β

∫
X
V φ
i (xt+1)dG(xt+1|xt, at)

and V φ
i (·) is a value function implied by the MPBCE φ as we formally introduce below.

Denote the set of all MPBCE as MPBCE(θ).
An equilibrium φ ∈ MPBCE(θ) induces joint CCP predictions for all x ∈ X :

qφ(a|x) =

∫
E
φ(a, ε|x)dFε(ε).

The set of predictions implied by MPBCE(θ) is defined as

QMPBCE
θ = {{q(·|x) ∈ ∆(A)}x∈X : ∃φ ∈ MPBCE(θ) such that,∀x, q(·|x) = qφ(·|x)}.

The identified set under MPBCE is defined as

ΘMPBCE
I =

{
θ ∈ Θ : {P (·|x)}x∈X ∈ QMPBCE

θ

}
.

We show that the incentive compatibility constraints are quadratic constraints for φ given the
joint CCPs {P (·|x)}x∈X from the data. We introduce the following vector and matrix notations

11



to proceed: for X ∈ X , X1, . . . , XK ∈ X , A ∈ A, and A1, . . . , AL ∈ A,

G(X,A) = (G(X1|X,A), . . . , G(XK |X,A))>,

V φ
i = (V φ

i (X1), . . . , V
φ
i (XK))>,

PX = (P (A1|X), . . . , P (AL|X))>,

ΠX
i = (πi(A1, X), . . . , πi(AL, X))>,

Eφ,X
i = (Eφ[εai,i|a = A1, x = X], . . . , Eφ[εai,i|a = AL, x = X])>,

ΓX = (Pr(x′ = X1|x = X), . . . ,Pr(x′ = XK |x = X))>,

Γ =


(ΓX1)>

...
(ΓXK )>

 , and

Mφ
i = ((PX1)>(ΠX1

i + Eφ,X1

i ), . . . , (PXK )>(ΠXK
i + Eφ,XK

i ))>.

Then, the value function V φ
i (·) is determined by the integrated Bellman equation under the

assumption of the perfectly private information S:

V φ
i (·|x) =

∫
E

max
ai∈A

{
πi(ai, a−i, x) + εai,i + β

∫
X
V φ
i (x′)dG(x′|x, ai, a−i)

}
dFε(εi)

=

∫
E

max
ai∈A

{
πi(ai, a−i, x) + εai,i + βG(x, a)>V φ

i

}
dFε(εi)

= (P x)>(Πx
i + Eφ,x

i + βG(x, a)>V φ
i )

= (P x)>(Πx
i + Eφ,x

i ) + β(Γx)>V φ
i .

Hence, by stacking the integrated Bellman equations for all x ∈ X , we get

V φ
i = Mφ

i + βΓV φ
i ⇐⇒ V φ

i = (I − βΓ)−1Mφ
i .

Note that I − βΓ is invertible as follows. Since Γ is a stochastic matrix, the largest eigenvalue
of Γ is smaller than or equal to one. The eigenvalues of I − βΓ are given by 1− βγ, where γs
are the eigenvalues of Γ. Thus, we have 1− βγ > 0 since 0 < β < 1 and γ ≤ 1, which implies
that I − βΓ is invertible.

Additionally, observe that

Mφ
i = ((PX1)>(ΠX1

i + Eφ,X1

i ), . . . , (PXK )>(ΠXK
i + Eφ,XK

i ))>

= ((PX1)>ΠX1
i + Eφ[εai,i|x = X1], . . . , (P

XK )>ΠXK
i + Eφ[εai,i|x = XK ])>,
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where

Eφ[εai,i|x = X] =
∑
ε∈E

∑
a∈A

εai,iφ(ai, a−i, εi, ε−i|X).

Therefore, we have shown that vφi (ait, a−it, εit, xt) can be expressed as a linear combination of
φ and conclude that the incentive compatibility constraints are quadratic constraints for φ.

3.4 Robust Prediction Property of MPBCE

We show that the robust prediction property of BCE (Bergemann and Morris, 2016) can be
translated into the dynamic games in our setting. Let q be a shorthand notation for {q(·|x)}x∈X .

Lemma 1. For all θ ∈ Θ,
1. If q ∈ QMPBCE

θ , then q ∈ QMPBNE
θ,S for some S ∈ S.

2. Conversely, for all S ∈ S, QMPBNE
θ,S ⊆ QMPBCE

θ .

The idea of the proof is the same as Bergemann and Morris (2016) except that we need to
deal with the continuation value. The continuation value complicates the proof of part 1 of
Lemma 1. An additional piece we need to show there is the equality of the value function of
the MPBNE σ, Vi, and the value function of the MPBCE φ, V φ

i , which follows because we are
selecting the information structure on payoff types and MPBNE strategy so that the resulting
joint distribution of actions and payoff types conditional on states is the same as that of the
MPBCE.

Proof. 1. Consider q ∈ QMPBCE
θ . Then, ∃φ ∈ MPBCE(θ) such that q = qφ. The goal is to

show that ∃S ∈ S, ∃σ such that qσ = qφ and qσ ∈ QMPBNE
θ,S . Take any x ∈ X . Construct S so

that Z̃ = A and Z̃ is a probability kernel
{
Z̃(·|x, ε) : ε ∈ E

}
such that

∫
E

Z̃(a|x, ε)dFε(ε) = φ(a,E|x), ∀E ∈
{
E ∈ B(E) :

∫
E

dFε > 0,∀a ∈ A
}
.

Also, ∀εi,∀z̃i, take

σi(ai|x, εi, z̃i) =

1 ai = z̃i

0 ai 6= z̃i
.
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We first show that qσ = qφ under these S and σ. For all a ∈ A,

qσ(a|x) =

∫
E

∫
Z̃

(
N∏
i=1

σi(ai|x, εi, z̃i)

)
dZ̃(z̃|x, ε)dFε(ε)

=

∫
E
Z̃(a|x, ε)dFε(ε)

=

∫
E
φ(a, ε|x)dε

= qφ(a|x).

We next show that the incentive compatibility conditions of MPBCE guarantee that such σ
is an MPBNE of G(θ, S) given qσ = qφ. For σi(ai|x, εi, z̃i) > 0 or z̃i = ai,

Vai(x, zi)− Vaoi (x, zi)

=

∫
Z−i

∑
a−i∈A−i

(vi − voi )

(∏
j 6=i

σj(aj|x, zj)

)
dZ(z−i|x, zi)

=

∫
E−i

∫
Z̃−i

∑
a−i∈A−i

(vi − voi )

(∏
j 6=i

σj(aj|x, εj, z̃j)

)
dZ̃(z̃−i|x, εi, ε−i, z̃i)dFε−i

(ε−i|x, εi, z̃i)

=

∫
E−i

∑
a−i∈A−i

(vi − voi )Z̃(a−i|x, εi, ε−i, z̃i)dFε−i
(ε−i|x, εi, z̃i)

=

∫
E−i

∑
a−i∈A−i

(vi − voi )Z̃(a−i|x, εi, ε−i, ai)dFε−i
(ε−i|x, εi, ai)

=

∫
E−i

∑
a−i∈A−i

(vi − voi )φ(a−i, ε−i|ai, εi, x)dε−i,

where

vi = vi(ai, a−i, εi, x) = πi(ai, a−i, x) + εai,i + β

∫
X
Vi(x

′)dG(x′|x, ai, a−i) and

voi = vi(a
o
i , a−i, εi, x).

So, if Vi = V φ
i holds, then vi(ai, a−i, εi, x) = vφi (ai, a−i, εi, x) and Vai(x, zi) − Vaoi (x, zi) ≥ 0

follow by the incentive compatibility conditions of MPBCE. Notice that the alternative specific
value function under the current S and σ is

Vai(x, zi) =

∫
Z−i

∑
a−i∈A−i

vi(ai, a−i, εi, x)

{∏
j 6=i

σj(aj|x, zj)

}
dZ(z−i|x, zi)

=

∫
E−i

∑
a−i∈A−i

vi(ai, a−i, εi, x)φ(a−i, ε−i|ai, εi, x)dε−i
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for z̃i = ai. Thus, the integrated Bellman equation is

Vi(x) =

∫
E

∫
Zi

{
max
ai

Vai(x, zi)

}
dZ(zi|x, ε)dFε(ε)

=

∫
E
Vai(x, εi, ai)Z̃(ai|x, ε)dFε(ε)

=

∫
E


∫
E−i

∑
a−i∈A−i

vi(ai, a−i, εi, x)φ(a−i, ε−i|ai, εi, x)dε−i

 Z̃(ai|x, ε)dFε(ε)

=

∫
E

∑
a−i∈A−i

vi(ai, a−i, εi, x)φ(a−i|ai, εi, x)φ(ai, ε|x)dε

=

∫
Ei

∫
E−i

∑
a−i∈A−i

vi(ai, a−i, εi, x)φ(a−i|ai, εi, x)φ(ai, εi, ε−i|x)dε−idεi

=

∫
Ei

∑
a−i∈A−i

vi(ai, a−i, εi, x)φ(a−i|ai, εi, x)φ(ai, εi|x)dεi

=

∫
Ei

∑
a−i∈A−i

vi(ai, a−i, εi, x)φ(ai, a−i, εi|x)dεi

=

∫
Ei

∫
E−i

∑
a−i∈A−i

vi(ai, a−i, εi, x)φ(ai, a−i, εi, ε−i|x)dε−idεi

=

∫
E

∑
a−i∈A−i

vi(ai, a−i, εi, x)φ(a, ε|x)dε

= (qσ(x))>(Πx
i + Eφ,x

i + βG(x, a)>Vi).

As qσ = qφ, the value function of the MPBNE σ, Vi, equals the value function of the MPBCE
φ, V φ

i . Therefore, σ is an MPBNE of G(θ, S).
2. Consider q ∈ QMPBNE

θ,S . Then, ∃σ ∈ MPBNE(θ, S) such that q = qσ. Choose
φ ∈ MPBCE(θ) as

φ(a,E|x) =

∫
E

∫
Z̃

(
N∏
i=1

σi(ai|x, εi, z̃i)

)
dZ̃(z̃|x, ε)dFε(ε),

for all a ∈ A, E ∈ B(E), and x ∈ X . Then, for all a ∈ A and x ∈ X ,

qσ(a|x) =

∫
E

∫
Z̃

(
N∏
i=1

σi(ai|x, εi, z̃i)

)
dZ̃(z̃|x, ε)dFε(ε)

=

∫
E
φ(a, ε|x)dε

= qφ(a|x).

15



Thus,

q = qσ = qφ ∈ QMPBCE
θ .

3.5 Characterization Result

We characterize the sharp identified set under weak assumptions on payoff type information
using an identified set under MPBCE. The following proposition shows that the sharp identified
set under weak assumptions on payoff type information can be obtained by instead computing
the identified set under MPBCE. The idea of the proof of using the robust prediction property
of MPBCE in Lemma 1 is analogous to Magnolfi and Roncoroni (2022).

Proposition 1. Under Assumptions 1 and 2, ΘMPBCE
I = ΘMPBNE

I (S), which implies that the
identified set under MPBCE contains the true parameter value, θ0 ∈ ΘMPBCE

I .

Proof. Prove ΘMPBNE
I (S) ⊆ ΘMPBCE

I : Consider θ ∈ ΘMPBNE
I (S). Then, ∃S ∈ S such that

{P (·|x)}x∈X ∈ QMPBNE
θ,S . Lemma 1 yields QMPBNE

θ,S ⊆ QMPBCE
θ , which implies θ ∈ ΘMPBCE

I .
Prove ΘMPBCE

I ⊆ ΘMPBNE
I (S): Consider θ ∈ ΘMPBCE

I . Then, ∃φ such that qφ ∈ QMPBCE
θ .

Lemma 1 yields, ∃S ∈ S, qφ ∈ QMPBNE
θ,S , which implies θ ∈ ΘMPBNE

I (S).
Prove θ0 ∈ ΘMPBCE

I : By Assumption 2, {P (·|x)}x∈X ∈ QMPBNE
θ0,S0

. Additionally, Lemma 1
yields QMPBNE

θ0,S0
⊆ QMPBCE

θ0
, which implies θ0 ∈ ΘMPBCE

I .

4 Monte Carlo Simulation Results

In Monte Carlo simulation exercises, we use the duopoly capacity competition model with the
three information structures on payoff types: perfectly private information S, complete infor-
mation S, and privileged information SP . We set the structural parameters (b0, b1, c12, c21) =

(10, 2.2, 2.9, 2.1), E0 = {1, 3, 6, 10}, and (θε1, θε3, θε6, θε10) = (0.3, 0.3, 0.3, 0.1). For each of
the information structures, we simulate the joint CCPs from the duopoly capacity competition
model using a joint value function iteration approach as follows.

1. Start from guesses about firm i’s value function V 0
i (ai, a−i) and firm −i’s value function

V 0
−i(a−i, ai) and strategy σ0

−i(a
′
−i|a−i, ai, z−i).
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2. For r = 0, 1, . . . , update firm i’s value function:

V r+1
i (ai, a−i) =

∑
ε∈E2×2

0

∑
zi∈Zi

max
a′i∈{1,2}

πi(a′i, ai, a−i) + εa′i,i

+ β
∑

z−i∈Z−i

∑
a′−i∈{1,2}

V r
i (a′i, a

′
−i)σ

r
−i(a

′
−i|a−i, ai, z−i)Z(z−i|ai, a−i, zi)


×Z(zi|ai, a−i, εi, ε−i)F (ε).

3. Update firm i’s policy function:

σr+1
i (a′i|ai, a−i, zi) = 1

a′i = arg max
a∈{1,2}

πi(a, ai, a−i) + εa,i

+ β
∑

z−i∈Z−i

∑
a′−i∈{1,2}

V r+1
i (a, a′−i)σ

r
−i(a

′
−i|a−i, ai, z−i)Z(z−i|ai, a−i, zi)


 .

4. Update firm−i’s value functionV r+1
−i (a−i, ai) usingV r+1

i (ai, a−i) and σr+1
i (a′i|ai, a−i, zi).

5. Update firm−i’s policy functionσr+1
−i (a′−i|a−i, ai, z−i) usingV r+1

−i (a−i, ai) andσr+1
i (a′i|ai, a−i, zi).

6. Iterate until max{‖V r+1
i − V r

i ‖, ‖V r+1
−i − V r

−i‖} < tol, where ‖ · ‖ is a max norm and tol
is set to 1.0× 10−15.

7. Calculate jointCCPs from thefinal policy functionσi(a′i|ai, a−i, zi) andσ−i(a′−i|a−i, ai, z−i)
obtained from the iteration:

P (a′i, a
′
−i|ai, a−i)

=
∑
ε∈E2×2

0

∑
z−i∈Z−i

∑
zi∈Zi

σi(a
′
i|ai, a−i, zi)σ−i(a′−i|a−i, ai, z−i)Z(zi, z−i|ai, a−i, εi, ε−i)F (ε).

Table 1 tabulates the simulated joint CCPs for the three information structures on payoff
types. The firms avoid the actions being both high (High/High) when they have signals on
the opponent’s payoff types. For example, for a state with both firms having a low capacity
(Low/Low), the probability of the firms with perfectly private information S both selecting high
capacity is 13%, while that with complete information S is 3%.

We focus on estimating upgrade cost c12, assuming the other parameters are fixed at the true
values. We calculate identified sets for the upgrade cost c12 1) under the MPBNE with prespec-
ified information structures and 2) under the MPBCE. The identified sets under the MPBCE
correspond to the sharp identified sets under weak assumptions on payoff type information.
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4.1 Identified Set Under MPBNE With Prespecified Information Struc-
ture

We calculate identified sets for upgrade cost c12 under the MPBNE with three prespecified
information structures: perfectly private information S ′ = S, complete information S ′ = S,
and privileged information S ′ = SP . Given a candidate parameter value for θ, we calculate the
joint CCP predictions qσ(a|x; θ) using the joint value function iteration approach above. We
then collect parameters θ that yields joint CCP predictions qσ(a|x; θ) that matches the observed
joint CCPs P (a|x) best in terms of L1-norm:

ΘMPBNE
I (S ′) = arg min

θ

∑
x∈X

∑
a∈A

|P (a|x)− qσ(a|x; θ)|.

We search for the parameter space of upgrade cost c12 from 0 to 6 in 0.01 increments,
{0.00, 0.01, 0.02, . . . , 5.98, 5.99, 6.00}.

We note that we can only get at most one MPBNE prediction for each parameter value using
this approach. We need to obtain all possible MPBNE predictions for each parameter value for
a complete analysis. Additionally, we observe that MPBNE does not exist for some parameter
values. Thus, care must be taken in interpreting the results. We plan to update the way of
solving the identified set under the MPBNE to incorporate the possibility of multiple equilibria.
For instance, Bajari et al. (2007)’s approach can handle the possibility of multiple equilibria.

Table 2 shows the identified sets under the MPBNE with three prespecified information
structures. Three identified sets are calculated for each of the three data generating processes
with different information structures. The three diagonal elements are the identified sets when
the information structures are correctly specified. The identified sets in the diagonal contain true
parameter value 2.90: perfectly private information S, [2.32, 2.98]; complete information S,
[2.69, 3.09]; and privileged information SP , [2.78, 3.14]. In contrast, the first row demonstrates
that there is an upward bias when we assume perfectly private information S, but the true
information structure gives firms signals about their opponent’s payoff types: e.g., the identified
set is [3.45, 3.50] when we assume perfectly private information S, but the truth is complete
information S.

4.2 Identified Set Under MPBCE

We calculate identified sets for the upgrade cost c12 under theMPBCE or the sharp identified sets
under weak assumptions on payoff type information. The linear constraints for BCE in Magnolfi
and Roncoroni (2022) become quadratic constraints for MPBCE in our case. The quadratic
constraints make the problem intractable because the problem of solving a system of equations
with many non-convex quadratic constraints is NP-hard in general (Park and Boyd, 2017).
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Furthermore, the convexification idea of Magnolfi and Roncoroni (2022) does not work since
the conversion of three or more non-convex quadratic constraints to computationally tractable
form requires restrictive conditions or is not possible (Yildiran, 2009; Dey et al., 2021).

However, the constraints are linear in MPBCE φ given the expected values of payoff types
conditional on states, E[εai,i|x = Xk] = ξk for all k = 1, . . . , K. Thus, we introduce ξ =

(ξ1, . . . , ξK)> as additional nuisance parameters and search ξ so that they justify the estimated
MPBCE φ with small errors s = (s1, . . . , sK)>:

∀k,

∣∣∣∣∣∑
ε∈E

∑
a∈A

εai,iφ(ai, a−i, ε|Xk)− ξk

∣∣∣∣∣ ≤ sk.

We discretize the support of payoff types E to a finite dimension if the support is infinite.
Let r = (r1, . . . , rK)> and λ > 0 be a coefficient that controls the penalty on the approximation
errors of the expected values of payoff types conditional on states relative to that on the joint
CCPs. Given θ, we solve

Q(θ) = min
ξ

(
min
φ,q,r,s

K∑
k=1

rk + λ
K∑
k=1

sk

)

subject to:

∀a, x, q(a|x) =
∑

ε∈E φ(a, ε|x),

∀ε, x,
∑

a∈A φ(a, ε|x) = fε(ε|x; θ),

∀x,
∑

ε∈E
∑

a∈A φ(a, ε|x) = 1,

∀i, t, ait, aoit, εit, xt,∑
ε−i∈E−i

∑
a−i∈A−i

(
vφi (ait, a−it, εit, xt; θ)− vφi (aoit, a−it, εit, xt; θ)

)
φ(ait, a−it, εt|xt) ≥ 0,

∀k, rk ≥ 0, ‖P (·|Xk)− q(·|Xk)‖1 ≤ rk, and

∀k, sk ≥ 0, |
∑

ε∈E
∑

a∈A εai,iφ(ai, a−i, ε|Xk)− ξk| ≤ sk,

where

vφi (ait, a−it, εit, xt; θ) = πi(ait, a−it, xt; θ) + εait,i,t + βG(x, a)>V φ
i ,

V φ
i = (I − βΓ)−1Mφ

i , and

Mφ
i = ((PX1)>ΠX1

i + ξ1, . . . , (P
XK )>ΠXK

i + ξK)>.

We can solve this constrained minimization problem using linear programming since the
objective function and the constraints are all linear in the arguments. The objective function
becomes small when the joint CCP predictions are close to the observed joint CCPs and
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approximation errors of the expected values of payoff types conditional on states are small. We
implement the minimization for a grid of θ and then collect

Θ̂MPBCE
I = {θ : Q(θ) ≤ τ}

as an estimator of the identified set for some small τ ≥ 0. We search for c12 from 2 to 4 in
0.01 increments, {2.00, 2.01, 2.02, . . . , 3.98, 3.99, 4.00}. We set λ = 1.0 × 105 and explore
the identified sets for the following three thresholds: τ = 0.01, 0.005, 0.001. The minimization
problem for ξ is tricky because of the existence of many local minima. We start the minimization
algorithm for ξ from two initial values for each grid of θ: 1) the true values of ξ, for all
k = 1, . . . , K, ξk = E[εai,i|x = Xk] for θ = θ0; 2) the values of ξ that are obtained in the
previous grid value.

Table 3 shows the identified sets under the MPBCE. The identified sets under the MPBCE
contain the true parameter value c12 = 2.90: range from 2.1 to 3.1 for the case where the
underlying information structure is perfectly private information S; from 2.6 to 3.5 for complete
information S; from 2.6 to 3.6 for privileged information SP . The identified sets under MPBCE
are wider than those under the MPBNE with correct information structure specifications. The
wider identified sets are expected because the identified sets underMPBCE capture the parameter
values that can yield observed joint CCPs with information structures different from the correctly
specified ones.

We consider some parameter values in the sharp identified set under weak assumptions on
payoff type information are not captured in the identified sets under MPBCE calculated in Table
3. For example, when the threshold is τ = 0.001, c12 = 2.51 is the only value excluded from
the identified set between 2.20 and 3.03 for the case where the underlying information structure
is perfectly private information. We suspect that this is because the minimization with respect
to ξ for c12 = 2.51 is stuck to a local minimum. We may want to try more initial values for ξ to
alleviate the concern caused by many local minima.

5 Discussion

We plan to work on inference procedures of the proposed estimation method. We conjecture
that Chernozhukov et al. (2007)’s moment inequality approach works in our setting similarly
to Magnolfi and Roncoroni (2022) and Syrgkanis et al. (2021). We also plan to extend the
characterization result of the sharp identified set under weak assumptions on information using
BCE to multi-stage games. We build on the recent development of the robust prediction property
of BCE inmulti-stage games (Makris and Renou, 2021). Additionally, the number of inequalities
we need to handle in computing the identified set under MPBCE increases with the dimension
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of MPBCE, which may result in a longer calculation time. We will explore feasible empirical
applications taking this feature into account.

There is an important remaining question. What are counterfactuals of interest, leaving
information structure unspecified in structural parameter estimation? Magnolfi and Roncoroni
(2022), Syrgkanis et al. (2021), and Bergemann et al. (2022) discuss this question in static
games. We are planning to incorporate their ideas into dynamic games.

21



References
Aguirregabiria, Victor, Allan Collard-Wexler, and Stephen P. Ryan, Dynamic games in
empirical industrial organization, Vol. 4, Elsevier B.V., 2021.

and Arvind Magesan, “Identification and Estimation of Dynamic Games When Players’
Beliefs Are Not in Equilibrium,” The Review of Economic Studies, 2019, 87 (2), 582–625.

and PedroMira, “Sequential Estimation of Dynamic Discrete Games,” Econometrica, 2007,
75 (1), 1–53.

Bajari, Patrick, C. Lanier Benkard, and Jonathan Levin, “Estimating Dynamic Models of
Imperfect Competition,” Econometrica, 2007, 75 (5), 1331–1370.

, Han Hong, John Krainer, and Denis Nekipelov, “Estimating Static Models of Strategic
Interactions,” Journal of Business & Economic Statistics, 2010, 28 (4), 469–482.

Benkard, C. Lanier, Przemyslaw Jeziorski, and Gabriel Y. Weintraub, “Oblivious equilib-
rium for concentrated industries,” The RAND Journal of Economics, 2015, 46 (4), 671–708.

Bergemann, Dirk and Stephen Morris, “Robust Predictions in Games With Incomplete Infor-
mation,” Econometrica, 2013, 81 (4), 1251–1308.

and , “Bayes correlated equilibrium and the comparison of information structures in
games,” Theoretical Economics, 2016, 11 (2), 487–522.

, Benjamin Brooks, and StephenMorris, “Counterfactuals with Latent Information,” Amer-
ican Economic Review, 2022, 112 (1), 343–368.

Berry, Steven T., “Estimation of aModel of Entry in the Airline Industry,” Econometrica, 1992,
60 (4), 889.

Besanko, David and Ulrich Doraszelski, “Capacity Dynamics and Endogenous Asymmetries
in Firm Size,” The RAND Journal of Economics, 2004, 35 (1), 23.

Bresnahan, Timothy F. and Peter C. Reiss, “Entry and Competition in ConcentratedMarkets,”
Journal of Political Economy, 1991, 99 (5), 977–1009.

Chernozhukov, Victor, Han Hong, and Elie Tamer, “Estimation and Confidence Regions for
Parameter Sets in Econometric Models,” Econometrica, 2007, 75 (5), 1243–1284.

Dey, Santanu S., Gonzalo Munoz, and Felipe Serrano, “On obtaining the convex hull of
quadratic inequalities via aggregations,” Technical Report, arXiv: 2106.12629 2021.

Ericson, Richard and Ariel Pakes, “Markov-Perfect Industry Dynamics: A Framework for
Empirical Work,” The Review of Economic Studies, 1995, 62 (1), 53.

Fershtman, Chaim and Ariel Pakes, “Dynamic Games with Asymmetric Information: A
Framework for Empirical Work,” The Quarterly Journal of Economics, 2012, 127 (4), 1611–
1661.

22



Gallant, A. Ronald, Han Hong, and Ahmed Khwaja, “The Dynamic Spillovers of Entry: An
Application to the Generic Drug Industry,” Management Science, 2018, 64 (3), 1189–1211.

Ifrach, Bar andGabriel Y.Weintraub, “A Framework for Dynamic Oligopoly in Concentrated
Industries,” The Review of Economic Studies, 2016, 84 (3), rdw047.

Magnolfi, Lorenzo and Camilla Roncoroni, “Estimation of Discrete Games with Weak As-
sumptions on Information,” Technical Report, Working Paper 2022.

Makris, Miltiadis and Ludovic Renou, “Information Design in Multi-stage Games,” Technical
Report, arXiv: 2102.13482 2021.

Pakes, Ariel, Michael Ostrovsky, and Steven Berry, “Simple estimators for the parameters of
discrete dynamic games (with entry/exit examples),” The RAND Journal of Economics, 2007,
38 (2), 373–399.

Park, Jaehyun and Stephen Boyd, “General Heuristics for Nonconvex Quadratically Con-
strained Quadratic Programming,” Technical Report, arXiv: 1703.07870 2017.

Rust, John, “Structural estimation of markov decision processes,” in “Handbook of Economet-
rics,” Vol. 4 1994, pp. 3081–3143.

Rysman, Marc, “Competition Between Networks: A Study of the Market for Yellow Pages,”
The Review of Economic Studies, 2004, 71 (2), 483–512.

Syrgkanis, Vasilis, Elie Tamer, and Juba Ziani, “Inference on Auctions with Weak Assump-
tions on Information,” Technical Report, Working Paper 2021.

Tamer, Elie, “Incomplete Simultaneous Discrete Response Model with Multiple Equilibria,”
Review of Economic Studies, 2003, 70 (1), 147–165.

Weintraub, Gabriel Y., C. Lanier Benkard, and Benjamin Van Roy, “Markov Perfect
Industry Dynamics With Many Firms,” Econometrica, 2008, 76 (6), 1375–1411.

Yildiran, Ugur, “Convex hull of two quadratic constraints is an LMI set,” IMA Journal of
Mathematical Control and Information, 2009, 26 (4), 417–450.

23



Table 1. Joint CCPs: Duopoly Capacity Competition Model Example

(a) Perfectly Private Information

Action i = 1/i = 2
State i = 1/2 Low/Low Low/High High/Low High/High

Low/Low 0.409 0.230 0.230 0.129
Low/High 0.131 0.598 0.048 0.221
High/Low 0.131 0.048 0.598 0.221
High/High 0.072 0.197 0.197 0.532

(b) Complete Information

Action i = 1/i = 2
State i = 1/2 Low/Low Low/High High/Low High/High

Low/Low 0.409 0.279 0.279 0.032
Low/High 0.115 0.656 0.113 0.115
High/Low 0.115 0.113 0.656 0.115
High/High 0.032 0.279 0.279 0.409

(c) Privileged Information

Action i = 1/i = 2
State i = 1/2 Low/Low Low/High High/Low High/High

Low/Low 0.409 0.295 0.230 0.064
Low/High 0.115 0.672 0.064 0.147
High/Low 0.131 0.097 0.598 0.172
High/High 0.048 0.262 0.221 0.467

Table 2. Identified Sets Under MPBNE With Prespecified Information Structures

Assumed True Information Structure
Info. Str. S0 = S S0 = S S0 = SP

S ′ = S [2.32, 2.98] [3.45, 3.50] [3.20, 3.21], [3.26, 3.28]
S ′ = S [2.11, 2.57] [2.69, 3.09] [2.11, 2.57]
S ′ = SP [2.67, 3.14] [2.78, 3.14] [2.78, 3.14]

Notes. The parameter of interest is upgrading cost c12. The true parameter value is c12 = 2.90.
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Table 3. Identified Sets Under MPBCE

True Information Structure
Threshold S0 = S S0 = S S0 = SP

τ = 0.01 [2.14, 3.03], {3.17} [2.66, 3.48], [3.51, 3.56], {3.58} [2.63, 3.56], [3.58, 3.65], {3.67}
τ = 0.005 [2.15, 3.03] [2.67, 3.48], [3.51, 3.56], {3.58} [2.64, 3.56], [3.58, 3.62]
τ = 0.001 [2.20, 2.50], [2.52, 3.03] [2.67, 3.48], [3.51, 3.53], {3.55} [2.65, 2.66], [2.68, 3.56], [3.58, 3.59]

Notes. The parameter of interest is upgrading cost c12. The true parameter value is c12 = 2.90.
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