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Abstract. This paper shows how to increase the power of the Hansen (1982)

test for the case where only a subset of the exclusion restrictions is used. The ‘ig-

nored’exclusion restrictions are used to derive a new estimator for the covariance

matrix, which has a different probability limit than the usual one when the model is

false. If the null hypothesis is true, then the proposed test has the same distribution

as the existing ones in large samples. If the hypothesis is false, then the proposed

test statistic is larger with probability approaching one as the sample size increases

in several important examples. Simulations show that the improvement can be dra-

matic in some cases. As the Hansen (1982) test is very popular in empirical work,

including testing the validity of Euler equations, we expect the current results to be

useful as well.
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1. Introduction

Testing restrictions is important in empirical economics and other empirical research. Such

tests help the researcher to evaluate whether an economic model is credible. Many restric-

tions can be stated using the generalized method of moments framework, i.e. Hansen’s

(1982) overidentification test or his test for whether the moments holds for a particular

parameter value.
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parametric methods. I thank Donald Andrews, Xiaohong Chen, Hide Ichimura, Jerry Hausman, Michael
Jansson, and Whitney Newey for helpful discussions, and Miriam Arden and Paige Pearcy for excellent
research assistance. Further, I thank seminar participants at MIT, University of Wisconsin, and Yale
University. All remaining errors are my own. Comments are welcome: woutersen@email.arizona.edu.
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The purpose of this paper is to derive moment-based tests that are more powerful

than the existing ones in important applications. In particular, we consider the case

where only a subset of the exclusion restrictions is used as moments. We impose the

exclusion restrictions and the restrictions of the null hypothesis when estimating the

asymptotic variation of the test statistic. In particular, in large samples, our estimator

for the asymptotic variance has the same probability limit as existing ones when the model

is true, but the asymptotic variance estimate is smaller when the model is false in several

important applications.1 This causes the test statistic to be larger so that we reject a

false hypothesis more often. We then use the new estimator of the asymptotic covariance

matrix when calculating the Sargan (1958) and Hansen (1982) test statistics.

These moment-based tests are very popular in empirical economics and other empirical

research because they are linked to economic theory. In particular, many economic models

imply an error term that is zero in expectation given an information set. Empirical

researchers then use this error term to build moments in, for example, Euler equations.

Hansen (2014) provides an overview.

A feature of the proposed estimator of the covariance matrix is that it can be incon-

sistent under the alternative. In particular, Hansen (1982) uses the sample analogue of

the covariance matrix. This estimates an unconditional covariance matrix. This paper

estimates a conditional covariance matrix. When the null hypothesis is true then these

two matrices are the same. However, in general these matrices may be different so the

estimand of Hansen (1982) covariance estimator and the one proposed here may differ.

Newey (1985) considers the power of the Hansen (1982) test and its special case, the

Sargan (1958) test, when the sample analogue of the covariance matrix is used. Further,

Lehmann and Romano (2005) and Romano, Shaikh, and Wolf (2010) provide overviews

of testing in statistics and econometrics.

This paper is organized as follows: Section 2 presents an example and simulations,

Section 3 gives the theorem, and Section 4 concludes.

1Smaller in this context means that the asymptotic variance is smaller for the scalar case and that the
difference between the asymptotic covariance matrices is negative semi-definite with at least one strictly
negative element on the diagonal for the vector case.
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2. Example: Consumption-based Asset Pricing Model

This section presents an example that shows how imposing the restrictions of the null

hypothesis can yield a more powerful test. Consider the Consumption-based Asset Pricing

Model. This model is used by financial economists to explain how assets are priced,

and it is used by macro economists to explain the evolution of consumption spending.

Hansen and Singleton (1982) use this model and assume a Constant Relative Risk Aversion

(CRRA) utility function,

U(ct) = {
c1−κt −1

1−κ , for κ 6= 1, κ > 0

ln(ct), for κ = 1.

Suppose that the consumer maximizes expected discounted utility given an information

set Υt and using discount factor δ. Further assume that the consumer buys a unit of a

portfolio in period t at price pt, and that the payoff of this unit is rt+1 in period t + 1.

Then, the first order condition, or Euler equation, is

E[(δrt+1/pt)(c
−κ
t+1/c

−κ
t )|Υt]− 1 = 0.

The information set Υt contains all the variables that are known to the consumer at

time t. In other words, the consumer takes these variables into account when making her

consumption decision. Thus, the following residual is orthogonal to the variables in Υt.

In particular, we can define the residual εt(κ, δ) as

εt(κ, δ) = (δrt+1/pt)(c
−κ
t+1/c

−κ
t )− 1.

The expectation of this residual, given the information set Υt, is zero. This suggests the

following moment vector function,

g(κ, δ) =

∑
t

T
gt(κ, δ) where gt(κ, δ) = Q′tεt(κ, δ), (1)

where Qt is a column vector with regressors that are contained in Υt. Havránek (2015)

reviews 169 published papers that estimate the elasticity of intertemporal substitution in

consumption, i.e. 1/κ in our notation. After correcting for publication bias, Havránek

(2015) establishes a range for these elasticities that implies that κ is between 2.5 and 3.3.

Thus, an applied researcher may want to test the Consumption-based Asset Pricing Model
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with κ = 3 while choosing the discount factor δ = 0.99 per year. More generally, she may

want to test the parameter values κH0
and δH0

. We can now state the null hypothesis

that the moments in equation (1) has expectation zero at {κH0
, δH0
},

H0 : E{gt(κH0 , δH0)|Υt} = 0 for all t,

H1 : E{gt(κH0 , δH0)|Υt} 6= 0 for some t.

The set Υt can contain many variables. Researchers may use a subset of the regressors

that are in Υt since they have some idea which variables are relevant. This selection can

increase the power of their test, as illustrated by our simulations. For example, one chooses

2 regressors out of 30 regressors in Υt and ignores the other 28. The main contribution

of this paper is that it uses the 28 variables that are ignored to increase the power of the

specification test. To illustrate this, consider the following data generating process,

εt(κH0 , δH0)|Υt ∼ N(0, σ2), (2)

where εt(κH0
, δH0

) is independently distributed across time periods. Consider the moment

vector function that only uses Xt,

g̃(κ, δ) =

∑
t

T
X ′tεt(κ, δ).

We can test the null hypothesis using the Hansen (1982) test. In particular, using only two

variables (assuming that one of the variables is a constant) and assuming homoscedasticity

yields

THansen, 2 variables =
g̃(κH0 , δH0)

′{
∑
t

T XtX
′
t}−1g̃(κH0 , δH0)/2

ẽ′ẽ/(T − 2)
, (3)

where ẽ is the vector of residuals from regressing εt(κH0 , δH0) on Xt. In this case,

THansen, 2 variables has an F-distribution with {2, T − 2} degrees of freedom under H0 (see

the Appendix for details).

An alternative to this is to use more variables from Υt. For example, one can choose

K + 2 variables, including the ones contained in Xt. Let St denote the values of these

K + 2 variables. This gives

THansen, K+2 variables =
ġ(κH0

, δH0
)′{

∑
t

T StS
′
t}−1ġ(κH0 , δH0)/(K + 2)

e′e/(T −K − 2)
, (4)
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where ġ(κH0
, δH0

) =
∑
t

T S′tεt(κH0
, δH0

), and e is the vector of residuals from regressing

εt(κH0
, δH0

) on St. In this case, THansen, K+2 variables has an F-distribution with {K +

2, T − K − 2} degrees of freedom under H0. A problem with using many regressors

from Υt is that the Hansen test loses power, even if εt(κH0
, δH0

) is normally distributed

and homoscedastic. If a researcher adjusts the Hansen test in equation (4) to allow for

heteroscedasticity, then a further complication is that the size may be incorrect, even if

εt(κH0
, δH0

) is normally distributed and homoscedastic. Our simulations illustrate these

complications.

Note that under the null hypothesis, the denominators in equation (3) and (4), i.e.

ẽ′ẽ/(T−2) and e′e/(T−K−2), have the same expectation for any T > K+2 and converge

to the same probability limit, σ2, as T increases. However, if the variables in St that are

not in Xt are correlated with εt(κH0 , δH0), then the probability limit of e
′e/(T −K − 2)

is smaller than the probability limit of ẽ′ẽ/(T − 2). This suggests that we should replace

the denominator in equation (3) by e′e/(T −K − 2), and that is what our new test does

in this case, giving

TNew =
g̃(κH0

, δH0
)′{

∑
t

T XtX
′
t}−1g̃(κH0

, δH0
)/2

e′e/(T −K − 2)
. (5)

Here, TNew has an F-distribution with {2, T −K − 2} degrees of freedom under H0. Note

that the critical value of TNew is very close to the critical value of

THansen, 2 variables when the degrees of freedom, T −K−2, is greater than or equal to 100.

These critical values converge to each other (and to half of the the critical value of the

χ2-distribution with two degrees of freedom).

The following simulations illustrate that TNew is, in general, more powerful than

THansen, 2 variables and THansen, K+2 variables . The error term εt(κH0 , δH0) is a function of

observables and the parameter values that are under consideration. So we consider

εt(κH0
, δH0

) to be observed. In the example, εt(κH0
, δH0

) has a martingale difference

sequence property with respect to the information set Υt, and for the simulations we

use this property and also make additional assumptions. Consider the following data

generating process,

εt(κH0 , δH0) = α+ βBt +Wtγ + ηt, (6)
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where the data is independently distributed across time periods, Bt ∼ N(0, 1),

Wt|Bt ∼ N(0, IK), and ηt|Bt,Wt ∼ N(0, σ2). We first test whether the coeffi cients in

the lasts equation are zero. In particular, we use the test statistics THansen, 2 variables

and THansen, K+2 variables to test whether εt(κH0
, δH0

) has mean zero and is uncorrelated

with the regressors (two respectively K + 2 regressors, including the constant). Thus,

THansen, 2 variables tests H0 : α = β = 0 versus H1 : α 6= 0, or β 6= 0, and THansen, 2 variables

tests H0 : α = β = γ = 0 versus H1 : α 6= 0, β 6= 0, or γ 6= 0. Both test whether the

Euler equation holds and so does the proposed test (using the same null and alternative

hypothesis as THansen, 2 variables). For the overidentification test, we estimate α and then

test whether the moments are valid. When we generate the data, we use α = 0, and

σ2 = 1− γ′γ. Using σ2 = 1− γ′γ yields that the variation of the residual term when only

a constant and Bt are used, Wtγ + ηt, is constant in γ. The first three elements of γ can

be nonzero, as denoted in the table, and the other elements are zero. The simulations

below show that the proposed test improves on the Hansen test.

Table 1: Rejection Frequencies, size is 0.05

N K β γ Hansen K+2 Hansen 2 moments New Test

50 15 0.4 γ1 = γ2 = γ3 = 0.2 0.54695 0.72873 0.77007
100 30 0.2828 γ1 = γ2 = γ3 = 0.2 0.64540 0.74878 0.79627
200 60 0.2 γ1 = γ2 = γ3 = 0.2 0.77940 0.75884 0.80695
50 30 0.4 γ1 = γ2 = γ3 = 0.2 0.25943 0.72842 0.73945
100 60 0.2828 γ1 = γ2 = γ3 = 0.2 0.30943 0.74715 0.78080
200 120 0.2 γ1 = γ2 = γ3 = 0.2 0.40082 0.75982 0.80197

Results based on 100,000 simulations.

In Table 1, the size of the tests is 5%, i.e. the critical value is such that the probability

of falsely rejecting the null hypothesis is 5%. The simulations show that the new test is

more powerful than the existing ones. Further, the performance of the Hansen (1982) test

with K + 2 moments worsens when the number of moments is increased, as shown in the

last three rows. The Hansen (1982) test with 2 moments does not depend2 on K, while

the new test is robust against doubling the number of moments.

2The slight differences between the first three and last three rows for the Hansen (1982) test with two
moments reflects a slight randomness from simulating. In the Appendix, we report the simulation results
with size 0.01, and these are very simular to the results in the main text with size 0.05.
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Table 2: Rejection Frequencies, Allowing for Heteroscedasticity

N K β γ Hansen K+2 Hansen 2 moments New Test

50 15 0.4 γ1 = γ2 = γ3 = 0.2 size: 0.46971 0.74843 0.78774
100 30 0.2828 γ1 = γ2 = γ3 = 0.2 size: 0.61505 0.75987 0.80467
200 60 0.2 γ1 = γ2 = γ3 = 0.2 size: 0.80602 0.76334 0.81092

Results based on 100,000 simulations.

Table 2 shows that the Hansen test with two moments and the new test have good

properties when we allow for heteroscedasticity (including good size properties; see the

Appendix). The size of the Hansen test with K + 2 moments is too large; it varies from

about 47% to 80%, i.e. well above 5%.

Table 3: Rejection Frequencies; Overidentification Test

N K β γ Hansen K+2 Hansen 2 moments New Test

50 15 0.4 γ1 = γ2 = γ3 = 0.2 0.55981 0.81260 0.84085
100 30 0.2828 γ1 = γ2 = γ3 = 0.2 0.64736 0.83203 0.86122
200 60 0.2 γ1 = γ2 = γ3 = 0.2 0.78318 0.83922 0.86911
50 30 0.4 γ1 = γ2 = γ3 = 0.2 size: 0.46128 0.82768 0.85362
100 60 0.2828 γ1 = γ2 = γ3 = 0.2 size: 0.61116 0.83932 0.86648
200 120 0.2 γ1 = γ2 = γ3 = 0.2 size: 0.80535 0.84367 0.87231

Results based on 100,000 simulations.

Table 3 shows that the new overidentification test has more power than the existing

ones. The last three rows allow for heteroscedasticity. The size of the Hansen overidenti-

fication test with K + 2 moments is too large; it varies from about 46% to 80%, i.e. well

above 5%. Using a size of 1% yields very similar results as table 1-3 and we report these

in the Appendix.

In summary, a test in our simulations is more powerful when we impose the conditions

that the contributions to the moment functions are uncorrelated with the regressors. More

generally, the idea is to impose the restrictions of the null and the exclusion restrictions

when estimating the covariance matrix. In the following section, we generalize the above

example and simulations with a theorem.

3. Theorem

The last section gave an example where the power of the Hansen (1982) test could be

improved. We now generalize this example and state our theorem. We first assume

that the normalized moments converges in distribution to a normally distributed random

variable as in Hansen (1982). The vector constant c allows for local misspecification.
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Assumption 1

Let
√
T{g(θH0

)− c√
T
} →

d
N(0,Ω) (7)

for some vector constant c and positive definite Ω, where T is the sample size. Also, let

there exist a consistent estimator for Ω, given by Ω̂ = Ω + op(1).

We use the information set Υt, which consists of all data available at time t. In

the example, Υt consists of regressors that, under the null hypothesis, cannot predict

εt(κH0
, δH0

) in the sense that E{εt(κH0
, δH0

)|Υt} = 0. We can generalize this aspect of

the example by assuming that the elements of the moment vector function gt(θH0
) have

expectation zero given Υt, that is, E{gt(θH0
)|Υt} = 0 for all Υt under the null hypothesis.

More generally, let ψt denote this conditional expectation, i.e. ψt = E{gt(θH0)|Υt}. The

condition E{gt(θH0)|Υt} = 0 for all Υt implies that E( 1
T

∑
t ψ
′
tψt) = 0, and this is the

version that we use. The alternative hypothesis is that some elements of the moment

vector function have nonzero expectation, i.e. E{gt(θH0
)|Υt} = ψt 6= 0 for some t and

Υt, so E( 1
T

∑
t ψ
′
tψt) > 0, and

H0 : E(
1

T

∑
t

ψ′tψt) = 0,

H1 : E(
1

T

∑
t

ψ′tψt) > 0.

Note that the null hypothesis implies that c = 0 in equation (7). The hypothesis H1 states

that a conditional expectation is nonzero, and we can use this to reduce the variation of

the Hansen test under H1, as in the example. Further, note that

E[

∑
s,t

T
{gs(θH0)− ψs}{gt(θH0)− ψt}′] = E{

∑
t

T
gt(θH0)gt(θH0)

′} − E(

∑
t

T
ψtψt

′)

under the assumption that {gt(θH0
)−ψt} is a martingale difference sequence, i.e. {gs(θH0

)−

ψs} ∈ Υt for s < t. Of course, this martingale difference sequence assumption also holds

if the data from period s and t are independently distributed for s 6= t.3 More generally,

this simplification of the covariance matrix holds if {gs(θH0) − ψs} and {gt(θH0) − ψt}
3 In that case, Υs is not informative about data in period t given knowledge of the information set Υt

for s 6= t.
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are uncorrelated for every s 6= t. Note that E(
∑
t

T ψtψt
′) is positive semidefinite. Fur-

ther, an estimator for the variation of the moments is
∑
t

T gt(θH0
)gt(θH0

)′; see for example

Hansen (1982) and Newey and McFadden (1994). Using
∑
t

T gt(θH0
)gt(θH0

)′−
∑
t

T ψtψt
′ as

an estimator for the variation of the moments yields a smaller estimate of the variation if

ψ′tψt > 0 for some t, as in the example above.

Neither the martingale difference sequence assumption nor the no correlation assump-

tion is necessary for the main argument of this paper, but it holds in many models. For

example, the contributions to the score function in likelihood models generally have ex-

pectation zero. De Jong and Woutersen (2011) give examples of estimating functions in a

dynamic model, and these functions also have this property. Newey and McFadden (1994)

provide generalized method of moments examples where this property holds.

Alternatively, rather than making the martingale difference sequence assumption or

the no correlation assumption, we may assume that an error term in an Euler equation

is independent of regressors but can be correlated over time. This also accommodates

time series models with dependent errors. In this case, E{
∑
s,t

T (gs − ψs)(gt − ψt)
′} =

E(
∑
s,t

T gsg
′
t)−E(

∑
s,t

T ψsψt
′) under the assumption that Υs ⊂ Υt for s < t. The assumption

Υs ⊂ Υt means that the information available at period s is still available in period t.

This assumption holds in the example about the Euler equation. The term E(
∑
s,t

T ψsψt
′)

reduces the variation of the moments if E(
∑
s,t

T ψsψt
′) is positive semidefinite and has at

least one nonzero element on its diagonal. This is considerably weaker than requiring that

E(
∑
s,t

T ψsψt
′) is positive definite.

A simple way to approximate the conditional expectation ψt = E{gt(θH0
)|Υt} is by

using a projection. In particular, we can calculate the moment vector functions for all

periods, {g1(θH0), g2(θH0), ..., gT (θH0)}. We can then use regressors that are in the infor-

mation set for all periods and regress the vectors {g1(θH0
), g2(θH0

), ..., gT (θH0
)} on these

regressors to generate the predictions {ĝ1(θH0
), ĝ2(θH0

), ..., ĝT (θH0
)} and the residuals

{g1(θH0
)− ĝ1(θH0

), g2(θH0
)− ĝ2(θH0

), ..., gT (θH0
)− ĝT (θH0

)}. Using these residuals we can

then estimate the matrix var[
∑
t

T {gt(θH0
)−ĝt(θH0

)}] by the Newey-West estimator.4 More
4For the Hansen (1982) overidentification test, we estimate the generalized method of moments es-

timator for θ, denoted by θ̂, and use this to calculate the moment vector functions for all periods,
{g1(θ̂), g2(θ̂), ..., gT (θ̂)}. We then regress these on regressors that are in the information set for all periods
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generally, let φt be the probability limit of an estimator for the conditional expectation, ψt.

If we use a projection, then φt = Stπ, where π = plim
T→∞

[
∑
t

T S′tSt]
−1[

∑
t

T S′tgt(θH0
)]. Rather

then assuming that ψt can be consistently estimated, it seems useful to allow for the con-

ditional expectation ψt to be approximated by φt, and Assumption 2 (ii) and Assumption

2 (iv) below allow for this. In the example in the last section the regressors St can be used

to estimate the conditional expectation of gt(κH0 , δH0) = {εt(κH0 , δH0), Xt ·εt(κH0 , δH0)}′.

As Xt is part of St in the example, the goal is to estimate the conditional expectation

of εt(κH0
, δH0

). This estimate may not be consistent as is the case in a linear projection

and, therefore, φt is allowed to be different from the conditional expectation ψt. Our fi-

nal alternative assumption states that the variation of gt(θH0
) − φt is smaller than the

variation of gt(θH0). This means that φt can be a projection or other approximation of

gt(θH0) and is not required to be a conditional expectation. Rather, it assumes that un-

der H1, (Ω− var[
∑
t

T {gt(θH0)−φt}]) is positive semidefinite and has at least one nonzero

element on its diagonal. This condition can hold under mixing conditions; see Pötscher

and Prucha (1997) for an overview of such mixing conditions.

Assumption 2

Let one of the following hold:

(i) {gs(θH0)− ψs} and {gt(θH0)− ψt} are uncorrelated for every s 6= t; or

(ii) {gs(θH0
) − φs} and {gt(θH0

) − φt} are uncorrelated for every s 6= t; if H0 holds,

then E( 1
T

∑
t φtφ

′
t) = 0, and if H1 holds, then M = E[

∑
t

T {2gt(θH0
) − φt}φ′t] is positive

semidefinite and Mkk > 0 for some k; or

(iii) Υs ⊂ Υt for all s < t, s, t = 1, ..., T, Ṁ = Ω − var[
∑
t

T {gt(θH0
) − ψt}] =

E(
∑
s,t

T ψsψ
′
t) is positive semidefinite; if H1 holds, then Ṁkk > 0 for some k; or

(iv) M̈ = Ω − var[
∑
t

T {gt(θH0) − φt}] is positive semidefinite; if H0 holds, then

E( 1
T

∑
t φtφ

′
t) = 0, and if H1 holds, then M̈kk > 0 for some k.

The theorem that follows states that TNew and THansen have the same asymptotic dis-

tribution under H0, but that under the conditions of the theorem, TNew is more powerful

against violations of H0.

and construct {ĝ1(θ̂), ĝ2(θ̂), ..., ĝT (θ̂)} and residuals {g1(θ̂)− ĝ1(θ̂), g2(θ̂)− ĝ2(θ̂), ..., gT (θ̂)− ĝT (θ̂)}.
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Theorem 1 (Specific Parameter Values)

Let Assumptions 1 and 2 hold. Let Λ = var{
∑
t

T (gt(θH0
)− ψt)} if Assumption 2(i) or

2(iii) hold, and let Λ = var{
∑
t

T (gt(θH0
) − φt)} if Assumption 2(ii) or 2(iv) hold. Let Λ

be positive definite, and let Λ̂ be a consistent estimator of Λ, i.e. Λ̂ = Λ + op(1).

(i) If H0 is true, then (a) THansen = T · g(θH0
)′Ω̂−1g(θH0

) →
d
χ2-distribution with

dim(θH0) degrees of freedom, and (b) TNew = T · g(θH0)
′Λ̂−1g(θH0) →

d
χ2-distribution

with dim(θH0) degrees of freedom.

(ii) If H1 is true then TNew is more powerful then THansen in the sense that

TNew > THansen with probability approaching one.

(iii) If H1 is true, and Λ = ϕΩ, then (a) THansen →
d
noncentral χ2-distribution with

dim(θH0
) degrees of freedom and noncentrality parameter c′Ω−1c, and (b) 0 < ϕ < 1 and

TNew = THansen
ϕ + op(1).

Proof: See Appendix.

In the example of the last section, Assumption 1 holds and so does Assumption 2

(i)-(iv). That is, the projection estimates the conditional expectation consistently in

this example. Leaving out one of the regressors on which the conditional expectation

depends would change the example but Assumption 1 and Assumption 2 (ii) and (iv) still

hold so that the theorem still applies. For Hansen’s (1982) overidentification test, one

evaluates the moments at the generalized method of moments estimator5 θ̂ rather than at

θH0 . Thus, for the overidentification test, we assume that Assumption 2 holds, but with

gt(θH0
) replaced by gt(θ̂), ψt replaced by ψ̇t = E{gt(θ̂)|Υt}, and the approximation φt

(for ψt) replaced by φ̇t (for ψ̇t).We call this Assumption 2* and state it in the Appendix.

Theorem 2 (Overidentification)

Let Assumptions 1 and 2* hold. Let Λ = var{
∑
t

T (gt(θ̂)− ψ̇t)} if Assumption 2*(i) or

2*(iii) hold, and let Λ = var{
∑
t

T (gt(θ̂)− φ̇t)} if Assumption 2*(ii) or 2*(iv) hold. Let Λ

be positive definite, and let Λ̂ be a consistent estimator of Λ, i.e. Λ̂ = Λ + op(1).

(i) If H0 is true, and THansen = T · g(θ̂)′Ω̂−1g(θ̂) →
d
χ2-distribution with dim(s)

5 θ̂ = arg min
θ

g(θ)′Ω̂−1g(θ) where Ω̂ = Ω + op(1).
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degrees of freedom, then TNew = T · g(θ̂)′Λ̂−1g(θ̂)→
d
χ2-distribution with dim(s) degrees

of freedom where s is the degree of overidentification.

(ii) If H1 is true, and all elements of the vector
√
Tg(θ̂) are nonzero with probability

approaching one, then TNew is more powerful then THansen in the sense that

TNew > THansen with probability approaching one.

(iii) If H1 is true, and Λ = ϕΩ, then 0 < ϕ < 1 and TNew = THansen
ϕ + op(1).

Proof: See Appendix.

Adjusting for the degrees of freedom does not effect the results in the theorem. How-

ever, we suggest making such a correction if the number of regressors that is used in

the projection is large. Our example makes such corrections. The theorem is stated in

terms of covariance matrices and conditional expectations and allows for unobservables

to be dependent under Assumptions 1 and 2(iii) (or 2*(iii)), and Assumptions 1 and

2(iv) (or 2*(iv)). That is, the theorem does not require a martingale difference sequence

assumption.

Further, the goal of the current paper is to create a more powerful test, not a consistent

estimator for the asymptotic covariance matrix under the alternative. In particular, our

estimator for the asymptotic covariance matrix can be inconsistent under the alternative.

For example, in the simulation design of table 1 the asymptotic covariance matrix of

the moments g̃(κ0, δ0) =
∑
t

T X ′tεt(κ0, δ0) is plim{
∑
t

T XtX
′
t} =

[
1 0
0 1

]
. This is the true

asymptotic covariance of the moments and it holds for any value of α, β, and γ. In contrast,

the proposed test uses the asymptotic covariance matrix plim{(1− γ′γ)
∑
t

T XtX
′
t} = (1−

γ′γ)

[
1 0
0 1

]
. Clearly, for 0 < γ′γ < 1, Λ = (1− γ′γ)

[
1 0
0 1

]
is smaller than Ω in the

sense that Ω− Λ is positive definite. This causes the proposed test to be more powerful.

Finally, we do not use local asymptotics in the example, since we have the exact

distribution. For the simulations, we use fixed values or values that somewhat resemble

local asymptotics. The motivation to use local asymptotics in Assumption 1 is to ensure

that the Hansen test and the proposed test have the same distribution under H0, and

therefore, have the same critical values. The simulation design in table 1 is sparse in the

sense that only three values of the vector γ are nonzero for any value of N. An alternative
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simulation design would be to use the same values of the parameters as in table 1 line

1, but to change the values in lines 2 and 3. In particular replacing the values of γ by

γj = 0.14 for j = 1, ..., 6, (and γj = 0 for j = 7, ..., 30) in line 2 and γj = 0.1 for j = 1, ..., 12

(and γj = 0 for j = 13, ..., 60) in line 3 yields the same value of γ′γ as in table 1 and

approximately the same results for the new test. This local to zero simulation design is in

the spirit of the many instruments asymptotics proposed by Kunitomo (1980), expanded

by Bekker (1994), and more recently used by Hausman, Newey, Woutersen, Chao, and

Swanson (2012).

4. Conclusion

This paper shows how to increase the power of the Hansen (1982) test by using a new

estimator of the asymptotic covariance matrix. We impose the restrictions of the null

hypothesis and the model when estimating this asymptotic covariance matrix. In large

samples, our new estimator has the same probability limit as existing ones when the model

is true but has a different probability limit when the model is false. We then use this

new estimate of the asymptotic covariance matrix when calculating the Sargan (1958) and

Hansen (1982) test statistics. If the null hypothesis is true, then the proposed test has

the same distribution as the existing ones in large samples. If the null hypothesis is false,

then the proposed test statistic is larger with probability approaching one as the sample

size increases in several important examples. We consider a version of the Consumption-

based Asset Pricing Model. The simulations show that the improvement can be dramatic

in some cases. A test that is related to the Hansen (1982) test is the Hausman (1978)

test. Woutersen and Hausman (2019) show that applying the tools of this paper to the

Hausman test improves the power of the Hausman test as well. As the Hansen (1982)

test is very popular in empirical work, including testing the validity of Euler equations,

we expect the current results to be useful as well.
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5. Appendix

Appendix 1: F-distributions in the Example

Let ε be a column vector with εt, t = 1, ..., T, as its elements. Let X be a T by 2

matrix with Xt as its rows, t = 1, ..., T. Let

ε|X ∼ N(0, σ2IT ). (8)

Consider the moment vector function that only uses Xt,

g̃(κH0
, δH0

) =

∑
t

T
X ′tεt,

and note that

g̃(κH0 , δH0)|X ∼ N(0, σ2

∑
t

T
XtX

′
t),

and

1

σ2
g̃(κH0

, δH0
)′{
∑
t

T
XtX

′
t}−1g̃(κH0

, δH0
) ∼ χ2(2).

Define MX = I − X(X ′X)−1X ′. Note that ẽ is the vector of residuals from regressing

εt(κH0
, δH0

) on Xt, i.e.

ẽ = MXε, and ẽ|X ∼ N(0, σ2MX).

This gives

1

σ2
ẽ′ẽ =

1

σ2
ε′MXε, and

1

σ2
ẽ′ẽ ∼ χ2(N − 2).

The next step is to show that the vectors ẽ = MXε and g̃(κH0
, δH0

) = X′ε
T are indepen-

dently distributed. Note that ẽ and g̃(κH0
, δH0

) are jointly normally distributed, so we

only have to show that every element of ẽ is uncorrelated with g̃(κH0
, δH0

). Consider

E{MXε ·
ε′X

T
} =

σ2

T
E{MXX} = 0,

since MXX = 0. This gives that THansen, 2 variables has an F-distribution with

{2, T − 2} degrees of freedom. The same reasoning gives that THansen, K+2 variables has an

F-distribution with {K + 2, T −K − 2} degrees of freedom.
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For the new test, we have that

1

σ2
g̃(κH0

, δH0
)′{
∑
t

T
XtX

′
t}−1g̃(κH0

, δH0
) ∼ χ2(2),

as shown above. Let S be a T by (K + 2) matrix with St as its rows, t = 1, ..., T. Define

MS = I − S(S′S)−1S′. Note that e is the vector of residuals from regressing εt(κH0
, δH0

)

on St, i.e.

e = MSε, and that e|S ∼ N(0, σ2MS).

Further,

1

σ2
e′e = ε′MSε, and

1

σ2
e′e ∼ χ2(N −K − 2).

The last step is to show that the vectors e = MSε and g̃(κH0 , δH0) = X′ε
T are independently

distributed. Note that e and g̃(κH0 , δH0) are jointly normally distributed, so we only have

to show that every element of e is uncorrelated with every element of g̃(κH0
, δH0

). Consider

E{MSε ·
ε′X

T
} =

σ2

T
E{MSX} = 0,

since S contains the regressors X so that MSX = 0. This gives that TNew has an

F -distribution with {2, T −K − 2} degrees of freedom.

Appendix 2: Simulations with 0.01 Rejection Frequency

The tables A1 through A3 use the same test statistics and data generating process as

tables 1 through 3 in the main text, but now the rejection frequency is 0.01.

Table A1: 0.01 Rejection Frequencies

N K β γ Hansen K+2 Hansen 2 moments New Test

50 15 0.4 γ1 = γ2 = γ3 = 0.2 0.28235 0.49198 0.55065
100 30 0.2828 γ1 = γ2 = γ3 = 0.2 0.37906 0.52120 0.59308
200 60 0.2 γ1 = γ2 = γ3 = 0.2 0.53841 0.53503 0.61401
50 30 0.4 γ1 = γ2 = γ3 = 0.2 0.08231 0.49051 0.48817
100 60 0.2828 γ1 = γ2 = γ3 = 0.2 0.11120 0.51923 0.56180
200 120 0.2 γ1 = γ2 = γ3 = 0.2 0.16820 0.53430 0.59993

Results based on 100,000 simulations.
In Table A1, the size of the tests is 1%, i.e. the critical value is such that the probability

of falsely rejecting the null hypothesis is 1%. The critical values are derived from the

F-distribution.
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Table A2: 0.01 Rejection Frequencies: Allowing for Heteroscedasticity

N K β γ Hansen K+2 Hansen 2 moments New Test

50 15 0.4 γ1 = γ2 = γ3 = 0.2 size: 0.27438 0.53417 0.58859
100 30 0.2828 γ1 = γ2 = γ3 = 0.2 size: 0.40839 0.54640 0.61286
200 60 0.2 γ1 = γ2 = γ3 = 0.2 size: 0.62965 0.54736 0.62381

Results based on 100,000 simulations.
Table A2 shows that the new overidentification test has more power than the Hansen

test with 2 moments. Here, the test statistics allow for heteroscedasticity. The size of

the Hansen overidentification test with K + 2 moments is too large; it varies from about

27% to 62%, i.e. well above 1%.

Table A3: 0.01 Rejection Frequencies: Overidentification Test

N K β γ Hansen K+2 Hansen 2 moments New Test

50 15 0.4 γ1 = γ2 = γ3 = 0.2 0.29292 0.60242 0.65189
100 30 0.2828 γ1 = γ2 = γ3 = 0.2 0.38049 0.63203 0.68873
200 60 0.2 γ1 = γ2 = γ3 = 0.2 0.54491 0.64452 0.70505
50 30 0.4 γ1 = γ2 = γ3 = 0.2 size: 0.26726 0.63863 0.68293
100 60 0.2828 γ1 = γ2 = γ3 = 0.2 size: 0.40159 0.64970 0.70338
200 120 0.2 γ1 = γ2 = γ3 = 0.2 size: 0.62877 0.65664 0.71507

Results based on 100,000 simulations.

Table A3 rows 1-3 show that the new overidentification test has more power than

the existing ones for these data generating processes. The last three rows allow for het-

eroscedasticity. The size of the Hansen overidentification test with K + 2 moments is too

large; it varies from about 26% to 62%, i.e. well above 1%.

Appendix 3: The size of the tests

Table A4: Frequency of Rejecting a true H0, Exact Coverage

N K β γ Hansen K+2 Hansen 2 moments New Test Size

50 15 0 γj = 0 for all j 0.05115 0.05006 0.04991 0.05
100 30 0 γj = 0 for all j 0.05016 0.05066 0.05115 0.05
200 60 0 γj = 0 for all j 0.05009 0.05160 0.05140 0.05
50 30 0 γj = 0 for all j 0.01054 0.01056 0.01036 0.01
100 60 0 γj = 0 for all j 0.00991 0.01047 0.01029 0.01
200 120 0 γj = 0 for all j 0.00981 0.01027 0.01022 0.01

Results based on 100,000 simulations.
The size of all tests in Table 1 is exact. Rows 1-3 of this table illustrate the exact

coverage of rows 1-3 for the tests with size 0.05. Rows 4-6 illustrate that the exact

coverage when the size of the test is decreased to 0.01.
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Table A5: Frequency of Rejecting a true H0, Allowing for Heteroscedasticity

N K β γ Hansen K+2 Hansen 2 moments New Test Size

50 15 0 γj = 0 for all j 0.46971 0.06626 0.06604 0.05
100 30 0 γj = 0 for all j 0.61505 0.05828 0.05842 0.05
200 60 0 γj = 0 for all j 0.80602 0.05493 0.05484 0.05
50 30 0 γj = 0 for all j 0.27438 0.01744 0.01660 0.01
100 60 0 γj = 0 for all j 0.40839 0.01399 0.01391 0.01
200 120 0 γj = 0 for all j 0.62965 0.01211 0.01226 0.01

Results based on 100,000 simulations.

Table A6 Overidentification Test: Frequency of Rejecting a true H0, Exact Coverage

N K β γ Hansen K+2 Hansen 2 moments New Test Size

50 15 0 γj = 0 for all j 0.04923 0.04955 0.04940 0.05
100 30 0 γj = 0 for all j 0.04988 0.05134 0.05106 0.05
200 60 0 γj = 0 for all j 0.04885 0.04968 0.05001 0.05
50 15 0 γj = 0 for all j 0.00960 0.01027 0.01021 0.01
100 30 0 γj = 0 for all j 0.01038 0.01022 0.01027 0.01
200 60 0 γj = 0 for all j 0.00949 0.01035 0.01021 0.01

Results based on 100,000 simulations.

Table A7 Overidentification Test: Frequency of Rejecting a true H0, Heteroscedasticity

N K β γ Hansen K+2 Hansen 2 moments New Test Size

50 15 0 γj = 0 for all j 0.46128 0.06924 0.06917 0.05
100 30 0 γj = 0 for all j 0.61116 0.06055 0.06032 0.05
200 60 0 γj = 0 for all j 0.80535 0.05399 0.05404 0.05
50 15 0 γj = 0 for all j 0.26726 0.01803 0.01800 0.01
100 30 0 γj = 0 for all j 0.40159 0.01494 0.01453 0.01
200 60 0 γj = 0 for all j 0.62877 0.01226 0.01221 0.01

Results based on 100,000 simulations.

Appendix 4: Lemmas

Lemma A1 (Abadir and Magnus, 2005, exercise and solution 12.16): Let the matrices Ω

and Λ (i) be positive definite, (ii) be symmetric, and (iii) have the same dimensions. Then

there exists a nonsingular matrix R such that

Ω = RR′, and Λ = RΣR′,

where the diagonal matrix Σ contains the eigenvalues of Ω−1Λ.

Proof: Abadir and Magnus, 2005, exercise and solution 12.16.

Lemma A2: Let the matrices Ω and Λ (i) be positive definite, (ii) be symmetric, and (iii)

have the same dimensions. Then there exists a nonsingular matrix R such that

Λ−1 − Ω−1 = R
′−1{Σ−1 − I}R−1,
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where the diagonal matrix Σ contains the eigenvalues of Ω−1Λ.

Proof: Lemma A1 implies that

Ω−1 = R′−1R−1 and Λ−1 = R
′−1Σ−1R−1,

and the result follows.

Lemma A3: Let the matrices Ω and Λ (i) be positive definite, (ii) be symmetric, and (iii)

have the same dimensions. Further, let Ω− Λ be positive semidefinite. Then Ω−1 − Λ−1

is positive semidefinite.

Proof: Lemma A1 shows that

Λ = RΣR′,

where Σ is a diagonal matrix, and Λ is positive definite by assumption. R is nonsingular

and has full rank so that all the diagonal elements of Σ are strictly positive, i.e. Σj > 0

for j = 1, ..., J, where J is the number of rows of the diagonal matrix Σ. Further, note that

Ω−Λ = R{I −Σ}R′ is positive semidefinite by assumption. This implies that 1−Σj ≥ 0

for j = 1, ..., J. Thus, 0 < Σj ≤ 1 for j = 1, ..., J. Lemma A2 states

Λ−1 − Ω−1 = R
′−1{Σ−1 − I}R−1,

and by using 0 < Σj ≤ 1 for j = 1, ..., J, this yields that Λ−1−Ω−1 is positive semidefinite

since R is nonsingular and has full rank.

Under H1, we have that the matrix E(
∑
t

T φtφt
′) contains nonzero elements, and we

use this in the following lemma.

Lemma A4: Let the matrices Ω and Λ (i) be positive definite, (ii) be symmetric, and (iii)

be J by J matrices. Further, let Ω − Λ = E(
∑
t

T φtφt
′), where the matrix E(

∑
t

T φtφt
′)

contains nonzero elements. Let s be a column vector with J elements that are all nonzero

(i.e. sk 6= 0 for all k). Let the diagonal matrix Σ contain the eigenvalues of Ω−1Λ. Then

(a) 0 < Σj ≤ 1 for all j = 1, ..., J, and Σk < 1 for some k, k = 1, ..., J, and

(b) s′{Λ−1 − Ω−1}s > 0.



Increasing the Power of Moment-based Tests 21

Proof: Let b be a column vector with J elements. Note that

b′(Ω− Λ)b = E(

∑
t

T
b′φtφt

′b) ≥ 0

for any b. Thus, Ω − Λ is positive semidefinite, and Lemma A3 applies. This gives that

b′{Λ−1 − Ω−1}b ≥ 0 for any b, and that 0 < Σj ≤ 1 for j = 1, ..., J. Next, Lemma A1

implies that Ω−Λ = R{I−Σ}R′ for a nonsingular R. By assumption, Ω−Λ = E(
∑
t

T φtφt
′)

so that

R{I − Σ}R′ = E(

∑
t

T
φtφt

′).

Next, consider ṡ = R−1s where ṡ and s are column vectors with J elements. Using this

in the last equation gives

ṡ′R{I − Σ}R′ṡ = s′{I − Σ}s = E(

∑
t

T
s′φtφt

′s) =

∑
t

T
s′E(φtφt

′)s.

Note that s′E(φtφt
′)s ≥ 0 for every t. By assumption, M =

∑
t

T E(φtφt
′) has nonzero

elements. Let Mlk denote the element on the lth row and kth column. Suppose that

Mlk 6= 0. Then, by the Cauchy—Schwarz inequality, Mll and Mkk are also nonzero. Let

s[k] denote a column vector with J elements. Further, let the kth element of this vector

be one, and let all the other elements be zero. Then s[k]′M · s[k] = Mkk, which is

nonzero. Since s′E(φtφt
′)s ≥ 0 for every s, we have that s[k]′M · s[k] = Mkk > 0. Define

ṡ[k] = R−1′s[k]. Thus, if Mkk > 0, then

ṡ[k]′{Ω− Λ} · ṡ[k] = ṡ[k]′{R(I − Σ)R′} · ṡ[k]

= s[k]′(I − Σ) · s[k]

= 1− Σk > 0.

This yields part (a) and (b) of this Lemma.

Lemma A5: Let the matrices Ω and Λ (i) be positive definite, (ii) be symmetric, and (iii)

be J by J matrices. Further, let M = Ω − Λ be positive semidefinite, and Mkk 6= 0 for

some k. Let s be a column vector with J elements that are all nonzero (i.e. sk 6= 0 for all

k). Then

(a) 0 < Σj ≤ 1 for all j = 1, ..., J, and Σk < 1 for some k, k = 1, ..., J, and
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(b) s′{Λ−1 − Ω−1}s > 0.

Proof: M is positive semidefinite. The same reasoning as in Lemma A4 yields that

0 < Σj ≤ 1 for all j = 1, ..., J. Further, since M is positive semidefinite, and Mkk 6= 0 for

some k, we have that Mkk > 0. As in the proof of Lemma A4, let s[k] denote a column

vector with J elements. Further, let the kth element of this vector be one, and let all the

other elements be zero. Then s[k]′M · s[k] = Mkk, which is strictly positive. Thus, we

have that s[k]′M · s[k] = Mkk > 0. Define ṡ[k] = R−1′s[k]. This gives

ṡ[k]′{Ω− Λ} · ṡ[k] = ṡ[k]′{R(I − Σ)R′} · ṡ[k]

= s[k]′(I − Σ) · s[k]

= 1− Σk > 0.

This yields that Σk < 1 for some k, k = 1, ..., J, and that s′{Λ−1 − Ω−1}s > 0.

Appendix 5 Proof of Theorem 1

(i) We first consider the case where Assumption 1 holds, and Assumption 2(i) or 2(iii)

hold. In that case, if H0 is true, then E(
∑
t

T ψtψt
′) equals zero so that Ω = Λ. The result

then follows from the properties of the χ2-distribution (see, e.g., Lehmann and Romano

(2005)).

Now consider the case where Assumption 1 holds, and Assumption 2(ii) or 2(iv) hold.

In that case, if H0 is true, then E(
∑
t

T φtφt
′) equals zero so that, again, Ω = Λ. The result

then follows from the properties of the χ2-distribution (see, e.g., Lehmann and Romano

(2005)).

(ii) We first consider the case where Assumption 1 and Assumption 2(i) hold. Thus, Ω−

Λ = E(
∑
t

T ψtψt
′) where E(

∑
t

T ψtψt
′) is positive semidefinite by inspection. The matrices

Ω and Λ are symmetric and positive definite. Thus, the conditions of Lemma A2 and

Lemma A4 are satisfied so that

Λ−1 − Ω−1 = R
′−1{Σ−1 − I}R−1,

where 0 < Σj ≤ 1 for all j = 1, ..., J, and Σk < 1 for some k, k = 1, ..., J. Now consider

T · {g(θH0)
′Λ−1g(θH0)− g(θH0)

′Ω−1g(θH0)} = T · [g(θH0)
′R
′−1{Σ−1 − I}R−1g(θH0)].
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Define h(θH0) = R−1g(θH0). This gives

T · {g(θH0)
′Λ−1g(θH0)− g(θH0)

′Ω−1g(θH0)} = T · [h(θH0){Σ−1 − I}h(θH0)].

Using the fact that Σ−1 is a diagonal matrix yields

T · {g(θH0)
′Λ−1g(θH0)− g(θH0)

′Ω−1g(θH0)} = T ·
∑
j

{hj(θH0)}2(
1

Σj
− 1).

√
Thj(θH0) is nonzero with probability approaching one, as

√
Thj(θH0) converges to a nor-

mal distribution with a zero or nonzero mean. Since 0 < Σj ≤ 1 for all j = 1, ..., J, and

Σk < 1 for some k, k = 1, ..., J, we have that T ·{g(θH0
)′Λ−1g(θH0

)−g(θH0
)′Ω−1g(θH0

)} >

0 with probability approaching one. The same inequality holds with probability approach-

ing one if we replace Λ−1 by Λ̂−1 and Ω−1 by Ω̂−1.

Next, we consider the cases where Assumption 1 and Assumption 2(ii), Assumption

1 and Assumption 2(iii), or Assumption 1 and Assumption 2(iv) hold. In these cases,

Ω−Λ is positive semidefinite by assumption. Further, the matrix [Ω−Λ] has at least one

diagonal element that is nonzero ifH1 holds. The matrices Ω and Λ are symmetric positive

definite. Thus, conditions of Lemma A2 and Lemma A4 are satisfied. The remainder of

the proof is the same as above.

(iii) Assumption 1 states that

√
T{g(θH0)−

c√
T
} →

d
N(0,Ω) (9)

for some vector constant c and positive definite Ω, and Ω̂ = Ω + op(1). If H1 is true,

then c 6= 0 so that T · g(θH0)
′Ω̂−1g(θH0) converges to a noncentral χ

2-distribution with

dim(θH0
) degrees of freedom and noncentrality parameter c′Ω−1c (see, e.g., Lehmann and

Romano (2005)). Let M̃ = Ω − Λ so that M̃ is symmetric. By Assumption 2, we have

that M̃ is positive semidefinite, and that M̃kk > 0 for some k. Thus, by Lemma A4 or

Lemma A5, we have that s′{Λ−1 − Ω−1}s > 0 where all the elements of s are nonzero.

By assumption, Λ = ϕΩ so that s′{Λ−1 − Ω−1}s = s′Ω−1s( 1
ϕ − 1) > 0. The matrices Ω

and Ω−1 are positive definite so that 0 < ϕ < 1. Q.E.D.

Appendix 6 Assumption 2* and Proof of Theorem 2
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As in the main text, let ψ̇t = E{gt(θ̂)|Υt} and φ̇t be an approximation for ψ̇t.

Assumption 2*

Let one of the following hold:

(i) {gs(θ̂)− ψ̇s} and {gt(θ̂)− ψ̇t} are uncorrelated for every s 6= t; or

(ii) {gs(θ̂) − φ̇s} and {gt(θ̂) − φ̇t} are uncorrelated for every s 6= t; if H0 holds,

then E( 1
T

∑
t φ̇
′
tφ̇t) = 0, and if H1 holds, then M = E[

∑
t

T {2gt(θ̂) − φ̇t}φ̇′t] is positive

semidefinite, and Mkk > 0 for some k; or

(iii) Υs ⊂ Υt for all s < t, s, t = 1, ..., T, and Ṁ = Ω − var[
∑
t

T {gt(θ̂) − ψ̇t}] =

E(
∑
s,t

T ψ̇sψ̇
′
t) is positive semidefinite; if H1 holds, then Ṁkk > 0 for some k; or

(iv) M̈ = Ω−var[
∑
t

T {gt(θ̂)−φ̇t}] is positive semidefinite; ifH0 holds, then E( 1
T

∑
t φ̇
′
tφ̇t) =

0, and if H1 holds, then M̈kk > 0 for some k.

Remark: Assumption 1 assumes a consistent estimator for Ω. In the simulations, we based

the consistent estimator on gt(θ̂), i.e. on the relevant residuals rather then on gt(θH0),

since using gt(θ̂) yields a larger value of THansen.

Proof of Theorem 2:

(i) We first consider the case where Assumption 1 and Assumption 2*(i) hold, or As-

sumption 1 and Assumption 2*(iii) hold. In that case, if H0 is true, then E(
∑
t

T ψ̇tψ̇t
′)

equals zero so that Ω = Λ. The result then follows from the properties of the χ2-

distribution (see, e.g., Lehmann and Romano (2005)).

Now consider the case where Assumption 1 holds and Assumption 2*(ii) or 2*(iv) hold.

In that case, if H0 is true, then E(
∑
t

T φ̇tφ̇t
′) equals zero so that, again, Ω = Λ. The result

then follows from the properties of the χ2-distribution (see, e.g., Lehmann and Romano

(2005)).

(ii) Under the assumptions of Theorem 2 (ii) we have that the matrices Ω and Λ (i) are

positive definite, (ii) are symmetric, and (iii) are J by J matrices. Further, letM = Ω−Λ

be positive semidefinite, and Mkk 6= 0 for some k. Thus, the assumptions of Lemma A5

are satisfied. Thus, for a column vector s with J elements that are all nonzero (i.e. sk 6= 0

for all k) we have that s′{Λ−1 − Ω−1}s > 0. Further, all elements of the vector
√
Tg(θ̂)
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are nonzero with probability approaching one so that Tg(θ̂)′{Λ−1 − Ω−1}g(θ̂) > 0 with

probability approaching one.

(iii) Note that θ̂ = arg min
θ

g(θ)′Ω̂−1g(θ) so that g(θ̂)′Ω̂−1g(θ̂) ≤ g(θH0
)′Ω̂−1g(θH0

),

where g(θH0
)′Ω̂−1g(θH0

) is bounded in probability by Assumption 1. Thus, THansen is

bounded in probability. Let M̃ = Ω− Λ so that M̃ is symmetric. By Assumption 2*, we

have that M̃ is positive semidefinite, and that M̃kk > 0 for some k. Thus, by Lemma A4

or Lemma A5, we have that s′{Λ−1 −Ω−1}s > 0 where all the elements of s are nonzero.

By assumption, Λ = ϕΩ so that s′{Λ−1 − Ω−1}s = s′Ω−1s( 1
ϕ − 1) > 0. The matrices Ω

and Ω−1 are positive definite so that 0 < ϕ < 1. Thus, TNew = THansen
ϕ̂ + op(1). Q.E.D.

Discussion: Theorem 2 (ii) assumes that “all elements of the vector
√
Tg(θ̂) are nonzero

with probability approaching one”. This assumption is implied by assumptions that are

used to derive the asymptotic distribution of T · g(θ̂)′Ω̂−1g(θ̂), see for example Hansen

(1982), Newey and McFadden (1994), or Ruud (2000). In particular, let θ̂ = argmin
θ∈Θ

T ·

g(θ)′Ω̂−1g(θ) and let the true value θ0 be an element of the interior of the parameter space

Θ, which is compact. Let G(θ) denote the derivative of g(θ) with respect to θ. Assuming

continuous differentiability of the moment vector function g(θ) yields the following first

order condition,

G(θ̂)′Ω̂−1g(θ̂) = 0.

Using a Taylor expansion around θ0 yields

(θ̂ − θ0) = −{G(θ̂)′Ω̂−1G(θ̇)}−1G(θ̂)Ω̂−1g(θ0), (10)

where θ̇ is an intermediate value. Using a Taylor expansion of g(θ̂) around θ0 yields

g(θ̂) = g(θ0) +G(θ̈)(θ̂ − θ0), (11)

where θ̈ is an intermediate value that may differ from θ̇. Combining the last two equations

yields

g(θ̂) = g(θ0)−G(θ̈){G(θ̂)Ω̂−1G(θ̇)}−1G(θ̂)Ω̂−1g(θ0) (12)

= g(θ0)−G{G′Ω̂−1G}−1G′Ω̂−1g(θ0) + op(1), (13)

where G = G(θ0). This gives

√
Tg(θ̂) =

√
T (I −H)g(θ0)op(1), (14)
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where H = G{G′Ω̂−1G}−1G′Ω̂−1. Notice that H is symmetric and idempotent while

(I −H) has rank equal to the degree of overidentification. Therefore, Mohammadi (2016,

lemma 2.1) applies so that 0 ≤ Hjj < 1 for all j. Thus, the diagonal elements of (I −H)

are all strictly larger than zero. In other words, the first element of g(θ̂) is a linear function

of the first element of g(θ0) (and could be a linear function of other elements as well). We

now show that the first element of g(θ̂) being a linear function of the first element of g(θ0)

implies that the first element of
√
Tg(θ̂) is nonzero with probability approaching one.

Note that Ω is positive definite so that none of elements of the moment vector function,

a random variable, is a linear function of the other elements. Further, by assumption

1,
√
Tg(θ0) is asymptotically normally distributed so that the first element of

√
Tg(θ̂)

are nonzero with probability approaching one. The same reasoning applies to all other

elements of
√
Tg(θ̂).


