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Abstract. This paper presents a new estimator for the mixed proportional

hazard model that allows for a nonparametric baseline hazard and time-varying

regressors. In particular, this paper allows for discrete measurement of the durations

as happens often in practice. The integrated baseline hazard and all parameters are

estimated at the regular rate,
√
N, where N is the number of individuals. A hazard

model is a natural framework for time-varying regressors. In particular, if a flow or a

transition probability depends on a regressor that changes with time, a hazard model

avoids the curse of dimensionality that would arise from interacting the regressors at

each point in time with one another. This paper also presents a new test to detect

unobserved heterogeneity.
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1. Introduction

The estimation of duration models has been the subject of significant research in

econometrics since the late 1970s. Since Lancaster (1979), it has been recognized that it

is important to account for unobserved heterogeneity in models for duration data. Failure

to account for unobserved heterogeneity causes the estimated hazard rate to decrease

more with the duration than the hazard rate of a randomly selected member of the
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population. Moreover, the estimators of the proportional effect of explanatory variables on

the population hazard rate are biased. To account for unobserved heterogeneity, Lancaster

proposes a parametric Mixed Proportional Hazard (MPH) model, a generalization of Cox’s

(1972) Proportional Hazard model, that specifies the hazard rate as the product of a

regression function that captures the effect of observed explanatory variables, a baseline

hazard that captures variation in the hazard over the spell, and a random variable that

accounts for the omitted heterogeneity.

Lancaster’s MPH model is fully parametric, as opposed to Cox’s semi-parametric ap-

proach; and from the outset, questions were raised on the role of functional form and

parametric assumptions in the distinction between unobserved heterogeneity and dura-

tion dependence.1 Elbers and Ridder (1982) resolve this question by showing that the

MPH model is semi-parametrically identified if there is minimal variation in the regression

function. Semi-parametric identification means that semi-parametric estimation is feasi-

ble, and a number of semi-parametric estimators for the MPH model have been proposed

that progressively relaxed the parametric restrictions.

Heckman and Singer (1984) consider the nonparametric maximum likelihood estimator

of the MPH model with a parametric baseline hazard and regression function. Using the

results of Kiefer and Wolfowitz (1956), they approximate the unobserved heterogeneity

with a discrete mixture. The rate of convergence and the asymptotic distribution of this

estimator are not known. Honoré (1990) suggests another estimator that does not require

specifying the unobserved heterogeneity distribution. This estimator assumes a Weibull

baseline hazard and only uses very short durations to estimate the Weibull parameter.

Han and Hausman (1990) and Meyer (1990) propose an estimator that assumes that

the baseline hazard is piecewise-constant, to permit flexibility, and that the heterogeneity

has a gamma distribution. We present simulations and a theoretical result to show that

using a nonparametric estimator of the baseline hazard with gamma heterogeneity yields

inconsistent estimates for all parameters and functions if the true mixing distribution

is not a gamma, which limits the usefulness of the Han-Hausman-Meyer approach. In

1Heckman (1991) gives an overview of attempts to make this distinction in duration and dynamic
panel data models.
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particular, a flexible baseline hazard does not ‘compensate’ for misspecification of the

unobserved heterogeneity and, therefore, it is important to avoid parametric assumptions

on the unobserved heterogeneity.

Horowitz (1999) was the first to propose a nonparametric estimator for both the base-

line hazard and the distribution of the unobserved heterogeneity. His estimator is an

adaptation of the semi-parametric estimator for a transformation model that he intro-

duced in Horowitz (1996). In particular, if the regressors are constant over the duration,

then the MPH model has a transformation model representation with the logarithm of

the integrated baseline hazard as the dependent variable and a random error that is equal

to the logarithm of a log standard exponential minus the logarithm of a positive random

variable. In the transformation model, the regression coeffi cients are identified only up

to a scale parameter. As shown by Ridder (1990), the scale parameter is identified in the

MPH model if the unobserved heterogeneity has a finite mean. Horowitz (1999) suggests

an estimator of the scale parameter that is similar to Honoré’s (1990) estimator of the

Weibull parameter and consistent if the finite mean assumption holds, so his approach

allows estimation of the regression coeffi cients (not just up to scale).

The model that Horowitz (1999) estimates differs from ours. In particular, his model

has regressors that do not change over time. Hahn (1994) shows that this model cannot

be estimated at the rate
√
N, where N is the sample size. Ishwaran (1996a) derives

the fastest possible rate at which this model can be estimated, which is N2/5 under

Horowitz’s (1999) assumptions, and the rate of convergence of Horowitz’s (1999) estimator

is arbitrarily close to this rate. Another difference between Horowitz’s (1999) estimator

and ours is that Horowitz’s (1999) estimator requires that the durations are measured at

a continuous scale in order to estimate the transformation model. This condition often

does not hold in economic data, as illustrated by the unemployment duration data that

Han and Hausman (1990) discuss.2

In this paper, we derive a new estimator for the MPH model (with heterogeneity)

that allows for a nonparametric baseline hazard and time-varying regressors. No para-

2Also, the estimator relies on arbitrarily short durations to estimate the scale parameter (this can be
viewed as the cause of the slow convergence). Thus, the regression coeffi cient estimates, which are often
of primary interest, are often not estimated very precisely.
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metric specification of the heterogeneity distribution nor nonparametric estimation of the

heterogeneity distribution is necessary. Intuitively, we condition out the heterogeneity

distribution, which makes it unnecessary to estimate it. Thus, we eliminate the problems

that arise with the Lancaster (1979) approach to MPH models. In our new model, the

baseline hazard rate is nonparametric and the estimator of the integrated baseline hazard

rate converges at the regular rate,
√
N, where N is the sample size. This convergence rate

is the same rate as for a duration model without heterogeneity. The regressor parameters

also converge at the regular rate. A nice feature of the new estimator is that it allows the

durations to be measured on a finite set of points. Such discrete measurement of durations

is important in economics; for example, unemployment is often measured in weeks. In the

case of discrete duration measurements, the estimator of the integrated baseline hazard

only converges at this set of points, as would be expected.

Bijwaard and Ridder (2002) find that the bias in the regression parameters is largely

independent of the specification of the baseline hazard. Hence, failure to find significant

unobserved heterogeneity should not lead to the conclusion that the bias is small.

Because it is empirically diffi cult to recover the distribution of the unobserved hetero-

geneity, estimators that rely on estimation of this distribution may be unreliable. There-

fore, we avoid estimating the unobserved heterogeneity distribution.3 Nevertheless, we

can identify and estimate the regression parameters and the integrated baseline hazard.

We find the removal of the requirement to estimate the heterogeneity distribution a major

advantage.4 Our estimator is related to the estimator by Han (1987). Han derives an esti-

mator, up to scale, of the regression coeffi cients. However, Han’s estimator cannot handle

time-varying regressors, but we estimate the regression coeffi cients when time-varying re-

gressors are present, as well as the scale of the regression coeffi cients. In particular, by

estimating the regression coeffi cients up to scale, each regression coeffi cient can be in-

terpreted as the elasticity of the hazard with respect to its regressor. Similarly, Chen’s

(2002) estimator of the transformation model cannot handle time-varying regressors and

3Horowitz (1999) also estimates his model without estimating the heterogeneity distribution and then
recovers the heterogeneity distribution in a second step.

4An unconditional approach is also used in another context; Heckman (1978) develops unconditional
tests to distinguish true and spurious state dependence.
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only gives the transformation function up to scale. Also, we give an example that shows

that Han’s estimator is inconsistent under his assumptions and show which additional

assumptions are needed.

A hazard model is a natural framework for time-varying regressors. In particular, if a

flow or a transition probability depends on a regressor that changes with time, a hazard

model avoids the curse of dimensionality that would arise from interacting the regressors

at each point in time with one another. A nonconstructive identification proof for the

duration model with time-varying regressors can be produced using techniques similar to

Honoré (1993a), and Honoré (1993b) gives such a proof.5 In particular, Honoré (1993b)

does not assume that the mean of the heterogeneity distribution is finite.6 Ridder and

Woutersen (2003) argue that it is precisely the finite mean assumption that makes the

identification of Elbers and Ridder (1982) ‘weak’in the sense that the model of Elbers

and Ridder (1982) cannot be estimated at the rate
√
N. As in Honoré (1993b), we do

not need the finite mean assumption, which gives an intuitive explanation for why we can

estimate the model at the rate
√
N.

This paper is organized as follows. Section 2 discusses the MPH model (with het-

erogeneity) and presents our estimator. Section 3 shows that our estimator converges at

the regular rate and is asymptotically normally distributed. Section 4 shows that mis-

specifying the heterogeneity yields inconsistent estimates, even if the baseline hazard is

nonparametric, and presents a new test to detect unobserved heterogeneity. Section 5

gives an empirical example and section 6 concludes.

2. Mixed Proportional Hazard Model

Lancaster (1979) introduces the MPH model in which the hazard is a function of a re-

gressor X, unobserved heterogeneity v, and a function of time λ(t):

θ(t | X, v) = veXβ0λ(t). (1)

5Brinch (2007) gives another nonconstructive identification proof; Woutersen (2000) and Horowitz and
Lee (2004) give estimators for the panel duration model. Frederiksen, Honoré and Hu (2007) develop an
estimator for a model with ‘group heterogeneity,’and Honoré and Hu (2010) develop an new estimator
for the transformation model. Bijwaard and Ridder (2009) derive an estimator for a MPH model with a
parametric baseline hazard.

6Moreover, Honoré (1993b) does not assume a tail condition as in Heckman and Singer (1984).
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The function λ(t) is often referred to as the baseline hazard. The popularity of the

MPH model is partly due to the fact that it nests two alternative explanations for the

hazard θ(t|X) to be decreasing with time. In particular, estimating the MPH model gives

the relative importance of the heterogeneity, v, and genuine duration dependence, λ(t).7

Lancaster (1979) uses functional form assumptions on λ(t) and distributional assumptions

on v to identify the model. Examples by Lancaster and Nickell (1980) and Heckman and

Singer (1984), however, show the sensitivity to these functional form and distributional

assumptions. We avoid these functional form and distributional assumptions and consider

the MPH model with time-varying regressors,

θ(t|X(t), v) = veX(t)β0λ(t), (2)

where X(t) is a set of exogenous regressors whose values can vary with time, v denotes the

heterogeneity, which is independent of the regressor, and λ(t) denotes the baseline hazard.

We use X to denote the sequence of the regressors that is observed for an individual. The

MPH model of equation (2) implies the following survival probabilities:

P (T ≥ t|X, v) = F̄ (t|X, v) = exp(−v
∫ t

0

eX(s)β0λ(s)ds) and

P (T ≥ t|X) = Ev{F̄ (t|X, v)} = Ev{exp(−v
∫ t

0

eX(s)β0λ(s)ds)}, (3)

where Ev{.} denotes the expectation with respect to v. In applied work, durations are

measured discretely; and to fix ideas, we assume that the durations are measured on a

weekly scale. We also assume that the regressors can only change at the beginning of the

week. Let the regressor Xit denote the vector of regressors for individual i during week t,

i.e. X(r) = Xs for r ∈ [s− 1, s). We now can write equation (3) as

P (T ≥ t|X) = Ev{F̄ (t|X, v)} = Ev{exp(−v
t∑

s=1

eXsβ0+δ0,s)},

where t is a natural number, δ0,s = ln{
∫ s
s−1

λ(s)dr}, and we normalize δ0,1 = 0. This

specification of δ0,s is similar to Han-Hausman (1990), but they specify and estimate v

parametrically, a requirement we remove in this paper.

Kendall (1938) proposes a statistic for rank correlation. If one is interested in the rank

correlation between T and the index Xβ, then Kendall’s (1938) rank correlation has the
7See Lancaster (1990) and Van den Berg (2001) for overviews.
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following form:

QKendall(β) =
1

N(N − 1)

∑
i

∑
j

1{Ti > Tj}1{Xiβ > Xjβ}.

Han (1987) proposes an estimator that maximizes QKendall(β). Under certain assumptions,

including that T only depends on X through the index Xβ, maximizing QKendall(β) yields

an estimate for β up to scale, excluding the intercept which cannot be estimated.8

However, Kendall’s (1938) rank correlation cannot be used for the case of time-varying

regressors since it is unclear which regressor one should use. We therefore propose the

following modification of the rank correlation. In particular, in our model, the expectation

does depend on an index, although it has a more complicated form. Define Zi(l;β, δ) =∑l
s=1 e

Xisβ+δs . We propose minimizing the following objective function:

Q(β, δ) =
1

N(N − 1)

∑
i

∑
j

K∑
l=1

K∑
k=1

[1{Ti ≥ l} − 1{Tj ≥ k}]1{Zi(l;β, δ) < Zj(k;β, δ)},

(4)

where K is the number of periods that we can observe the individuals. Thus, Zi(l;β, δ) is

the index during the lth period. Intuitively, similar to Han’s objective function, we com-

pare two different individuals. However, we also take account of the outcome in each period

through the parameters for the integrated hazard function, δ. The probability that indi-

vidual i survives period l is larger than the probability that individual j survives period k if

and only if Zi(l;β0, δ0) < Zj(k;β0, δ0). The opposite holds if Zi(l;β0, δ0) > Zj(k;β0, δ0).

Thus, we use the outcomes for individuals i and j together with these probabilities to ob-

tain an objective function that permits identification of the parameters β0 and δ0, without

the restriction of only up to scale identification as in the Han approach.

Consider the expectation of the objective function, which is given by

E{Q(β, δ)} =

∑
i

∑
j

∑K
l=1

∑K
k=1

N(N − 1)
E[{e−vZi(l;β0,δ0)−e−vZj(k;β0,δ0)}·1{Zi(l;β, δ) < Zj(k;β, δ)}].

This expectation is minimized at the true value of the parameters. To see this, suppose

that Zi(l;β0, δ0) > Zj(k;β0, δ0), so that e−vZi(l;β0,δ0) < e−vZj(k;β0,δ0). Thus, {β, δ} =

8For this reason, Han (1987) normalizes the regression coeffi cient by its norm, i.e. Han considers
β/||β||. In the appendix, we present two models that satisfy Han’s (1987) assumptions. The two models
imply the same conditional distribution, so that one needs an additional assumption for Han’s (1987)
result to hold. We also present the additional assumption.
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{β0, δ0} minimizes Ev[{e−vZi(l;β0,δ0) − e−vZj(k;β0,δ0)}1{Zi(l;β, δ) < Zj(k;β, δ)}|X] for

each set {i, j, k, l} and therefore also for the expectation of the sum.9 In contrast to

the “traditional”approach that focuses on the hazard function, our approach focuses on

the probability that individual i survives period l (measured from time 0). This permits

a convenient treatment of the heterogeneity distribution. By only using comparisons

measured from time t = 0, we “condition out”the heterogeneity distribution. The more

traditional hazard approach considers the probability of survival conditional on individual

i surviving up to period l, which requires an explicit treatment of the heterogeneity

distribution.

The definition of Q(β, δ) given above contains a double sum, so the number of compu-

tational operations for calculating Q(β, δ) is N2 (note that K is fixed). In order to reduce

the number of computational operations to the order N lnN , we use the rank operator.

In particular, let dr = 1{T ≥ r} for the vector T of length N. Let d be constructed by

stacking the vectors dr vertically for all r = 1, ...,K. Now both d and Z are vectors with

length NK. If a regressor is continuously distributed conditional on the other regressors,

then we can re-write Q(β, δ) using these vectors and the rank function, so

Q(β, δ) =
1

N(N − 1)

NK∑
j=1

d(j)[2 ·Rank{Z(j)} −NK].

The computational burden to calculate10 Q(β, δ) is proportional to N lnN.

Note that we have identification of β rather than identification only up to an unknown

scale coeffi cient, which is the usual outcome of most previous approaches to the problem.

Also, note that by focusing on survival from the beginning of the sample, we eliminate the

requirement of specifying the heterogeneity distribution since no survival bias (dynamic

sample selection) occurs in our sample comparisons. Our identification is somewhat sim-

ilar to the nonconstructive identification result of Elbers and Ridder (1982). However,

our identification result differs in two important ways. First, our identification proof is

9 In Appendix 1, we show that the true value uniquely minimizes the expectation of the objective
function.
10Let C(N + 1) denote the computational cost of ordering (N + 1) elements given that one knows

the ordering of N elements. Let m denote the median of N ordered elements and let c denote the
computational cost of determining whether an element is larger than m. Then C(2) = c, C(4) = 2c,
C(2N ) = Nc, and C(N) ∝ ln(N) for any N ≥ 1. The leading term of the computational cost of Q(β, δ)
is proportional to

∑N
i=1 C(i), which is proportional to N lnN.
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constructive in the sense that it suggests an estimator. Second, our identification result

does not rely on an iterative procedure. An iterative procedure typically precludes
√
N

consistency.11

3. Large Sample Properties

In this section, we derive the large sample properties of our estimator. We assume that

we observe {Ti, Xi}, where Ti is a natural number and Ti ∈ [0,K], K > 1. For example,

we observe unemployment duration, which is measured in weeks, and want to estimate

the integrated baseline hazard at the end of each week. In order to keep the notation

simple (and without loss of generality), let each period t end at k = t. Let btc denote the

largest natural number that is smaller than or equal to t. We assume the following.

Assumption 1: Let (i) the hazard θ(t|X, v) = v exp(X(btc)β0)λ(t), where λ(t) ∈ (0,∞)

for t ∈ (0,∞); (ii) {T, v,X} be a random sample; (iii) the regressor X be exogenous,

observed for K periods, and independent of v; (iv) the distribution of the regressors in the

first period, Xperiod=1, not be contained in any proper linear subspace of RM ; (v) the first

regressor in the first period, Xperiod=1,1, has an everywhere positive density conditional on

the other regressors, X̃period=1 = x̃period=1 for almost every x̃period=1, where x̃period=1 =

{xperiod=1,2, xperiod=1,3..., xperiod=1,M}, i.e. p(xperiod=1,1|x̃period=1) > 0 for almost every

x̃period=1; (vi) the number of periods is at least two, i.e. K ≥ 2; and (vii) β0 ∈ Θ, which

is compact, and β0,1 6= 0.

The last condition, β0,1 6= 0, is also necessary for Han’s (1987) estimator. In partic-

ular, we give examples in the appendix that show the lack of identification under Han’s

(1987) assumptions. The assumptions on the distribution of the first regressor in period

1 can be relaxed at the cost of a more complicated proof.12 Also, assumption (i) can be

replaced with Pr(T ≥ t|X) = Ev exp(−
∑s=t
s=1 ve

Xsβ0+δ0,s). The next assumption is about

comparing the survival probabilities after the first and second period and it assumes that

these are equal for some values of the regressors.

11 Indeed, Hahn (1994) shows that the identification result of Elbers and Ridder (1982) holds for singular
information matrices, so that no

√
N estimator exists.

12See earlier versions of this paper.



Estimating a Semi-Parametric Duration Model without Specifying Heterogeneity10

Assumption 2: Let (i) 0 < P (T ≤ 1|Xperiod=1 = xa,1) = P (T ≤ 2|Xperiod=1 =

xb,1, Xperiod=2 = xb,2) for some xa,1, xb where xb,1 6= xb,2 and the density of the re-

gressor is positive in an arbitrarily small neighborhood around xa,1 and (xb,1, xb,2); (ii)

0 < P (T ≤ 1|xc,1) = P (T ≤ 2|xd) for some xc,1, xd where xd,1 = xd,2 and the density of

the regressor is positive in an arbitrarily small neighborhood around xc,1 and (xd,1, xd,2)

The substantial restriction in the last assumption is that a regressor changes over time,

so xb,1 6= xb,2. This only has to hold after relabelling the periods. For example, one can

label week 1 through week 8 as period 1 if a regressor only changes value in week 8.13

Part (ii) of the assumption can be relaxed at the cost of a more complicated proof. Also,

some of the regressors can be discrete but, as stated in the assumption, we need at least

one continuously distributed regressor.

Theorem 1 (Consistency):

Let assumptions 1-2 hold. Then

{β̂, δ̂} →
p
{β0, δ0} and

s=t∑
s=1

eδ̂s →
p

Λ(t) where t ∈ {1, ...,K}.

3.1 Asymptotic Distribution

In this subsection, we derive the asymptotic distribution of our estimator. As before,

we use the following objective function, where κ = {β, δ}:

Q(κ) =
1

N(N − 1)

∑
i

∑
j

K∑
l=1

K∑
k=1

[1{Ti ≥ l} − 1{Tj ≥ k}]1{Zi(l;κ) < Zj(k;κ)}.

In the appendix, we show that

Q(κ) =
1

N

∑
i

K∑
l=1

1{Ti ≥ l}K[1− 2F̂Z{Zi(l;κ)}], (5)

where F̂Z{Zi(l;κ)} =
∑
j

N−1

∑K
k=1

K 1{Zj(k;κ) < Zi(l;κ)}. Note that F̂Z{Zi(l;κ)}|Zi(l;κ)] =

FZ{Zi(l;κ)} + op(1), where FZ is the cumulative distribution function of Zi(l;κ) for

13 In practice, unemployment rates change every week.
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l = 1, ...,K and i = 1, ..., N. Below we assume that Q0(κ) = E{Q(κ)} is twice continuously

differentiable at κ0 with respect to κ. Let H denote the second derivative divided by the

constant K and evaluated at κ0, i.e.

H =
1

K
∇κκQ0(κ0).

We assume the following.

Assumption 3 (Interior): Let κ0 = (β0, δ0) ∈ Interior(Θ), where Θ is compact.

Let FZ{z(l;κ)} denote the cumulative distribution function of Zi(l;κ).

Assumption 4: Let (i) FZ{z(l;κ)} be twice continuously differentiable with respect to z

in a neighborhood N of κ0 for any l; (ii) H be nonsingular.

Assumption 4 is a standard regularity condition and supports an argument based on a

Taylor expansion.

Theorem 2 (Asymptotic Normality):

Let assumptions 1-4 hold. Then

√
N{κ̂− κ0} →

d
N(0, H−1ΩH−1),

where Ω = E[DN (κ0)DN (κ0)′] and

DN (κ) =
2√
N

∑
i

K∑
l=1

[1(Ti ≥ l)− E{1(Ti ≥ l)|Xi}][
∂FZ{Zi(l)}

∂κ
|κ=κ0 ]

The function DN (κ) is an ‘approximate derivative’and an ‘influence function’in the

terminology of Newey and McFadden (1994). It allows us to view the asymptotic behavior

of an estimator as an average, multiplied by
√
N. Moreover, as Horowitz (2001, theorem

2.2) shows, bootstrapping an asymptotically normally distributed estimator that can be

represented by an influence function yields a consistent variance-covariance matrix and

consistent confidence intervals.14 In the application, we bootstrap the estimator.

14Horowitz (2001, Theorem 2.2) averages gn(Xi).
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The matrix Ω = E[DN (κ0)DN (κ0)′] can be estimated using a sample analogue, where

the derivative can be estimated using a kernel that omits observation i. In order to estimate

H, let ei denote the ith unit vector, let εN denote a small positive constant that depends

on the sample size, and let Ĥ denote the matrix with (r, s)th element

Ĥrs =
1

4ε2
N

[Q̂(κ̂+erεN+esεN )−Q̂(κ̂−erεN+esεN )−Q̂(κ̂+erεN−esεN )+Q̂(κ̂−erεN−esεN )].

In the application, we bootstrap the estimator. In our view, choosing a value for εN

seems arbitrary and we advise against it. See Chen (2002) for a discussion of the problems

associated with choosing smoothing parameters.

Theorem 2 requires exogenous regressors. Sometimes a regressor can qualify as an

exogenous regressor even if its value depends on survival up to a certain point. For

example, a treatment that is randomly assigned with probability ph to individuals who

survived h periods may appear to be endogenous since it depends on survival. However, in

this duration framework, we can relabel the treatment as if it is given at the beginning of

the spell with probability ph and consider the randomly assigned treatment exogenous.15

Our estimates of {δ1, ..., δK} imply an estimate for the integrated hazard. In particular,

if we measure survival in periods {0, 1, ...,K}, then

Λ̂(0) = 0 and Λ̂(t) =

s=t∑
s=1

exp(δ̂s) where t ∈ {1, ...,K}.

We define the average hazard on the interval [a, b) as the value λ for which
∫ b
a
λ(s)ds =

Λ(b)− Λ(a). This gives an expression for the average hazard,

λ̂(s) = exp(δ̂t) for t− 1 < s ≤ t.

If the durations are measured on a fine grid, then one could also approximate the hazard

by numerically differentiating the integrated hazard Λ̂(t). Thus, we can estimate the

integrated hazard rate at each point and also approximate the hazard rate at each point.

This differs considerably from Chen (2002), who only estimates the logarithm of the

15 In particular, individuals that do not survive up to period h will be assigned treatment with probability
ph; an alternative is to use a weighting function that gives the weiths ph and (1 − ph) to both possible
outcomes.
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integrated hazard up to an unknown scalar, so he does not know whether the hazard is

increasing or decreasing.

Another application of Theorem 2 is to compare the estimates of this paper to estimates

for a more restrictive model. For example, the more restrictive model could be a model

that assumes no heterogeneity (v is the same for all individuals) or assumes that v has a

gamma distribution, as is a popular assumption in applied work (see, e.g., Van den Berg

(2001)). If the estimator of the restrictive model is also normally distributed, then we

can use the bootstrap to derive a χ2-test. Moreover, if the estimator of the restrictive

model is effi cient, then we have a nonparametric version of the Hausman (1978) test.

Lancaster (1990) and Van den Berg (2001) review other tests for misspecification of the

mixing distribution, but not surprisingly, this is the first to use Theorem 2. We summarize

this test in the following proposition and we apply the test in section 5. As before, let

κ̂ denote the estimator of this paper and let ω̂ denote an alternative estimator of the

duration model with hazard θ(t|x, v) = v exp(x(btc)β0)λ(t).

Proposition 1

Let the conditions of theorem 2 hold. Let
√
N(ω̂ − κ0) converge to a normal distribution

with mean zero and variance Vω. Let Vω be the asymptotic Cramer-Rao bound and let

V̂ω − Vω = op(1), for some estimator V̂ω. Let V̂κ be the estimator of the asymptotic

variance of κ̂ calculated using the regular bootstrap. Then the limiting distribution of
√
N(ω̂−κ0) and

√
N(ω̂− κ̂) has zero covariance and Υ = N · (ω̂− κ̂)(V̂κ− V̂ω)−1T (ω̂− κ̂)

has a chi-squared distribution with the number of degrees of freedom equal to the dimension

of κ.

Proof: See appendix.

We apply this test in section 5 and reject the Hausman-Han-Meyer model that assumes

a gamma distribution for the unobserved heterogeneity.

4. Gamma Mixing Distribution

Han and Hausman (1990) and Meyer (1990) use a flexible baseline hazard and model the

unobserved heterogeneity as a gamma distribution16 . Lancaster (1990) is very optimistic
16Ham and Rea (1987) also use a flexible baseline hazard but use a different mixing distribution.
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that flexibility of the baseline hazard can somehow compensate for the restrictions of a

gamma mixing distribution. In this section, we discuss the sensitivity of the estimators of

the MPH model to misspecification of the mixing distribution. In particular, misspecifying

the heterogeneity yields inconsistent estimators and having a flexible integrated baseline

hazard Λ(t) does not compensate for a failure to control for heterogeneity. We illustrate

this using two examples.

Example 1:

Suppose we estimate the following hazard model: θ(t|v,X) = φXλ(t). The function λ(t) is

nonparametric, and one could (incorrectly) conjecture that the flexibility of this function

‘compensates’for the lack of unobserved heterogeneity. This model implies the following

survivor function: P (T ≥ t|X) = F̄ (t | X) = exp(−φXΛ(t)). Suppose we observe F̄ (t | X)

for X = 0, 1 and all t ≥ 0. We define F̄0(t) = F̄ (t | X = 0) and estimate

Λ̂(t) = − ln F̄ (t | X = 0).

For a given Λ̂(t) = − ln F̄ (t | X = 0), the quasi maximum likelihood estimator of φ can

be derived (see appendix), and it can be shown that

plim
N→∞

φ̂ =
−1

E[ln{F̄0(T )}|X = 1]
,

where F̄0 is the survival function for X = 0. Let the data be generated by the fol-

lowing model θ(t|v,X) = vφX where v ∼ Gamma(α, α). Thus, F̄0(t) =
(

1 + Λ(t)
α

)−α
and − lnF0(t) = α ln

(
1 + Λ(t)

α

)
. Note that φXΛ(T ) = Z

v , where Z has an exponential

distribution with mean one. This yields

plim
N→∞

φ̂ =
1

E[α ln{1 + Z/(φvα}] ,

where v ∼ Gamma(α, α). Note that φ only appears in the denominator of the argument

of a logarithmic function. This does not bode well for consistency. Using N = 10, 000 we

find the following:
True φ True α plim φ̂

φ = 2 α = 1 φ̂ = 1.46

φ = 2 α = 2 φ̂ = 1.09

φ = 10 α = 1 φ̂ = 4.04

φ = 10 α = 2 φ̂ = 3.20

.
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Thus, the estimator for the regressor coeffi cient is inconsistent, despite the nonparametric

baseline hazard.�

Example 2:

Suppose we estimate the following hazard model: θ(t|v,X) = veXβ0λ(t), where v has

a gamma distribution. The function λ(t) is nonparametric, and this time one could

(incorrectly) conjecture that the flexibility of this function ‘compensates’for the restrictive

assumption that v has a gamma distribution. Suppose the data is generated by θ(t|v,X) =

veXλ(t). Let p(v) denote the density of v and let p(v) = ec−v, v ≥ c and c ≥ 0. Thus, v is

an exponential random variable to which the nonnegative number c is added, and the true

value of β equals one. Consider estimating this model under the assumption of gamma

heterogeneity. Without loss of generality, we can write the integrated baseline hazard as

follows:

Λ(t) = H(t)d,

where H(t) is unrestricted and d > 0. Horowitz (1996) and Chen (2002) show how to esti-

mate H(t) at the rate
√
N. Suppose that the conditions of Horowitz (1996) or Chen (2002)

are satisfied and that one first estimates H(t) using one of these methods. Estimating d

is then like estimating a Weibull model. In the appendix, we show that the inconsistency

of β does not depend on the distribution of the regressors. Using N = 10, 000, we find

the following:
c β γv δv β; γv = 2, δv = 1
0 1 1 1 1
0.1 1.11 1.12 0.96 1.06
0.2 1.15 1.23 0.89 1.09
0.3 1.16 1.30 0.84 1.12
0.5 1.17 1.42 0.76 1.14
1 1.21 1.75 0.54 1.21
2 1.30 1.87 0.33 1.27

.

For c = 0, which is the correct specification, all parameters can be consistently estimated;

the last column gives estimation results for β when γv = 2 and δv = 1. The simulation

results show that the inconsistencies increase with c.

�
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Note that the asymptotic bias in the examples above does not depend on the shape of the

hazard. The following lemma gives a reason for the asymptotic bias.

Lemma 1: Let θ(t | v, x) = vexβ0λ(t), where v ⊥ x. Let v− c | T ≥ 0 ∼ Gamma(γv, δv).

If c = 0, then F̄ (t|x) decreases at a polynomial rate. If c > 0, then F̄ (t|x) decreases at

an exponential rate.

The lemma states that the survivor probability as a function of time decreases at a poly-

nomial rate if the unobserved heterogeneity distribution is a gamma distribution, and that

the survivor probability decreases at an exponential rate if the unobserved heterogeneity

distribution is a shifted gamma distribution. As the examples show, misspecification of

the heterogeneity distribution cannot, in general, be corrected by a flexible baseline haz-

ard. The estimator presented in this paper does not rely on specifying or estimating the

heterogeneity distribution, which explains its better performance in terms of asymptotic

bias and consistency.

5. Empirical Results

We estimate our new duration model on a sample of 15,491 males who received unem-

ployment benefits beginning in 1998 in a data set called the Study of Unemployment

Insurance Exhaustees public use data. The study was designed to examine the character-

istics, labor market experiences, unemployment insurance (UI) program experiences, and

reemployment service receipt of UI recipients.17

The study sample consists of UI recipients in 25 states who began their benefit year in

1998 and received at least one UI payment. It is designed to be nationally representative

of UI exhaustees and non-exhaustees. The data description is:

“The data come from the UI administrative records of the 25 sample states

and telephone interviews conducted with a subsample of these UI recipients.

Telephone interviews were conducted in English and Spanish between July

2000 and February 2001 using a two-stage process. For the first 16 weeks,

all 25 participating states used mail, phone, and database methods to locate

17The description follows from http://www.upjohninst.org/erdc/uie/datasumm.html, which has further
details about the sample design and results.
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sample members, who were then asked to complete the survey. The second

stage, conducted in 10 of the sample states, added field staff to help locate non-

responding sample members. The administrative data include the individual’s

age, race, sex, weekly benefit amount, first and last payment date, the state

where benefits were collected, and whether benefits were exhausted.”(op.cit.)

The survey data contain individual-level information about labor market and other

activities from the time the person entered the UI system through the time of the inter-

view. However, we limit our econometric study to the first 25 weeks of unemployment

due to the recognized change in behavior in week 26 when UI benefits cease for a signifi-

cant part of the sample (see, e.g., Han-Hausman (1990)). The data include information

about the individual’s pre-UI job, other income or assistance received, and demographic

information.

We use two indicator variables, race and age over 50, in our index specification. We

also use the replacement rate, which is the weekly benefit amount divided by the UI

recipient’s base period earnings. Lastly, we use the state unemployment rate of the state

from which the individual received UI benefits during the period in which the individual

filed for benefits. This variable changes over time. Table 1 gives the means and standard

deviations for the variables we use in our empirical specification.

– – – – – – – – – – – – —

Table 1 here

– – – – – – – – – – – – —

We first estimate the unknown parameters of the model using the gamma heterogeneity

specification of Han-Hausman (1990) and Meyer (1990) (HHM). This specification allows

for a piecewise constant baseline hazard, which does not restrict the specification because

unemployment duration is recorded on a weekly basis. However, it does impose a gamma

heterogeneity distribution on the specification, which can lead to inconsistent estimates

as we discussed above. We estimate the model using a gradient method and report the

HHM estimates and bootstrap standard errors in Table 2. We calculate all the standard

errors using the regular bootstrap and 10, 000 replications.
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– – – – – – – – – – – – —

Table 2 here

– – – – – – – – – – – – —

The estimates of the parameters, as reported in Table 2, should not depend on how

many weeks of data we use (6, 13 or 24 weeks). However, the coeffi cients differ significantly.

We find significant evidence of heterogeneity in the two larger samples, but in the 6 period

sample, we do not estimate significant heterogeneity. We also find the expected negative

estimates for all of the coeffi cients, with the state unemployment rate a significant factor

in affecting the probability of exiting unemployment. When comparing the estimates of

the parameters across the 3 samples, the scaling changes depending on the variance of the

estimated gamma distribution. Thus, the ratios of the coeffi cients should be compared.

The ratios of the coeffi cients across samples remain similar, with the results for the 13

period and 24 period samples very close to each other.

We now turn to an estimate of the new duration specification, which does not require

estimation of a heterogeneity distribution, using the same samples as above. Optimization

of the objective function can now create a problem because of its lack of smoothness. Usual

Newton-type gradient methods or conjugate gradient (simplex) methods do not work in

this situation. To date, we have found that generalized pattern search algorithms perform

best.18 We use the pattern search routine from Matlab to estimate the parameters; see

Appendix 7 for further details about our computational approach. The basic idea is to

begin with the gamma heterogeneity estimates and to construct a “bounding box”of 3

standard deviations around each parameter estimate. We then find new estimates and

increase the bounding box until we do not find an increase in the objective function.

The routine converges relatively rapidly. We calculate all the standard errors using the

regular bootstrap and 10, 000 replications. In Table 3, we give the estimates from the new

duration model. We also check our pattern search results using a genetic optimization

approach that is also discussed in the appendix. The genetic optimization approach has

18Further research would be helpful here. We have also used gradient algorithms on a smoothed objec-
tive function to obtain initial estimates and then employed Nelder-Mead routines to find the optimum.
However, the pattern search algorithms appear to work best. See Audet and Dennis (2003) for a recent
survey of pattern search algorithms.
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the advantage of not depending on initial values. However, it has the disadvantage of

taking much longer to solve, so it cannot be used feasibly to bootstrap the results to

estimate the standard errors. However, the results of the pattern search algorithm and

the genetic optimization algorithm are very similar as we describe in the appendix.

– – – – – – – – – – – – —

Table 3 here

– – – – – – – – – – – – —

Again we find that all of the estimated coeffi cients have the expected negative signs.

The coeffi cients are also estimated with a high degree of statistical precision, although this

finding may be a result of our large sample size of 15,491 individuals. We again find that

the ratios of coeffi cients remain relatively stable across the three different samples with

the exception of the replacement rate, which becomes increasingly larger with respect to

the state unemployment rate as the sample length increases. The change in the estimated

coeffi cient for the replacement rate for the 24 week sample appears to arise because most

recipients’unemployment insurance terminates after 26 weeks. Han-Hausman (1990) find

a significant change in behavior at week 26. As individuals start to approach week 26 the

size of the replacement rate has a diminished effect on their behavior as they foresee the

end of their unemployment benefits beginning to draw near.

In Figures 1 and 2, we plot the survival curves for the 13 week and 24 week gamma

heterogeneity estimates and for the estimates from the new model. These figures also have

a 95% confidence band (point by point) for the survival curves. We fit the survival curves

using a second order local polynomial estimator which takes account of the standard

deviations of the estimated period coeffi cients in Table 2 and 3.19 The estimated local

polynomial survival curves fit the data well for all specifications.

– – – – – – – – – – – – —

Figure 1 here

– – – – – – – – – – – – —

– – – – – – – – – – – – —
19We explain our approach in more detail in the appendix.
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Figure 2 here

– – – – – – – – – – – – —

We find that the new model gives extremely similar results for the 6 period data and

the 13 period data. Indeed, a Hausman (1978) specification test on the slope coeffi cients

is 0.42 with 4 degrees of freedom. Thus, we find that the new model is not sensitive to

the number of periods used to estimate the model. For the 24 period model, we find the

coeffi cients again very close to the other results except for the coeffi cient of the replacement

rate. A Hausman test now rejects the equality of the slope coeffi cients with a value of

234.3, based essentially on the change in the replacement rate coeffi cient (comparing 24 to

13 weeks). However, since most individuals’unemployment benefits run out in the 26th

week, the change in the estimated coeffi cient is likely because of unmodeled dynamics at

the point of benefit exhaustion. Lastly, if we test the ratios of the gamma heterogeneity

model versus the new duration model, we do not reject that the ratios are the same for 6

periods with a test value of 3.5; we marginally reject equality of the coeffi cient ratios for

13 periods with a test value of 6.2; and we do reject equality of the coeffi cient ratios for 24

weeks with a test value of 12.4. Thus, the new duration model does find differences from

the previous gamma heterogeneity model. The new duration model also has the advantage

that the absolute values of the estimated coeffi cients are not sensitive to the length of the

data period, while the gamma heterogeneity model does not have this property.

The main difference we find between the results of the gamma heterogeneity survival

curves and those of the semi-parametric survival curves is that the gamma heterogene-

ity survival curves are initially steeper. Thus, the gamma heterogeneity results predict

a higher probability of exiting unemployment in the early periods than do the semi-

parametric results. However, again the differences are not substantial. We reject equality

of the survival curves due to the extremely small standard errors we estimate with our

very large sample.

6. Conclusion

Since Lancaster (1979), it has been recognized that it is important to account for un-

observed heterogeneity in models for duration data. Failure to account for unobserved
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heterogeneity makes the estimated hazard rate decrease more with the duration than the

hazard rate of a randomly selected member of the population. In this paper, we derive a

new estimator for the MPH model that allows for a nonparametric baseline hazard and

time-varying regressors. By using time-varying regressors, we are able to estimate the

regression coeffi cients, instead of estimates only up to scale as in some of the previous

literature. We also do not require explicit estimation of the heterogeneity distribution

in estimating the baseline hazard and regression coeffi cients. The baseline hazard rate is

nonparametric and the estimator of the integrated baseline hazard rate converges at the

regular rate,
√
N, where N is the sample size. This is the same rate as for a duration

model without heterogeneity. The regressor parameters also converge at the regular rate.

Also, a hazard model is a natural framework for time-varying regressors. In particular, if

a flow or a transition probability depends on a regressor that changes with time, a hazard

model avoids the curse of dimensionality that would arise from interacting the regressors

at each point in time with one another. A nice feature of the new estimator is that it

allows the durations to be measured on a finite set of points. Such discrete measurement

of durations is important in economics; for example, unemployment is often measured in

weeks. We also propose a new test to detect unobserved heterogeneity and, also, mis-

specified unobserved heterogeneity. The test is a nonparametric version of the Hausman

(1978) test. We use it in the application to test the gamma distribution assumption in the

Han-Hausman-Meyer model and reject the assumption that the unobserved heterogeneity

has a gamma distribution.
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Appendix 1: Derivation of the Objective Function

In order to simplify notation, we write Zi(l) and Zj(k) instead of Zi(l;κ) and Zj(k;κ).

Q(κ) =
1

N(N − 1)

∑
i

∑
j

K∑
l=1

K∑
k=1

[1{Ti ≥ l} − 1{Tj ≥ k}]1{Zi(l) < Zj(k)}

=
1

N(N − 1)

∑
i

∑
j

K∑
l=1

[1{Ti ≥ l}
K∑
k=1

1{Zi(l) < Zj(k)}

− 1

N(N − 1)

∑
i

∑
j

K∑
l=1

1{Tj ≥ k}
K∑
k=1

1{Zi(l) < Zj(k)}

=

∑
i

N

K∑
l=1

1{Ti ≥ l}
∑
j

N − 1

K∑
k=1

[1{Zi(l) < Zj(k)} − 1{Zi(l) > Zj(k)}]

=

∑
i

N

K∑
l=1

1{Ti ≥ l}
∑
j

N − 1

K∑
k=1

[1− 2 ∗ 1{Zj(k) < Zi(l)}]

with probability one. Let

F̂Z{Zi(l)} =

∑
j

N − 1

∑K
k=1

K
1{Zj(k) < Zi(l)},

i.e. F̂Z{(.) is an estimator of the cumulative distribution function FZ(.), i.e.F̂Z{Zi(l)} =

FZ{Zi(l)}+ op(1), for l = 1, ...,K and i = 1, ..., N. Using F̂Z(.) yields

Q(κ) =

∑
i

N

K∑
l=1

1{Ti ≥ l}K[1− 2F̂Z{Zi(l)}].

Appendix 2: Proof of Theorem 1

The first lemma shows that one can estimate β up to scale by using the data of period

one (i.e. K = 1). As before, let β0 denote the true value of the parameter and β0,1 be

the first element of the vector β0 (we only use the subscript ‘zero’when there is a risk

of confusion between an element of the parameter space and the true value). Note the

normalization in the text, δ1 = 0, so that the objective function is only a function of β if

K = 1. In particular, let

Q(β, δ1 = 0) =
1

N(N − 1)

∑
i

∑
j

[1{Ti ≥ 1}−1{Tj ≥ 1}]1{Zi(1;β, δ1 = 0) < Zj(1;β, δ1 = 0)}.

Lemma A1: Let assumption 1(i)—(v) and (vii) hold. Let β0 ∈ Θβ , which is compact,

K = 1, and β̂/|β̂1| = argmin
β∈Θβ

Q(β). Then

β̂/|β̂1| →
p
β0/|β0,1|
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Proof: The same reasoning as in the main text implies that the true values {β0} yield a

minimum of the expectation of the objective function. We now show that β0/|β0,1| yields

a unique minimum, i.e. β0/|β0,1| = argmin
β∈Θβ

E{Q(β)}. Let W denote the regressors in

period 1. Note that the support of W is not contained in any proper linear subspace of

RM . This implies that E{WW ′} is positive definite (e.g. see Newey and McFadden (1994,

page 2125)). Therefore, for any γ∗ 6= γ, W ′(γ−γ∗) 6= 0 on a set with positive probability.

One needs that 1{W ′γ < 0} 6= 1{W ′γ∗ < 0} on a set with positive probability. To see that

this is the case, note that the first component of W, conditional on the other regressors, is

continuously distributed with an infinite support by assumption. Using γ = β/|β1| gives

that E{Q(β)} is minimized at β0/|β0,1|. Thus, β is identified up to scale. Also note that

the conditions of Newey and McFadden (1994, theorem 2.1 and lemma 2.8) are satisfied

and so that β̂/|β̂1| →
p
β0/|β0,1|. Q.E.D.

The next lemma shows that one can identify the scale parameter, β1, and δ2 by using

data from period 1 and 2. For simplicity, the next lemma assumes that xit is a scalar for

all i and all t.

Lemma A2: Let assumptions 1-2 hold. Let K = 2 and let xit be a scalar for all i and

all t. Then

{β̂, δ̂} →
p
{β0, δ0}

Proof: We first establish identification and then show that the estimator converges in

probability. Note that assumptions 1-2 hold, so that a regressor stays constant over time

with positive probability. Note that this model only has two scalar parameters, β and

δ2. Without loss of generality, let β0 > 0 (if β0 < 0, multiply x by -1). Consider the

following reparametrization20 : δ2 = ln(eβc − 1) for some c > 0. The same reasoning as

in the main text implies that the true values {β0, c0} yield a minimum of the expecta-

tion of the objective function. We now show that {β0, c0} yields a unique minimum, i.e.

{β0, c0} = argmin
β,c∈Θ

E{Q(β, c)}. In particular, we first show that c0 yields a unique mini-

mum for those individuals whose regressors do not change from period one to period two
20The reparametrization simplifies the identification proof; see Woutersen (2002) for an overview of

such techniques.



Estimating a Semi-Parametric Duration Model without Specifying Heterogeneity24

so that E{Q(β, c0)} < E{Q(β, c)} for any β, c ∈ Θ and c 6= c0. Thus, the advantage of the

reparametrization is that we can identify c without having to identify β.We then show, us-

ing the assumption that some regressors vary with time, that E{Q(β0, c0)} < E{Q(β, c)}

for any β, c ∈ Θ and c 6= c0, β 6= β0. Consider the expectation of the contribution of the

pair i 6= j to the objective function after conditioning on xi1 = xi2,

E[{e−vZi(l=2;β0,δ0,2) − e−vZj(k=1;β0,δ0,2)} · 1{Zi(l = 2;β, δ) < Zj(k = 1;β, δ)}|xi, xj , xi1 = xi2]

= E([exp{−v(exi1β0 + exi1β0+δ0,2)} − exp{−vexj1β0}] · 1{exi1β + exi1β+δ < exj1β}]|xi, xj , xi1 = xi2).

Using δ2 = ln(ecβ − 1) for some c > 0 yields exi1β + exi1β+δ = exi1β+cβ . Thus,

E[{e−vZi(l=2;β0,δ0,2) − e−vZj(k=1;β0,δ0,2)} · 1{Zi(l = 2;β, δ) < Zj(k = 1;β, δ)}|xi, xj , xi1 = xi2]

= E([exp{−v(exi1β0+c0β0)} − exp{−vexj1β0}] · 1{exi1β+cβ < exj1β}]xi, xj , xi1 = xi2)

= E([exp{−v(exi1β0+c0β0)} − exp{−vexj1β0}] · 1{c− (xj1 − xi1) < 0}]|xi, xj , xi1 = xi2) (6)

= E([exp{−v(exi1β0+c0β0)} − exp{−vexj1β0}] · 1{c− xij < 0}]|xi, xj , xi1 = xi2),

where xij = xj1 − xi1. Note that E[exp{−v(exi1β0+c0β0)} − exp{−vexj1β0}] < 0 if and

only if c − xij < 0 and that E[exp{−v(exi1β0+c0β0)} − exp{−vexj1β0}] > 0 if and only if

c− xij > 0. Also, assumption 2 implies that {c0 − xij} has support around zero, so c0 is

identified, i.e. E{Q(β, c0)} < E{Q(β, c)} for any β, c ∈ Θ and c 6= c0. Using this result,

we now show that E{Q(β0, c0)} < E{Q(β, c)} for any β, c ∈ Θ and c 6= c0, β 6= β0. Define

Hij(β, c) = exi1β + exi2β+δ2 − exj1β (7)

= exi1β + exi2β+cβ − exi2β − exj1β

using δ2 = ln(ecβ − 1). Dividing by exi1β yields

H∗ij(β, c) = 1 + e(xi2−xi1+c)β − e(xi2−xi1)β − e(xj1−xi1)β .

Differentiating with respect to β gives

∂H∗ij(β, c)

∂β
= (xi2 − xi1 + c)e(xi2−xi1+c)β − (xi2 − xi1)e(xi2−xi1)β − (xj1 − xi1)e(xj1−xi1)β .

Let P (Ti ≥ 2|xi) > P (Tj ≥ 1|xj) so that E[exp{−v(exi1β0 + exi2β0+β0c0 − exi2β0)}|xi] >

E[exp{−v(exj1β0)}|xj ]. This implies that Hij(β0, c0) = exi1β0 + exi2β0+β0c0 − exi2β0 −
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exj1β0 ≤ 0 and that H∗ij(β0, c0) = 1 + e(xi2−xi1+c0)β0 − e(xi2−xi1)β0 − e(xj1−xi1)β0 < 0.

Suppose that xi2 − xi1 < 0 so that 1 − e(xi2−xi1)β0 > 0 for any value of β0 > 0. This

implies, using H∗ij(β0, c0) < 0, that e(xi2−xi1+c0)β0 < e(xj1−xi1)β0 so that (xi2−xi1 +c0) <

(xj1 − xi1). This implies that
∂H∗ij(β,c0)

∂β < 0 for all β > 0 so that H∗ij(β, c0) < H∗ij(β0, c0)

if β > β0 and H
∗
ij(β, c0) > H∗ij(β0, c0) if β < β0. In particular, given assumption 1-2,

for those values of the regressors for which P (Ti ≥ 2|xi, xi1 > xi2) > P (Tj ≥ 1|xj) and

xi2−xi1 < 0, the conditional expectations of the contributions to the objective functions,

{P (Ti ≥ 2|xi, xi1 > xi2)− P (Tj ≥ 1|xj)} ∗ 1{H∗ij(β, c0) < 0},

are minimized for any value of β for which β ≥ β0.

Now suppose P (Ti ≥ 2|xi, xi1 > xi2) < P (Tj ≥ 1|xj). In this case, E[exp{−v(exi1β0 +

exi2β0+β0c0 − exi1β0)}] < E[exp{−v(exj1β0)}]. This implies that Hij(β0, c0) = exi1β0 +

exi2β0+β0c0−exi2β0−exj1β0 > 0 and thatH∗∗(β0, c0) = e(xi1−xi2)β0+eβ0c0−1−e(xj1−xi2) >

0. Again, suppose that xi2−xi1 < 0 so that e(xi1−xi2)β0−1 > 0 for any value of β0 > 0. This

implies that ec0β0 > e(xj1−xi2)β0 so that c0 > (xj1−xi2). This implies that ∂H
∗∗(β,c0)
∂β > 0.

Similar reasoning as above implies that the conditional expectations of the contributions

to the objective functions,

{P (Ti ≥ 2|xi, xi1 > xi2)− P (Tj ≥ 1|xj)} ∗ 1{H∗(β, c0) < 0},

are minimized for any value of β for which β ≤ β0. Thus, β0 is identified if xi2−xi1 < 0. A

similar reasoning applies if xi2−xi1 > 0, so β0 is identified under the assumptions. Given

that δ2 = ln(ecβ − 1), identification of {β, c} is equivalent to identification of {β, δ}. Also

note that the conditions of Newey and McFadden (1994, theorem 2.1 and lemma 2.8) are

satisfied and so that {β̂, δ̂} →
p
{β0, δ0}. Q.E.D.

Proof of Theorem 1:

The same reasoning as in the main text implies that the true values {β0, δ0} yield a

minimum of the expectation of the objective function. We now show that {β0, δ0} yields

a unique minimum, i.e. {β0, δ0} = argmin
β,δ∈Θ

E{Q(β, δ)} using lemma 1 and lemma 2. We

first consider K = 3. Lemma A1 and lemma A2 imply that {β, δ2} are identified so that
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δ3 is the only remaining parameter to be identified. Consider the objective function,

Q(κ) =
1

N(N − 1)

∑
i

∑
j

K∑
l=1

K∑
k=1

Qijlk

=
1

N(N − 1)

∑
i

∑
j

K∑
l=1

K∑
k=1

[1{Ti ≥ l} − 1{Tj ≥ k}]1{Zi(l;κ) < Zj(k;κ)}

and consider summing all contributions, Qijlk of the objective function for which k =

K = 3. That is,

1

N(N − 1)

∑
i

∑
j

K∑
l=1

K=3∑
k=3

[1{Ti ≥ l} − 1{Tj ≥ k}]1{Zi(l;κ) < Zj(k;κ)}.

The same reasoning as in lemma A1 (including using the full support condition for the first

regressor in the first period) implies that δ3 is identified. We can use a similar argument

for K = 4, 5 etc. so that {β0, δ0} is the unique minimum of E{Q(β, δ)}.

Next, we show convergence in probability. Define

Q0(β, δ) = E{Q(β, δ)}

= E[E{Q(β, δ)|Z}]

= E[

∑
i

N

K∑
l=1

Ev{e−vZi(l;κ)|Zi(l;κ)}
K∑
k=1

[2 ∗ FZ(Zi(l;κ))− 1]],

where FZ is the cdf of Zi(l;κ) for l = 1, ...,K and i = 1, ..., N. The function Q0(β, δ) is

continuous and minimized at the true value of the parameters. The function Q(β, δ) is

stochastically equicontinuous, and the conditions of Newey and McFadden (1994, lemma

2.8) are satisfied, so that Q(β, δ) converges uniformly to EQ(β, δ).Moreover, Θ is assumed

to be compact and the data are i.i.d., so consistency follows from Newey and McFadden

(1994, theorem 2.1). Note that these arguments do not require that there should be

unobserved heterogeneity; they still hold if all individuals have the same value of v. Q.E.D.
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Appendix 3: Proof of Theorem 2: Asymptotic Normality

In order to simplify notation we write Zi(l) and Zj(k) instead of Zi(l;κ) and Zj(k;κ).

We prove the theorem by applying theorem 1 and theorem 2 by Sherman (1993).21 Let

|| · || denote the L2 norm. Sherman’s (1993) condition (i) in theorem 1 requires that there

exists a neighborhood N of κ0 and a constant C > 0 for which

E{Q(κ)} − E{Q(κ0)} ≤ C||κ− κ0||2

for all κ in N . Note that, in our case, the expectation of the objective function is twice

continuously differentiable and that κ0 uniquely minimizes E{Q(κ)}. Therefore we can

use the following Taylor approximation around the minimum. In particular, consider an

arbitrary s ∈ Rdim(κ) and consider the second order Taylor expansion,

E{Q(κ0 + ηs)} = E{Q(κ0)}+ s′∇κκQ0(κ0)sη2 + o(η2).

The Hessian ∇κκQ0(κ0) is negative definite so that it is possible to choose N such that

s′∇κκQ0(κ0)s dominates the higher order terms. Thus, Sherman (1993, theorem 1, con-

dition (i)) is satisfied. Condition (ii) in theorem 1 requires that

Q(κ) = Q(κ0) + E{Q(κ)} − E{Q(κ0)}+Op(||κ− κ0||/
√
N) + op(||κ− κ0||2) +Op(1/N)

uniformly over op(1) neighborhoods of κ0. In order to show that this assumption holds,

define

41,N (κ, κ0) = Q(κ)− E{Q(κ)|X} − [Q(κ0)− E{Q(κ0)|X}], and

42,N (κ, κ0) = E{Q(κ)|X} − E{Q(κ)} − [E{Q(κ0)|X} − E{Q(κ0)}],

where X denotes the data on the regressors for all individuals. Note that

Q(κ)−Q(κ0)− E{Q(κ)}+ E{Q(κ0)} = 41,N (κ, κ0) +42,N (κ, κ0)

so that we have to show that 41,N (κ, κ0) +42,N (κ, κ0) is Op(||κ− κ0||/
√
N)+

op(||κ−κ0||2)+Op(1/N) uniformly over op(1) neighborhoods of κ0. Consider 41,N (κ, κ0)

21Note that Sherman (1993) normalizes Q(κ0), E{Q(κ0)}. and κ0 to be zero. We do not use these
normalizations and, instead, use Q(κ)−Q(κ0), E{Q(κ)} − E{Q(κ0)} and (κ− κ0).
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and note that

41,N (κ, κ0) =

∑
i

N

K∑
l=1

[1(Ti ≥ l)− E{1(Ti ≥ l)|Xi}]K[−2F̂Z{Zi(l)}+ 2F̂Z0{Z0,i(l)}]

=

∑
i

N

K∑
l=1

[1(Ti ≥ l)− E{1(Ti ≥ l)|Xi}]K[−2FZ{Zi(l)}+ 2FZ0{Z0,i(l)}]+

+

∑
i

N

K∑
l=1

[1(Ti ≥ l)− E{1(Ti ≥ l)|Xi}]K[−2F̂Z{Zi(l)}

+2FZ{Zi(l)}+ 2F̂Z0{Z0,i(l)} − 2FZ0{Z0,i(l)}].

where Xi denotes the data on the regressors of individual i. Let 4small1,N (κ, κ0) denote the

last term, i.e.

4small1,N (κ, κ0) =

∑
i

N

K∑
l=1

[1(Ti ≥ l)− E{1(Ti ≥ l)|Xi}]K[−2F̂Z{Zi(l)}+ 2FZ{Zi(l)}

+2F̂Z0{Z0,i(l)} − 2FZ0{Z0,i(l)}].

Note that E[1(Ti ≥ l)− E{1(Ti ≥ l)|Xi}|X] = 0 so that

E{4small1,N (κ, κ0)} = E[E{4small1,N (κ, κ0)|X}] = 0. Next, note that for i 6= j,

covariance{1(Ti ≥ l), 1(Tj ≥ k)|X} = 0 since the data is i.i.d. By the usual formula for

the variation22 , we have that

var{4small1,N (κ, κ0)} = E[var{4small1,N (κ, κ0)|X}] + var[E{4small1,N (κ, κ0)|X}]

=
1

N2
E[
∑
i

var{
K∑
l=1

1(Ti ≥ l)K[−2F̂Z{Zi(l)}+ 2FZ{Zi(l)}

+2F̂Z0{Z0,i(l)} − 2FZ0{Z0,i(l)}]|X}].

Note that K is fixed and that var[F̂Z{Zi(l)}] and cov[F̂Z{Zi(l)}, F̂Z0{Z0,i(l)}] are differ-

entiable so that a first order Taylor expansion around κ0 gives that var{4small1,N (κ, κ0)} =

O( ||κ−κ0||N2 ) so that 4small1,N (κ, κ0) = Op(
||κ−κ0||1/2

N ). Also note that var{4small1,N (κ, κ0)} is

O( 1
N2 ) for any fixed value of κ and κ0. Next, define

4main1,N (κ, κ0) = 41,N (κ, κ0)−4small1,N (κ, κ0)

=

∑
i

N

K∑
l=1

[1(Ti ≥ l)− E{1(Ti ≥ l)|Xi}]K[−2FZ{Zi(l)}+ 2FZ0{Z0,i(l)}].

22var(A) = E(var(A|B))+var(E(A|B) for any random variables A,B that have finite second moments.
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Using var{4main1,N (κ, κ0)} = E[var{4main1,N (κ, κ0)|X}] + var[E{4main1,N (κ, κ0)|X}] and a

first order Taylor expansion around κ0 gives

4main1,N (κ, κ0) =

∑
i

N

K∑
l=1

[1(Ti ≥ l)−E{1(Ti ≥ l)|Xi}]K[−2
∂FZ{Zi(l)}

∂κ

′
(κ−κ0)]+op(||κ−κ0||/

√
N).

The first term of 4main1,N (κ, κ0) drives the normality result in theorem 2. Next, consider

42,N (κ, κ0) = E{Q(κ)|X} − E{Q(κ)} − [E{Q(κ0)|X}+ E{Q(κ0)}]

=

∑
i

N

K∑
l=1

(E{1(Ti ≥ l)|Xi}K[−2F̂Z{Zi(l)}+ 2F̂Z0{Z0,i(l)}])

−
∑
i

N
E{

K∑
l=1

(E{1(Ti ≥ l)|Xi}K[−2F̂Z{Zi(l)}+ 2F̂Z0{Z0,i(l)}])}.

(8)

We again use arguments based on conditional expectations. Therefore, it is useful to note

that F̂Z{Zi(l)} only depends on Zi(l) through its argument. That is

F̂Z{Zi(l)} =

∑
j

N − 1

∑K
k=1

K
1{Zj(k) < Zi(l)}

=

∑
j 6=i

N − 1

∑K
k=1

K
1{Zj(k) < Zi(l)}+

l − 1

(N − 1)K
.

We can use this to simplify the last term in equation (8). In particular,∑
i

N
E{

K∑
l=1

(E{1(Ti ≥ l)|Xi}K[−2F̂Z{Zi(l)}+ 2F̂Z0{Z0,i(l)}])}

=

∑
i

N
E[

K∑
l=1

E{(E{1(Ti ≥ l)|Xi}K[−2F̂Z{Zi(l)}+ 2F̂Z0{Z0,i(l)}])|Xi}]

=

∑
i

N
E{

K∑
l=1

(E{1(Ti ≥ l)|Xi}K[−2FZ{Zi(l)}+ 2FZ0{Z0,i(l)}])}.

Let

4A2,N (κ, κ0) =

∑
i

N

K∑
l=1

(E{1(Ti ≥ l)|Xi}K[−2F̂Z{Zi(l)}+ 2F̂Z0{Z0,i(l)}])

−
∑
i

N

K∑
l=1

(E{1(Ti ≥ l)|Xi}K[−2FZ{Zi(l)}+2FZ0{Z0,i(l)}]), and

(9)

4B2,N (κ, κ0) =

∑
i

N

K∑
l=1

(E{1(Ti ≥ l)|Xi}K[−2FZ{Zi(l)}+ 2FZ0{Z0,i(l)}])

−
∑
i

N
E{

K∑
l=1

(E{1(Ti ≥ l)|Xi}K[−2FZ{Zi(l)}+2FZ0{Z0,i(l)}])}.

(10)
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and note that 42,N (κ, κ0) = 4A2,N (κ, κ0) +4B2,N (κ, κ0). Thus,

4A2,N (κ, κ0) =

∑
i

N

K∑
l=1

[E{1(Ti ≥ l)|Xi}K[−2F̂Z{Zi(l)}+ 2FZ{Zi(l)}

+2F̂Z0{Z0,i(l)} − 2FZ0{Z0,i(l)}]]. (11)

Define

Ri(l) = E{1(Ti ≥ l)|Xi}[−F̂Z{Zi(l)}+ FZ{Zi(l)}+ F̂Z0{Z0,i(l)} − FZ0{Z0,i(l)}]

so that

4A2,N (κ, κ0) =
2K

N

∑
i

K∑
l=1

Ri(l).

Using F̂Z{Zi(l)} =
∑
r 6=i

N−1

∑K
k=1

K 1{Zr(k) < Zi(l)}+ l−1
(N−1)K yields

Ri(l) = E{1(Ti ≥ l)|Xi}
∑
r 6=i

N − 1

∑K
k=1

K
[−1{Zr(k) < Zi(l)}+FZ{Zi(l)}+1{Z0,r(k) < Z0,i(l)}−FZ0{Z0,i(l)}].

Note that E{Ri(l)} = 0 since that data is a random sample (i.i.d.). This gives

E{4A2,N (κ, κ0)} = 0 for all κ, κ0.

Next, note that

E([F̂Z{Zi(l)} − FZ{Zi(l)}]2) ≤ 1

4

1

N − 1

so that

E[{Ri(l)}2] ≤ 1

N − 1

for all i, l. Similarly, −1
N−1 ≤ E[{Ri(l)}{Rj(k)}] ≤ 1

N−1 for all l, k and i 6= j. This expres-

sion is helpful for evaluation the second moment of 4A2,N (κ, κ0). In particular,

E[{4A2,N (κ, κ0)}2] = (
2K

N
)2E[{

∑
i

K∑
l=1

Ri(l)}2]

= (
2K

N
)2E[{

∑
i

K∑
l=1

Ri(l)}{
∑
j

K∑
k=1

Rj(k)}].

This gives

E[{4A2,N (κ, κ0)}2] = (
2K

N
)2E[

∑
i

{
K∑
l=1

Ri(l)}2]

+(
2K

N
)2E[{

∑
i

K∑
l=1

Ri(l)}{
∑
j 6=i

K∑
k=1

Rj(k)}].
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The first term is bounded by 4K3

N(N−1) since E[{
∑K
l=1Ri(l)}2] is bounded by K

N−1 . Note

that this bound is uniform, i.e. sup
κ,κ0∈Θ

( 2K
N )2E[

∑
i{
∑K
l=1Ri(l)}2] < 4K3

N(N−1) . Now consider

the second term in the last equation. As shown above,

Ri(l) = E{1(Ti ≥ l)|Xi}
∑
r 6=i

N − 1

∑K
k=1

K
[−1{Zr(k) < Zi(l)}+FZ{Zi(l)}+1{Z0,r(k) < Z0,i(l)}−FZ0{Z0,i(l)}].

Let i 6= j and consider

E{Ri(l)Rj(k)|Xi, Xj} = E(E[{1(Ti ≥ l)|Xi}E{1(Tj ≥ k)|Xj}∗

∗[
∑
r 6=i

N − 1

∑K
q=1

K
[−1{Zr(q) < Zi(l)}+ FZ{Zi(l)}+ 1{Z0,r(q) < Z0,i(l)} − FZ0{Z0,i(l)}]

∗
∑
s6=j

N − 1

∑K
q=1

K
[−1{Zs(q) < Zj(k)}+FZ{Zj(k)}+1{Z0,s(q) < Z0,j(k)}−FZ0{Z0,j(k)}]]]|Xi, Xj).

Note that the i.i.d. assumption implies that the last term simplifies. In particular, if

r 6= s, r 6= i, j, and s 6= i, j then23

E([−1{Zr(k) < Zi(l)}+ FZ{Zi(l)}+ 1{Z0,r(k) < Z0,i(l)} − FZ0{Z0,i(l)}]

∗[−1{Zs(k) < Zj(l)}+ FZ{Zj(l)}+ 1{Z0,s(k) < Z0,j(l)} − FZ0{Z0,j(l)}]|Xi, Xj) = 0.

We first write E{Ri(l)Rj(k)|Xi, Xj} using summations over r 6= i, j and s 6= i, j. That is

E{Ri(l)Rj(k)|Xi, Xj} = E(E[{1(Ti ≥ l)|Xi}E{1(Tj ≥ k)|Xj}∗

∗([
∑
r 6=i,j

N − 1

∑K
q=1

K
− 1{Zr(q) < Zi(l)}+ FZ{Zi(l)}+ 1{Z0,r(q) < Z0,i(l)} − FZ0{Z0,i(l)}]

+

∑K
q=1

K
[−1{Zj(q) < Zi(l)}+ FZ{Zi(l)}+ 1{Z0,j(q) < Z0,i(l)} − FZ0{Z0,i(l)}])

∗[(
∑
s6=i,j

N − 1

∑K
q=1

K
− 1{Zs(q) < Zj(k)}+ FZ{Zj(k)}+ 1{Z0,s(q) < Z0,j(k)} − FZ0{Z0,j(k)}]

+

∑K
q=1

K
[−1{Zi(q) < Zj(k)}+ FZ{ZJ(k)}+ 1{Z0,i(q) < Z0,j(k)} − FZ0{Z0,j(k)}])]|Xi, Xj).

Removing the terms that are zero in expectation yields

E{Ri(l)Rj(k)|Xi, Xj} =
1

N − 1
E[E{1(Ti ≥ l)|Xi}E{1(Tj ≥ k)|Xj} ∗

∗[
∑
r 6=i,j

N − 1

∑K
q=1

K
[−1{Zr(q) < Zi(l)}+ FZ{Zi(l)}+ 1{Z0,r(q) < Z0,i(l)} − FZ0{Z0,i(l)}]

23Let r 6= i, j denote that r 6= i and r 6= j.
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∗
∑K
q=1

K
[−1{Zr(q) < Zj(k)}+ FZ{Zj(k)}+ 1{Z0,r(q) < Z0,j(k)} − FZ0{Z0,j(k)}]]|Xi, Xj ]

Replacing q by q̃ in the last summation yields

E{Ri(l)Rj(k)|Xi, Xj} =
1

N − 1
E[E{1(Ti ≥ l)|Xi}E{1(Tj ≥ k)|Xj} ∗

∗[
∑
r 6=i,j

N − 1

∑K
q=1

K

∑K
q̃=1

K
[−1{Zr(q) < Zi(l)}+ FZ{Zi(l)}+ 1{Z0,r(q) < Z0,i(l)} − FZ0{Z0,i(l)}]

∗[−1{Zr(q̃) < Zj(k)}+ FZ{Zj(k)}+ 1{Z0,r(q̃) < Z0,j(k)} − FZ0{Z0,j(k)}]]|Xi, Xj ].

Define FZ{Zi(l), q} = E[1{Zr(q) < Zi(l)}|Xi, Xj ] for r 6= i, j and FZ0{Z0,i(l), q} =

E[1{Z0,r(q) < Z0,i(l)}|Xi, Xj ] for r 6= i, j.Note that FZ{Zi(l)}−FZ0{Z0,i(l)} =
∑K
q̃=1 FZ{Zi(l), q}−∑K

q̃=1 FZ0{Z0,i(l), q}. This gives

E{Ri(l)Rj(k)|Xi, Xj} =
1

N − 1
E[E{1(Ti ≥ l)|Xi}E{1(Tj ≥ k)|Xj} ∗

∗[
∑
r 6=i,j

N − 1

∑K
q=1

K

∑K
q̃=1

K
[1{Zr(q) < Zi(l)}1{Zr(q̃) < Zj(k)} − FZ{Zi(l), q}FZ{Zj(k), q̃}

−1{Zr(q)<Zi(l)}1{Z0,r(q̃) < Z0,j(k)} − FZ{Zi(l), q}FZ0{Z0,j(k), q̃}

−1{Z0,r(q)<Z0,i(l)}1{Zr(q̃) < Zj(k)} − FZ0{Z0i(l), q}FZ{Zj(k), q̃}

+1{Z0,r(q)<Z0,i(l)}1{Z0,r(q̃) < Z0,j(k)} − FZ0{Z0i(l), q}FZ0{Z0,j(k), q̃}]]|Xi, Xj ].

Next, define 4̄A2,N (κ, κ0) = (2K
N )2[

∑
i

∑
j 6=iE[{

∑K
l=1Ri(l)}{

∑K
k=1Rj(k)}|Xi, Xj ]. Notice

that 4̄A2,N (κ, κ0) is O(N−1) for any value of κ and κ0.Moreover, notice that 4̄A2,N (κ, κ0) is

zero when evaluated at κ = κ0 since E{Ri(l)Rj(k)|Xi, Xj}|κ=κ0 = 0. Finally, 4̄A2,N (κ, κ0)

is differentiable with respect to κ since the expectation operator supplies the necessary

smoothness. In particular,

∂

∂κ
4̄A2,N (κ, κ0) =

∂

∂κ
(
2K

N
)2
∑
i

∑
j 6=i

E[{
K∑
l=1

Ri(l)}{
K∑
k=1

Rj(k)}|Xi, Xj ]

=
1

N − 1
(
2K

N
)2E[

∑
i

∑
j 6=i

E{1(Ti ≥ l)|Xi}E{1(Tj ≥ k)|Xj} ∗

∗[
∑
r 6=i,j

N − 1

∑K
q=1

K

∑K
q̃=1

K
[{frqil|q̃jk(Xr)− frqil(Xr)}FZ{Zi(l), q}[

∂

∂κ
{Zr(q, x)− Zi(l)}]|x=Xr

+{frq̃jk|qil(Xr)− frq̃jk(Xr)}FZ{Zi(l), q}[
∂

∂κ
{Zr(q, x)− Zj(k)}]|x=Xr

−{frqil|q̃jk(Xr)− frqil(Xr)}FZ0{Z0,j(k), q̃}[ ∂
∂κ
{Zr(q, x)− Zi(l)}]|x=Xr

−{frq̃jk|qil(Xr)− frq̃jk(Xr)}FZ0{Z0,i(l), q}[
∂

∂κ
{Zr(q, x)− Zj(k)}]|x=Xr ]|Xi, Xj ]]] (12)
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where frqil|q̃jk(.) is the density of Xr conditional on Zr(q) = Zi(l) and Zr(q̃) < Zj(k).

Similarly, frq̃jk(Xr) is the density of Xr conditional on Zr(q) = Zi(l) (i.e. without the

conditioning). The densities frq̃jk|qil(.) and frq̃jk(.) are similarly defined. Evaluating

these densities at the random variable Xr gives a notation that is shorter than writing

the expression as an integral. For clarity Zr(q, x) is explicitly written as a function of x

since more than one value of x can yield the same value of Zr(q, x).

Notice that ∂
∂κ4̄

A
2,N (κ, κ0)|κ=κ0 = 0 and ∂

∂κE{4̄
A
2,N (κ, κ0)}|κ=κ0 = 0. Thus, the first

term in the Taylor expansion of E{4̄A2,N (κ, κ0)} around κ = κ0 is zero. Also notice that

4̄A2,N (κ, κ0) and E{4̄A2,N (κ, κ0)} are proportional to 1
N−1 for any value of κ. Finally, notice

that 4̄A2,N (κ, κ0) and E{4̄A2,N (κ, κ0)} are twice differentiable with respect to κ so that we

can use a Taylor expansion24 with an error term that is proportional to 1
N−1 ||κ − κ0||2.

This implies that the asymptotic variation of

√
N

||κ− κ0||2
(
2K

N
)2E[{

∑
i

K∑
l=1

Ri(l)}{
∑
j 6=i

K∑
k=1

Rj(k)}].

is uniformly bounded for κ, κ0 ∈ Θ. This, together with our earlier result that

sup
κ,κ0∈Θ

( 2K
N )2E[

∑
i{
∑K
l=1Ri(l)}2] < 4K3

N(N−1) implies that4
A
2,N (κ, κ0) isOp( 1

N )+Op(
||κ−κ0||√

N
)

uniformly over op(1) neighborhoods of κ0. Thus, the conditions of Sherman (1993, theorem

1) are satisfied for 4A2,N (κ, κ0).

Next, consider 4B2,N (κ, κ0),

4B2,N (κ, κ0) =

∑
i

N

K∑
l=1

(E{1(Ti ≥ l)|Xi}K[−2FZ{Zi(l)}+ 2FZ0{Z0,i(l)}])

−
∑
i

N
E{

K∑
l=1

(E{1(Ti ≥ l)|Xi}K[−2FZ{Zi(l)}+2FZ0{Z0,i(l)}])},

and note that 4B2,N (κ, κ0) is twice continuously differentiable. An expansion around κ0

and using the fact that the expected value of the objective function is minimized at

κ0 yields that 4B2,N (κ, κ0) is op(||κ − κ0||2). Therefore, 41,N (κ, κ0) + 42,N (κ, κ0) is

Op(||κ− κ0||/
√
N) + op(||κ− κ0||2) +Op(1/N) uniformly over op(1) neighborhoods of κ0.

Thus, Sherman (1993, theorem 1, condition (ii)) is satisfied so that (κ̂−κ0) is Op(N−1/2).

24See for example Bronshtein and Semendyayev (1997, page 245).
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Sherman’s (1993) theorem 2 has three assumptions. The first one, that (κ̂ − κ0) is

Op(1/
√
N), was shown above. The second assumption, that κ is an interior point of Θ

was assumed. The third assumption is that, uniformly over Op(1/
√
N) neighborhoods of

κ0,

Q(κ) = Q(κ0)− 1

2
(κ− κ0)′V (κ− κ0) +

1√
N

(κ− κ0)′DN (κ0) + op(1/N)

where V is a negative definite matrix, and WN converges in distribution to a N(0,Ω)

random vector. The expected value of the objective function, E{Q(κ)}, is minimized at

κ0 and can be approximated by a second order Taylor expansion around κ0. This approx-

imation has the correct order of the error term since the neighborhoods are Op(1/
√
N).

Thus, we only need to show that

Q(κ) = Q(κ0) + E{Q(κ)} − E{Q(κ0)}+
1√
N

(κ− κ0)′DN (κ0) + op(1/N). (13)

Thus, we need to choose D̃N (κ) such that 1√
N

(κ−κ0)′D̃N (κ0) approximates4main1,N (κ, κ0)

and matches its variation. As before

4main1,N (κ, κ0) =

∑
i

N

K∑
l=1

[1(Ti ≥ l)− E{1(Ti ≥ l)|Xi}]K[−2FZ{Zi(l)}+ 2FZ0{Z0,i(l)}]

and define

D̃N (κ) =
1√
N

∑
i

K∑
l=1

[1(Ti ≥ l)− E{1(Ti ≥ l)|Xi}][
∂FZ{Zi(l)}

∂κ
|κ=κ0 ](−2K)

Choosing this D̃N (κ) yields the result ensures that equation (13) holds. In the main text,

we divide D̃N (κ) by K, multiply by (-1) and define

DN (κ) =
2√
N

∑
i

K∑
l=1

[1(Ti ≥ l)− E{1(Ti ≥ l)|Xi}][
∂FZ{Zi(l)}

∂κ
|κ=κ0 ].

Changing the sign has no effect on the asymptotic distribution and dividing by K is just

a normalization (K still affects DN (κ) through the distribution of Z). The assumption

that FZ{Zi(l;κ) is twice continuously differentiable in a neighborhood N of κ0 for any

l, the random sample assumption of Assumption 1, and the Lindeberg-Levy central limit

theorem imply that DN (κ) converges to a normal distribution with variance-covariance

Ω = E[DN (κ0)DN (κ0)′]. Matrix multiplication then implies the asymptotic variance and

the result follows.
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Q.E.D.

Appendix 4:

Proof of Proposition 1

Horowitz (2001, Theorem 2.2) shows that bootstrapping an asymptotically normally dis-

tributed estimator that can be represented by an influence function yields a consistent

variance-covariance matrix.25 Thus, V̂κ = H−1ΩH−1 + op(1) where H−1ΩH−1 is the

asymptotic variance-covariance matrix derived in theorem 2. Hausman’s (1978) proof

compares parametric estimators. The same proof applies here since the fact that the esti-

mator κ̂ allows for a nonparametric unobserved heterogeneity distribution does not play

a role. In particular, we can take the properties of ω̂ and κ̂ as primitives and the result

follows.

Appendix: 5 Counterexample to Han (1987)

The examples below show that the conditions of Han (Journal of Econometrics, 1987)

are not suffi cient for identification of the MRC estimator. Consider the following data

generating processes. In both models, the baseline hazard does not depend on time.

Model I:

Let X1 be distributed as a standard normal or another distribution with support

on the whole real line. Let X2 = ln(− ln[
exp{− 1

2 exp(X1)}+exp{− 3
2 ·exp(X1)}

2 ]). Note that

exp{− 1
2 exp(X1)}+exp{− 3

2 ·exp(X1)}
2 has support on (0,1), − ln[

exp{− 1
2 exp(X1)}+exp{− 3

2 ·exp(X1)}
2 ]

has support on the positive real line and X2 has support on the whole real line. Let

θ(t|X, v) = v · exp(X1),

and let

p(v =
1

2
|X) = p(v =

3

2
|X) =

1

2
.

25Horowitz (2001, Theorem 2.2) averages gn(Xi).
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This gives the following probability of survival for the first period:

S(t = 1|X) =
exp{− 1

2 exp(X1)}+ exp{− 3
2 · exp(X1)}

2
.

Model II:

Let X1, X2 be the same as above. Let θ(t|X, v) = v · exp(X2), and let p(v = 1|X) = 1.

This gives the following probability of survival for the first period:

S(t = 1|X) =
exp{− 1

2 exp(X1)}+ exp{− 3
2 · exp(X1)}

2
.

Note that Model I and Model II yield the same probability of survival for the first period.

Suppose that we only observe whether or not individuals survive the first period. Then,

Model I and Model II are observationally equivalent and identification or estimation is

not possible. All the assumptions of Han (1987) are satisfied. Note that the model is not

identified in the sense that there are two values of β that yield the same density and that

||β|| = 1 in each case. Thus, stronger assumptions are needed. Assuming that β1 6= 0 is

suffi cient if all assumptions of Han (1987) are maintained.

Appendix: 6 Examples

Example 1:

Consider the following hazard model: θ(t|v,X) = φXλ(t) so that F̄ (t | X) = exp(−φXΛ(t))

and (ii) F̄ (t | X) be observed for X = 0, 1 and all t ≥ 0.

We first estimate the integrated baseline hazard, Λ̂(t) = − ln{F̄ (t | X = 0)} = − ln{F̄X=0(t)}.

This implies the following density: f(t | X = 1) = φλ(t)e−φΛ(t). After estimating λ(t) and

Λ(t) nonparametrically using F̄X=0(t), we can derive the log likelihood by conditioning

on these estimated functions (as in Newey and McFadden (1994). This yields,

L(φ) = lnφX + lnλ(t)− φXΛ(t)

∂L(φ)

∂φ
=

X

φ
−XΛ(t)⇒

plim
N→∞

φ̂MLE = 1/E{Λ(T )|X = 1} = −1/E[ln{F̄0(T )}|X = 1].
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Let the data be generated by the following model θ(t|v,X) = vφX where v ∼Gamma(α, α).

Thus, F̄0(t) =
(

1 + Λ(t)
α

)−α
and − lnF0(t) = α ln

(
1 + Λ(t)

α

)
. Note that φXΛ(T ) = Z

v ,

where Z has an exponential distribution with mean one. This yields

plim
N→∞

φ̂ =
1

E[α ln{1 + Z/(φvα}] ,

where v ∼ Gamma(α, α). Note that φ only appears in the denominator of the argument

of a logarithmic function. Simulation gave the numerical result.

Example 2:

After transforming the dependent variable using the transformation model of Horowitz

(1996), we define W = H(T ). Note that H(T )|β| is distributed as an exponential random

variable, so W is distributed as a Weibull random variable with parameter |β|. As in the

example, let β > 0. Consider the Weibull model with a Gamma mixing distribution, which

is given by

θ (wi | v,Xi) = veXiβαwα−1
i

v ∼ Gamma (γv, δv)

F̄ (wi|Xi) = Eve−ve
Xiβtαi =

1(
1 +

eXiβwαi
δv

)γv
f(wi|Xi) =

αγve
Xiβwαi
δv

1(
1 +

eXiβwαi
δv

)γv+1

Li(α, β, γv, δv) = lnα+ ln γv +Xiβ + α lnWi − ln δv − (γv + 1) ln

(
1 +

eXiβWα
i

δv

)
.

Imposing the restriction α = β and using

eXiβW β
i = (eXiβ0W

β0
i )β/β0 = (Zi)

β/β0 ,

where Zi is distributed as an exponential random variable with mean one, gives

Li(β, γv, δv) = lnβ + ln γv + (β/β0) lnZi − ln δv − (γv + 1) ln

(
1 +

(Zi)
β/β0

δv

)
.

This likelihood does not depend on the regressor26 x, which implies that the probability

limit of β does not depend on the distribution of X.
26The same reasoning holds for a negative β0 (since the sign can be determined using Han (1987)) and

for a multivariate regressor (since this can be reduced to a scalar by estimating the regression coeffi cient
up to scale using Han (1987)); Han’s estimator converges under the assumptions of the model. See the
discussion above.
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Appendix: 7 Computational Issues

by Matthew Harding, Jerry Hausman, and Tiemen Woutersen

We estimate the parameter vector (β, δ) from the following objective function which

corresponds to a mass of indicator functions:

Q(β, δ) =

N∑
i=1

K∑
l=1

1{Ti ≥ l}
N∑
j=1

K∑
k=1

[1{Zi(l) < Zj(k)} − 1{Zi(l) > Zj(k)}]. (14)

Optimization of this objective function using iterated sums is not feasible because

for the specification with 24 periods, it takes approximately 15 minutes to evaluate one

such objective function in Matlab. Note, however, that for all individuals i who pass the

criterion Ti ≥ l, the objective function evaluates the difference between the number of

individuals with an index less than the index of individual i and the number of individuals

with an index greater than the index of individual i. This information is also contained

in the ranking of individuals’indices and thus can be more effi ciently extracted using the

rank function. This suggests that an effi cient implementation of this optimization will be

similar to that of Chen (2002).

We can define dk = 1{T ≥ k} for the vector T of dimension N×1. Let d be constructed

by stacking the vectors dk vertically for all k = 1, ...,K. Similarly let Z be constructed

by stacking the vectors Z(k) for all k = 1, ...,K. Now both d and Z are of dimension

NK × 1. We can now rewrite Q(β, δ) using these vectors and the rank function:

Q(β, δ) =
1

N(N − 1)

NK∑
i=1

d(i) [2 ·Rank(Z(i))−NK] . (15)

This simpler yet numerically identical representation27 will be more effi cient to evaluate

numerically because (i) it has only one summation sign and (ii) computation of the rank

function requires sorting for which highly effi cient algorithms are available. Indeed it now

takes less than one second to estimate one such objective function for the specification

with 24 periods.

27There is still an issue regarding the treatment of ties in the rank function but it seems to matter little
in practice.



Estimating a Semi-Parametric Duration Model without Specifying Heterogeneity39

Models with non-smooth objective functions in the parameters have been tradition-

ally estimated using the Nelder-Mead simplex method (Abrevaya (1999); Cavanagh and

Sherman (1998)). In this particular example, the large number of local optima makes

the Nelder-Mead method computationally unstable. The Nelder-Mead algorithm fails to

converge or takes unreasonably long to do so.28

Pattern search methods have been available for many decades and rigorous convergence

results have become available in recent years (Lewis and Torczon (1999); Audet and

Dennis (2003)). Although anecdotal evidence on the performance of these algorithms

often suggests slow convergence, we find that the convergence of the objective function at

4 decimal places for the specification with 13 periods takes about 20 minutes, while the

specification with 24 periods takes approximately 50 minutes to convergence.

We now provide a brief introduction to the mechanism of pattern search.29 For some

given real-valued objective function Q(γ) defined on the n-dimensional Euclidean space,

let γ0 be the initial guess. In our case, we use γ0 = [ β̂, δ̂]Gamma, the parameter estimates

from the HHM Gamma Heterogeneity model estimated using a quasi-Newton derivative-

based method. Additionally, define a forcing function ρ(t) to be a continuous function

such that ρ(t)/t→ 0 as t→ 0. Let ∆k control the step length at each iteration.

Search patterns for some initial starting value γ0 are drawn from a given generating set.

A minimal generating set corresponds to some positive spanning set for the n-dimensional

space, where the number of dimensions corresponds to the number of parameters to be

estimated. The defining requirement for a generating set is that any vector in Rn may be

written as a linear combination of elements in the generating set using positive coeffi cients

only. A generating set will thus contain at least n+1 elements. To illustrate, the generating

set for n = 2 is

G =

{(
1
0

)
,

(
−1
−1

)
,

(
−1
1

)}
. (16)

Alternatively, we could use the set of 2n coordinate directions as the elements of

our generating set. In our application, however, we find computational performance is

28Convergence of the objective function to 4 decimal places may take as long as 9 hours to compute.
29For a more detailed review and convergence proofs, see Kolda, Lewis and Torczon (2003).
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superior under the setup with n + 1 directions. Additionally, heuristic additions to the

generating set may be implemented in order to improve speed and performance. These

heuristic additions allow the algorithm to evaluate other points in the same direction

as the last successful search, but further away from the starting point than permitted

by the standard elements of the generating set. This allows for the possibility that if

the correct direction of improvement is found, several computation steps will be skipped

and the search converges more rapidly. Random polling vectors also provide heuristic

evaluations of the objective function without compromising the convergence properties of

the algorithm, which only depend on the minimal generating set.

We use the standard errors of the HHM estimation to construct a "bounding box" that

is then used to bound the parameter space for the optimization under the semi-parametric

setup. We start with a bounding30 box of ± 3 standard errors.

At each iteration, the algorithm evaluates the objective function for all vectors gk ∈ G

and compares Q(γk + ∆kgk) with Q(γk) − ρ(∆k). If an improvement is found, γk+1 =

γk + ∆kgk and ∆k is increased to ∆k+1. If no improvement is found, then γk+1 = γk and

∆k is decreased to ∆k+1. This process is iterated to convergence.

Since the true parameter values are not guaranteed to lie within this bounding box, it

may be that the algorithm constrained by the location and size of the bounding box only

reaches a local optimum. In order to correct for this possibility, we gradually expand the

bounding box as long as the estimated parameters change with a larger bounding box. A

large bounding box, however, may imply that the estimates have only low precision, since

the algorithm visits every point in the domain with a probability decreasing in the size of

the bounding box. In order to improve accuracy, once the desired size of the bounding box

has been reached, the bounding box is re-centered on the new parameter estimates from

the semi-parametric setup. The size of the bounding box is then sequentially decreased

in order to verify the accuracy of the obtained estimates. Refinements are made if an

improvement is found.

We use the estimated values δ̂Pattern to compute an estimate of the survival probability

at each period. Using the delta method, we compute the associated estimates of the

30We would increase the number of standard errors if the sample size was larger.
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standard error of the survival probability in each period. Interpretation is made easier

by smoothing the pair (P (T ≥ ti), ti) for all time periods ti using a local polynomial

method. The neighborhood of ti is defined as a percentage of the total number of periods

under consideration and may be chosen using cross-validation techniques. Each point in

the neighborhood N(ti) is assigned two sets of weights. One set of weights is inversely

proportional to the standard error of the survivor estimate, as given by the pattern search

optimization. The other set of weights is provided by the tri-cubic weight function and

weighs the impact of distant data points on the smoothing estimate of one particular

observation. The tri-cubic weight function involved in the smoothing of point ti places

the following weight on observation tj :

W (ti, tj) =

(
1−

(
|ti − tj |

maxtj∈N(ti) |ti − tj |

)3
)3

1

{
0 ≤ |ti − tj |

maxtj∈N(ti) |ti − tj |
< 1

}
. (17)

The smoothed estimates of the survivor function are then computed as the predicted

values of the weighted linear regression of second degree for each point in the corresponding

neighborhood using the two sets of weights. The choice of the span of the neighborhood

at each point using cross-validation tends to matter little in this case.

The pattern search method we employ to derive estimates of the model parameters

seems to perform well, both in terms of accuracy and computational time. Nevertheless,

the nature of the objective function and the dependency of our use of the pattern search

method on a good estimate of the relevant bounding box raises the question to what

extent a global optimum has been reached for our objective function. Since it is possible

to conceive of our optimization problem as a stochastic optimization problem, we consider

the implementation of a genetic optimization procedure as a global optimizer capable of

overcoming the nondifferentiability of the objective function, as discussed by Spall (2003).

Few applications of this procedure to econometrics exist in spite of numerous reported

successful implementations in other areas of science (Haupt and Haupt (1998); Reeves

and Rowe (2003)).

Genetic optimization methods describe a number of processes based on principles from

biological sciences aimed at generating a population of parameter values which optimizes

its fitness, defined as the corresponding value of the objective function. The core idea
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involves the use of stochastic perturbations in the population of potential optimizing

parameters so as to improve the optimality of the solution. This approach mirrors the

biological concept of evolution. The use of a population of parameters as the primary

building block of the algorithm aims at avoiding convergence towards one local optimum.

Since the outcome of a genetic optimization procedure is not dependent on the initial

population, we use as starting values for the population unit-uniform random numbers.

The objective function is evaluated for each member of the population. Members of the

population with the best values are selected as candidates for the generation of individuals

of the subsequent population through the processes of elitism, crossover or mutation. A

(small) number of the successful members of a population are simply copied over in the

next generation of the population, a process termed elitism. The crossover process ran-

domly combines values of the parameter vector of two evolutionary successful individuals

to obtain a new individual for the next population. The process of mutation adds random

noise from a normal distribution to the parameter values of one successful individual to

create a new individual in the next generation. Since with each additional generation we

are more likely to close-in on the optimum, we shrink the variance of the mutation process

at each generation.

The genetic optimization process tends to converge much slower than the pattern

search procedure. Nevertheless, the algorithm can be used to confirm the global optimality

of the point estimates obtained by pattern search. Our results using genetic optimization

are the same as with the pattern search algorithm to 4 significant digits for the objective

function.
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Table 1: Data Description and Summary Statistics 

Variable Description Mean Standard 
Deviation 

Race = 1 if UI recipient is Black or African-American 0.1172 0.3217 
Age = 1 if UI recipient is over 50 years old at the start of 

the benefit year 
0.1776 0.3822 

Replacement Rate = Weakly Benefit Amount divided by UI recipient’s 
base period earnings 

0.0129 0.0076 

State 
Unemployment 
Rate 

= Unemployment rate of the state from which the 
individual received UI benefits during the period in 
which the individual filed for benefits 

  

 Week 1 4.6863 1.0875 

 Week 2 4.6726 1.0834 

 Week 3 4.6603 1.0794 

 Week 4 4.6453 1.0747 

 Week 5 4.6301 1.0698 

 Week 6 4.6211 1.0649 

 Week 7 4.6164 1.0665 

 Week 8 4.5981 1.0641 

 Week 9 4.5710 1.0616 

 Week 10 4.5382 1.0615 

 Week 11 4.5318 1.0630 

 Week 12 4.5091 1.0678 

 Week 13 4.4832 1.0751 

 Week 14 4.4620 1.0802 

 Week 15 4.4604 1.0756 

 Week 16 4.4490 1.0735 

 Week 17 4.4400 1.0675 

 Week 18 4.4407 1.0557 

 Week 19 4.4316 1.0546 

 Week 20 4.4207 1.0452 

 Week 21 4.4240 1.0337 

 Week 22 4.4315 1.0298 

 Week 23 4.4364 1.0240 

 Week 24 4.4414 1.0156 

 Week 25 4.4424 1.0121 

 

 



Table 2: HHM Gamma Heterogeneity Model, Period 1 normalized to zero.

Parameters s.e. Parameters s.e. Parameters s.e.
alpha 0.9307 2.1675 0.1089 0.0120 0.0993 0.0182
gamma 7.9607 0.2383 0.3164 0.0773 0.1655 0.6082
State Unemployment Rate -0.1019 0.0246 -0.2762 0.0341 -0.3875 0.0393
Race -0.0350 0.0653 -0.2167 0.1155 -0.2061 0.1370
Age>50 -0.2047 0.0623 -0.4290 0.0932 -0.4317 0.1557
Replacement Rate -0.5393 0.0497 -0.5498 0.0562 -0.5059 0.1493

Period 2 -0.3259 0.0747 -0.0494 0.0787 0.0010 0.1576
3 0.0198 0.0814 0.5517 0.0905 0.6479 0.1342
4 -0.3032 0.0939 0.4661 0.1157 0.6053 0.1222
5 0.1430 0.1026 1.1678 0.1275 1.3511 0.1532
6 -0.3780 0.1256 0.8858 0.1553 1.1134 0.1979
7 1.4905 0.1811 1.7608 0.1879
8 1.3001 0.2086 1.6111 0.2144
9 1.7490 0.2228 2.0944 0.2359

10 1.7326 0.2486 2.1103 0.2753
11 2.2152 0.2661 2.6362 0.3007
12 2.3336 0.2870 2.7970 0.3510
13 2.6485 0.3108 3.1545 0.3966
14 3.4413 0.3856
15 3.8034 0.4204
16 3.7589 0.5024
17 4.3672 0.5399
18 4.4417 0.5073
19 4.9485 0.5167
20 4.9909 0.5785
21 5.3740 0.5845
22 5.4392 0.6022
23 5.9363 0.6546

Period 24 6.0436 0.6891

Number of observations 15,491 15,491 15,491
Likelihood 0.6664 1.2242 1.0131

6 periods 13 periods 24 periods



Table 3: New Duration Model, Period 1 normalized to zero.

Parameters s.e. Parameters s.e. Parameters s.e.

State Unemployment Rate -1.4672 0.0965 -1.4643 0.0832 -1.3953 0.0483
Race -0.5663 0.2728 -0.5928 0.2444 -0.5656 0.2105
Age>50 -1.0701 0.2146 -1.0712 0.1974 -0.8067 0.1770
Replacement Rate -2.2347 0.1778 -2.2693 0.1588 -0.5372 0.1097

Period 2 2.7287 0.1295 2.6191 0.1604 2.0707 0.2422
3 3.8869 0.1298 4.1002 0.1812 3.2261 0.2451
4 5.0912 0.1276 5.4381 0.1657 4.2821 0.2116
5 5.6051 0.1440 5.9834 0.1737 4.7376 0.2132
6 6.5985 0.1380 7.1400 0.1704 5.7784 0.2028
7 7.1200 0.2092 5.6905 0.2444
8 7.9306 0.1860 6.5007 0.1955
9 8.2543 0.2017 6.7297 0.2212

10 8.3960 0.2382 6.5937 0.3050
11 8.7536 0.2265 7.1753 0.2422
12 9.4656 0.2218 7.8302 0.2218
13 9.7804 0.2361 8.3342 0.2227
14 8.1757 0.3352
15 8.4889 0.3058
16 9.1671 0.2548
17 9.5479 0.2597
18 9.8108 0.2818
19 10.0790 0.2968
20 10.6790 0.3018
21 10.7060 0.3229
22 10.9360 0.3409
23 10.9230 0.3419

Period 24 11.3860 0.3437

Number of observations 15,491 15,491 15,491
Objective Function 30.221 122.050 332.890

6 periods 13 periods 24 periods



Table 4, Variance local unemployment rates

Standard D 6 13 24
Overall 1.6249 1.3728 1.2386
Between 0.8977 0.9519 0.9543
Within 1.3545 0.9892 0.7896

Periods
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