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This paper proposes new jackknife IV estimators that are robust to the effects of
many weak instruments and error heteroskedasticity in a cluster sample setting with
cluster-specific effects and possibly many included exogenous regressors. The estima-
tors that we propose are designed to properly partial out the cluster-specific effects
and included exogenous regressors while preserving the re-centering property of the
jackknife methodology. To the best of our knowledge, our proposed procedures provide
the first consistent estimators under many weak instrument asymptotics in the setting
considered. We also present results on the asymptotic normality of our estimators and
show that t-statistics based on said estimators are asymptotically normal under the null
and consistent under fixed alternatives. Monte Carlo results show that our t-statistics
perform better in controlling size in finite samples than those based on alternative
jackknife IV procedures previously introduced in the literature.
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1. Introduction

The problem of endogeneity remains central to research in economics and econometrics. The key reason for this is
hat there are many different regression settings for which endogeneity is an issue, but for which valid estimators are not
urrently available. One such setting involves the case where the objective is to estimate an IV regression with fixed effects
sing panel or cluster-sampled data in situations where the number of available instruments may be large, but where
he instruments themselves are all only weakly correlated with the endogenous regressors. There is now a substantial
iterature on estimation and inference under many weak instruments, including Chao and Swanson (2005), Stock and Yogo
2005), Hansen et al. (2008), Hausman et al. (2012), Chao et al. (2012, 2014), Bekker and Crudu (2015), Crudu et al. (2021),
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nd Mikusheva and Sun (2022). However, the analyses given in these papers are for cross-sectional data, thus precluding
anel data or cluster sampling settings where there is additional unobserved heterogeneity modeled by fixed or cluster-
pecific effects. Moreover, even in the cross-sectional context, 2SLS and the LIML estimators are not well behaved under
any weak instruments. In particular, Chao and Swanson (2005) and Stock and Yogo (2005) show that the 2SLS estimator

s inconsistent under many weak instrument asymptotics, even when the errors are homoskedastic. In addition, Hausman
t al. (2012) and Chao et al. (2012) point out that LIML is also inconsistent under many weak instruments when there is
rror heteroskedasticity. Estimators which are currently known to be robust to the effects of many weak instruments in
ross sectional settings with error heteroskedasticity all have a jackknife form, as discussed in Chao and Swanson (2004),
hao et al. (2012), and Hausman et al. (2012). These include the JIVE1 and JIVE2 estimators studied in Angrist et al. (1999),
or example. For further discussion, see Phillips and Hale (1977), Blomquist and Dahlberg (1999), Ackerberg and Devereux
2009), and Bekker and Crudu (2015). These papers again only study various versions of the jackknife IV estimator in a
ross-sectional setup without fixed effects.
The goal of this paper is to consider the problem of many weak instruments in a panel data or cluster-sampling

ramework with fixed or cluster specific effects. In addition to the presence of unobserved heterogeneity, our setup allows
or additional (included) exogenous regressors which appear in both the outcome, or structural, equation and in the first-
tage equations. To consistently estimate the structural parameter vector of interest in an IV regression with fixed or
luster-specific effects, we propose three new estimators, which we refer to by the acronyms FEJIV, FELIM, and FEFUL.
hese estimators are so named as they are modified versions and generalizations, respectively, of the jackknife IV (JIV),
he LIML, and the Fuller (1977) estimators. In contrast to the original JIV, LIML, and Fuller estimators, our new estimators
re designed to be robust to the effects of many weak instruments and error heteroskedasticity, even in the presence
f additional complications caused by having fixed or cluster-specific effects and many included exogenous regressors.
o achieve consistency in our setting requires an estimator that not only properly partials out additional covariates and
luster-specific effects, but at the same time must also be properly centered in a form similar to a degenerate U-statistic.
t turns out that accomplishing both of these objectives simultaneously is quite challenging. While a number of innovative
IV-type estimators have been proposed recently (see, for example, the improved jackknife estimator IJIVE of Ackerberg
nd Devereux (2009), as well as the UJIVE estimator of Kolesár (2013)), due to the aforementioned difficulties, these
stimators are not consistent when applied to our setting under many weak instrument asymptotics, as we shall elaborate
n in greater detail in Section 3. On the other hand, the estimation procedures that we introduce here are carefully
esigned to properly partial out fixed or cluster-specific effects and included exogenous regressors, while preserving
he re-centering property of the jackknife methodology. To the best of our knowledge, the estimators presented here
re the first consistent estimators under many weak instrument asymptotics in an IV regression model with fixed or
luster-specific effects and possibly many included exogenous regressors. In addition to consistency, we also establish the
symptotic normality of the FELIM and FEFUL estimators.1
This paper also provides a number of results showing that hypothesis testing procedures based on FELIM and FEFUL

re robust to the effects of many weak instruments. In particular, we construct t-statistics based on these two estimators
nd show that, when the null hypothesis is true, these t-statistics converge to an asymptotic standard normal distribution
nder both many weak instrument asymptotics and also standard asymptotics. Moreover, our t-statistics are shown to
e consistent in the sense that under fixed alternatives they diverge, with probability approaching one, in the direction
f the alternative hypothesis.
The many-weak-instrument asymptotic framework used in the sequel to analyze the performance of FELIM and

EFUL was first proposed in Chao and Swanson (2005). This framework extends earlier work by Morimune (1983)
nd Bekker (1994) on what has become known in the IV literature as the many-instrument asymptotics or “Bekker
symptotics”, whereby a large sample approximation is carried out by considering an alternative sequence where the
umber of instruments is allowed to approach infinity as the sample size grows to infinity. A key difference between
he Bekker asymptotic framework and the many-weak-instrument asymptotic framework is the rate of growth of the
o-called concentration parameter. As has been pointed out by Phillips (1983) and Rothenberg (1984), among others, the
oncentration parameter is the natural measure of instrument strength in a linear IV model. In the original papers by
orimune (1983) and Bekker (1994), the concentration parameter is assumed to grow at the same rate as the sample
ize, which is also what is assumed under standard (strong but fixed number of instruments) asymptotics, whereas the
any-weak-instrument asymptotic framework allows the concentration parameter to grow at a rate much slower than

he sample size, thus allowing for much weaker instruments. Let µ2
n be a sequence that gives the rate of growth of

he concentration parameter, and let K2,n denote the number of instruments. Chao and Swanson (2005) show that for
consistent point estimation to be possible, a sufficient condition is

√
K2,n/µ

2
n → 0, as K2,n, µ2

n, n → ∞. This allows for the
ossibility that µ2

n is of an order smaller than K2,n which, in turn, can be of an order much smaller than the sample size
. The original Bekker framework, on the other hand, requires K2,n, µ

2
n, and n to all be of the same order of magnitude.

1 We do not provide a formal proof of the asymptotic normality of the FEJIV estimator because the results of our Monte Carlo study, as reported
in Section 6, show that FELIM and FEFUL tend to have better finite sample properties than FEJIV. For this reason, we shall focus the presentation
of our theoretical results on FELIM and FEFUL only. However, one can easily show, by slightly modifying the arguments that we give for FELIM
and FEFUL, that FEJIV is also asymptotically normal, under many weak instrument asymptotics. Note also that our simulation finding regarding the
properties of FEJIV are consistent with the findings of Davidson and MacKinnon (2006).
2
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ecent work by Mikusheva and Sun (2022) indicates that the condition
√
K2,n/µ

2
n → 0, as K2,n, µ2

n, n → ∞ is not only
ufficient but also necessary for consistency in point estimation and hypothesis testing.2
The rest of the paper is organized as follows. Section 2 provides some brief motivation for our paper. Section 3 states

he model, defines the FELIM, FEFUL, and FEJIV estimators, and provides an explanation of how our estimators improve
pon various alternative jackknife IV estimators that have previously been proposed in the literature. Analytical results
resented in Section 4 establish that our estimators are consistent and asymptotically normally distributed. Section 5
hows how to estimate the variances of the estimators and also provides asymptotic results for t-statistics based on our
stimators. Section 6 contains the results of a series of Monte Carlo experiments in which the relative performance of
ur estimators is compared with that of extant estimators in the literature. Section 7 concludes. Proofs of Theorem 1,
orollary 1, Theorems 4–5, and Corollaries 2–3 are presented in Appendix A of this paper. The proofs of Theorems 2 and
are longer and are given in a supplemental Appendix.3
Before proceeding, we will first say a few words about some of the commonly used notations in this paper. In what

ollows, we use λmin (A), λmax (A), and tr (A) to denote, respectively, the minimal eigenvalue, the maximal eigenvalue,
nd the trace of a square matrix A, whereas A′ denotes the transpose of a (not necessarily square) matrix A. ∥a∥2
enotes the usual Euclidean norm when applied to a (finite-dimensional) vector a. On the other hand, for a matrix
, ∥A∥2 ≡ max

{√
λ (A′A) : λ

(
A′A
)
is an eigenvalue of A′A

}
denotes the matrix spectral norm, while ∥A∥F ≡

√
tr {A′A}

denotes the Frobenius norm and ∥A∥∞ ≡ max1≤i≤mn

∑mn
j=1

⏐⏐aij⏐⏐ (i.e., the maximal row sum of an mn × mn matrix). In
ddition, we use A ◦ B to denote the Hadamard product of two conformable matrices A and B (i.e., A ◦ B ≡

[
aijbij

]
, for

A =
[
aij
]
and B =

[
bij
]
). We take D (a) to be a diagonal matrix whose diagonal elements correspond with the elements of

the vector a, while D (A) is taken to be a diagonal matrix whose diagonal elements are the same as the diagonal elements
of the square matrix A. Furthermore, we will let ιp = (1, 1, . . . , 1)′ denote a p × 1 vector of ones, and we take the
shorthand a.s.n. to mean almost surely for all n sufficiently large. Finally, we use CS and T, respectively, to denote the
Cauchy–Schwarz and the triangle inequality, and the abbreviation w.p.a.1 stands for “with probability approaching one”.

2. Some background and motivation

In this section, we briefly discuss some of the issues that arise when one needs to partial out additional covariates in a
setting with many weak instruments, with the hope that such a discussion will provide the necessary background to help
readers gain a stronger intuitive feel for the estimation procedures which we will introduce in subsequent sections. To
offer a point of contrast, we will start by first reviewing some basic aspects of IV estimation under many weak instruments
in the context of a simple, cross-sectional model with a single endogenous regressor and no additional covariate, i.e.,

y
n×1

= δ0
1×1

x
n×1

+ ε
n×1

,

x
n×1

= Z2
n×K2

πn
K2×1

+ u
n×1

Here, y is vector of observations on the outcome variable, x is the vector of observations on the endogenous regressor,
and Z2 is a non-random matrix of observations on the K2 instruments. In addition, we intentionally specify the coefficient
vector πn of the first-stage equation to depend on n to allow for local-to-zero modeling of weak instruments.4 Even in
this simple setup, it is well-known that, in the presence of many weak instruments and error heteroskedasticity, the usual
IV-type estimator such as 2SLS and LIML will not have desirable asymptotic properties. To see this, consider the case of
the 2SLS estimator, which in this case, can be decomposed as

δ̂2SLS − δ0 =
(
x′PZ2x

)−1
x′PZ2ε =

(
π ′

nZ
′

2Z2πn + 2π ′

nZ
′

2u + u′PZ2u
)−1 (

π ′

nZ
′

2ε + u′PZ2ε
)

(1)

where δ̂2SLS is of course obtained by minimizing the objective function Q̂2SLS (δ) =
(
y − x′δ

)′ PZ2
(
y − x′δ

)
with PZ2 =

Z2
(
Z ′

2Z2
)−1 Z ′

2. Under conventional asymptotics with a fixed number of strong instruments, the asymptotic behavior of
the denominator x′PZ2x will be dominated by the concentration parameter π ′

nZ
′

2Z2πn which in this case grows at the
rate of the sample size n, whereas π ′

nZ
′

2ε = Op
(√

n
)
and u′PZ2ε = Op (1) so that, in some sense, the signal in the

denominator overwhelms the noise elements in the numerator, leading to the consistency of the 2SLS estimator. Viewed
from this perspective, the problem caused by having weak instruments is that the signal component as represented by the
concentration parameter π ′Z ′

2Z2π , is now weaker and grows at some rate µ2
n which is much slower than n. On the other

hand, the problem caused by many instruments is that it inflates one of the noise components u′PZ2ε which now grows,

2 An alternative to the asymptotic framework considered here is the weak instrument asymptotic framework proposed in Staiger and Stock
(1997). The Staiger-Stock framework considers a setting where µ2

n = O (1), in which case the IV model is not point identified. We do not consider
the Staiger-Stock framework in this paper because our focus is on consistency of point estimation and on test consistency.
3 The supplemental Appendix can be viewed at the URL: http://econweb.umd.edu/~chao/Research/research_files/Supplemental_Appendix_to_

Jackknife_Estimation_Cluster_Sample_IV_Model_December_20_2022.pdf.
4 See Assumption 3 in Section 3 for the type of (generalized) local-to-zero structure which we assume for the more general

cluster-sample/panel-data IV regression setting studied in this paper.
3
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n probability, at the rate K2. This combination of having stronger noise and a weaker signal can then lead to inconsistency
f the 2SLS estimator when µ2

n/K2 = O (1). Note also that under conventional, strong-instrument asymptotics the term
′PZ2ε is of a lower order relative to π ′

nZ
′

2ε but this will no longer be true when µ2
n/K2 = O (1), so having sufficiently

many weak instruments leads to a reshuffling of the order of magnitude of the terms in the numerator of expression (1).
Now, one way to fix this problem in the case with no additional covariates is to use one of the JIVE estimators proposed

in Angrist et al. (1999). As an illustration, consider the JIVE2 estimator proposed in that paper which can be obtained by
minimizing a modified 2SLS objective function whereby the diagonal elements of the projection matrix PZ2 are removed;
that is, the JIVE2 estimator is obtained by minimizing the objective function

Q̂JIVE2 (δ) =
(
y − x′δ

)′ [PZ2 − D
(
PZ2
)] (

y − x′δ
)

where D
(
PZ2
)
is the diagonal matrix whose diagonal elements are the same as those of PZ2 . The reason why such

“jackknife-type’’ modification helps is that if we do a decomposition of JIVE2 similar to the decomposition given for 2SLS
in expression (1) above, we obtain

δ̂JIVE2 − δ0 =
(
x′
[
PZ2 − D

(
PZ2
)]

x
)−1 (

π ′

nZ
′

2

[
PZ2 − D

(
PZ2
)]

ε + u′
[
PZ2 − D

(
PZ2
)]

ε
)
.

Comparing the JIVE2 bilinear term u′
[
PZ2 − D

(
PZ2
)]

ε with its counterpart u′PZ2ε for the 2SLS estimator, we see that
the former has a smaller order of magnitude than the latter under a many instrument asymptotic regime, so that, in
particular, u′

[
PZ2 − D

(
PZ2
)]

ε = Op
(√

K2
)
whereas u′PZ2ε = Op (K2). The reason why this is the case is related to the

so-called concentration of measure phenomenon that has been studied in the probability literature. Note that, under the
assumption that (εi, ui) is independent of

(
εj, uj

)
for all i ̸= j (where εi and ui denote the ith component of ε and u

respectively); E
[
u′
[
PZ2 − D

(
PZ2
)]

ε
]

= 0, even under heteroskedasticity, whereas E
[
u′PZ2ε

]
̸= 0, so that the former,

being a properly centered bilinear form, will have a lower order of magnitude than the latter, which is not properly
centered at zero.5 It follows that JIVE2 will be more robust to the effects of many weak instruments in the sense that it
will be consistent as long as the concentration parameter grows fast enough so that

√
K2/µ

2
n → 0, whereas the consistency

f the 2SLS requires the stronger condition that K2/µ
2
n → 0.

Consider next a more realistic model with additional covariates

y
n×1

= δ0
1×1

x
n×1

+ Z1
n×K1

ϕ
K1×1

+ ε
n×1

,

x
n×1

= Z1
n×K1

β
K1×1

+ Z2
n×K2

πn
K2×1

+ u
n×1

To see why it is not as straightforward as one might think to generalize the JIVE2 estimator discussed previously to this
setting, consider the IJIVE2 (the improved JIVE2) estimator discussed in Evdokimov and Kolesár (2018). To construct the
IJIVE2 estimator, one first partials out the covariates Z1 to obtain the system of equations

ỹ = δ0̃x + ε̃ (2)
x̃ = Z̃2π + ũ (3)

(where ỹ = MZ1y, x̃ = MZ1x, Z̃2 = MZ1Z2, ε̃ = MZ1ε, ũ = MZ1u and MZ1 = In − Z1
(
Z ′

1Z1
)−1 Z ′

1) and then construct a JIVE2
estimator based on the representation given in expressions (2)–(3). It is easy to see that this estimation strategy leads
equivalently to an estimator that minimizes that objective function

Q̂IJIVE2 (δ) =
(̃
y − x̃′δ

)′ [P Z̃2 − D
(
P Z̃2
)] (̃

y − x̃′δ
)

and the deviation of this IJIVE2 estimator, δ̂IJIVE2, from the true value, δ0, can be decomposed as

δ̂IJIVE2 − δ0 =

(̃
x′

[
P Z̃2 − D

(
P Z̃2
)]

x̃
)−1 (

π ′

nZ̃
′

2

[
P Z̃2 − D

(
P Z̃2
)]

ε̃ + ũ′

[
P Z̃2 − D

(
P Z̃2
)]

ε̃

)
Again, if we focus on the term ũ′

[
P Z̃2 − D

(
P Z̃2
)]

ε̃, we can show by simple manipulation that, since P Z̃2 = Z̃2
(̃
Z ′

2Z̃2
)−1

Z̃ ′

2 =

MZ1Z2
(
Z ′

2M
Z1Z2

)
Z ′

2M
Z1 ,

ũ′

[
P Z̃2 − D

(
P Z̃2
)]

ε̃ = u′MZ1
[
MZ1Z2

(
Z ′

2M
Z1Z2

)
Z ′

2M
Z1 − D

(
P Z̃2
)]

MZ1ε

= u′

[
P Z̃2 − MZ1D

(
P Z̃2
)
MZ1

]
ε

5 To give perhaps a more familiar example of the concentration of measure phenomenon, we can consider a simple case where W1, . . . ,Wn is a
equence of independent random variables such that supi E

[
W 2

i

]
< ∞ and E [Wi] ̸= 0 for all i. In this case, it is well-known that

∑n
i=1 Wi = Op (n)

whereas
∑n

i=1 (Wi − µi) = Op
(√

n
)
, so that the order of magnitude in probability of the uncentered sum

∑n
i=1 Wi is much larger than that of the

properly centered sum
∑n

i=1 (Wi − µi). In other words, the sum of an independent sequence of random variables will concentrate more sharply in a
much narrower range around its mean. It follows also that if it had been the case that E [Wi] = 0 for all i; then, we would have

∑n
i=1 Wi = Op

(√
n
)
,

so the order of magnitude in this case is smaller than in the case where E [Wi] ̸= 0. Moreover, the concentration of measure phenomenon is known
to exist more generally, not just for sums of independent random variables but also for Lipschitz functions of such variables and for multilinear
forms. See, for example, Tao (2012) for additional discussion.
4
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y an easy calculation, one can show that E
{
u′

[
P Z̃2 − MZ1D

(
P Z̃2
)
MZ1

]
ε

}
̸= 0, so this term is not properly centered

t zero, even under the usual assumption that (εi, ui) is independent of
(
εj, uj

)
for all i ̸= j, as long as there is error

eteroskedasticity. Note that, the matrix P Z̃2 −MZ1D
(
P Z̃2
)
MZ1 in the middle of the bilinear form in u and ε turns out not

o have zero diagonal elements because, in some sense, the process of partialing out Z1 has interfered with the process
f jackknife recentering in this case. Our basic point in presenting this example here is simply to show that it is not as
asy as it might seem to construct an IV estimator which simultaneously partial out all additional covariates and at the
ame time preserve the recentering property of the jackknife methodology. As we will show in the remaining sections of
his paper, such estimators can be constructed, however, even in a more general cluster-sample/panel-data setting with
ixed effects and with many stochastic instruments and included exogenous regressors.

. Model, assumptions, and estimation procedures

The more general model that we consider in this paper is a cluster-sample IV regression model

y(i,t)
1×1

= X ′

(i,t)δ0 + ϕ′

nZ1,(i,t) + αi + ε(i,t), (4)

X(i,t) = Φ ′

nZ1,(i,t) + Π ′

nZ2,(i,t) + ξi + U(i,t), (5)

where i = 1, . . . , n, t = 1, . . . , Ti, and the total sample size is given by mn =
∑n

i=1 Ti. The notation (i, t) : N × N → N
denotes a pairing function which maps an ordered pair of natural numbers into a natural number, so that, in particular,
we have (1, 1) = 1, . . . , (1, T1) = T1, (2, 1) = T1 + 1, . . . , (n, Tn) = mn. This is just a notational device used to convert
double index into a single index, thus, facilitating certain vectorization and summation operations while still allowing
ne to keep track of both i and t . In this setup, we take X(i,t) to be a d × 1 vector of endogenous regressors, and we let

Z1,(i,t) denote a K1,n × 1 vector of included exogenous variables and let Z2,(i,t) denote a K2,n × 1 vector of instruments,
for i = 1, 2, . . . , n and t = 1, . . . , Ti (or, equivalently, for (i, t) = 1, . . . ,mn). To allow for the possibility that Z1,(i,t) and
Z2,(i,t) may be weakly correlated with the endogenous variables y(i,t) and X(i,t), we let each of the coefficient parameters
ϕn, Φn, and Πn to possibly have a (generalized) local-to-zero structure which we will specify more precisely later in
Assumptions 3 and 4. In addition, αi and ξi in the above equations denote unobserved or individual effects interpreted
as “fixed effects” in the sense that although we do not necessarily require αi and ξi to be (non-random) constants, they
are allowed to be correlated with the exogenous variables Z1,(i,t) and Z2,(i,t), unlike the typical assumptions specified in a
traditional “random effects” model. More precise assumptions on the model given by Eqs. (4) and (5) are given below.

We will develop some additional notations before proceeding. First, let Z1 =
(
Z1,(1,1), . . . , Z1,(1,T1), . . . , Z1,(n,1), . . . ,

Z1,(n,Tn)

)′ be anmn×K1,n matrix of observations on the include exogenous variables and let Z2 =
(
Z2,(1,1), . . . , Z2,(1,T1), . . . ,

Z2,(n,1), . . . , Z2,(n,Tn)

)′ be an mn × K2,n matrix of observations on the instruments. Also, define the mn × Kn matrix
Z =

[
Z1 Z2

]
, where Kn = K1,n + K2,n. Now, let y and X be defined similar to Z1 and Z2 by stacking the observations

across the index (i, t) = 1, . . . ,mn; and we can write the model given by Eqs. (4) and (5) more succinctly as

y
mn×1

= Xδ0 + Z1ϕn + Qα + ε, (6)

X
mn×d

= Z1Φn + Z2Πn + QΞ + U , (7)

where α = (α1, . . . , αn)
′, Ξ = (ξ1, . . . , ξn)

′, and Q
mn×n

=
(
e1,nι′T1 e2,nι′T2 · · · en,nι′Tn

)′ with ej,n being an n×1 elementary

vector whose jth component is 1 and all other components are 0. Note that our setup allows the clusters to be of possibly
different sizes, so that our model can also be interpreted as a possibly unbalanced panel data model. For notational
convenience, we have suppressed the dependence of y, X , Z1, Z2, Q , ε, and U on n but have made explicit the dependence
of ϕn, Φn, and Πn on n to highlight the fact that these parameters may have a local-to-zero structure.

Making use of these notations, we can write down the following assumptions for our model.

Assumption 1. Let FZ
n = σ (Z) (i.e., the σ -algebra generated by Z). Assume the following conditions are satisfied (i)

Conditional on FZ
n ,
(
ε(1,1),U ′

(1,1)

)
, . . . ,

(
ε(1,T1),U ′

(1,T1)

)
, .....,

(
ε(n,1),U ′

(n,1)

)
, . . . ,

(
ε(n,Tn),U ′

(n,Tn)

)
are mutually independent.

(ii) E
[
ε(i,t)|FZ

n

]
= 0 and E

[
U(i,t)|FZ

n

]
= 0 a.s., for (i, t) = 1, . . . ,mn.

Assumption 2. There exists a constant C ≥ 1 such that for all n
(i) max1≤(i,t)≤mn E

[
ε8
(i,t)|F

Z
n

]
≤ C < ∞ a.s. and max1≤(i,t)≤mn E

[U(i,t)
8
2 |FZ

n

]
≤ C < ∞ a.s. and (ii) inf1≤(i,t)≤mn λmin

(
Ω(i,t)

)
≥ 1/C > 0 a.s., where Ω(i,t) = E

[
ν(i,t)ν

′

(i,t)|F
Z
n

]
with ν(i,t) =

(
ε(i,t) U ′

(i,t)
)′.

Assumption 3. Let Πn = Υ Dµ/
√
n, where Dµ = diag

(
µ1,n, . . . , µd,n

)
. Also, let µmin

n = min1≤k≤d µk,n and let K2,n
denote the number of instruments or the number of columns of Z . The following conditions are assumed on the diagonal
2

5
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lements µ1,n, . . . , µd,n, as n → ∞. (i) Either µk,n =
√
n or µk,n/

√
n → 0, for k ∈ {1, . . . , d}. (ii) µmin

n → ∞, as n → ∞,
uch that

√
K2,n/

(
µmin

n

)2
→ 0 (iii) λmin (Hn) ≥ 1/C > 0 and λmax

(
Υ ′Z ′

2Z2Υ /n
)

≤ C < ∞ a.s., for all n sufficiently large,
where Hn = Υ ′Z ′

2M
(Z1,Q )Z2Υ /n. Here, we take M(Z1,Q ) = MQ

−MQ Z1
(
Z ′

1M
Q Z1

)−1 Z ′

1M
Q where MQ

= Imn −Q
(
Q ′Q

)−1 Q ′,
so that M(Z1,Q ) is a projection matrix which projects into the orthogonal complement of the space spanned by the columns
of the matrix

[
Z1 Q

]
.

Assumption 4. Let Φn = ΘDκ/
√
n and ϕn = γ τn/

√
n, where Dκ

d×d
= diag

(
κ1,n, . . . , κd,n

)
and τn is a sequence of positive

real numbers. The following conditions are assumed on κ1,n, . . . , κd,n and on τn as n → ∞: (i) either κℓ,n =
√
n or

κℓ,n/
√
n → 0, for ℓ ∈ {1, . . . , d}; (ii) either τn =

√
n or τn/

√
n → 0.

Assumption 3 is general enough to accommodate a range of situations including both cases where there are strong
instruments and cases where the instruments are weaker. In particular, when µ1,n = · · · = µd,n = µmin

n =
√
n, our model

pecializes to the more classical situation where the instruments are strong. On the other hand, the cases where some
f the µj,n’s (j = 1, . . . , d) grow at a rate slower than

√
n correspond to cases where at least some of the components

of the parameter vector of interest δ are weakly identified. By allowing for the possibility that different µj,n’s may grow
at different rates, our setup also allows for heterogeneity in how strongly the different components of δ are identified.
Note, however, that we do require that

√
K2,n/

(
µmin

n

)2
→ 0, since this is both a sufficient and a necessary condition for

consistent estimation of δ.6
It should be noted that an interesting paper by Antoine and Renault (2012) has also modeled heterogeneity in

nstrument weakness in a way similar to Assumption 3. However, our setup here differs from that of Antoine and Renault
2012) in several respects. First of all, Antoine and Renault (2012) consider a GMM setup with a fixed number of moment
onditions. Hence, Antoine and Renault (2012) allow for nonlinearity in their framework but do not consider the case
here the number of instruments/moment conditions may be large, as we do here in our linear setup. In addition, the
arameter vector in the Antoine-Renault setup is of fixed dimension. In contrast, although our parameter vector of interest
is also of fixed dimension; our model contains a large number of additional nuisance and incidental parameters, given
hat we allow for many included exogenous regressors and for the presence of fixed effects. Thus, the paper by Antoine
nd Renault (2012) does not consider the kind of problems associated with having to eliminate a large number of nuisance
nd incidental parameters that we do here in our paper. Given these differences, we view our analysis here as being largely
omplementary to that of Antoine and Renault (2012).
Assumption 4 allows for possible local-to-zero modeling of the coefficients of Z1 both in the outcome (or structural)

equation and in the first-stage equations. In the special case where κ1,n = · · · = κd,n = τn =
√
n and µ1,n = · · · = µd,n =

µmin
n =

√
n, our model becomes a standard textbook linear IV model (or limited information simultaneous equations

model) with strong instruments. However, by allowing for the possibility that some of the κj,n’s and/or τn may grow at
rate slower than

√
n, we also accommodate situations where the additional covariates may only be weakly correlated

with y(i,t) and/or with some elements of X(i,t).

Assumption 5. (i) mn → ∞ as n → ∞, such that mn ∼ n. (ii) K1,n, K2,n → ∞, as n → ∞, such that
K 2
1,n/n = O (1) and K 2

2,n/n = o (1). (iii) Let MQ
= Imn − Q

(
Q ′Q

)−1 Q ′. There exists a positive constant C such that

min
(
Z ′MQ Z

)
≥ C > 0 a.s., for all n sufficiently large. (iv) Let P⊥

= P (Z,Q ) − P (Z1,Q ) = M(Z1,Q )Z2
(
Z ′

2M
(Z1,Q )Z2

)−1 Z ′

2M
(Z1,Q )

and PZ⊥
1 = MQ Z1

(
Z ′

1M
Q Z1

)−1 Z ′

1M
Q , where M(Z1,Q ) is as defined in part (iii) of Assumption 3 and where P (Z,Q ) and

P (Z1,Q ) are projection matrices that project into the column space of
[
Z Q

]
and

[
Z1 Q

]
, respectively.7 Assume that

max1≤(i,t)≤mn P
Z⊥
1

(i,t),(i,t) = Oa.s.
(
K1,n/n

)
and max1≤(i,t)≤mn P

⊥

(i,t),(i,t) = Oa.s.
(
K2,n/n

)
.8

Assumption 6. (i) min1≤i≤n Ti ≥ 3 for all n; (ii) There exists a positive integer T ≥ 3, such that max1≤i≤n Ti ≤ T < ∞, for
all n.

Assumption 7. Assume that max1≤(i,t)≤mn

Υ ′Z ′

2M
(Z1,Q )e(i,t)


2 /

√
n = op (1), where e(i,t) is an mn × 1 elementary vector

whose (i, t)th component is 1 and all components are 0 for (i, t) ∈ {1, 2, . . . ,mn}.

Note that Assumption 7 is similar to a condition given in Assumption 3 of Cattaneo et al. (2018). As noted in that
paper, this assumption comes close to providing a minimal condition for the central limit theorem to hold.

6 The sufficiency part of this condition has been demonstrated in various settings by Chao and Swanson (2005), Hausman et al. (2012), and Chao
et al. (2012); whereas the necessity part of this condition has been proved recently by Mikusheva and Sun (2022).
7 Note that P (Z,Q ) and P (Z1,Q )can be given the explicit representations P (Z,Q ) = PZ

+ MZQ
(
Q ′MZQ

)−1 Q ′MZ and P (Z1,Q ) = PZ1 +

Z1Q
(
Q ′MZ1Q

)−1 Q ′MZ1 , where PZ
= Z

(
Z ′Z
)−1 Z ′ , PZ1 = Z1

(
Z ′

1Z1
)−1 Z ′

1 , M
Z1 = Imn − PZ1 , and MZ

= Imn − PZ .
8 More primitive, sufficient conditions for max1≤(i,t)≤mn P

Z⊥
1

(i,t),(i,t) = Oa.s.
(
K1,n/n

)
and max1≤(i,t)≤mn P

⊥

(i,t),(i,t) = Oa.s.
(
K2,n/n

)
are given in Lemma

A-20 of the Additional Online Appendix, which can be found at the URL: http://econweb.umd.edu/~chao/Research/research_files/Additional_Online_

ppendix_Jackknife_Estimation_Cluster_Sample_IV_Model_December_20_2022.pdf.

6

http://econweb.umd.edu/~chao/Research/research_files/Additional_Online_Appendix_Jackknife_Estimation_Cluster_Sample_IV_Model_December_20_2022.pdf
http://econweb.umd.edu/~chao/Research/research_files/Additional_Online_Appendix_Jackknife_Estimation_Cluster_Sample_IV_Model_December_20_2022.pdf
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ssumption 8. Let ρn = E
[
U ′MQ ε

]
/E
[
ε′MQ ε

]
. Let the limit of ρn exists, so that ρn → ρ, as n → ∞, for some fixed

× 1 vector ρ ∈ Sρ , where Sρ denotes some compact subset of Rd.

To estimate the parameter (vector) of interest δ in Eq. (4), we propose three new jackknife-type IV estimators. We shall
se the acronyms FEJIV, FELIM, and FEFUL to denote, respectively, the Fixed Effect Jackknife IV, the Fixed Effect LIML, and
he Fixed Effect Fuller estimator.

1. FEJIV:

δ̂J =
(
X ′AX

)−1 X ′Ay,

where A = P⊥
− M(Z,Q )Dϑ̂M(Z,Q ), with M(Z,Q ) = Imn − P (Z,Q ) and with P⊥ as previously defined in Assumption 5.

In addition, Dϑ̂ denotes an mn × mn diagonal matrix, whose diagonal elements ϑ̂ =
(
ϑ̂1 ϑ̂2 · · · ϑ̂mn

)′, when
stacked into a vector, correspond to the solution of the system of linear equations dP⊥ =

(
M(Z,Q ) ◦ M(Z,Q )

)
ϑ , where

dP⊥ is an mn × 1 vector containing the diagonal elements of the projection matrix P⊥.9

2. FELIM: The FELIM estimator δ̂L is the estimator that minimizes the objective function

Q̂FELIM (δ) =
(y − Xδ)′ A (y − Xδ)

(y − Xδ)′ M(Z1,Q ) (y − Xδ)
, (8)

where A is as defined above in the definition of FEJIV and where M(Z1,Q ) is as defined in Assumption 3. δ̂L has the
explicit representation

δ̂L =
(
X ′
[
A − ℓ̂LM(Z1,Q )

]
X
)−1 (

X ′
[
A − ℓ̂LM(Z1,Q )

]
y
)
, (9)

where ℓ̂L is the smallest root of the determinantal equation det
{
X

′

AX − ℓX
′

M(Z1,Q )X
}

= 0 with X =
[
y X

]
.

3. FEFUL: The FEFUL estimator δ̂F is defined as follows:

δ̂F =
(
X ′
[
A − ℓ̂FM(Z1,Q )

]
X
)−1 (

X ′
[
A − ℓ̂FM(Z1,Q )

]
y
)
,

where ℓ̂F =
[̂
ℓL −

(
1 − ℓ̂L

)
C/mn

]
/
[
1 −

(
1 − ℓ̂L

)
C/mn

]
for some constant C and where ℓ̂L is as previously defined

in the definition of FELIM given above. For the Monte Carlo results reported in Section 6, we shall take C = 1.

To help develop some intuition for these new estimators, it is easiest if we focus the discussion on FEJIV. To proceed,
note first that, under our setup, it is not difficult to show that

δ̂J − δ0 =
(
X ′AX

)−1 X ′Aε =
(
X ′AX

)−1 (
Π ′

nZ
′

2Aε + U ′Aε
)
,

where the “numerator” of the right-hand side of this equation is again written in a familiar form as the sum of a
linear form Π ′

nZ
′

2Aε plus a bilinear form U ′Aε. Next, note that an elementary result from linear algebra states that if
A = MDM , where A is a square matrix, D is a diagonal matrix, and M is a symmetric matrix, then a = (M ◦ M) d,
where a =

(
a11, a22, . . . , amn,mn

)′ and d =
(
d11, d22, . . . , dmn,mn

)′ are vectors whose elements are the diagonal elements
of the matrices A and D, respectively. Put in words, this result states that the vector of diagonal elements of A is a linear
transformation of the vector of diagonal elements of D, with the transformation matrix given by (M ◦ M). Since in the
definition of δ̂J , we have specified A = P⊥

− M(Z,Q )Dϑ̂M(Z,Q ), it follows that by choosing the diagonal elements of Dϑ̂

to satisfy the system of linear equations dP⊥ =
(
M(Z,Q ) ◦ M(Z,Q )

)
ϑ , where dP⊥ =

(
P⊥

11, P
⊥

22, . . . , P
⊥
mn,mn

)′, we would, by
construction, end up with a matrix A whose diagonal elements A11, . . . , Amn,mn are all zero. This, in turn, leads to the
bilinear form U ′Aε having the characteristics of a degenerate U-statistic, with expectation that is properly centered at
zero. As discussed in the previous section, this proper centering is important, as it reduces the order of magnitude of the
bilinear term U ′Aε and, thus, allows δ̂J to be both consistent and asymptotically normal under many weak instrument
asymptotics so long as

√
K2,n/

(
µmin

n

)2
→ 0. In addition, write δ̂J − δ0 =

(
X ′AX

)−1 X ′A (Z1ϕn + Qα + ε), and note that

X ′A (Z1ϕn + Qα + ε) = (Z1Φn + Z2Πn + QΞ + U)′
[
P⊥

− M(Z,Q )Dϑ̂M
(Z,Q )

]
(Z1ϕn + Qα + ε)

= Π ′

nZ
′

2P
⊥ε + U ′

[
P⊥

− M(Z,Q )Dϑ̂M
(Z,Q )

]
ε. (10)

Looking at Eq. (10), we see that the design of the matrix A allows fixed effects and the included exogenous regressors
Z1 to be partialed out on both sides of A in the above expression, and this is done in such a way so that the proper
centering of the bilinear form U ′

[
P⊥

− M(Z,Q )Dϑ̂M(Z,Q )
]
ε is still preserved. FELIM and FEFUL are a bit more complicated

than FEJIV to discuss, but they share the same basic design as FEJIV; and, in consequence, they will also be consistent and
asymptotically normal under many weak instrument asymptotics, as we will show in the theorems below.

9 In Lemma 1 below, we show that, under mild conditions, the system of linear equations, d =
(
M(Z,Q ) ◦ M(Z,Q )

)
ϑ , always has a unique solution.
P⊥

7
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In contrast, jackknife IV estimators currently available in the literature do not fully accomplish the dual goals of being
both properly centered and of having all cluster-specific effects and additional covariates properly partialed out. To be
more specific, we will briefly discuss a number of jackknife IV estimators that have been proposed in the literature. The
paper by Angrist et al. (1999) consider the JIVE1 and JIVE2 estimators of the parameter vector δ, but in a cross-sectional
setup without either fixed effects or included exogenous regressors. Hence, these authors do not explicitly study the
more general version of these estimators that partials out additional covariates. Hausman et al. (2012) introduce jackknife
versions of LIML and Fuller estimators called HLIM and HFUL, but they do so in a cross-sectional context where there are
no fixed effects and where only a small number of included exogenous regressors is allowed, so that the problem of
having to partial out fixed effects and a potentially large number of included exogenous variables is not studied in that
paper. In addition, the symmetric jackknife IV (SJIVE) estimator proposed by Bekker and Crudu (2015) is formulated in a
setting without fixed effects and with no included exogenous regressors. Hence, that paper also does not consider issues
related to having to partial out additional covariates.

In a recent paper, Evdokimov and Kolesár (2018) examine a number of interesting jackknife IV estimators that allow for
partialing out of additional covariates. In the previous section, we have already discussed the IJIVE2 estimator from that
paper in the context of a simple cross-sectional IV model. Here, we shall briefly examine the other estimators considered in
Evdokimov and Kolesár (2018) and provide some discussion about how these estimators might perform under many weak
instruments asymptotics when applied to our more general cluster-sample setting here with fixed effects. For this purpose,
it is easiest to consider the case where there is only one endogenous regressor. In this case, note that Dµ = µn = µmin

n
since d = 1, and we shall use x, πn, φn, υ , and u in lieu of X , Πn, Φn, Υ , and U to emphasize the fact that, in the one
endogenous regressor case; x, πn, φn, and u are vectors and not matrices.

Consider first the IJIVE1 estimator studied in that paper. This estimator was originally proposed by Ackerberg and
Devereux (2009) and is further analyzed in the grouped data setting by Evdokimov and Kolesár (2018).10 Using our
notation, the estimator can be written in the form

δ̂IJIVE1 =

(
x′M(Z1,Q )

[
P⊥

− D
(
P⊥
)] [

Imn − D
(
P⊥
)]−1

M(Z1,Q )x
)−1

×

(
x′M(Z1,Q )

[
P⊥

− D
(
P⊥
)] [

Imn − D
(
P⊥
)]−1

M(Z1,Q )y
)

.

Now, it is easily seen that the deviation of this estimator from the true value δ0 can be written as

δ̂IJIVE1 − δ0 =
(
x′AIJ1x

)−1 x′AIJ1 (Z1ϕn + Qα + ε)

=
(
x′AIJ1x

)−1 (
Π ′

nZ
′

2AIJ1ε + U ′AIJ1ε
)
, (11)

where AIJ1 = M(Z1,Q )
[
P⊥

− D
(
P⊥
)] [

Imn − D
(
P⊥
)]−1 M(Z1,Q ). Straightforward calculations further show that the (i, t)th

diagonal element of the matrix AIJ1 is given by

AIJ1,(i,t),(i,t) =

mn∑
(j,s)=1

M(Z1,Q )

(j,s),(i,t)

1 − P⊥

(j,s),(j,s)

[
P⊥

(i,t),(j,s) − M(Z1,Q )

(i,t),(j,s)P
⊥

(j,s),(j,s)

]
̸= 0,

for (i, t) = 1, . . . ,mn, so that u′AIJ1ε, the bilinear form on the right-hand side of Eq. (11) above, will not be a degenerate
U-statistic and will not be properly centered at the origin. Hence, similar to what we have pointed out previously about
IJIVE2, the problem here is that, although the matrix

[
P⊥

− D
(
P⊥
)] [

Imn − D
(
P⊥
)]−1 does have a “jackknife form” in

the sense that the elements of its main diagonal are all zero, it defines a bilinear form not with respect to u and
ε but with respect to the projected vectors û = M(Z1,Q )u and ε̂ = M(Z1,Q )ε. Note, however, that in general the
(i, t)th element of û will contain not just the (i, t)th element of u but other elements as well, and similarly for ε̂.
In consequence, merely having the diagonal elements zeroed out in this case is not sufficient for the bilinear form
u′AIJ1ε = û′

[
P⊥

− D
(
P⊥
)] [

Imn − D
(
P⊥
)]−1

ε̂ to have expectation equal to zero. Again, we have a situation where the
process of partialing out the covariates has interfered with the process of jackknife recentering.

Another estimator studied in Evdokimov and Kolesár (2018) is the UJIVE estimator, which was first introduced in
Kolesár (2013) and then further analyzed in the grouped data setting by Evdokimov and Kolesár (2018). This estimator
takes the form

δ̂UJIVE =

(
x′

[̃
P (Z,Q )D

(
M(Z,Q )

)−1
− P̃ (Z1,Q )D

(
M(Z1,Q )

)−1
]
x
)−1

×

(
x′

[̃
P (Z,Q )D

(
M(Z,Q )

)−1
− P̃ (Z1,Q )D

(
M(Z1,Q )

)−1
]
y
)

,

10 It should be noted that this estimator was originally referred to in Ackerberg and Devereux (2009) as simply IJIVE. However, since Evdokimov
and Kolesár (2018) introduced a variant of this estimator in their paper which they called IJIVE2, they renamed the original IJIVE estimator IJIVE1.
8
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here Z =
[
Z1 Z2

]
, P̃ (Z,Q ) = P (Z,Q ) − D

(
P (Z,Q )

)
, and P̃ (Z1,Q ) = P (Z1,Q ) − D

(
P (Z1,Q )

)
. Now, the deviation of the UJIVE

estimator from the true value δ0 can be written as

δ̂UJIVE − δ0 =

(
x′AUJx
µ2

n

)−1 (x′AUJZ1ϕn + x′AUJQα + φ′
nZ

′

1AUJε + π ′
nZ

′

2AUJε + u′AUJε

µ2
n

)
=

(
x′AUJx
µ2

n

)−1 (x′AUJZ1ϕn + x′AUJQα + π ′
nZ

′

2AUJε + u′AUJε

µ2
n

)
where AUJ =

[
P (Z,Q ) − D

(
P (Z,Q )

)]
D
(
M(Z,Q )

)−1
−
[
P (Z1,Q ) − D

(
P (Z1,Q )

)]
D
(
M(Z1,Q )

)−1. Note first that the diagonal elements
of the matrix AUJ are all equal to zero, so the bilinear term for this estimator, U ′AUJε, is properly centered. However, this
estimator has a bias problem that arises from the presence of the term x′AUJZ1ϕn/µ

2
n, which can be nonnegligible and even

large in order of magnitude. To see this, observe first that simple manipulation shows that AUJ = M(Z1,Q )D
(
M(Z1,Q )

)−1
−

M(Z,Q )D
(
M(Z,Q )

)−1. Using this identity, we can write

x′AUJZ1ϕn

µ2
n

=
π ′
nZ

′

2M
(Z1,Q )D

(
M(Z1,Q )

)−1 Z1ϕn

µ2
n

+
u′M(Z1,Q )D

(
M(Z1,Q )

)−1 Z1ϕn

µ2
n

−
u′M(Z,Q )D

(
M(Z,Q )

)−1 Z1ϕn

µ2
n

. (12)

ote that the term on the right-hand side of (12) which can be particularly large in order of magnitude is π ′
nZ

′

2M
(Z1,Q )(

M(Z1,Q )
)−1 Z1ϕn/µ

2
n. In fact, one can show that

π ′
nZ

′

2M
(Z1,Q )D

(
M(Z1,Q )

)−1 Z1ϕn

µ2
n

=
τn

µn

υ ′Z ′

2M
(Z1,Q )D

(
M(Z1,Q )

)−1 Z1γ
n

= Oa.s.

(
τn

µn

)
.

Hence, this estimator will be inconsistent as long as µn = O (τn). This will certainly be true in weak instrument cases
here µn = o (τn), but can also occur even in strong instrument cases where µn ∼

√
n if the included exogenous

regressors enter significantly into the structural equation of interest, in which case τn ∼
√
n. Our Monte Carlo results

eported in Section 6 also confirm that UJIVE can have a large median bias relative to its competitors when there are
ncluded exogenous regressors that enter significantly into the structural equation of interest.11

Since our setup essentially has a panel data structure, one may also wonder if it is possible to simply first difference
away the fixed effects and then do a jackknife-type recentering. A problem with this strategy occurs if the IV regression
contains, in addition to fixed effects, other included exogenous regressors which cannot be eliminated by first-differencing.
In that case, one will have to do a projection to partial out these included exogenous regressors, leading to the same
problem as we have discussed previously with regard to IJIVE1 and IJIVE2. In fact, the problem will be worse in this
case due to the serial correlation in the errors induced by the first-differencing. Moreover, even if there are no additional
included exogenous regressors, the serial correlation induced by first differencing causes additional complications. In
particular, let PZ

= Z
(
Z ′Z
)−1 Z ′ denote the projection matrix of the instruments.12 Then, to achieve proper jackknife

ecentering in this case requires the removal not only of the elements on the main diagonal of PZ but also the elements
n the superdiagonal and the subdiagonal of PZ , so that with serial correlation proper recentering is attained only at
he cost of greater information loss. Finally, the presence of serial correlation also makes the large sample covariance
atrix of a jackknife IV estimator under many weak instrument asymptotics both more complicated and more difficult to
stimate. Hence, we believe that our approach for removing fixed or cluster-specific effects has certain advantages over
ny alternative procedure that is based on first-differencing. It should be noted that a recent panel data paper by Hsiao
nd Zhou (2018) does take the approach of constructing a jackknife IV estimator after first-differencing the data. However,
he objective and focus of that paper differs greatly from ours. First of all, the panel data simultaneous equations model
pecified in Hsiao and Zhou (2018) does not allow for the degree of instrument weakness that we consider. In addition,
he model that they consider does not have error heteroskedasticity or included exogenous regressors. If we apply their

11 It should be noted, however, that UJIVE may perform well under many weak instrument asymptotics in the special case where the equation
of interest contains no included exogenous regressors and only fixed effects. This is not only because in this case there is no term of the form
x′AUJZ1ϕn/µ

2
n = τnx′AUJZ1γ /

(
µ2

n
√
n
)
, but also because, in this case,

π ′
nZ

′

2AUJQα

µ2
n

=

π ′
nZ

′

2

[
MQD

(
MQ

)−1
− M(Z2,Q )D

(
M(Z2,Q )

)−1
]
Qα

µn
√
n

= 0

o that, without the contaminating effects of the included exogenous regressors, UJIVE does properly partial out the fixed effects. We conjecture
hat, in this setting, UJIVE might be consistent so long as

√
K2,n/

(
µmin

n

)2
→ 0, but we have yet to obtain a formal proof of this result.

12 Here, we let Z denote the matrix of observations on the instruments because we are referring to a case where there are no included exogenous
variables, Z .
1
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stimator to our setting, the estimator will not be consistent in the case where K2,n ∼
(
µmin

n

)2 or in the case where
K2,n/

(
µmin

n

)2
→ ∞, but

√
K2,n/

(
µmin

n

)2
→ 0. Still, it should be stressed that in their setting with strong instruments and

error homoskedasticity their estimator does have good asymptotic properties.
Turning our attention back to the equation dP⊥ =

(
M(Z,Q ) ◦ M(Z,Q )

)
ϑ , note that in order for this system of linear

equations to have a unique solution, we need the matrix
(
M(Z,Q ) ◦ M(Z,Q )

)
to be invertible. The following lemma provides

sufficient conditions for the invertibility of
(
M(Z,Q ) ◦ M(Z,Q )

)
.

Lemma 1. Suppose that Assumptions 5 and 6(i) are satisfied. Then, there exists a positive constant C such that λmin(
M(Z,Q ) ◦ M(Z,Q )

)
≥ C > 0 a.s., for all n sufficiently large.13

It should be noted that a more general result on conditions for the invertibility of Hadamard products has been given
previously in Cattaneo et al. (2018).14 However, we choose to present a specialization of their result because it shows
that, in the context of our cluster-sampling setup, a key condition for ensuring the invertibility of

(
M(Z,Q ) ◦ M(Z,Q )

)
is

min1≤i≤n Ti ≥ 3, which we explicitly assume in Assumption 6 part (i) above.
A further observation is that, in analyzing estimators that are obtained from minimizing a variance ratio (e.g., FELIM),

it is often convenient to first consider the objective function in the form Q (β) =

(
β ′X

′

AXβ

)
/

(
β ′X

′

M(Z1,Q )Xβ

)
, where

X = [y, X] and where β is a (d + 1) × 1 vector, not initially normalized to identify the dependent variable from the
regressors. In this setting, one would first minimize the objective function Q (β) to obtain a minimizer β̃ =

(̃
β1 β̃ ′

2

)′,
ith β̃1 being a scalar and β̃2 a d×1 vector and subsequently normalize the last d components of β̃ to obtain an estimator
= −β̃2/β̃1 for the coefficients of the endogenous regressors X . The following assumption ensures that this subsequent
ormalization is well-defined. Moreover, in the proof of Lemma S2-11 given in the Additional Online Appendix to this
aper, we show that, by following this procedure, we end up with exactly the FELIM estimator δ̂L, that satisfies the
irst-order conditions of the objective function given by (8) and that also has explicit representation given by Eq. (9)
bove.15

ssumption 9. Consider the variance-ratio objective function Q (β) =

(
β ′X

′

AXβ

)
/

(
β ′X

′

M(Z1,Q )Xβ

)
, where β ∈ B ={

β ∈ Rd+1
: ∥β∥2 = 1

}
. Let β̃ be a (d + 1) × 1 vector that minimizes the objective function Q (β), among all β ∈ B

(i.e., β̃ = argminβ∈B Q (β)). Partition β̃ =
(̃
β1, β̃

′

2

)′ as defined above and assume that there exists a positive constant C
such that⏐⏐̃β1

⏐⏐ ≥ C > 0 a.s. for all n sufficiently large. (13)

ote that constraining β (so that ∥β∥2 = 1) is not restrictive since we are dealing with an objective function Q (β) that
s a ratio of quadratic forms in β . More precisely, let β = argminβ∈Rd+1 Q (β), where β ̸= 0, and let β̃ = β/

β2 so thatβ̃2 = 1. Then, Q
(
β
)

=

(
β

′
X

′

AXβ

)
/

(
β

′
X

′

M(Z1,Q )Xβ

)
=

(β−1
2 β

′
X

′

AXβ
β−1

2

)
/

(β−1
2 β

′
X

′

M(Z1,Q )Xβ
β−1

2

)
=(̃

β
)
, so any minimal value of Q (β) obtained by minimizing β over all β ∈ Rd+1 can also be achieved by some β̃ such

hat
β̃2 = 1.

. Consistency and asymptotic normality of point estimators

heorem 1. Let δn =
(
X ′
[
A − ℓnM(Z1,Q )

]
X
)−1 (

X ′
[
A − ℓnM(Z1,Q )

]
y
)
, for some sequence ℓn, such that ℓn = op[

µmin
n

]2
/n
)

= op (1). Then, under Assumptions 1–6,
Dµ

(
δn − δ0

)
/µmin

n


2

p
→ 0 and

δn − δ0

2

p
→ 0, as n → ∞

Special cases of the class of estimators that satisfy the conditions of Theorem 1, and are thus consistent in the
sense described in the theorem, include FEJIV δ̂J,n, FELIM δ̂L,n, and FEFUL δ̂F ,n. Evidently, the main difference between
these estimators is the different specifications of ℓn. δ̂J,n takes ℓn = 0, for all n; δ̂L,n takes ℓn = ℓ̂L,n, where ℓ̂L,n

is the smallest root of the determinantal equation det
{
X

′

AX − ℓX
′

M(Z1,Q )X
}

= 0; and δ̂F ,n takes ℓn = ℓ̂F ,n =[̂
ℓL −

(
1 − ℓ̂L

)
C/mn

]
/
[
1 −

(
1 − ℓ̂L

)
C/mn

]
, as described earlier. Hence, by verifying that, in all three cases, ℓn satisfies

he condition ℓn = op
([

µmin
n

]2
/n
)

= op (1), we can easily specialize the consistency result of Theorem 1 to establish the
consistency of FEJIV, FELIM, and FEFUL. These results are given in the following corollary.

13 A proof of Lemma 1 is given in Section 2 of the Additional Online Appendix for this paper. This online appendix can be viewed at the
URL: http://econweb.umd.edu/~chao/Research/research_files/Additional_Online_Appendix_Jackknife_Estimation_Cluster_Sample_IV_Model_December_
20_2022.pdf.
14 See, in particular, the analysis given in Section 3 of their Supplemental Appendix.
15 The proof of Lemma S2-11 is given in Section 1 of the Additional Online Appendix, which, in turn, can be found at the URL: http://econweb.
umd.edu/~chao/Research/research_files/Additional_Online_Appendix_Jackknife_Estimation_Cluster_Sample_IV_Model_December_20_2022.pdf.
10

http://econweb.umd.edu/~chao/Research/research_files/Additional_Online_Appendix_Jackknife_Estimation_Cluster_Sample_IV_Model_December_20_2022.pdf
http://econweb.umd.edu/~chao/Research/research_files/Additional_Online_Appendix_Jackknife_Estimation_Cluster_Sample_IV_Model_December_20_2022.pdf
http://econweb.umd.edu/~chao/Research/research_files/Additional_Online_Appendix_Jackknife_Estimation_Cluster_Sample_IV_Model_December_20_2022.pdf
http://econweb.umd.edu/~chao/Research/research_files/Additional_Online_Appendix_Jackknife_Estimation_Cluster_Sample_IV_Model_December_20_2022.pdf
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orollary 1. Under Assumptions 1–6 and 9, the following results hold as n → ∞.
a)
Dµ

(̂
δJ,n − δ0

)
/µmin

n


2

p
→ 0 and

̂δJ,n − δ0

2

p
→ 0. (b)

Dµ

(̂
δL,n − δ0

)
/µmin

n


2

p
→ 0 and

̂δL,n − δ0

2

p
→ 0. (c)Dµ

(̂
δF ,n − δ0

)
/µmin

n


2

p
→ 0 and

̂δF ,n − δ0

2

p
→ 0.

The next two results establish asymptotic normality for the FELIM and FEFUL estimators, under two different cases: (i)
Case I: K2,n/

(
µmin

n

)2
= O (1) and (ii) Case II: K2,n/

(
µmin

n

)2
→ ∞, but

√
K2,n/

(
µmin

n

)2
→ 0. The FEJIV estimator can also be

shown to have an asymptotic normal distribution under both Cases I and II. However, we choose to focus our theoretical
analysis on FELIM and FEFUL because, as noted previously, the results of our Monte Carlo study indicate that FELIM and
FEFUL have better finite sample properties than FEJIV.

To facilitate the statement of the next two results, define

ΛI,n = H−1
n

(
Σ1,n + Σ2,n

)
H−1

n = H−1
n ΣnH−1

n , (14)

ΛII,n =

(
µmin

n

)2
K2,n

H−1
n Σ2,nH−1

n , (15)

where Hn = Υ ′Z ′

2M
(Z1,Q )Z2Υ /n, Σ1,n = VC

(
Υ ′Z ′

2M
(Z1,Q )ε/

√
n|FZ

n

)
= Υ ′Z ′

2M
(Z1,Q )Dσ2M(Z1,Q )Z2Υ /n, and Σ2,n =

D−1
µ Σ∗

2,nD
−1
µ , with

Σ∗

2,n = VC
(
U ′Aε|FZ

n

)
=

mn∑
(i,t),(j,s)=1
(i,t)̸=(j,s)

A2
(i,t),(j,s)E

[
ε2
(i,t)|F

Z
n

]
E
[
U (j,s)U

′

(j,s)|F
Z
n

]

+

mn∑
(i,t),(j,s)=1
(i,t)̸=(j,s)

A2
(i,t),(j,s)E

[
U (i,t)ε(i,t)|FZ

n

]
E
[
ε(j,s)U ′

(j,s)|F
Z
n

]
. (16)

In addition, Σn = Σ1,n + Σ2,n and U (i,t) = U(i,t) − ρε(i,t) for (i, t) = 1, . . . ,mn. Here, for any random vector x, VC
(
x|FZ

n

)
denotes the conditional variance–covariance matrix of x given FZ

n . Moreover, let Dσ2 = diag
(
σ 2

(1,1), . . . ., σ
2
(n,Tn)

)
=

diag
(
σ 2
1 , . . . ., σ 2

mn

)
, where σ 2

(i,t) =
[
ε2
(i,t)|F

Z
n

]
, for (i, t) = 1, . . . ,mn and where, for notational convenience, we suppress

the dependence of σ 2
(i,t) on FZ

n .
As evident from the results given below, ΛI,n and ΛII,n are the (conditional) covariance matrices of FELIM (and also of

FEFUL) in large samples under Cases I and II, respectively.

Theorem 2. Let Assumptions 1–9 be satisfied. Then, under Case I where K2,n/
(
µmin

n

)2
= O (1), the following results hold: ΛI,n

is positive definite a.s. for all n sufficiently large; and, as n → ∞, Λ−1/2
I,n Dµ

(̂
δL,n − δ0

) d
→ N (0, Id) and Λ

−1/2
I,n Dµ

(̂
δF ,n − δ0

) d
→

N (0, Id).

Theorem 3. Let Assumptions 1–9 be satisfied, let L̃n be a q× d matrix with 1 ≤ q ≤ d, and let there exists a positive constant
C such that

̃Ln2 ≤ C < ∞ and λmin
(̃
LnΛII,ñL′

n

)
≥ 1/C > 0 a.s.n. Then, under Case II where

(
µmin

n

)2
/K2,n = o (1), but√

K2,n/
(
µmin

n

)2
→ 0, the following results hold: as n → ∞,

(
µmin

n /
√
K2,n

) (̃
LnΛII,ñL′

n

)−1/2
L̃nDµ

(̂
δL,n − δ0

) d
→ N

(
0, Iq

)
and(

µmin
n /

√
K2,n

) (̃
LnΛII,ñL′

n

)−1/2
L̃nDµ

(̂
δF ,n − δ0

) d
→ N

(
0, Iq

)
.

. Covariance matrix estimation and hypothesis testing

To consistently estimate the asymptotic covariance matrix of FELIM and FEFUL, we propose the following estimators

V̂L = Ĥ−1
L Σ̂LĤ−1

L and V̂F = Ĥ−1
F Σ̂F Ĥ−1

F , (17)

here

ĤL = X ′
[
A − ℓ̂L,nM(Z1,Q )

]
X , ĤF = X ′

[
A − ℓ̂F ,nM(Z1,Q )

]
X

Σ̂L = X ′AD (J [̂εL ◦ ε̂L]) AX − ρ̂L (̂εL ◦ ε̂L)
′ J (A ◦ A) J

(̂
εLι

′

d ◦ M(Z,Q )X
)

−
(̂
εLι

′

d ◦ M(Z,Q )X
)′
J (A ◦ A) J (̂εL ◦ ε̂L) ρ̂ ′

L + ρ̂Lρ̂
′

L (̂εL ◦ ε̂L)
′ J (A ◦ A) J (̂εL ◦ ε̂L)

+
(̂
εLι

′

d ◦ ÛL

)′
J (A ◦ A) J

(̂
εLι

′

d ◦ ÛL

)
,

Σ̂F = X ′AD (J [̂εF ◦ ε̂F ]) AX − ρ̂F (̂εF ◦ ε̂F )
′ J (A ◦ A) J

(̂
εF ι

′

d ◦ M(Z,Q )X
)

−
(̂
εF ι

′

d ◦ M(Z,Q )X
)′
J (A ◦ A) J (̂εF ◦ ε̂F ) ρ̂ ′

F + ρ̂F ρ̂
′

F (̂εF ◦ ε̂F )
′ J (A ◦ A) J (̂εF ◦ ε̂F )(

′ ˆ )′
J A ◦ A J

(̂
ε ι′ ◦ Û

)
.
+ ε̂F ιd ◦ UF ( ) F d F

11
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nd where J =
[
MQ

◦ MQ
]−1, ε̂L = M(Z,Q )

(
y − X δ̂L

)
, ε̂F = M(Z,Q )

(
y − X δ̂F

)
, ÛL = M(Z,Q )X−ε̂Lρ̂

′

L, and ÛF = M(Z,Q )X−ε̂F ρ̂
′

F .

n addition, let ρ̂L =
[
X ′M(Z,Q )

(
y − X δ̂L

)]
/

[(
y − X δ̂L

)′ M(Z,Q )
(
y − X δ̂L

)]
and ρ̂F =

[
X ′M(Z,Q )

(
y − X δ̂F

)]
/
(
y − X δ̂F

)′ M(Z,Q )(
y − X δ̂F

)
denote estimators of the parameter ρ = limn→∞ E

[
U ′MQ ε

]
/E
[
ε′MQ ε

]
, based on δ̂L and δ̂F , respectively.

Our next result shows the consistency of the covariance matrix estimators given in Eq. (17) under both Cases I and
II.16

Theorem 4. If Assumptions 1–6 and 8–9 are satisfied; then, the following statements are true:

(a) For Case I, where K2,n/
(
µmin

n

)2
= O (1), DµV̂LDµ = ΛI,n + op (1) and DµV̂FDµ = ΛI,n + op (1), where ΛI,n is as defined

in Eq. (14).
(b) For Case II, where K2,n/

(
µmin

n

)2
→ ∞ but

√
K2,n/

(
µmin

n

)2
→ 0,

[(
µmin

n

)2
/K2,n

]
DµV̂LDµ = ΛII,n + op (1) and[(

µmin
n

)2
/K2,n

]
DµV̂FDµ = ΛII,n + op (1), where ΛII,n is as defined in Eq. (15).

Theorem 5 below provides results on the asymptotic properties of t-statistics associated with the FELIM and FEFUL
estimators when testing a general linear hypothesis of the form H0 : c ′δ0 = r . We show that the t-ratio based on our
estimators has an asymptotic standard normal distribution under the null hypothesis, as long as

√
K2,n/

(
µmin

n

)2
→ 0.

Moreover, our results show that, under the same rate condition, the tests are also consistent, as our test statistics diverge
with probability approaching one under fixed alternatives. Some additional conditions are needed to obtain these results
if we were to allow for general heterogeneity in instrument weakness where the diagonal elements µg,n (g = 1, . . . , d)
of Dµ can diverge at different rates. These conditions are given in Assumption 10.

Assumption 10. Consider testing the null hypothesis H0 : c ′δ0 = r . Let

µ∗

n (c) = min
{
µg,n|g ∈ {1, . . . , d} , cg ̸= 0

}
where cg is the gth component of the vector c , and let µ∗

n (c)D−1
µ c → c∗ ̸= 0 as n → ∞. Assume that c ′

∗
ΛII,nc∗ ≥ C a.s.

or all n sufficiently large for some positive constant C .

heorem 5. If Assumptions 1–10 are satisfied; then, the following statements are true for the t-statistics TL =
(
c ′̂δL − r

)
/

c ′V̂Lc and TF =
(
c ′̂δF − r

)
/
√
c ′V̂F c.

a. For Case I, where K2,n/
(
µmin

n

)2
= O (1):

(i) Under H0 : c ′δ0 = r, TL
d

→ N (0, 1) and TF
d

→ N (0, 1).
(ii) Under H1 : c ′δ0 ̸= r, with probability approaching one, as n → ∞, the following results hold: TL → +∞ if

c ′δ0 > r; TL → −∞ if c ′δ0 < r; TF → +∞ if c ′δ0 > r; and TF → −∞ if c ′δ0 < r.

b. For Case II, where K2,n/
(
µmin

n

)2
→ ∞ but

√
K2,n/

(
µmin

n

)2
→ 0:

(i) Under H0 : c ′δ0 = r, TL
d

→ N (0, 1) and TF
d

→ N (0, 1).
(ii) Under H1 : c ′δ0 ̸= r, with probability approaching one, as n → ∞, the following results hold: TL → +∞ if

c ′δ0 > r; TL → −∞ if c ′δ0 < r; TF → +∞ if c ′δ0 > r; and TF → −∞ if c ′δ0 < r.

In looking over the proof of Theorem 5, one can see that the condition stipulating c ′
∗
ΛII,nc∗ ≥ C a.s.n. for some constant

> 0, given in Assumption 10, is only needed in Case II where K2,n/
(
µmin

n

)2
→ ∞ but

√
K2,n/

(
µmin

n

)2
→ 0. This is

because in this case the covariance matrix estimator is dominated by the contribution of the bilinear term and, when
appropriately normalized, this matrix takes the form

ΛII,n

=

(
µmin

n

)2
K2,n

Dµ

(
Π ′

nZ
′

2M
(Z1,Q )Z2Πn

)−1
Σ∗

2,n

(
Π ′

nZ
′

2M
(Z1,Q )Z2Πn

)−1
Dµ

=

(
µmin

n

)2
K2,n

(
D−1

µ

DµΥ ′Z ′

2M
(Z1,Q )Z2Υ Dµ

n
D−1

µ

)−1

D−1
µ Σ∗

2,nD
−1
µ

16 It can be shown that an estimator of the asymptotic covariance matrix of FEJIV, which will be consistent under both Case I and II, is given by

V̂J,n = Ĥ−1Σ̂J Ĥ−1
=
(
X ′AX

)−1
[
X ′ADς̂J AX +

(̂
εJ ◦ Û

)′
J (A ◦ A) J

(̂
εJ ◦ Û

)] (
X ′AX

)−1
,

here Dς̂J = diag
(̂
ςJ,(1,1), . . . , ς̂J,(1,T1), . . . , ς̂J,(n,1), . . . , ς̂J,(n,Tn)

)
, ς̂J,(i,t) = e′

(i,t)J
(̂
εJ ◦ ε̂J

)
, ε̂J = M(Z,Q )

(
y − X δ̂J

)
, and Û = M(Z,Q )X . Note also that the
tandard error used for FEJIV in our Monte Carlo study given in Section 6 is based on the above formula.

12
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×

(
D−1

µ

DµΥ ′Z ′

2M
(Z1,Q )Z2Υ Dµ

n
D−1

µ

)−1

= H−1
n

[(
µmin

n

)2
K2,n

D−1
µ Σ∗

2,nD
−1
µ

]
H−1

n (18)

where Hn = Υ ′Z ′

2M
(Z1,Q )Z2Υ /n and Σ∗

2,n is as defined in expression (16) above. Now, the matrix ΛII is singular in large
sample when heterogeneity in instrument weakness of a general form is allowed because, even though K−1

2,nΣ
∗

2,n can be
shown to be positive definite almost surely as K2,n, n → ∞

17; the matrix
(
µmin

n

)
D−1

µ converges to a singular diagonal
matrix where some of the diagonal elements are zero, except in the special case where Dµ =

(
µmin

n

)
· Id. It follows that

the matrix
[(

µmin
n

)2
/K2,n

]
D−1

µ Σ∗

2,nD
−1
µ in expression (18) will in general be a singular matrix asymptotically. By following

through the derivation given in expression (18), we see that this problem occurs because, under Case II, the covariance
matrix has a “denominator’’ term, i.e., DµΥ ′Z ′

2M
(Z1,Q )Z2Υ Dµ/n, which depends on Dµ but the “numerator’’ term Σ∗

2,n
does not. Due to this asymmetry, in trying to properly standardize DµΥ ′Z ′

2M
(Z1,Q )Z2Υ Dµ/n so that its inverse will exist

asymptotically, we end up, in some sense, transferring the singularity to the “numerator’’. This also explains why this
same problem does not arise under Case I, where K2,n/

(
µmin

n

)2
= O (1), since in that case the covariance matrix is

dominated in the “numerator’’ by DµΥ ′Z ′

2M
(Z1,Q )Dσ2M(Z1,Q )Z2Υ Dµ/n, the contribution of the linear term, which is affected

by heterogeneity in instrument weakness in the same way as the “denominator’’, so that, upon proper normalization, the
ill effect of this heterogeneity is removed via cancellation.

It should be pointed out that there are important special cases of interest where Assumption 10 either holds
automatically or can be shown to hold under mild additional conditions. One such special case is where instrument
weakness is homogeneous, i.e., the case where µ1,n = · · · = µd,n = µmin

n . In this case, the asymptotic singularity of
ΛII,n does not arise, so that Assumption 10 is fulfilled without additional side conditions, allowing us to easily obtain the
following corollary to Theorem 5.

Corollary 2. Let Assumptions 1–9 be satisfied. Assume further that the diagonal matrix Dµ in Assumption 3 takes the
form Dµ = µmin

n · Id (i.e., µ1,n = · · · = µd,n = µmin
n ). Then, the following statements are true for the t-statistics

TL =
(
c ′̂δL − r

)
/
√
c ′V̂Lc and TF =

(
c ′̂δF − r

)
/
√
c ′V̂F c.

a. For Case I, where K2,n/
(
µmin

n

)2
= O (1):

(i) Under H0 : c ′δ0 = r, TL
d

→ N (0, 1) and TF
d

→ N (0, 1).
(ii) Under H1 : c ′δ0 ̸= r, with probability approaching one as n → ∞, the following results hold: TL → +∞ if

c ′δ0 > r; TL → −∞ if c ′δ0 < r; TF → +∞ if c ′δ0 > r; and TF → −∞ if c ′δ0 < r.

b. For Case II, where K2,n/
(
µmin

n

)2
→ ∞ but

√
K2,n/

(
µmin

n

)2
→ 0:

(i) Under H0 : c ′δ0 = r, TL
d

→ N (0, 1) and TF
d

→ N (0, 1).
(ii) Under H1 : c ′δ0 ̸= r, with probability approaching one as n → ∞, the following results hold: TL → +∞ if

c ′δ0 > r; TL → −∞ if c ′δ0 < r; TF → +∞ if c ′δ0 > r; and TF → −∞ if c ′δ0 < r.

Corollary 2 is of interest because the case where the degree of instrument weakness is homogeneous and does not
vary across the different first-stage equations is one which is often assumed in previous papers on weak and/or many
instruments. This includes the well-known papers by Bekker (1994), Staiger and Stock (1997) and Kleibergen (2002). In
addition, note that the case where there is only one endogenous regressor is also obviously a special case of the setup
considered in Corollary 2.

Another special case of interest is where we test a null hypothesis involving only one coefficient, such as testing
the significance of a particular parameter. This case is important because it is the most frequent use of the t-statistic
by empirical researchers. In this case, we show in the corollary below that, under mild additional conditions, the t-test
based on our proposed estimators will be robust to many weak instruments, even if there is heterogeneity in instrument
weakness of a general form.

Assumption 10*. Let eℓ denote a d × 1 elementary vector whose ℓth component is 1 and all other components are 0,
and write Dµ in the form

Dµ =

(
D1

d1×d1
0

0
(
µmin

n

)
· Id2

)
, (19)

17 A proof of the asymptotically positive definiteness of K−1
2,nΣ∗

2,n is given in Lemma S2-3 part (b) of the Additional Online Appendix to this paper,
which can be found at the URL: http://econweb.umd.edu/~chao/Research/research_files/Additional_Online_Appendix_Jackknife_Estimation_Cluster_
Sample_IV_Model_December_20_2022.pdf.
13
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here D1 = diag
(
µ1,n, . . . , µd1,n

)
, where d1 and d2 are positive integers such that d1+d2 = d, and where

(
µmin

n

)
/µg,n →

0, as n → ∞, for g ∈ {1, . . . , d1}. Partition H−1
n as H−1

n = Hn =
(
H

′

1· H
′

2·

)′
, where H1· is d1 × d and H2· is d2 × d. Assume

that there exists a positive constant C∗ such that e′

ℓH
′

2·H2·eℓ ≥ C∗ > 0 a.s. for all n sufficiently large.

Corollary 3. Let Assumptions 1–9 and 10* be satisfied; and let eℓ be as defined in Assumption 10* above. Consider
testing the null hypothesis H0 : e′

ℓδ0 = r, using either the t-statistic, TL =
(
e′

ℓ̂δL − r
)
/

√
e′

ℓV̂Leℓ or the t-statistic, TF =

e′

ℓ̂δF − r
)
/

√
e′

ℓV̂F eℓ.

a. For Case I, where K2,n/
(
µmin

n

)2
= O (1), the following results hold for ℓ ∈ {1, . . . , d}.

(i) Under H0 : e′

ℓδ0 = r, TL
d

→ N (0, 1) and TF
d

→ N (0, 1).
(ii) Under H1 : e′

ℓδ0 ̸= r, with probability approaching one as n → ∞, the following results hold: TL → +∞ if
e′

ℓδ0 > r; TL → −∞ if e′

ℓδ0 < r; TF → +∞ if e′

ℓδ0 > r; and TF → −∞ if e′

ℓδ0 < r.

b. For Case II, where K2,n/
(
µmin

n

)2
→ ∞ but

√
K2,n/

(
µmin

n

)2
→ 0, the following results hold, for ℓ ∈ {1, . . . , d}.

(i) Under H0 : e′

ℓδ0 = r, TL
d

→ N (0, 1) and TF
d

→ N (0, 1).
(ii) Under H1 : e′

ℓδ0 ̸= r, with probability approaching one as n → ∞, the following results hold: TL → +∞ if
e′

ℓδ0 > r; TL → −∞ if e′

ℓδ0 < r; TF → +∞ if e′

ℓδ0 > r; and TF → −∞ if e′

ℓδ0 < r.

Note that writing Dµ in the way specified in Eq. (19) does not really lead to any loss of generality. In fact, a seemingly
more general Dµ matrix, where not all of the diagonal elements grow at the same rate, as n → ∞, can always be
rewritten in the form given in Eq. (19), via repermutation of the rows and columns of Dµ. To see this, suppose that
µ1n, . . . , µd1,n, µ

min
n are not ordered as in Eq. (19), so that we have some diagonal matrix D∗

µ, whose diagonal elements
are µ1n, . . . , µd1,n, µ

min
n , but in some other order. Then, there exists some permutation matrix P such that Dµ = PD∗

µP
′,

where Dµ is the diagonal matrix given in Eq. (19). Moreover, let the elements of δ̂∗, δ∗

0 , c
∗, and V̂ ∗ be ordered in a way

that is conformable with D∗
µ, and let δ̂, δ0, c , and V̂ be the corresponding vectors and matrix but with elements ordered

conformably with Dµ. Then, it is easy to see that δ̂ = P δ̂∗, δ0 = Pδ∗

0 , c = Pc∗, V̂ = PV̂ ∗P ′. Hence, by making use of
these relations and of the fact that P is an orthogonal matrix, we further obtain that T∗

L = c∗′
(̂
δ∗

− δ∗

0

)
/
√

c∗′V̂ ∗c∗ =

c∗′P ′P
(̂
δ∗

− δ∗

0

)
/
√

c∗′P ′PV̂ ∗P ′Pc∗ = c ′
(̂
δ − δ0

)
/
√

c ′V̂ c = TL. It follows that the value of the t-statistic is invariant to
repermutation of the order of the elements of δ̂, δ0, c , and V̂ , so that the asymptotic distribution which we derive for TL,
nder an assumed ordering of the elements of δ̂, δ0, c , and V̂ that is conformable with Eq. (19) will still apply, even if the
-statistic computed by the empirical researcher is based on some other ordering.

Given that the representation of Dµ given in Eq. (19) does not result in any loss of generality, the only real restriction
mposed by Assumption 10* is the condition that e′

ℓH
′

2·H2·eℓ ≥ C∗ > 0 a.s.n. for some positive constant C∗. We show
in the proof of Corollary 3 that this latter condition implies the more general conditions given in Assumption 10 if the
null hypothesis we are testing involves only one coefficient. It follows that hypotheses involving only one coefficient
can be tested under very general assumptions about the heterogeneity of instrument weakness since the violation of the
condition e′

ℓH
′

2·H2·eℓ ≥ C∗ > 0 a.s.n will only occur if the ℓth column of H2· does not have a single nonzero entry, which
eems unlikely in most practical applications.
To date, papers in the weak instrument literature have focused primarily on size control, with little attention paid

o test consistency under weak identification. One exception is a recent paper by Mikusheva and Sun (2022), which
hows that a condition similar to

√
K2,n/

(
µmin

n

)2
→ 0 is both necessary and sufficient for the existence of a consistent

test. Interpreted in light of their result, the results presented in Theorem 5 as well as Corollaries 2 and 3 above prove
that t-tests based on FELIM and FEFUL are consistent as long as instruments are strong enough so that consistency in
hypothesis testing is possible. In contrast, t-tests based on estimators such as the 2SLS estimator will only be consistent
if K2,n/

(
µmin

n

)2
→ 0 (i.e., under stronger instruments). Test statistics based on LIML also have undesirable properties

under many weak instrument asymptotics, when there is error heteroskedasticity. In addition, note that one advantage
of t-tests is that they are particularly easy to apply if one is interested in testing against one-sided alternatives. The
results of Theorems 5 as well as Corollaries 2 and 3 show that, when the null hypothesis is incorrect, t-tests based on
FELIM and FEFUL diverge in the direction of the true alternative, with probability approaching one, even in situations
where identification is weaker than that typically assumed under standard large sample theory, provided of course that√
K2,n/

(
µmin

n

)2
→ 0. Hence, the test statistics proposed in this paper should be particularly useful to empirical researchers

interested in testing whether an effect in a particular direction is statistically significant.
14
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Table 1
Median bias, K2 = 10.
µ2 R2

ε2 |z21
2SLS IJIVE1 IJIVE2 UJIVE FEJIV FELIM FEFUL

0 0.1092 0.0440 0.0441 0.3811 −0.0058 0.0042 0.0161
25 0.1 0.1080 0.0429 0.0427 0.3719 −0.0071 0.0052 0.0167

0.2 0.1125 0.0475 0.0480 0.3982 −0.0053 0.0051 0.0170

0 0.0857 0.0290 0.0290 0.2562 −0.0167 −0.0003 0.0090
35 0.1 0.0860 0.0300 0.0301 0.2617 −0.0127 0.0018 0.0107

0.2 0.0879 0.0328 0.0327 0.2486 −0.0105 −0.0002 0.0083

0 0.0733 0.0263 0.0263 0.1943 −0.0095 0.0009 0.0079
45 0.1 0.0738 0.0280 0.0281 0.1984 −0.0072 0.0025 0.0094

0.2 0.0690 0.0213 0.0216 0.1908 −0.0130 −0.0007 0.0057

0 0.0629 0.0210 0.0212 0.1586 −0.0074 0.0009 0.0068
55 0.1 0.0627 0.0205 0.0206 0.1415 −0.0084 0.0017 0.0071

0.2 0.0583 0.0167 0.0165 0.1429 −0.0136 −0.0041 0.0017

Results based on 10,000 simulations.

6. Monte Carlo results

In this section, we report some Monte Carlo results based on the following data generating process:

y(i,t) = δ
1×1

x(i,t)
1×1

+ ϕ′

1×10
Z1,(i,t)
10×1

+ αi + ε(i,t),

x(i,t) = Φ ′

1×10
Z1,(i,t)
10×1

+ Π
1×K2

Z2,(i,t)
K2×1

+ ξi + u(i,t).

where we specify ϕ = ι10, Φ = ι10, and Π =
(
ιK2 ⊗ π

)
with ι10 and ιK2 being, respectively, a 10 × 1 and a K2 × 1 vector

f ones. Here, π is taken to be a scalar parameter, and we choose π so that the concentration parameter µ2
= 25, 35,

5, and 55. Moreover, in our experiments, we consider two choices of K2: K2 = 10, 30. Additionally, we set n = 200 and
i = 3, for each i ∈ {1, 2, . . . , 200}, so that mn = 600. The (i, t)th observation of the vector of included exogenous
egressors, or covariates, is taken to be Z1,(i,t) =

(
z1,(i,t) z21,(i,t) z31,(i,t) z41,(i,t) z1,(i,t)D(i,t),1 · · · z1,(i,t)D(i,t),6

)′
,

where
{
z1,(i,t)

}600
(i,t)=1 ≡ i.i.d.N (0, 1) and where D(i,t),k ∈ {0, 1} for k ∈ {1, 2, . . . , 6} is a binary variable such that

Pr
(
D(i,t),k = 1

)
= 1/2, with

{
D(i,t),k

}
specified to be independent across both (i, t) and k. We also take

{
Z2,(i,t)

}600
(i,t)=1 ≡

i.i.d.N
(
0, IK2

)
,
{
u(i,t)

}600
(i,t)=1 ≡ i.i.d.N (0, 1), {αi}

200
i=1 i.i.d.N (0, 1), and {ξi}

200
i=1 i.i.d.N (0, 1); with z1,(i,t), D(i,t),k, Z2,(i,t), u(i,t),

αi and ξi all specified to be independent of each other. We allow the structural disturbance, ε(i,t), to exhibit conditional
heteroskedasticity in a manner similar to the design given in Hausman et al. (2012). In particular, we let

ε(i,t) = ρu(i,t) +

√
1 − ρ2

φ2 + (0.86)2
(
φv1,(i,t) + 0.86v2,(i,t)

)
, (20)

here v1,(i,t)|Z1,(i,t), Z2,(i,t) ∼ N
(
0, κ

[
1 +

(
ι′10Z1,(i,t) + ι′K2Z2,(i,t)

)2])
and v2,(i,t) ∼ N (0, 1). Both of these distributions are

specified to be independent across the index (i, t), and κ is a normalization constant chosen so that the unconditional
variance, Var

(
v1,(i,t)

)
, is equal to 1. For all experiments reported below, we set ρ = 0.3 and choose the parameter φ, so

that the R-squared for the regression of ε2 on the instruments and the included exogenous variables take the values 0,
0.1, and 0.2.

Our simulation study examines the finite sample properties of our three estimators (FEJIV, FELIM, and FEFUL) and
their associated t-statistics. Additionally, we compare the performance of our estimators with the 2SLS estimator, the
IJIVE1 estimator originally proposed in Ackerberg and Devereux (2009), the IJIVE2 estimator introduced in Evdokimov
and Kolesár (2018), and the UJIVE estimator originally proposed in Kolesár (2013) and further studied in Evdokimov and
Kolesár (2018). The comparison of these point estimators is made on the basis of median bias and nine decile range. We
also evaluate the associated t-statistics for these estimators on the basis of size control, as measured by their rejection
frequencies under the null hypothesis H0 : δ = 0.

The results of our Monte Carlo study are reported in Tables 1–6.
Looking over the results reported in Tables 1–6, note first that, in terms of median bias, the performance of FEJIV,

FELIM, and FEFUL are uniformly better across our experiments when compared to 2SLS, IJIVE1, IJIVE2, and UJIVE; although
our experiments do show 2SLS, IJIVE1, and IJIVE2 to be less dispersed than the three estimators proposed in this paper.
Comparing FELIM and FEFUL in terms of nine decile range, we see that FEFUL tends to be less dispersed than FELIM, which
is in accord with the motivation behind the original Fuller (1977) modification. Perhaps the most notable difference in
performance is that t-statistics based on FELIM and FEFUL have much less size distortion than t-statistics constructed
15



J.C. Chao, N.R. Swanson and T. Woutersen Journal of Econometrics xxx (xxxx) xxx
Table 2
Nine decile range 0.05 to 0.95a , K2 = 10.
µ2 R2

ε2 |z21
2SLS IJIVE1 IJIVE2 UJIVE FEJIV FELIM FEFUL

0 0.6638 1.0286 1.0247 5.9842 1.5849 1.2900 1.1543
25 0.1 0.6590 1.0475 1.0468 6.0422 1.6538 1.2810 1.1442

0.2 0.6491 1.0235 1.0253 6.1624 1.6218 1.2788 1.1216

0 0.5936 0.8214 0.8200 5.6334 1.0861 0.9554 0.8921
35 0.1 0.5952 0.8286 0.8288 5.8319 1.1026 0.9430 0.8876

0.2 0.5755 0.7955 0.7939 5.7128 1.0402 0.9068 0.8561

0 0.5362 0.6960 0.6960 5.1587 0.8458 0.7769 0.7433
45 0.1 0.5332 0.6876 0.6883 5.2225 0.8378 0.7665 0.7392

0.2 0.5244 0.6751 0.6753 5.2851 0.8210 0.7542 0.7229

0 0.4929 0.6109 0.6114 4.8115 0.7132 0.6620 0.6418
55 0.1 0.4929 0.6068 0.6069 4.7546 0.7076 0.6564 0.6387

0.2 0.4857 0.6039 0.6029 4.8027 0,6972 0.6465 0.6279

Results based on 10,000 simulations.
aBy nine decile range we mean the range between the 0.05 and the 0.95 quantiles. It should also be noted that the reason we compare the estimators
based on median bias and nine decile range instead of the usual criteria of (mean) bias and variance is because it is well-known that the exact finite
sample (mean) bias and variance of LIML-type estimators do not exist under the assumption that errors are normally distributed. However, it is also
well-known that LIML-type estimators tend to be better centered than the 2SLS estimator in terms of median bias and, in many ways, have better
finite sample properties, in spite of the fact that they have fatter tails. Hence, the use of median bias and nine decile range allow us to conduct a
broader based Monte Carlo comparison without restricting ourselves to only those estimators whose positive integer moments are known to exist.

Table 3
0.05 rejection frequenciesa , K2 = 10.
µ2 R2

ε2 |z21
2SLS IJIVE1 IJIVE2 UJIVE FEJIV FELIM FEFUL

0 0.1784 0.0951 0.0884 0.5215 0.0253 0.0518 0.0535
25 0.1 0.1842 0.0997 0.0937 0.5181 0.0326 0.0555 0.0561

0.2 0.1797 0.0958 0.0896 0.5334 0.0275 0.0538 0.0547

0 0.1659 0.1064 0.0999 0.5347 0.0319 0.0481 0.0506
35 0.1 0.1668 0.1017 0.0951 0.5345 0.0340 0.0489 0.0508

0.2 0.1677 0.1021 0.0951 0.5369 0.0326 0.0484 0.0511

0 0.1584 0.1098 0.1034 0.5601 0.0354 0.0503 0.0528
45 0.1 0.1592 0.1087 0.1023 0.5555 0.0351 0.0469 0.0493

0.2 0.1611 0.1100 0.1042 0.5606 0.0350 0.0483 0.0504

0 0.1544 0.1127 0.1053 0.5853 0.0398 0.0476 0.0496
55 0.1 0.1583 0.1157 0.1098 0.5835 0.0400 0.0547 0.0561

0.2 0.1510 0.1123 0.1048 0.5881 0.0401 0.0524 0.0550

Results based on 10,000 simulations.
aSee Ackerberg and Devereux (2009), Kolesár (2013), and Evdokimov and Kolesár (2018) for formulae for the estimators IJIVE1, IJIVE2, and UJIVE as
well as for the standard errors used in constructing the t-statistics for these estimators.

Table 4
Median bias, K2 = 30.
µ2 R2

ε2 |z21
2SLS IJIVE1 IJIVE2 UJIVE FEJIV FELIM FEFUL

0 0.1907 0.1105 0.1106 0.5648 0.0157 0.0042 0.0150
25 0.1 0.1916 0.1136 0.1138 0.5828 0.0197 0.0085 0.0217

0.2 0.1933 0.1159 0.1160 0.5890 0.0287 0.0076 0.0191

0 0.1702 0.0954 0.0954 0.4059 0.0069 0.0067 0.0150
35 0.1 0.1666 0.0900 0.0901 0.4075 −0.0097 −0.0023 0.0061

0.2 0.1699 0.0946 0.0941 0.4190 −0.0025 0.0032 0.0124

0 0.1501 0.0764 0.0763 0.2939 −0.0050 0.0010 0.0079
45 0.1 0.1501 0.0789 0.0788 0.2928 −0.0079 −0.0017 0.0051

0.2 0.1502 0.0775 0.0778 0.2820 −0.0065 −0.0001 0.0057

0 0.1357 0.0670 0.0672 0.2420 −0.0100 −0.0006 0.0051
55 0.1 0.1335 0.0641 0.0642 0.2202 −0.0141 −0.0078 −0.0026

0.2 0.1365 0.0679 0.0682 0.2246 −0.0031 0.0034 0.0092

Results based on 10,000 simulations.

from any of the other five estimators. Finally, note that t-statistics based on the FEJIV estimator tend to be undersized,
but the empirical rejection frequencies are still closer to the nominal level than t-statistics based on 2SLS, IJIVE1, IJIVE2,
or UJIVE.
16
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Table 5
Nine decile range 0.05 to 0.95, K2 = 30.
µ2 R2

ε2 |z21
2SLS IJIVE1 IJIVE2 UJIVE FEJIV FELIM FEFUL

0 0.4785 0.9885 0.9909 5.7669 3.0848 2.1434 1.7483
25 0.1 0.4760 0.9629 0.9634 6.2210 3.0543 2.1265 1.7549

0.2 0.4693 0.9735 0.9764 6.0341 2.9121 2.1675 1.7602

0 0.4501 0.8155 0.8175 6.4148 1.7734 1.4271 1.2895
35 0.1 0.4513 0.8083 0.8109 6.2439 1.8113 1.4544 1.3066

0.2 0.4427 0.7871 0.7899 6.1090 1.7457 1.3613 1.2405

0 0.4186 0.6941 0.6939 5.8258 1.2562 1.0510 0.9935
45 0.1 0.4254 0.6958 0.6969 5.9272 1.2409 1.0471 0.9948

0.2 0.4186 0.6771 0.6779 5.9727 1.2126 1.0306 0.9764

0 0.4008 0.6206 0.6211 5.7132 0.9825 0.8625 0.8287
55 0.1 0.3985 0.6087 0.6109 5.5675 0.9513 0.8614 0.8299

0.2 0.4028 0.6196 0.6214 5.4996 0.9661 0.8661 0.8354

Results based on 10,000 simulations.

Table 6
0.05 rejection frequencies, K2 = 30.
µ2 R2

ε2 |z21
2SLS IJIVE1 IJIVE2 UJIVE FEJIV FELIM FEFUL

0 0.4113 0.1387 0.1214 0.5461 0.0249 0.0519 0.0534
25 0.1 0.4242 0.1425 0.1226 0.5489 0.0220 0.0518 0.0545

0.2 0.4350 0.1466 0.1266 0.5527 0.0251 0.0546 0.0565

0 0.3919 0.1526 0.1310 0.5387 0.0315 0.0531 0.0553
35 0.1 0.3901 0.1527 0.1333 0.5355 0.0298 0.0577 0.0601

0.2 0.4015 0.1535 0.1338 0.5489 0.0329 0.0572 0.0604

0 0.3624 0.1563 0.1362 0.5516 0.0339 0.0539 0.0559
45 0.1 0.3639 0.1542 0.1339 0.5396 0.0357 0.0542 0.0564

0.2 0.3764 0.1551 0.1344 0.5459 0.0370 0.0579 0.0601

0 0.3376 0.1485 0.1294 0.5676 0.0385 0.0514 0.0541
55 0.1 0.3332 0.1455 0.1277 0.5638 0.0371 0.0534 0.0558

0.2 0.3530 0.1638 0.1421 0.5686 0.0417 0.0593 0.0605

Results based on 10,000 simulations.

7. Conclusion

This paper considers an IV regression model with many weak instruments, cluster specific effects, error heteroskedas-
icity, and possibly many included exogenous regressors. To carry out point estimation in this setup, we propose three
ew jackknife-type IV estimators, which we refer to by the acronyms FEJIV, FELIM, and FEFUL. All three of these estimators
re shown to be robust to the effects of many weak instruments, in the sense that they are consistent estimators within a
ramework broad enough to include both the standard situation with strong instruments and situations with many weak
nstruments. To the best of our knowledge, the estimators proposed in this paper are the first consistent estimators
hich have been developed in a many weak instrument framework when the IV regression under consideration has both
luster specific effects and possibly many included exogenous regressors. We establish asymptotic normality for FELIM
nd FEFUL under both strong instrument and many weak instrument asymptotics. In addition, we provide consistent
tandard errors for our estimators and show that, when the null hypothesis is true, t-statistics based on these standard
rrors are asymptotically normal under both strong instrument and many weak instrument asymptotics. Finally, we show
hat under both strong instrument and many weak instrument asymptotics, the t-statistics based on these standard errors
re consistent under fixed alternatives. Thus, we underscore an interesting aspect of the many weak instrument setup.
amely, test consistency is still possible under this framework, as has been pointed out in a recent paper by Mikusheva and
un (2022). In a series of Monte Carlo experiments, we find that t-statistics based on FELIM and FEFUL control size better
n finite samples than t-statistics based on alternative jackknife-type IV estimators that have previously been proposed in
he literature. Hence, based on the findings of this paper, we recommend that either FELIM or FEFUL be used in settings
here there are many weak instruments, cluster specific effects, and possibly many included exogenous regressors.

ppendix A. Proofs of main theorems and other key results

This appendix provides the proofs for Theorem 1, Corollary 1, Theorems 4–5, and Corollaries 2–3 of the paper. The
roofs of Theorems 2 and 3 are longer and, thus, are given in Appendix S1 of the Supplemental Appendix to this paper. This
17
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upplemental Appendix can be viewed at the URL: http://econweb.umd.edu/~chao/Research/research_files/Supplemental_
ppendix_to_Jackknife_Estimation_Cluster_Sample_IV_Model_December_20_2022.pdf. In addition, the proofs provided
elow rely on a number of technical results that are stated without proof in Appendix S2 of the Supplemental Appendix.
hese results are designated in the derivations that follow by the use of the prefix S. So, for example, Lemma S2-2
ill refer to the second lemma in Appendix S2 of the Supplemental Appendix. Proofs for these additional supporting

emmas (more specifically, Lemmas S2-1 to S2-18) are available in a separate online appendix which can be viewed at the
RL: http://econweb.umd.edu/~chao/Research/research_files/Additional_Online_Appendix_Jackknife_Estimation_Cluster_
ample_IV_Model_December_20_2022.pdf

roof of Theorem 1. To proceed, note first that, by parts (a) and (b) of Lemma S2-2 and by the assumption on ℓn, we
ave D−1

µ X ′
[
A − ℓnM(Z1,Q )

]
XD−1

µ = D−1
µ X ′AXD−1

µ − ℓnD−1
µ X ′M(Z1,Q )XD−1

µ = Hn + op (1), where Hn = Υ ′Z ′

2M
(Z1,Q )Z2Υ /n =

Op (1). By Assumption 3(iii), we also have that Hn is positive definite almost surely for n sufficiently large, so that
D−1

µ X ′
[
A − ℓnM(Z1,Q )

]
XD−1

µ is invertible w.p.a.1. Hence, w.p.a.1., we can write

1
µmin

n
Dµ

(
δn − δ0

)
=
(
D−1

µ X ′
[
A − ℓnM(Z1,Q )

]
XD−1

µ

)−1 1
µmin

n
D−1

µ X ′
[
A − ℓnM(Z1,Q )

]
ε.

Applying Lemma S2-4 and Lemma S2-5, we get

1
µmin

n
D−1

µ X ′
[
A − ℓnM(Z1,Q )

]
ε =

1
µmin

n
D−1

µ X ′Aε − ℓn
1

µmin
n

D−1
µ X ′M(Z1,Q )ε

= Op

(
max

{
1

µmin
n

,

√
K2,n(

µmin
n

)2
})

+ op (1) = op (1) .

It follows by the Slutsky’s Theorem that
Dµ

(
δn − δ0

)
/
(
µmin

n

)
2 = op (1), which gives the first result. To show the

second result, note that, by straightforward calculations, we obtain
Dµ

(
δn − δ0

)
/
(
µmin

n

)
2 ≥

√(
µmin

n

)2
/
(
µmin

n

)2√(
δn − δ0

)′ (
δn − δ0

)
=
δn − δ0


2, which implies that

δn − δ0

2

p
→ 0, as required. □

roof of Corollary 1. In light of the results given in Theorem 1, it suffices that we verify the condition ℓn =

p

([
µmin

n

]2
/n
)

= op (1) for all three estimators. For the FEJIV estimator considered in part (a), ℓn = 0 for all n,
o this condition is trivially satisfied. Now, part (b) considers the FELIM estimator. For this estimator, the result of
emma S2-11 has shown that we can take ℓn = ℓ̂L,n = minβ∈B

(
β ′X

′

AXβ

)
/

(
β ′X

′

M(Z1,Q )Xβ

)
=
(
y − X δ̂L

)′ A (y − X δ̂L
)
/[(

y − X δ̂L
)′ M(Z1,Q )

(
y − X δ̂L

)]
. By part (a) of Lemma S2-7, we then have ℓ̂L,n = op

([
µmin

n

]2
/n
)
, so FELIM also satisfies the

needed condition. Finally, part (c) considers the FEFUL estimator, which takes ℓn = ℓ̂F ,n =
[̂
ℓL,n −

(
1 − ℓ̂L,n

)
(C/mn)

]
/[

1 −
(
1 − ℓ̂L,n

)
(C/mn)

]
. By part (b) of Lemma S2-7, we have that ℓ̂F ,n = op

([
µmin

n

]2
/n
)
, so the needed condition

is satisfied again. The consistency results given in parts (a)–(c) of this corollary then follow as a consequence of
Theorem 1. □

Proof of Theorem 4. We shall prove this theorem for the FELIM case since the proof for FEFUL is similar. To proceed,
first define SL,1 = X ′AD (J [̂εL ◦ ε̂L]) AX , SL,2 = (̂εL ◦ ε̂L)

′ J (A ◦ A) J
(̂
εLι

′

d ◦ M(Z,Q )X
)
, SL,3 = (̂εL ◦ ε̂L)

′ J (A ◦ A) J (̂εL ◦ ε̂L),
SL,4 =

(̂
εLι

′

d ◦ ÛL

)′
J (A ◦ A) J

(̂
εLι

′

d ◦ ÛL

)
, ĤL = X ′

[
A − ℓ̂L,nM(Z1,Q )

]
X , Σ1,n = Υ ′Z ′

2M
(Z1,Q )Dσ2M(Z1,Q )Z2Υ /n. In addition,

also define σ 2
(i,t) = E

[
ε2
(i,t)|F

Z
n

]
, φ(i,t) = E

[
U(i,t)ε(i,t)|FZ

n

]
, Ψ(i,t) = E

[
U(i,t)U ′

(i,t)|F
Z
n

]
, φ

(i,t)
= E

[
U (i,t)ε(i,t)|FZ

n

]
, and

Ψ (i,t) = E
[
U (i,t)U

′

(i,t)|F
Z
n

]
where U (i,t) = U(i,t) −ρε(i,t) and where for notational convenience we suppress the dependence

of σ 2
(i,t), φ(i,t), Ψ(i,t), φ

(i,t)
, and Ψ (i,t) on FZ

n = σ (Z).
Using these notations, to show part (a), we first write DµV̂LDµ = V̂L,1 + V̂L,2 + V̂L,3 + V̂L,4, where V̂L,1 =(

D−1
µ ĤLD−1

µ

)−1
D−1

µ SL,1D−1
µ

(
D−1

µ ĤLD−1
µ

)−1
, V̂L,2 = −

(
D−1

µ ĤLD−1
µ

)−1
D−1

µ

(̂
ρLSL,2 + S ′

L,2ρ̂
′

L

)
D−1

µ

(
D−1

µ ĤLD−1
µ

)−1
, V̂L,3 =

(
D−1

µ

ĤLD−1
µ

)−1
D−1

µ ρ̂LSL,3ρ̂ ′

LD
−1
µ

(
D−1

µ ĤLD−1
µ

)−1
, and V̂L,4 =

(
D−1

µ ĤLD−1
µ

)−1
×D−1

µ SL,4D
−1
µ

(
D−1

µ ĤLD−1
µ

)−1
. Now, consider V̂L,1 first.

Note that, by Lemma S2-17,

D−1
µ X ′AD (ε ◦ ε) AXD−1

µ = Σ1,n +

mn∑
(i,t),(j,s)=1
(i,t)̸=(j,s)

A2
(i,t),(j,s)σ

2
(i,t)D

−1
µ Ψ(j,s)D−1

µ + op (1) ,

from which we deduce that D−1
µ X ′AD (ε ◦ ε) AXD−1

µ = Op (1) using Assumptions 2(i) and 3(iii), Lemma S2-1 part (a), and(
min
)2
the assumption that K2,n/ µn = O (1) under Case I.
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Next, note that by Lemma S2-11, ℓ̂L =
(
y − X δ̂L

)′ A (y − X δ̂L
)
/
(
y − X δ̂L

)′ M(Z1,Q )
(
y − X δ̂L

)
. Moreover, by the result

iven in Lemma S2-10, we have that D−1
µ ĤLD−1

µ = Hn + op (1), where, by Assumption 3(iii), Hn = Υ ′Z ′

2M
(Z1,Q )Z2Υ /n is

positive definite a.s.n. In addition, we can apply part (a) of Lemma S2-18 and Slutsky’s theorem to deduce that

V̂L,1 =
(
D−1

µ ĤLD−1
µ

)−1
D−1

µ SL,1D−1
µ

(
D−1

µ ĤLD−1
µ

)−1

= H−1
n Σ1,nH−1

n + H−1
n

⎛⎜⎝ mn∑
(i,t),(j,s)=1
(i,t)̸=(j,s)

A2
(i,t),(j,s)σ

2
(i,t)D

−1
µ Ψ(j,s)D−1

µ

⎞⎟⎠H−1
n + op (1) . (21)

Next, consider V̂L,2. Here, note that we can further decompose V̂L,2 as V̂L,2 = V̂L,2,1+ V̂L,2,2, where V̂L,2,1 = −
(
D−1

µ ĤLD−1
µ

)−1

D−1
µ ρ̂LSL,2D−1

µ

(
D−1

µ ĤLD−1
µ

)−1
and V̂L,2,2 = −

(
D−1

µ ĤLD−1
µ

)−1
D−1

µ S ′

L,2ρ̂
′

LD
−1
µ

(
D−1

µ ĤLD−1
µ

)−1
. Noting that K2,n/

(
µmin

n

)2
= O (1)

under Case I and applying the result of Lemma S2-10, as well as parts (d) and (e) of Lemma S2-18 and Slutsky’s theorem,
we get

V̂L,2,1 = −H−1
n

K2,n(
µmin

n

) {D−1
µ ρ + D−1

µ (̂ρL − ρ)
} µmin

n

K2,n
SL,2D−1

µ H−1
n

(
1 + op (1)

)
= −H−1

n D−1
µ ρ

mn∑
(i,t),(j,s)=1
(i,t)̸=(j,s)

A2
(i,t),(j,s)σ

2
(i,t)φ

′

(j,s)D
−1
µ H−1

n + op (1) .

Moreover, since V̂L,2,2 = V̂ ′

L,2,1, we also have V̂L,2,2 = −H−1
n
∑

(i,t),(j,s)=1:mn,(i,t)̸=(j,s) A
2
(i,t),(j,s)σ

2
(i,t)D

−1
µ φ(j,s)ρ

′D−1
µ H−1

n + op (1).
Given that V̂L,2 = V̂L,2,1 + V̂L,2,2, it follows from these calculations that

V̂L,2 = −H−1
n

mn∑
(i,t),(j,s)=1
(i,t)̸=(j,s)

A2
(i,t),(j,s)D

−1
µ

(
ρσ 2

(i,t)φ
′

(j,s) + σ 2
(i,t)φ(j,s)ρ

′
)
D−1

µ H−1
n + op (1) (22)

Turning our attention to V̂L,3, note that, in this case, we can apply Lemma S2-10, parts (b) and (e) of Lemma S2-18, and
Slutsky’s theorem to obtain

V̂L,3 = K2,nH−1
n

[
D−1

µ ρ + D−1
µ (̂ρL − ρ)

] SL,3
K2,n

ρ ′D−1
µ H−1

n

(
1 + op (1)

)
+ K2,nH−1

n

[
D−1

µ ρ + D−1
µ (̂ρL − ρ)

] SL,3
K2,n

(̂ρL − ρ)′ D−1
µ H−1

n

(
1 + op (1)

)
= H−1

n D−1
µ ρ

mn∑
(i,t),(j,s)=1
(i,t)̸=(j,s)

A2
(i,t),(j,s)σ

2
(i,t)σ

2
(j,s)ρ

′D−1
µ H−1

n + op (1) . (23)

astly, we consider V̂L,4. Here, we can apply Lemma S2-10, part (f) of Lemma S2-18, the fact that K2,n/
(
µmin

n

)2
= O (1)

nder Case I, as well as Slutsky’s theorem to obtain

V̂L,4 = H−1
n D−1

µ SL,4D
−1
µ H−1

n

(
1 + op (1)

)
= H−1

n

mn∑
(i,t),(j,s)=1
(i,t)̸=(j,s)

A2
(i,t),(j,s)D

−1
µ φ

(i,t)
φ′

(j,s)
D−1

µ H−1
n + op (1) . (24)

It follows from Eqs. (21), (22), (23), and (24) that

DµV̂LDµ = H−1
n Σ1,nH−1

n + H−1
n

mn∑
(i,t),(j,s)=1
(i,t)̸=(j,s)

A2
(i,t),(j,s)σ

2
(i,t)D

−1
µ Ψ (j,s)D

−1
µ H−1

n

+H−1
n

mn∑
(i,t),(j,s)=1
(i,t)̸=(j,s)

A2
(i,t),(j,s)D

−1
µ φ

(i,t)
φ′

(j,s)
D−1

µ H−1
n + op (1)

= H−1
n

(
Σ1,n + Σ2,n

)
H−1

n + op (1) = ΛI,n + op (1) .

To show the same result for FEFUL, note that δ̂F satisfies the conditions of both Lemma S2-12 and Lemma S2-18. Hence,
e can make the same argument as given above for FELIM, except that we use the result of Lemma S2-12 in lieu of Lemma
2-10 to obtain D V̂ D = H−1

(
Σ + Σ

)
H−1

+ o 1 = Λ + o 1 .
µ F µ n 1,n 2,n n p ( ) I,n p ( )
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To show part (b), we again only provide an explicit argument for V̂L since the proof of V̂F follows in a similar way. To
roceed, write

[(
µmin

n

)2
/K2,n

]
DµV̂LDµ =

[(
µmin

n

)2
/K2,n

]∑4
ℓ=1 V̂L,ℓ, where V̂L,1, V̂L,2, V̂L,3, and V̂L,4 are as defined in the

roof of part (a).
Considering V̂L,1 first, note that, since K2,n/

(
µmin

n

)2
→ ∞ but

√
K2,n/

(
µmin

n

)2
→ 0 under Case II, we have, upon

applying the result of Lemma S2-10, part (a) of Lemma S2-18, and Slutsky’s theorem,(
µmin

n

)2
K2,n

V̂L,1 = H−1
n

(
µmin

n

)2
K2,n

⎡⎢⎣Σ1,n +

mn∑
(i,t),(j,s)=1
(i,t)̸=(j,s)

A2
(i,t),(j,s)σ

2
(i,t)D

−1
µ Ψ(j,s)D−1

µ

⎤⎥⎦H−1
n

(
1 + op (1)

)

= H−1
n

(
µmin

n

)2
K2,n

mn∑
(i,t),(j,s)=1
(i,t)̸=(j,s)

A2
(i,t),(j,s)σ

2
(i,t)D

−1
µ Ψ(j,s)D−1

µ H−1
n + op (1) . (25)

ow, consider V̂L,2. Here, we write
[(

µmin
n

)2
/K2,n

]
V̂L,2 =

[(
µmin

n

)2
/K2,n

]
V̂L,2,1 +

[(
µmin

n

)2
/K2,n

]
V̂L,2,2, where V̂L,2,1 and

VL,2,2 are again as defined in the proof of part (a). Making use of the results of Lemma S2-10, parts (d) and (e) of Lemma
S2-18, and Slutsky’s theorem while noting that K2,n/

(
µmin

n

)2
→ ∞ under Case II, we get(

µmin
n

)2
K2,n

V̂L,2,1 = −H−1
n

(
µmin

n

) {
D−1

µ ρ + D−1
µ (̂ρL − ρ)

} µmin
n

K2,n
SL,2D−1

µ H−1
n

(
1 + op (1)

)
= −H−1

n

(
µmin

n

)2
K2,n

mn∑
(i,t),(j,s)=1
(i,t)̸=(j,s)

A2
(i,t),(j,s)D

−1
µ ρσ 2

(i,t)φ
′

(j,s)D
−1
µ H−1

n + op (1)

Moreover, since V̂L,2,2 = V̂ ′

L,2,1, we also have
[(

µmin
n

)2 K−1
2,n

]
V̂L,2,2 = −H−1

n

[(
µmin

n

)2 K−1
2,n

]∑mn
(i,t),(j,s)=1
(i,t)̸=(j,s)

A2
(i,t),(j,s)D

−1
µ φ(j,s)σ

2
(i,t)ρ

′

D−1
µ H−1

n + op (1). It follows from these calculations that(
µmin

n

)2 V̂L,2

K2,n
= −H−1

n

mn∑
(i,t),(j,s)=1
(i,t)̸=(j,s)

(
µmin

n

)2 A2
(i,t),(j,s)

K2,n
D−1

µ

(
ρσ 2

(i,t)φ
′

(j,s) + φ(j,s)σ
2
(i,t)ρ

′
)
D−1

µ H−1
n + op (1) . (26)

Next, consider V̂L,3. Given that K2,n/
(
µmin

n

)2
→ ∞ under Case II, we get, upon applying the result given in Lemma S2-10,

as well as parts (b) and (e) of Lemma S2-18 and Slutsky’s theorem,(
µmin

n

)2
K2,n

V̂L,3 =
(
µmin

n

)2
H−1

n

[
D−1

µ ρ + D−1
µ (̂ρL − ρ)

] SL,3
K2,n

ρ ′D−1
µ H−1

n

(
1 + op (1)

)
+
(
µmin

n

)2
H−1

n

[
D−1

µ ρ + D−1
µ (̂ρL − ρ)

] SL,3
K2,n

(̂ρL − ρ)′ D−1
µ H−1

n

(
1 + op (1)

)
= H−1

n

mn∑
(i,t),(j,s)=1
(i,t)̸=(j,s)

(
µmin

n

)2 A2
(i,t),(j,s)

K2,n
D−1

µ ρσ 2
(i,t)σ

2
(j,s)ρ

′D−1
µ H−1

n + op (1) (27)

Finally, we consider V̂L,4. Again, noting that K2,n/
(
µmin

n

)2
→ ∞ under Case II, we have, upon applying the result given in

Lemma S2-10, as well as part (f) of Lemma S2-18 and Slutsky’s theorem,(
µmin

n

)2
K2,n

V̂L,4 = H−1
n

(
µmin

n

)2
K2,n

D−1
µ SL,4D

−1
µ H−1

n

(
1 + op (1)

)
= H−1

n

(
µmin

n

)2
K2,n

mn∑
(i,t),(j,s)=1
(i,t)̸=(j,s)

A2
(i,t),(j,s)D

−1
µ φ

(i,t)
φ′

(j,s)
D−1

µ H−1
n + op (1) . (28)

t follows from Eqs. (25), (26), (27), and (28) that(
µmin

n

)2 DµV̂LDµ

K2,n
= H−1

n

(
µmin

n

)2
K2,n

mn∑
(i,t),(j,s)=1

A2
(i,t),(j,s)D

−1
µ

(
σ 2

(i,t)Ψ (j,s) + φ
(i,t)

φ′

(j,s)

)
D−1

µ H−1
n + op (1)
(i,t)̸=(j,s)
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O
c

I

l
t

f

A

=

(
µmin

n

)2
K2,n

H−1
n Σ2,nH−1

n + op (1) = ΛII,n + op (1) .

To show the same result for FEFUL, note again that δ̂F satisfies the conditions of Lemmas S2-12 and S2-18. Hence, we
can make the same argument as given above for FELIM, except using Lemma S2-12 in lieu of Lemma S2-10 to obtain[(

µmin
n

)2
/K2,n

]
DµV̂FDµ =

[(
µmin

n

)2
/K2,n

]
H−1

n Σ2,nH−1
n + op (1) = ΛII,n + op (1). □

Proof of Theorem 5. To show part (a), first note that, by part (d) of Lemma S2-3 and Assumption 3(iii), ΛI,n is positive
definite a.s.n. In addition, making use of part (a) of Theorem 4, we have DµV̂LDµ = ΛI,n+op (1), so that DµV̂LDµ is positive
definite w.p.a.1. Hence, under H0 : c ′δ0 = r , we can write

TL =
c ′̂δL,n − r√

c ′V̂Lc
=

c ′
(̂
δL,n − δ0

)√
c ′V̂Lc

=

(
c ′D−1

µ µ∗
n (c)

)
Λ

1/2
I,n

[
Λ

−1/2
I,n Dµ

(̂
δL,n − δ0

)]√(
c ′D−1

µ µ∗
n (c)

)
DµV̂LDµ

(
µ∗

n (c)D−1
µ c

)
Applying Theorem 2, we have Λ

−1/2
I,n Dµ

(̂
δL,n − δ0

) d
→ N (0, Id). It follows by the definition of c∗ given in Assumption 10,

as well as by applying part (a) of Theorem 4 and the continuous mapping theorem that

TL =

c ′
∗
Λ

1/2
I,n

[
Λ

−1/2
I,n Dµ

(̂
δL,n − δ0

)]√
c ′
∗
ΛI,nc∗

[
1 + op (1)

] d
→ N (0, 1) . (29)

n the other hand, under H1, we have c ′δ0 = r + h for some h ∈ R\ {0}, and we can write TL =
(
c ′̂δL,n − r

)
/
√
c ′V̂Lc =

′
(̂
δL,n − δ0

)
/
√
c ′V̂Lc+h/

√
c ′V̂Lc . The first term above is Op (1), as shown in (29) above, whereas application of part (a) of

Theorem 4, Assumption 10, and the Slutsky’s theorem shows that
(
µ∗

n (c)
)2 c ′V̂Lc =

(
c ′D−1

µ µ∗
n (c)

)
DµV̂LDµ

(
µ∗

n (c)D−1
µ c

)
=

c ′
∗
ΛI,nc∗+op (1), where c ′

∗
ΛI,nc∗ > 0 since ΛI,n is positive definite in light of part (d) of Lemma S2-3 and Assumption 3(iii)

and since c∗ ̸= 0 by construction. In addition, by parts (a) and (c) of Lemma S2-3; Assumption 3(iii); and the fact that,
under Case I, K2,n/

(
µmin

n

)2
= O (1); there exists a positive constant C < ∞ such that, almost surely for all n sufficiently

large,

λmax
(
ΛI,n

)
≤

λmax
[
VC
(
Υ ′Z ′

2M
(Z1,Q )ε/

√
n
)
|FZ

n

]
+

K2,n(
µmin
n

)2 λmax
[
VC
(
U ′Aε/

√
K2,n

)
|FZ

n

]
[λmin (Hn)]2

≤ C . (30)

t follows that, in this case, h/
√
c ′V̂Lc = µ∗

n (c) h/
√(

µ∗
n (c)

)2 c ′V̂Lc =
(
µ∗

n (c) h/
√
c ′
∗
ΛI,nc∗

) [
1 + op (1)

]
. So, w.p.a.1,

h/
√
c ′V̂Lc → +∞ if h > 0, whereas h/

√
c ′V̂Lc → −∞ if h < 0, from which the stated result follows. Finally, note

that the results for TF can be shown in the same way, so to avoid redundancy, we omit the proof.
To show part (b), we first let L̃n = µ∗

n (c) c ′D−1
µ ; and note that, by Assumption 10, there exist a constant vec-

tor c∗ ̸= 0 and a positive constant C such L̃n = µ∗
n (c) c ′D−1

µ → c ′
∗

and c ′
∗
ΛII,nc∗ ≥ C > 0 a.s.n. It fol-

ows that, in this case, the conditions for L̃n given in Theorem 3 are trivially satisfied. Applying Theorem 3, we
hen obtain

(
µmin

n /
√
K2,n

) [
µ∗

n (c) c ′D−1
µ ΛII,nD−1

µ cµ∗
n (c)

]−1/2
µ∗

n (c) c ′D−1
µ

[
Dµ

(̂
δL,n − δ0

)]
=
(
µmin

n /
√
K2,n

) [
c ′
∗
ΛII,nc∗

]−1/2 c ′
∗[

Dµ

(̂
δL,n − δ0

)] [
1 + op (1)

] d
→ N (0, 1). Moreover,

[(
µmin

n

)2
/K2,n

]
DµV̂LDµ = ΛII,n+op (1) by part (b) of Theorem 4. Now,

under H0 : c ′δ0 = r , we can write

TL =
c ′̂δL,n − r√

c ′V̂Lc
=

(
µmin

n /
√
K2,n

)
µ∗

n (c) c ′D−1
µ

[
Dµ

(̂
δL,n − δ0

)]√(
µ∗

n (c) c ′D−1
µ

) [{(
µmin

n

)2
/K2,n

}
DµV̂LDµ

] (
D−1

µ cµ∗
n (c)

)
rom which it follows that

TL =

(
µmin

n /
√
K2,n

)
c ′
∗

[
Dµ

(̂
δL,n − δ0

)]√
c ′
∗
ΛII,nc∗

[
1 + op (1)

] d
→ N (0, 1) . (31)

Under H1, we again write c ′δ0 = r+h for some h ∈ R\ {0}, and note that, in this case, by applying Assumption 10, part (b)
of Theorem 4, and Slutsky’s theorem; we have

(
µ∗

n (c)
)2 {(

µmin
n

)2
/K2,n

}
c ′V̂Lc =

(
µ∗

n (c) c ′D−1
µ

) [{(
µmin

n

)2
/K2,n

}
DµV̂LDµ

](
D−1

µ cµ∗
n (c)

)
= c ′

∗
ΛII,nc∗ + op (1). Moreover, there exists a positive constant C such that c ′

∗
ΛII,nc∗ ≥ C > 0 a.s.n. by

ssumption 10. In addition, by part (c) of Lemma S2-3 and Assumption 3(iii), there exists a positive constant C such that,
21
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lmost surely for all n sufficiently large

λmax
(
ΛII,n

)
≤

(
µmin

n

)2
K2,n

1
[λmin (Hn)]2

K2,n(
µmin

n

)2 λmax

[
VC

(
U ′Aε√
K2,n

)
|FZ

n

]
≤ C < ∞. (32)

It follows that, for this case,

h√
c ′V̂Lc

=
µ∗

n (c)
(
µmin

n /
√
K2,n

)
h√(

µ∗
n (c)

)2 {(
µmin

n

)2
/K2,n

}
c ′V̂Lc

=
µ∗

n (c)
(
µmin

n /
√
K2,n

)
h√

c ′
∗
ΛII,nc∗

[
1 + op (1)

]
.

Hence, w.p.a.1, h/
√
c ′V̂Lc → +∞ if h > 0 whereas h/

√
c ′V̂Lc → −∞ if h < 0, given the condition that

(
µmin

n

)2
/
√
K2,n →

∞ and given that, by construction, µmin
n /µ∗

n (c) = O (1). Finally, write

TL =
c ′̂δL,n − r√

c ′V̂Lc
=

c ′
(̂
δL,n − δ0

)√
c ′V̂Lc

+
h√
c ′V̂Lc

.

Since the first term on the right-hand side above is Op (1) as shown in (31), we deduce that w.p.a.1, TL → +∞ if h > 0
and TL → −∞ if h < 0. The results for TF can be shown in the same way, so to avoid redundancy, we omit the proof. □

Proof of Corollary 2. Note that the assumptions and setup of Corollary 2 is essentially the same as that of Theorem 5,
except that we do not assume the more general conditions given in Assumption 10 but rather we assume the specialized
structure where Dµ = µmin

n · Id. Hence, to prove this corollary, we need to show that Dµ = µmin
n · Id implies that Assump-

tion 10 is satisfied. To proceed, note that, trivially in this case, µ∗
n (c) = µmin

n so that µ∗
n (c)D−1

µ c = µmin
n

[(
µmin

n

)−1
· Id
]
c =

c for all n. Thus, c∗ = c ̸= 0 in this case. Moreover, there exists a positive constant C such that c ′
∗
ΛII,nc∗ = c ′ΛII,nc =(

µmin
n

)2 c ′H−1
n Σ2,nH−1

n c/K2,n =
(
µmin

n

)2 c ′H−1
n D−1

µ VC
(
U ′Aε/

√
K2,n|FZ

n
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D−1

µ H−1
n c = c ′H−1

n VC
(
U ′Aε/

√
K2,n|FZ
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H−1

n c ≥ C >

0 a.s.n. for all c ̸= 0, by the almost sure positive definiteness of VC
(
U ′Aε/

√
K2,n|FZ

n

)
as shown in part (b) of Lemma S2-3,

hich completes the proof. □

roof of Corollary 3. Note that the assumptions and setup of Corollary 3 is essentially the same as that of Theorem 5,
xcept that we do not assume the more general conditions given in Assumption 10. Instead, we consider the special
ase where c = eℓ for ℓ ∈ {1, . . . , d}; and, in lieu of Assumption 10, we assume the condition that there exists
positive constant C∗ such that e′

ℓH
′

2·H2·eℓ ≥ C∗ > 0 a.s.n. Hence, to prove this corollary, we need to show that,
in the case where the problem of interest is testing the null hypothesis H0 : c ′δ0 = e′

ℓδ0 = r , the condition that
e′

ℓH
′

2·H2·eℓ ≥ C∗ > 0 a.s.n. implies the conditions given in Assumption 10. To proceed, note first that since c = eℓ here,
e have µ∗

n (c) = min
{
µg,n|g ∈ {1, . . . , d} and cg ̸= 0

}
= µℓ,n, so that µ∗

n (c)D−1
µ c = µℓ,nD−1

µ eℓ = µℓ,n
(
µℓ,n

)−1 eℓ = eℓ.
hus, c∗ = eℓ ̸= 0 in this case. Moreover, note that(
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µ =
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) (D−1
1 0
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(
µmin
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· Id2

)
→
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0 0
0 Id2

)
= D0, (say) .

t follows that, in this case, c ′
∗
ΛII,nc∗ = e′

ℓΛII,neℓ =
(
µmin

n

)2 e′

ℓH
−1
n D−1

µ Σ∗

2,nD
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n eℓ/K2,n = e′
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√
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D0H−1

n eℓ [1 + oa.s. (1)] ≥ Ce′

ℓH
′

2·H2·eℓ ≥ CC∗ = C > 0 a.s.n., by the fact that VC
(
U ′Aε/

√
K2,n|FZ

n

)
≥ CId a.s.n. for some

ositive constant C , as shown in part (b) of Lemma S2-3, and by the assumption that e′

ℓH
′

2·H2·eℓ ≥ C∗ > 0 a.s.n.. This
completes the proof. □

Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2022.12.011.
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