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Abstract

Rational and behavioral asset pricing theories offer conflicting interpretations of the covariance

structure of asset returns. Return comovement beyond what empirical factor models can ex-

plain is often interpreted in favor of frictions or behavioral explanations. However, we show

that randomly grouped assets exhibit “excess” comovement that is ubiquitous and often indis-

tinguishable from that of economically-motivated sources advanced in the literature. We further

show, theoretically and through simulations, that this finding is consistent with an unobservable

risk factor in a rational model. We then prescribe a revised procedure and statistical test to

identify excess comovement based on distinguishing between rational and behavioral explana-

tions.
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1 Introduction

A large and growing literature has documented asset return comovement beyond what can be ex-

plained by common empirical asset pricing models. The central question explored by this literature

is whether residual return comovement indicates a violation of the rational market paradigm. How-

ever, in this paper we provide empirical evidence that residual return comovement is ubiquitous

and does not necessarily characterize imperfect markets. To illustrate this point, we show that

randomly grouped assets generally exhibit substantial within-group residual return comovement,

which is often indistinguishable from that of economically-motivated sources advanced in the lit-

erature. Thus, extreme caution should be exercised when interpreting the magnitude of results

as evidence of a given explanation. We prescribe a revised procedure that accounts for potential

latent factors and propose a new test that exploits different implications of rational and irrational

explanations.

Traditional asset pricing theory contends that, in a rational framework, return comovement

should only occur to the extent that assets are exposed to common factors that influence funda-

mentals. Alternatively, market frictions and behavioral biases can potentially lead to deviations

from fundamental value. To the extent that these deviations are correlated across assets, they can

cause return comovement.1 Most tests of excess comovement are attempts to distinguish between

these alternative explanations, and are therefore joint tests of comovement and an empirical model

of equilibrium asset prices. Residual return correlation in excess of the chosen empirical model is

often cited as a contradiction of traditional theory. The implicit assumption behind this interpre-

tation, however, is that unmodeled risk factors have a trivial effect on comovement estimates. On

the contrary, we show that this assumption is not as innocuous as it initially seems.

We start by developing a reduced-form model to formally illustrate the impact of an economet-

rically unobserved risk factor on return comovement. Simulations confirm our models prediction

that idiosyncratic returns exhibit substantial comovement in the presence of a latent factor, re-

gardless of the factor’s unconditional expected value. Furthermore, residual return comovement is

increasing in the variance of the latent factor as well as the number of assets included in each group

used to estimate comovement. For example, we obtain a median return comovement estimate of

1See Barberis et al. (2005) for an overview of these interpretations.
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0.612 for random groups of 80 assets when the volatility of the latent factor equals that of the mar-

ket portfolio. Even when the latent factor volatility is only 1/8 that of the market, we obtain an

average comovement estimate of 0.536. The novel implication of our model is that even relatively

inconsequential factors lead to substantive residual return comovement.

Our framework is consistent with the Arbitrage Pricing Theory (APT) of Ross (1976), which

allows for an arbitrary number of systematic risk factors. If some factors are unobservable or

measured with error, the unobserved component provides a source of common return variation,

after adjusting for observable factors. This problem can also be exemplified in a CAPM framework.

For example, the Roll (1977) critique posits that the true market portfolio is unobservable. The

market factor can then be decomposed into an observable component (e.g., stock market returns)

and an unobservable component (e.g., human capital). In empirical tests, idiosyncratic returns

with respect to the observed component will continue to exhibit common variation due to common

exposure to the unobserved component, leading one to erroneously attribute “excess” comovement

to violations of the CAPM.

To illustrate the practical implications of our model, we replicate the primary results for five

sources of comovement documented in recent studies. We then show that randomly grouping assets

yields within-group return comovement comparable to that of the groupings being replicated. For

instance, we find a stock return comovement estimate of 0.636 for firms headquartered in the same

Metropolitan Statistical Areas (MSA) in our replication of Pirinsky and Wang (2006). We then

perform a bootstrapping procedure in which we randomly assign firms to MSAs and estimate the

stock return comovement within randomly assigned headquarter locations. The median estimate

produced from 1,000 iterations of this procedure (0.660) is even larger than the comovement esti-

mate for actual headquarter locations. Using a similar approach, we compare comovement estimates

for randomly grouped assets to actual groups according to analyst affiliations (Israelsen (2016)),

share prices (Green and Hwang (2009)), mutual fund holdings (Anton and Polk (2014)), and prime

broker relations (Chung and Kang (2016)). In all cases, the median bootstrapped comovement

estimate for randomly grouped assets is comparable to the estimate for the actual groups.

Some studies adjust returns according to a richer empirical model in the hopes of mitigating

the potential confounding effects of an omitted risk factor. While controlling for common empirical

asset pricing factors attenuates comovement estimates, we find that significant comovement always
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endures within randomly grouped assets, regardless of the empirical model used to adjust returns

and the sample period under investigation. For instance, we obtain a median comovement estimate

of 0.079 from 1,000 bootstrap iterations of 160 randomly grouped stocks in the CRSP universe

from 1980-2016, even after controlling for the Fama and French five factor model augmented with

momentum.2 This finding suggests that a null hypothesis of zero residual return comovement leads

to severe overstatements of “excess” comovement.

Next, we show that grouping assets by characteristics associated with risk significantly intensifies

comovement estimates.3 For instance, we find a comovement estimate of 0.261 for stocks grouped by

similarity in market equity (size) after controlling for the Fama-French five factor model augmented

with momentum. We obtain qualitatively similar estimates when we group stocks by similarity in

book to market, momentum, asset growth, and operating profitability. Even if these characteristics

do not proxy for risk, these results suggest that grouping stocks by similarities on observable

characteristics leads to substantive comovement estimates. However, similarities on observable

characteristics are also likely to lead to similarities in unobservable dimensions. Thus, to draw the

conclusion that comovement within a particular group of assets is in “excess” requires the strong

assumption that the grouping criteria do not result in the assets having a similar exposure to

omitted factors.

While these findings do not rule out behavioral or friction-based explanations of comovement,

they do highlight the limitations of commonly used tests and suggest that such interpretations

are premature. The alternative framework that we propose offers testable implications for Sharpe

ratios that have not been explored in the literature. In particular, excess comovement is defined as

covariation between asset returns that is not driven by fundamentals. That is, excess comovement

manifests through positive return correlation without an impact on expected return levels. Thus,

a portfolio that exhibits excess comovement will have high volatility without a commensurately

high expected return. Alternatively, if comovement within a portfolio is due to a priced risk factor,

the portfolio will be efficiently diversified and the high volatility will be compensated through high

expected returns. Therefore, the Sharpe ratios of comovement portfolios can determine if the risk

underlying comovement is priced, and therefore potentially rational, or unpriced.

2We also illustrate that industry adjustments, and adjustments in the style of Daniel and Titman (1997), do not
fully attenuate comovement estimates.

3Thus, our analysis naturally extends to a characteristics based framework (see Daniel and Titman (1997)).
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We test whether this proposition holds for our five documented sources of excess comovement.

For instance, we build a portfolio of stocks from firms headquartered in each MSA and match each

MSA portfolio to a portfolio of firms located outside of the focal MSA.4 We then compute the

ratio of the squared Sharpe ratios between each MSA portfolio and its matched portfolio. Under

the null hypothesis of equivalent risk exposure and therefore equivalent expected returns, this ratio

follows an F distribution. The alternate hypothesis of a low Sharpe ratio for portfolios with excess

comovement can be cast as a rejection of the null. In each of the five settings we consider, we fail

to reject the null in more than half of the tested portfolios, and only the ratio for analyst coverage

leads to a rejection at conventional levels of significance. Thus, in most settings we fail to reject that

the documented comovement from the five sources that we consider is consistent with a risk-based

explanation.

A few studies have acknowledged the potential for latent factors to partially influence comove-

ment estimates. Two approaches have been adopted to mitigate this problem: intensity-based

sorting (i.e., pairwise return correlations), and shock-based tests. In the intensity based approach,

researchers explore whether comovement estimates become stronger as the the grouping mechanism

of assets becomes more intense. For example, the strength of comovement has been linked to the

degree of common mutual fund ownership (Anton and Polk (2014)) and the distance between firm

headquarter locations (Barker and Loughran (2007)). We show that controlling for additional fac-

tors always strongly attenuates pairwise return correlations in a variety of settings. These findings

are consistent with similarity in characteristics manifesting through common exposure to latent

factors, and suggest that an intensity-based design does not circumvent the latent factor bias.

The notion that asset characteristics and returns are jointly determined has likely motivated

the shock-based test design, in which researchers identify plausibly exogenous shocks that alter the

group to which an asset belongs or the intensity of connections within groups.5 These tests typically

show that within-group correlations become stronger in the destination group after the shock.

However, Chen et al. (2016) demonstrate that attributing these results to the proposed mechanism

also requires that the comovement with the incumbent group decrease. We find that incumbent

4We perform a nearest neighbor match based on market capitalization. Firms in the matched portfolio are not
restricted to belong to any particular MSA.

5For instance, studies have examined comovement surrounding plausibly exogenous shocks from brokerage house
mergers (Israelsen (2016); Chung and Kang (2016)), and S&P500 additions/deletions (Barberis et al. (2005)).
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group correlations are usually unaltered by the shock in the settings we consider, suggesting that

the mechanisms that lead to excess comovement are not well specified. However, this persistence

in incumbent group comovement is consistent with an omitted factor explanation. Simulations of

a model with a latent factor show that, if the shocks correspond to an increase in exposure to the

latent factor, both incumbent and destination group comovement estimates will increase.

Our paper does not rule out the potential for sources of comovement that cannot be explained by

fundamentals, such as informational frictions or market segmentation. However, to our knowledge,

we are the first to demonstrate the ubiquitous nature of residual return comovement and the

severity of the latent factor bias. We illustrate that controlling for additional empirical factors is

unlikely to offer a solution, which suggests a null hypothesis of zero comovement can lead to a severe

overstatement of “excess” comovement. Instead, we propose a null of the residual correlation from

a benchmark group of stocks, ideally matched on observable criteria to better isolate the proposed

source of excess comovement.6 Furthermore, we are the first to propose a test that exploits the

implications of excess comovement for portfolio diversification in the presence of latent factors.

Using our approach, we find mixed evidence of excess comovement based on the settings proposed

in the literature.

The rest of this paper is organized as follows. In Section 2, we provide an overview of the

comovement literature. In Section 3, we provide a theoretical motivation for the relationship

between omitted risk factors and comovement, and we develop the distributional properties of our

Sharpe ratio test. In section 4, we describe our simulations and replications, test the implications

of our model, and discuss the results. Section 5 concludes.

2 Return Comovement

The fundamental question underpinning studies of return comovement is whether observed levels

of comovement are consistent with predictions of traditional asset pricing theory. On one hand,

common variation in returns across securities could be a result of rational variation in investors

time preferences or in the prospective cash flows of the underlying assets. Alternatively, common

6e.g., to illustrate excess comovement in geography, one should compare return correlations within each MSA
to a portfolio of stocks matched (by size or other characteristics) to those in the focal geography, but that are
headquartered elsewhere.
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variation could be driven by deviations from fundamental value that are correlated across assets.

Early tests of the theory were conducted under the assumption of constant discount rates, and

considered whether asset prices were too volatile relative to the volatility of their cash flows or

dividends (e.g., Shiller (1983)). Subsequent work challenged the validity of these findings since

most asset pricing theories do not require constant discount rates (see Kleidon (1988); Cochrane

(1991); Fama (1991)).

Later studies focused on specific assumptions of the traditional theory, including that of well-

informed rational investors, perfect competition, and complete financial markets. Barberis et al.

(2005) propose three explanations for comovement that rely on frictions or irrational investor be-

havior: the category view, the habitat view, and the information diffusion view. The category view

posits that investors allocate funds across categories of assets, rather than individual assets and

the habitat view asserts that transaction costs, trading restrictions, or lack of information cause

investors to invest only in a subset of assets. Both category- and habitat-based investment can lead

to correlated investor demand, which can induce excessive common variation in the returns of assets

within categories/habitats. Chen et al. (2016) refer to the category and habitat views collectively

as an asset class effect. Finally, the information diffusion view is based on the non-synchronous

incorporation of common information into assets which potentially leads to excess comovement.

Most of the subsequent literature on comovement can largely be classified as interpreting evi-

dence in light of one of the alternative explanations proposed by Barberis et al. (2005). For instance,

Greenwood (2008) finds evidence that stocks that are overweighted in the Nikkei 224 index exhibit

excess comovement with other stocks in the index, and comove less with stocks outside of the index.

Kumar and Lee (2006) find that correlation in retail trading explains return comovement for stocks

with a high concentration of retail traders. Anton and Polk (2014) find that excess comovement

is related to common mutual fund ownership. Pirinsky and Wang (2006) find that stocks of firms

headquartered in the same Metropolitan Statistical Area (MSA) exhibit excess comovement and

Green and Hwang (2009) find excess comovement for stocks with a similar price range. These

studies advance some variant of the explanation that excess comovement is caused by correlated

sentiment or liquidity needs, and thus interpret their findings as evidence of an asset class effect.

A variety of studies also interpret their evidence in support of the information diffusion view.

Grullon et al. (2014) find excess comovement in the stock prices of firms with common lead under-
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writers. The authors claim that investment banks serve as a conduit of information flow between

firms and investors, which leads to segmented sets of investors who hold similar stocks and have

access to similar information. Similarly, Chung and Kang (2016) claim that prime brokers pro-

vide valuable, and common, information to their hedge fund clients, which induces comovement

in clients’ returns who trade on this information. Hameed et al. (2015) claim that stocks with

more extensive analyst coverage are priced more accurately, and that such “bellwether” stocks lead

the price discovery of related firms. In turn, this information spillover will cause opaque stocks to

comove more strongly with “bellwether” stocks.

All tests of excess comovement are joint hypotheses between the asset pricing theory and an

empirical model of returns. For their interpretation to be valid, the empirical model used to adjust

returns would have to capture all rational variation in expected returns. The limitation of this joint

hypothesis problem is that investors have more information about the factors that drive returns,

exposure to those factors, and anticipated changes in those factors than are directly observed by

the researcher. Our paper contributes to this literature by proposing a test of excess comovement

that accounts for the potential presence of latent factors related to unobserved information.

3 A Latent Factor Explanation

Under the assumptions of the Capital Asset Pricing Model (CAPM) of Sharpe (1964) and Lintner

(1965), covariance with the market portfolio completely determines the risk of a security. More

generally, the Arbitrage Pricing Theory (APT) of Ross (1976) allows for an arbitrary number of

systematic factors to be associated with risk. However, the theory does not provide a method

for identifying all relevant factors. To illustrate how the presence of an un-modeled factor in an

APT framework can affect tests of comovement, we consider the following Data Generating Process

(DGP) for asset returns:

rit − rft = βiFt + γiZt + εit (1)

where rit − rft is the excess (over the risk free rate) return of stock i at time t, Ft and Zt are

the realizations of the orthogonal market-wide factors at t, and εit is an idiosyncratic disturbance.

The terms βi and γi are constant for each stock i. To avoid degenerate cases, we will assume that

the coefficients β and γ are relatively close to unity with the average cross sectional values of each
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being 1.

We further assume that there are N stocks in the economy and that G denotes a partition of the

set I = {1, 2, . . . , N} such that the Gg is the gth element of G. The partition G is the mathematical

equivalent of creating a subset of stocks. For example, G can represent grouping stocks by industry

classifications, geographical locations, market capitalization or any observable criterion. To provide

some intuition for the model, we can think of Ft as observable and Zt as unobservable. For instance,

in the spirit of Roll (1977), Ft may represent the observable component of the market portfolio (i.e.,

value-weighted return of all stocks in CRSP) and Zt can represent the unobservable component

(e.g., human capital).

Common tests of comovement consider the relationship between each stock’s return and the

average return of all stocks in the group. The method excludes own returns from the average

calculation to avoid spurious correlations. In our setting, we can change the subscripts in the DGP

to include a group subscript:

rigt − rft = βiFt + γiZt + εigt (2)

to indicate that stock i belongs to group Gg. We then calculate group averages:

r−igt − rft =
1

Ng − 1

∑
j∈Gg ,j 6=i

rjgt − rft

where Ng is the number of stocks in Gg. Then, the level of comovement driven by the partition

G can be assessed through the relationship between rigt − rft and r−igt − rft after controlling for

observed market exposure.

In order to assess how this estimation would work under our assumptions, we define β−i =

1
Ng−1

∑
j∈Gg ,j 6=i βjgt, γ−i = 1

Ng−1

∑
j∈Gg ,j 6=i γjgt, and ε−igt = 1

Ng−1

∑
j∈Gg ,j 6=i εjgt. It is clear that

r−igt − rft = β−iFt + γ−iZt + ε−igt.

Likewise, we define the average factor loadings β̄ = 1
N

∑
i βi, γ̄ = 1

N

∑
i γi, and ε̄t = 1

N

∑
i εit. Then

the returns on (the equally-weighted) market portfolio satisfy:

rmt − rft = β̄Ft + γ̄Zt + ε̄t.
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Estimating the model:

rigt − rft = a+ b(rmt − rft) + c(r−igt − rft) + eigt

is equivalent to estimating:

rigt − rft = a+ (bβ̄ + cβ−i)Ft + (bγ̄ + cγ−i)Zt + bε̄t + cε−igt + eigt.

Taking expectations, we get:

Et[rigt − rft] = a+ (b+ c)Ft + (b+ c)Zt.

Our assumption about the cross sectional average of β and γ combined with the standard Gauss-

Markov assumptions imply that the true values of b and c satisfy b + c = 1. Unbiased estimates

of the coefficients b and c will therefore reflect this identity as well. Note that the model does not

identify the parameter c, and that for any partition G we will receive an estimate of c that is not

necessarily 0. A positive estimate of c therefore does not signify “excess” comovement between the

constituents of each group Gg, since in the presence of some unobserved factor Zt any group will

exhibit some comovement.

3.1 Portfolio variance test

It is important to note that the unobserved factor Zt in Eq. (1) can be an unpriced factor that

does not carry a premium. That is, E[Zt] = 0. For the remainder of this section, we will proceed

with the case that E[Zt] = 0 to simplify exposition, noting that the assumption is not necessary

for the results that we derive. We can express Eq. (1) in vector form:

rt − rf1 = FtB + ZtΓ + εt (3)

where rt = [r1t, r2t, . . . , rnt ]
′, B = [β1, β2, . . . , βn]′, Γ = [γ1, γ2, . . . , γn]′, εt = [ε1t, ε2t, . . . , εnt ]

′, and

1 is a vector of ones.

Thus far, we have motivated Zt as a latent unpriced risk factor in an APT framework. Thus,
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comovement due to this factor is consistent with a rational market paradigm. However, nothing

in the current model requires the factor Z to represent a rational risk source. If Z were instead

a latent factor relating to average sentiment of investors, for instance, then exposure to Z would

indeed provide a source of comovement in excess of fundamentals. In other words, the difference

between rational and sentiment or friction based explanations of comovement center around the

source of Zt.

In the case that Z is driven by behavioral biases or market frictions, the typical argument

of excess comovement can be recast in terms of Eq. (3), by noting that the presence of excess

comovement is equivalent to having a particular subset of assets exposed to the factor Zt. To

operationalize this hypothesis, we test if the coefficients Γ that correspond to this group are indeed

different from zero and have the same sign.7 However, the factor Zt is unobservable and we cannot

estimate the coefficients Γ directly. We can however consider the variance of a portfolio with

weight vector w = [w1, w2, . . . , wn]′. The return on the portfolio will be w′rt and its variance

will be σ2
p = w′BB′wσ2

F + w′ΓΓ′wσ2
Z +

∑n
i=1w

2
i σ

2
i , where we make the standard assumption that

E[εitεjt] = 0,∀i 6= j, and denote E[ε2it] = σ2
i .

Let us consider two groups of stocks: group A consists of all stocks that share a common feature

that drives comovement, and group B is an identical group of stocks that do not share this feature.

To distinguish the two groups, assume that the portfolio weights for group A (B) are wA (wB).

Further assume that the portfolio is a long only portfolio, that is wA
i ≥ 0 and wB

i ≥ 0,∀i. Under

the assumption that the two groups are identical in every aspect except excess comovement, we

can formulate the following hypothesis:

H0 : Γ′wA = Γ′wB,

HA : Γ′wA > Γ′wB ≥ 0.

More generally, we can write the hypothesis as:

H0 : (Γ′wA)2 = (Γ′wB)2,

7Our test focuses on the square of a weighted average of the coefficients Γ. Therefore, we can structure our
hypothesis as a test of the Γ coefficients being all positive without any loss of generality.
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HA : (Γ′wA)2 > (Γ′wB)2.

Note that the alternate hypothesis implies

HA : ̂var(r′tw
A) > ̂var(r′tw

B).

Under the null hypothesis we have:

(T − 1)
̂var(r′tw

A)

σ2
p

∼ χ2(T − 1),

and

(T − 1)
̂var(r′tw

B)

σ2
p

∼ χ2(T − 1),

so that:
̂var(r′tw

A)

̂var(r′tw
B)
∼ F (T − 1, T − 1),

We can simply test the alternate hypothesis that this ratio is greater than 1.

An extension of this test concerns Sharpe ratios. Given that excess comovement arguments

assume that the expected returns of the assets under study do not depend on the level of co-

movement, it is safe to assume that under the expected returns of the two portfolios A and B are

identical (E[r′tw
A] = E[r′tw

B]). If we assume that the cross section of stocks is large enough, the

two portfolio returns will be identical. Under these asymptotic assumptions, the ratio of the Sharpe

ratios of the two portfolio will also have the same distributional properties as the ratio of portfolio

variances.

4 Empirical Analysis

4.1 Simulations

We start by exploring the properties of traditional tests of comovement in the presence of a latent

factor by using simulated data. We simulate the underlying data generating process to follow our

analysis in Section 3. In particular, we simulate:
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rit = Ftβi + ZtΓi + εit (4)

where we calibrate the simulation to match the real data as closely as possible.8 In particular we

simulate the εit to be distributed i.i.d N(0, 0.183), where 18.3% is the average market adjusted

monthly return volatility in the CRSP universe from 1980-2016. The market factor Ft is simulated

as an AR(1) process with a mean of 0.649%, a standard deviation (σF ) of 4.52%, and an auto-

correlation coefficient of 0.0863. The βi and Γi are each distributed with a cross sectional average

of 1 and cross-sectional standard deviation of 0.45, which match the distribution of β̂i from CAPM

regressions in the CRSP universe from 1980-2016. Sizei0 (market capitalization at time 0) is

simulated via an exponential distribution and grows each year by (1 + rit).
9 We simulate Zt as an

AR(1) process with mean 0, and auto-correlation coefficient of 0.0863. We repeat these simulations

for different values of σZ .10

After simulating the data, we assign stocks to random groups of size Ng = 10, 20, 40, 80, and

160 and estimate:

rigt = α+ βrmt + θr−igt + εigt (5)

where rmt =
∑

i
sizeit∗rit∑

i sizeit
is the estimated market return for time t.

Table 2 reports simulation results of Eq.(5) for 240 months of returns for 2,400 assets. To

explore the sensitivity of comovement estimates to sorting on observable characteristics that proxy

for risk exposure, we generate a characteristic Xi = ρΓ + (1 − ρ)ui, ui ∼ N(0, σΓ) for each asset.

We form groups by sorting on values of Xi and analyze within group comovement for different

values of ρ. When ρ = 0, this procedure amounts to forming groups randomly. Greater values of

ρ indicate that the procedure sorts more strongly on exposure (Γi) to the latent factor Z. Each

column corresponds to a different value of ρ and each panel corresponds to a different value of σZ ,

expressed as a multiple of σF . The rows of each panel correspond to simulations produced with

different asset group sizes (Ng). The median estimate of θ from 1,000 simulations is reported for

each specification.

It is worth noting that even for the case of σZ = 0 and ρ = 0 (Panel A, Column 1), the

8For simplicity we exclude the risk free rate from these simulations.
9For robustness, we also use a lognormal, and a normal distribution to simulate size.

10We also explore variations in our presumed data generating process in the Internet Appendix.
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median estimate of θ from 1,000 simulations is quite substantive. This result is consistent with the

unobservable nature of the market factor (Ft) as described by the famous Roll critique (Roll (1977)).

Value-weighted market returns provide a noisy proxy for Ft, and the unobserved components of

this proxy contribute to covariances across assets that are not captured by controlling for market

returns. Consequently, our assumption of an omitted factor in a multi-factor model is not necessary

to generate substantive residual return comovement. Imperfect proxies for the market factor are

sufficient, since the unobserved component of the market can serve as a latent factor.

Focusing on the panel corresponding to the factors Ft and Zt having equal volatilities (σZ = σF ),

the median estimate of θ is monotonically increasing in ρ. For large groups, the estimate increases

from 0.758 when ρ = 0 to 0.842 when ρ = 1. This difference in comovement estimates can be

interpreted as the effect of sorting on exposure to the omitted factor. The same pattern is observed

in all panels. These findings have practical implications. In particular, these finding suggest

that characteristic based groups are likely to lead to higher estimates of comovement when the

characteristics are even mildly associated with exposure to risk.

Table 1 provides ordered statistics for estimates of θ from simulations with 1000 iterations each

for different values of σZ with ρ = 0 (i.e., purely random sorts). Each column of Panel A corresponds

to a different parametrization of the model through a different value for the volatility of Zt (σZ).

Each row of Panel A corresponds to simulations produced with different asset group sizes (Ng). The

median coefficient estimates of θ range in value from 0.127 to 0.966, and increase monotonically in

both Ng and σZ . This finding reinforces the intuition of our model in Section 3 that θ increases as

the omitted factor constitutes a higher fraction of total return variance. Similarly, as Ng increases,

idiosyncratic returns are diversified away and shared exposure to the omitted factor becomes more

prominent. This effect also provides intuition for why higher values of Ng generally result in tighter

confidence intervals. Overall, estimates are positive and significant in all simulations, with the

lowest median estimate of 0.127 corresponding to σZ = 0 and NG = 10. None of the confidence

intervals include the value of zero in our simulations for any Ng or σZ .

Of course, we have not provided an economic motivation for the source of factor Zt. We have

merely modeled Zt as a latent risk factor in an APT framework. Nothing in our setting rules out

that Zt could arise because of behavioral biases or market frictions. The purpose of these simula-

tions is to highlight 1) an imperfect proxy for the market factor is sufficient to generate substantial
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residual return correlation and 2) even inconsequential latent factors can amplify this effect. In-

vestors will always have more information than the econometrician regarding the factors that drive

returns, exposure to those factors, and anticipated changes to those factors. Thus, the practical

implications of these simulations suggest that the econometrician cannot distinguish between al-

ternative explanations for residual return comovement. The existence of a latent factor, regardless

of its importance, will lead to substantial and ubiquitous within group return comovement.

4.2 Data and summary statistics

We collect monthly return data from the Center for Research in Security Prices (CRSP). In addition

to returns, we also collect share prices, market capitalizations, and historical adjustment factors for

each stock in our sample. For comparability across the settings that we consider, we restrict our

sample to January, 1970 to December, 2016. In some of the settings that we analyze, the sources

of comovement are only available after 1980, and we restrict our sample accordingly. Most of our

analysis on stock returns is conducted at the monthly frequency. However, some of our analysis

requires daily CRSP data on common shares of stocks.

In Section 4.6, we show that stock characteristics play an important role as determinants of

comovement. To construct these characteristics, we use financial statement data from the annual

Compustat database. These data are combined with the CRSP return data such that elements

reported as of December of year t are matched to the returns for July t+1 through June t+2. All

Compustat annual data are obtained for 1968 through 2016 to match our CRSP sample. Panel A

of table 1 summarizes the main sample. The average excess return for the sample is about 0.7%

with a median of about −0.4%. The average firm has a market capitalization slightly above $1

billion, and a book-to-market equity ratio of 0.77.

Headquarter locations are determined through addresses filed with the Securities and Exchange

Commission (SEC), and are obtained through Wharton’s Data Research Center (WRDS) SEC

analytics suite. The SEC analytics suite parses the 10-K annual filings from the SEC’s EDGAR

service to codify and store the standard fields of each filing. Compustat also stores addresses, but

does not maintain a history of changes to that field. The SEC’s EDGAR service provides all filings

from 1994 to 2016, which restricts the sample of firm headquarter locations to that time period.11

11Some studies have used alternative sources for headquarter locations. However, we do not have access to these
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Following Pirinsky and Wang (2006), we aggregate firm headquarter locations to the Metropolitan

Statistical Area (MSA) levels. We use the Census bureau’s 2010 ZIP Code Tabulation Area (ZCTA)

Relationship files to assign firms in our sample to MSAs.

Analyst coverage comes from the Thomson Reuters IBES database. Each year, we pair analyst

i and firm j if analyst i issued at least one report covering firm j in year t. IBES data are

available from 1970 to the end of our sample in 2016. Mutual fund equity holdings are obtained

from Thomson Reuters Mutual Fund Holdings database. These data allow us to create a mapping

between firms and mutual funds following Anton and Polk (2014), and are available from 1979 to

2016. The Mutual Fund Holdings data are collected from the 13-F filings of institutional investors.

For each filing, we construct a mapping between stock i and a mutual fund j if stock i appears in

the holdings of mutual fund j. Finally, we use the Thomson Reuters Lipper Hedge Fund Database

(commonly referred to as TASS) to calculate hedge fund returns as well as to identify the funds

that share a common prime broker. The TASS data are available from 1990 to 2016.

Panel B of Table 1 summarizes asset returns and asset group characteristics. For headquarter

location, all companies whose headquarter is located within the same MSA are assigned to the

same group. On average there are 174 firms in each MSA, and the average return for the sample

stocks is 0.89% per month. The sample with analyst coverage has an average return of 0.85% per

month. Each stock shares at least one analyst with 68 other stocks on average. For groups formed

according to stock price level, we use a sample of monthly CRSP returns from 1926 to 2016. The

group for stock i consists of all stocks within 25% of the stock price i . Using this definition, a

typical stock is related to 589 stocks in our sample. Two stocks are very likely to be held by at least

one common mutual fund, since the average stock is related to about 1,185 stocks in our sample.

Lastly, hedge funds share a prime broker with 135 other funds on average, and the average excess

returns for hedge funds in our sample is 0.47% over our sample.

4.3 Replications

In this section, we describe our replication of five recently published articles on excess comovement.

In particular, we replicate the primary results from Pirinsky and Wang (2006), Green and Hwang

(2009), Anton and Polk (2014), Israelsen (2016), and Chung and Kang (2016). While there are

sources. Headquarter locations change very infrequently and should not impact our results.

15



certainly more than five candidate papers for replication that identify sources of excess comovement,

we chose to replicate a set of papers that span a variety of settings and asset classes, and for which

we have access to the data. Furthermore, we restrict our replications to recently published articles

in the Journal of Finance, Journal of Financial Economics, Review of Financial Studies, and Journal

of Financial and Quantitative Analysis.12

The studies that we selected examine different sources of comovement that are related to in-

vestor behavior and information dissemination. Specifically, Pirinsky and Wang (2006), Green and

Hwang (2009), Anton and Polk (2014), and Israelsen (2016) examine comovement in stock returns

due to common firm headquarter location, similar share prices, common mutual fund ownership,

and common analyst coverage, respectively. Chung and Kang (2016) document comovement in the

returns of hedge funds that share the same prime broker. With the exception of Israelsen (2016),

these studies attribute their results to violations of rational market behavior. The violations that

these studies emphasize stem from behavioral biases of investors and/or information processing

channels. For instance, Pirinsky and Wang (2006) and Green and Hwang (2009) claim that stock

markets are segmented by geographical proximity and share price similarity for reasons that are not

associated with risk. This segmentation, in turn, causes returns to comove beyond what common-

ality in fundamentals would warrant. The remaining studies contend that analysts, mutual funds,

and prime brokers use the same sources of information to price assets. As a result, commonality

along these dimensions leads to similar trading behavior and therefore excess comovement.

We report results in Table 3 that correspond to the closest replication that we could produce

for each of the five studies described above. The five studies cited use different methodologies to

circumvent many of the difficulties associated with detecting excess comovement. For comparability,

we start by employing the same parsimonious specification that encapsulates the spirit of these

studies:13

rigt = α+ θr−igt + βrmt + εigt (6)

where rigt represents the excess return for asset i in year t, r−igt represents the average excess

return of all assets in the same group g as asset i, excluding asset i from its own group return

12These Journals are the four pure finance journals with the highest impact factors.
13In unreported results, we closely replicate the exact specification used in each study and obtain qualitatively

similar results to those in the original papers.
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calculation, and rmt is the excess return on the market. A positive θ estimate is commonly referred

to as excess comovement in the existing literature. Each replication amounts to using a different

grouping criterion. We group assets by headquarter location in Panel A (Pirinsky and Wang

(2006)), common analyst coverage in Panel B (Israelsen (2016)), similar stock price levels in Panel

C (Green and Hwang (2009)), common mutual fund ownership in Panel D (Anton and Polk (2014)),

and common prime broker in Panel E (Chung and Kang (2016)).

In all five settings, the estimate of the coefficient θ are positive and both statistically and

economically significant ranging from 0.09 to 1.03. It is worth noting that in Panels C and D, we

make a slight modification to cast all of the analysis in a consistent manner. For the replication

of Green and Hwang (2009), we analyze the relationship between stock i ’s returns and those of a

portfolio of all stocks within 25% of stock i ’s price. For our replication of Anton and Polk (2014),

the comparison portfolio for stock i consists of all stocks held by at least one mutual fund that also

holds stock i.

4.4 Comovement for randomly grouped assets

As derived in our theoretical motivation in Section 3 and shown in our simulations in Section 4.1,

omitted factors can lead to substantive residual return comovement. In light of this implication,

a null hypothesis of zero will lead to an overstatement of excess comovement. Instead, a more

appropriate null would be the comovement exhibited by a randomly selected group of assets. A

random group that is unrelated to the source of comovement being studied will account for com-

mon exposure to the omitted factor(s) and therefore provide a more appropriate benchmark. To

assess whether the coefficient estimates of our replications in Table 3 provide evidence of excess

comovement, we compare the replicated estimates to those obtained from randomly grouped assets,

keeping the number of assets per group fixed.

More specifically, for each replication we employ a bootstrap procedure whereby the economically-

motivated asset groups are replaced by a randomly selected group of assets. For instance, in the

Pirinsky and Wang (2006) replication, we randomly assign Metropolitan Statistical Areas (MSA)

to firms and estimate the return comovement of firm i with that of firms randomly assigned to the

same MSA. In a similar fashion, we randomly assign analyst affiliations (Israelsen (2016)), share

prices (Green and Hwang (2009)), mutual fund holdings (Anton and Polk (2014)), and prime broker
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relations (Chung and Kang (2016)) to the assets in our sample. We then compare the excess return

of asset i with the average excess return of its randomly formed asset group. For each panel, this

procedure is repeated 1,000 times to construct a bootstrapped null distribution to compare to the

replicated coefficient estimate.

The confidence intervals of the bootstrapped null for each replication are reported in the right

half of Table 3. For each panel, the corresponding bootstrapped confidence intervals at the 1%,

5%, and 10% levels are reported, as well as the median value from all sample runs. Consistent with

our theoretical model, the confidence intervals do not contain zero for any of the settings we study.

These results are highly consistent with the presence of an omitted factor or imperfect market

proxy that causes the returns of seemingly unrelated assets to comove. Moreover, common mutual

fund ownership is the only source of comovement in our replications that exceeds the 10% upper

bound of the corresponding bootstrapped confidence interval. However, even for common mutual

fund ownership, the bootstrapped confidence interval suggests that the original coefficient estimate

severely overstates “excess” comovement. In other words, a random sampling of assets produces

comovement estimates that are not statistically different (at conventional levels) from those of the

economically-motivated groupings being replicated.

To explore the time-series of residual return comovement, we repeat our analysis separately for

each year from 1980-2016. We plot median comovement estimates from 1000 iterations in Figure

1 of the Internet Appendix. Comovement estimates are obtained by regressing market adjusted

returns on groups of randomly selected stocks in the CRSP universe from 1980-2016. We repeat the

analysis for groups containing 10, 20, 40, 80, or 160 randomly selected stocks. Median comovement

estimates and confidence intervals are obtained from 1000 iterations. From the figure, it is clear

that residual return comovement is substantially greater than zero during all time periods and for

all group sizes. Furthermore, the figure also illustrates that comovement estimates increase with

group sizes for every time period.

The substantive comovement estimates for randomly grouped assets are troubling for several

reasons. First, these results suggest that a null hypothesis of zero can lead to severe overstatements

of “excess” comovement, and a bootstrapped null should be used instead. Second, the fact that

randomly grouped assets exhibit the same level of comovement as economically-motivated sources

from the literature suggests that documented estimates need not be driven by the proposed ex-
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planations. For instance, our bootstrapped confidence intervals suggest that comovement within

stocks grouped by headquarter MSA can be entirely explained by factors unrelated to location. The

results suggest similar takeaways for the other sources of comovement that we consider. Thus, the

economic motivation for the proposed grouping of assets does not contribute to our understanding

of excess comovement without the appropriate counter-factual.

4.5 Adjusting for multi-factor models

The models presented in Table 3 only use excess market returns as a control variable and are there-

fore analogous to using CAPM adjusted returns. However, some studies have acknowledged the

potential for omitted factors to partially drive excess comovement estimates. To mitigate this con-

cern, these studies often control for multi-factor models that perform better than the single factor

CAPM in explaining asset returns. The goal of this process is to reduce the confounding effects of

an omitted factor and isolate the residual correlation in returns that are due to the economically-

motivated grouping criteria. If controlling for additional factors sufficiently accomplishes this task,

however, the comovement estimates for randomly grouped stocks should be driven to zero. In this

section, we explore whether controlling for more factors alters our conclusions from Section 4.4.

We start our analysis by randomly assigning stocks to groups using monthly data for all

CRSP/Compustat firms with common stock from 1970 to 2016. Each stock is randomly assigned to

one group for the duration of the sample period. Similar to our analysis in Section 4.4, we regress

the risk adjusted excess return of asset i on the average risk adjusted excess return of its randomly

formed asset group (excluding asset i). We repeat this bootstrap procedure 1,000 times each for

randomly assigned asset groups consisting of 10, 20, 40, 80, and 160 stocks per group.

The average coefficient estimate from 1,000 bootstraps are presented in Panel A of Table 4.

Each row of Panel A corresponds to different group sizes (Ng) ranging from 10 to 160, with each

subsequent group containing twice the number of stocks as the previous group. In Column 1, we

use (raw) excess returns. Each subsequent column reports results for adjusted returns according

to the Capital Asset Pricing Model (CAPM), the Fama-French three and five factor models (3 FM

and 5 FM), and the Fama-French five factor model augmented with the momentum factor (6 FM).

For each column of Panel A, the comovement estimates exhibit a monotonic relationship that

increases with the number of stocks used to form each group. For instance, when raw excess
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returns are used, the average comovement estimate from 1,000 draws increases monotonically from

0.47, when there are only 10 stocks per group, to 0.93, when there are 160 stocks per group. For

each row, the different risk adjustment models also produce significantly different comovement

estimates. This finding is consistent with the pattern found in our simulations in which, as the

group size becomes larger, idiosyncratic returns will be diversified away and and shared exposure to

the omitted factor becomes more prominent. Using the CAPM-adjusted returns yields an average

comovement estimate of 0.28, and the estimate attenuates to 0.08 when the six factor model (6 FM)

is used. However, for all portfolio sizes and all factor models used to adjust returns, the estimates

of comovement remain positive.

In Columns 6-8 of Table 4, we extend our analysis to adjust returns for principal factors from

an ex post principal component analysis using the first five (PCA5), ten (PCA10), and twenty

(PCA20) factors. Adjusting returns for the first ten principal factors yields a residual comovement

estimate of 0.1048 for the groups containing 160 randomly selected stocks. It isn’t until we adjust

returns for the first 20 principal factors that we obtain inconsequential comovement estimates. This

finding suggests that the omitted factor bias is quite pervasive and controlling for a few empirical

factors is not sufficient to rule out an omitted factor explanation of comovement.

The results presented in this section lead to a few important takeaways. First, adjusting returns

for additional factors always attenuates comovement estimates for randomly selected groups of

stocks. This finding is consistent with an omitted factor explanation of excess comovement. Second,

regardless of the factor model used to adjust returns, randomly grouped assets always appear

to exhibit positive comovement estimates. These positive estimates demonstrate that existing

empirical factors fail to capture all significant, common cross-sectional variation in stock returns.

Given that these factors perform well in identifying cross-sectional risk premia, these results suggest

that a small residual component in returns can lead to significant positive comovement, on average,

for any subset of assets. Thus, comovement is ubiquitous, and tests of excess comovement appear

to suffer from a severe form of the joint hypothesis problem discussed in Fama (1991). This finding

also reiterates the importance of conducting comovement tests with a nonzero null.
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4.6 Characteristic sorts

An alternative approach to using empirical factor models is to adjust returns according to asset

characteristics, which have been associated with returns (see Daniel et al. (1997)). To the extent

that factor models fail to capture the predictability in cross-sectional returns due to empirical

factors, commonality among assets along these characteristics will be closely related to comovement.

In this section, we quantify the extent to which these characteristics lead to excess comovement

relative to the factor models that we present in Section 4.5.

For this analysis we consider five of the most common characteristics associated with risk:

Size, Book-to-Market (B/M), Momentum, Asset Growth, and Operating Profitability. With the

exception of momentum, these characteristics correspond to the sources of risk explored in Fama

and French (2015). For each characteristic, we form groups of 10, 20, 40, 80, and 160 stocks based on

sorts of the focal characteristic. For example, for the specification involving the size characteristic

and a group of 10 stocks, we place the ten smallest market cap stocks in group 1, the next smallest

ten stocks in group 2, and so on. For each stock, we then regress its residual from a factor model

on the average residuals of all other members of its group, excluding the focal stock.

We present the results from this exercise in Panels B-F of Table 4. For all characteristics, the

comovement estimates remain substantially higher than those of the corresponding return adjust-

ment for randomly grouped stocks in Panel A. Grouping stocks by the momentum characteristic

yields the highest comovement estimates across all specifications. For groups of 160 stocks, the

momentum characteristic exhibits a comovement estimate of 0.28 for returns adjusted for the six

factor model (6 FM). It is worth noting that the six-factor model includes the momentum factor

up-minus-down (UMD) to adjust returns. Similarly, all five characteristics we consider exhibit

positive comovement estimates, despite controlling for an empirical factor that corresponds to the

focal characteristic (i.e., adjusting returns according to the six-factor model).

In Columns 6-8 of Table 4, we adjust returns for the first five (PCA5), ten (PCA10), and twenty

(PCA20) principal factors. The comovement estimates under these specifications continue to exhibit

a strong positive relationship and are generally of the same magnitude as the estimates derived

from the six factor model. Operating Profitability produces the lowest comovement estimates of

0.08, even after adjusting for the first 20 principal factors.
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One interpretation of the findings in Table 4 is that comovement within groups based on sim-

ilarity in characteristics reflects similar exposure to unobserved factors. Another interpretation is

that linear factor models contain more measurement error than characteristic sorts. Both interpre-

tations highlight the importance of characteristics as determinants of return comovement. Even if

these characteristics do not proxy for risk, these results suggest that grouping stocks by similarities

on observable characteristics leads to substantive comovement estimates. However, similarities on

observable characteristics are also likely to lead to similarities in unobservable dimensions. Thus,

to draw the conclusion that comovement within a particular group of assets is in “excess” and due

to a proposed source (e.g., correlated sentiment) requires the strong assumption that the grouping

criteria do not result in the assets having a similar exposure to omitted factor(s) or similar charac-

teristics. The results in Table 4 also reaffirm the inadequacy of the zero null hypothesis. A more

prudent test of excess comovement would use a benchmark from a portfolio of stocks matched on

observable characteristics, which will help account for common exposure to omitted factor(s) or

sources of comovement that differ from the proposed source.

4.7 Sharpe ratio tests

In this section we reformulate tests of excess comovement to focus on implications beyond residual

return correlations, which can have several causes. In particular, we exploit different implications

between an omitted factor explanation of comovement and comovement that is driven by behav-

ioral biases or informational frictions. In particular, excess comovement is defined as covariation

between asset returns that is not driven by fundamentals. That is, excess comovement manifests

through a non-zero correlation between returns without an impact on expected return levels. Un-

der friction-based explanations, within-group excess comovement is an indication that investors are

not efficiently diversified (i.e., a portfolio with only within-group assets will exhibit a low expected

Sharpe ratio).

In contrast, a rational investor facing fewer informational frictions would be able to diversify

more effectively. Thus, if an omitted risk factor is the reason for comovement, then all diversified

portfolios will have the same expected Sharpe ratio. For example, suppose investor A elects to

overweight stocks of firms headquartered in his/her MSA, while investor B holds a more geograph-

ically dispersed portfolio. Then investor A is restricting his/her diversification benefits compared
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to investor B.

To formalize this intuition, we propose a squared Sharpe ratio test in the spirit of Gibbons et al.

(1989). Continuing with the example of investors A and B, we will refer to the squared Sharpe

ratio of investor A’s portfolio as s2
A and that of investor B’s portfolio as s2

B. Assuming that the two

portfolios contain the same number of relatively similar assets, then under the null hypothesis of

no excess comovement, the two expected squared Sharpe ratios will be equivalent. Thus, under the

null, s2
A = s2

B, or s2
A/s

2
B = 1. However, under the alternative hypothesis that excess comovement

exists for the assets in investor A’s portfolio: s2
A < s2

B, or s2
A/s

2
B < 1. We showed in Section 3.1

that a variant of this statistic exhibits an F distribution under the null hypothesis of equivalent

expected sharp ratios (a ratio of 1).

We test whether this proposition holds for each of the five documented sources of excess comove-

ment that we consider in Table 3. For instance, we build a portfolio of stocks of firms headquartered

in each MSA and match each MSA portfolio to a portfolio of firms located outside of the focal MSA.

For each stock in each MSA, we find the nearest neighbor match based on market capitalization.

The potential matching pool consists of all firms headquartered outside of the focal stock’s MSA,

but are not otherwise restricted to belong to any particular location. Note that only matching

on firm size is a fairly lenient restriction, and that firms clustered on observable dimensions are

likely to be similar across many different characteristics. One could easily extend our analysis to

impose additional restrictions, such as belonging to the same industry or a particular bin in a multi

characterstic sort.

Table 5 presents results from this analysis. For each of the settings that we consider, we

construct equally- and value-weighted portfolios. We form portfolios of assets according to common

headquarter location (Panel A), common analyst coverage (Panel B), similar share price (Panel

C), common mutual fund ownership (Panel D), and common prime broker (Panel E). For each

grouping criterion we report the mean (median) squared Sharpe ratio, the t-stat, and the number

of portfolios for which we reject the null of unity. The last column of Table 5 presents the number

of test portfolios (N).

In many of the settings that we consider, both the average and median ratio of squared Sharpe

ratios are close to unity. Analyst coverage and prime broker connections provide the largest devia-

tions of the ratio from one with an average ratio of 1.59 and 1.56 (1.64 and 1.54) for equally-weighted
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(value-weighted) portfolios, respectively. In these settings, we reject the null 36−37% of the time

for common analyst portfolios and 33−44% of the time for prime broker portfolios.

Table 6 presents additional tests of the variances and Sharpe ratios of the portfolios in Table 5

and their respective matched portfolios. The table presents t−tests of the difference in variances

and Sharpe ratios between the portfolios and their matched counterparts. For equally-weighted

portfolios, only those formed on the basis of common analyst coverage and mutual fund holdings

have statistically higher volatilities and lower Sharpe ratios than their respective matches on av-

erage. For value-weighted portfolios, the same pattern is only present among portfolios formed on

the basis of common analyst coverage and share price.

4.8 Intensity-based tests

As we illustrate in Sections 4.4 - 4.6, residual return correlation is ubiquitous and consistent with

a simple omitted factor explanation. Some studies have implicitly recognized the potential bias

imposed by latent factors and instead explore whether the degree of return comovement is a function

of similarity between assets based on observable criteria. For instance, (Anton and Polk (2014))

find that the pairwise correlation between risk adjusted stock returns is positively related to the

intensity of common mutual fund holdings. Similarly, the strength of comovement has been linked

to the distance between firm headquarter locations (Barker and Loughran (2007)) and the degree of

common analyst coverage (Israelsen (2016)). The hope of these studies is that the grouping criterion

is arguably uncorrelated with the loading on potentially omitted factors, thus circumventing the

latent factor bias.

However, grouping assets based on similarity in observable dimensions is likely to result in

similarity on unobservable dimensions. Thus, a positive relationship between asset similarity and

comovement strength is also consistent with a latent factor explanation in which exposure to the

latent factor(s) is related to similarity in the grouping characteristics. To explore the potential

severity of this effect, we estimate how the intensity of comovement is related to the distance

between the five characteristic variables that we consider in Section 4.6. In panel A of Table 7, we

estimate the following specification:
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ρi,j,t = γ
−|xi,t − xj,t|

σ(Xt)
+ εi,j,t (7)

where ρi,j,t is the pairwise stock return correlations between stock i and stock j in year t and σ(Xt)

is the cross sectional standard deviation of characteristic x. Each entry of Panel A corresponds to

an estimate of γ from a univariate regression. In Column 1, we use (raw) excess returns. Each

subsequent column adjusts returns according to the Capital Asset Pricing Model (CAPM), the

Fama-French three and five factor models (3 FM and 5 FM), and the Fama-French five factor

model augmented with the momentum factor (6 FM). In all cases, γ is positive and statistically

significant at conventional levels.

In Panel B, we present results for multivariate regressions in which the effect of similarities

in all five characteristics on pairwise stock return correlations are estimated simultaneously. The

coefficient estimates are smaller in virtually all cases, suggesting that similarity in one characteristic

is related to similarity in others. In both Panels A and B, the comovement estimates are attenuated

as we control for additional factors.

These findings demonstrate that an intensity-based test design is likely to suffer from a severe

latent factor bias, reaffirming the intuition from our characteristic based sorts. First, controlling for

additional factors always attenuates these comovement estimates. Even adjusting returns for the

first 10 ex post principal components does not fully attenuate coefficient estimates. Second, since

all of the characteristics that we consider have been linked to risk, these findings are consistent

with excess comovement being a manifestation of common exposure to omitted factors.

4.9 Shock-based tests

Many studies in the comovement literature, including some of the settings we replicate, recognize the

limitations of direct tests of correlation. These studies investigate shocks to the proposed structure

that drives comovement. These shocks ostensibly alter the nature of comovement without affecting

the fundamentals of the firm or asset under investigation. For example, Green and Hwang (2009)

use stock splits as a shock to a stock’s nominal share price. In these shock-based tests, an asset

moves from one group to another group as a result of this shock. A simple difference-in-differences

setting can therefore reveal whether the shock altered the nature of comovement.
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Chen et al. (2016) argue that for such tests to favor the presence of excess comovement, an

additional requirement needs to be met. Namely, excess comovement dictates that the movement

from group 1 to group 2 be associated with simultaneously an increase in comovement with group

2 and a decrease in comovement with group 1. In the settings that we consider, these shocks do not

exhibit this pattern. The assumption that the shock did not affect the fundamentals of the asset is

therefore likely violated. In other words, if the asset comoves more with the destination group but

continues to comove highly with the source group then it is likely that the move made the returns

more volatile or different in some other fundamental manner.

In untabulated results, we replicate the main analysis in Green and Hwang (2009) and confirm

that the comovement estimates from the source group are unchanged after a stock split. This

pattern is consistent with omitted-factor(s). If a stock split is associated with a change in exposure

to certain risk factors, then the comovement estimates will change but the stock will continue to

comove with the source group since common exposure to the factor is not completely eliminated.

For shock-based tests, if the shock coincides with a change in the asset’s exposure to a latent

factor, then the comovement estimates will reflect this change in exposure. Table 9 presents sim-

ulation results that illustrate how shock-based tests can result in high comovement estimates with

the destination group. We simulate the model in section 3 but change the exposure of a few assets

to the latent factor Zt as a proxy for a shock that alters factor exposure. Specifically, at the halfway

mark of our simulation, we increase the value of γi by one standard deviation for the first asset in

each random group of assets, and randomly rotate the other member of the group. Table 9 reports

the median coefficient estimates from regressing the market-adjusted returns for the first asset in

each group on the average returns of the remaining assets in the group both before and after the

parameter change.

For comparability to prior results, we repeat the exercise described above for various parameter

choices regarding group size (10, 20, 40, 80, and 160) and volatility of Zt as a fraction of the

volatility of Ft (1/4, 1/2, 1, 2). In every specification, the estimate of the comovement of asset 1

with the remaining assets in the group increases in the latter half of the sample. For example, with

groups of 10 assets and σZ = 1/2 × σF , the comovement estimate is 0.146 before the shock, but

rises to 0.327 after the shock. Therefore, a change in factor exposure can lead to elevated estimates

of comovement. Chen et al. (2016) find that in the settings they investigate, inclusion in the S&P
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500 index and stock splits, past winners are over represented. That is to say, firms that changed

groups based on these shocks experienced an increased exposure to the momentum factor. The

higher comovement estimates for the prospective (and incumbent) group are therefore consistent

with the latent factor model.

5 Conclusion

Tests of excess comovement are typically joint hypothesis test of an asset pricing theory and an

empirical empirical analogue. For these tests to contradict that comovement in returns is driven

by fundamentals, the empirical model used to adjust returns must capture all rational variation in

expected returns. The limitation of this joint hypothesis problem is that investors have more infor-

mation about the factors that drive returns, exposure to those factors, and anticipated changes in

those factors than are directly observable to the researcher. We propose a test of excess comovement

that accounts for the potential presence of latent factors.

We first show that random portfolios exhibit comovement estimates that are indistinguishable

from that of several economically-motivated sources advanced in the literature. In addition, stocks

grouped by similarity in characteristics that have been associated with risk exhibit substantial co-

movement estimates. Adjusting returns for additional empirical factors strongly attenuates comove-

ment estimates, but does not eliminate the spurious comovement that we document. Furthermore,

we propose a test that exploits the implications of excess comovement for portfolio diversification in

the presence of latent factors. While our results do not rule out the potential for non fundamental

explanations of comovement, they are strongly consistent with a latent factor explanation.

27



References

Anton, M., and C. Polk. 2014. Connected stocks. Journal of Finance 69:1099–1127.

Barberis, N., A. Shleifer, and J. Wurgler. 2005. Comovement. Journal of Financial Economics

75:283–317.

Barker, D., and T. Loughran. 2007. The Geography of S&P 500 Stock Returns. The Journal of

Behavioral Finance 8:177–190.

Chen, H., V. Singal, and R. F. Whitelaw. 2016. Comovement revisited. Journal of Financial

Economics 121:624–644.

Chung, J.-W., and B. U. Kang. 2016. Prime Broker-Level Comovement in Hedge Fund Returns:

Information or Contagion? Review of Financial Studies 29:3321–3353.

Cochrane, J. H. 1991. Volatility tests and efficient markets: A review essay. Journal of Monetary

Economics 27:463–485.

Daniel, K., M. Grinblatt, S. Titman, and R. Wermers. 1997. Measuring Mutual Fund Performance

with Characteristic-Based Benchmarks. Journal of Finance LII:1035–1058.

Daniel, K., and S. Titman. 1997. Evidence on the characteristics of cross sectional variation in

stock returns. the Journal of Finance 52:1–33.

Fama, E. F. 1991. Efficient Capital Markets: II. Journal of Finance XLVI:1575–1617.

Fama, E. F., and K. R. French. 2015. Incremental variables and the investment opportunity set.

Journal of Financial Economics 117:470–488.

Gibbons, M. R., S. A. Ross, and J. Shanken. 1989. A test of the efficiency of a given portfolio.

Econometrica: Journal of the Econometric Society pp. 1121–1152.

Green, C. T., and B.-H. Hwang. 2009. Price-based return comovement. Journal of Financial

Economics 93:37–50.

Greenwood, R. 2008. Excess Comovement of Stock Returns: Evidence from Cross-Sectional Vari-

ation in Nikkei 225 Weights. Review of Financial Studies 21:1153–1186.

28



Grullon, G., S. Underwood, and J. P. Weston. 2014. Comovement and investment banking networks.

Journal of Financial Economics 113:73–89.

Hameed, A., R. Morck, S. Jiangfeng, and B. Yeung. 2015. Information, Analysts, and Stock Return

Comovement. Review of Financial Studies 28:3153–3187.

Israelsen, R. D. 2016. Does Common Analyst Coverage Explain Excess Comovement? Journal of

Financial and Quantitative Analysis 51:1193–1229.

Kleidon, A. W. 1988. Bubbles, Fads and Stock Price Volatility Tests: A Partial Evaluation. Journal

of Finance 43:656–659.

Kumar, A., and C. M. Lee. 2006. Retail Investor Sentiment and Return Comovements. Journal of

Finance LXI:2451–2486.

Pirinsky, C., and Q. Wang. 2006. Does corporate headquarters location matter for stock returns?

Journal of Finance 61:1991–2015.

Roll, R. 1977. A critique of the asset pricing theory’s tests Part I: On past and potential testability

of the theory. Journal of Financial Economics 4:129–176.

Ross, S. A. 1976. The arbitrage theory of capital asset pricing. Journal of Economic Theory

13:341–60.

Shiller, R. 1983. Do Stock Prices Move Too Much to Be Justified by Subsequent Changes in

Dividends? American Economic Review LXXI:421–436.

29



Table 1: Summary Statistics

The table provides descriptive statistics of the main sample of monthly CRSP stock return (Panel A)
and the average excess return (in %) for the assets in each replication sample we use (Panel B). Panel
A presents the means, medians, standard deviations and 10th and 90th percentiles for excess returns
(ex. ret.), book-to-market (B/M), Momentum (Mom), asset growth (AG), operating profitability (OP),
and market equity (size) for all stocks in the sample from 1970 to 2016. Panel B presents the average
and standard deviation (in brackets) of own asset returns along with the average excess return for the
peer group and the market. The last columns report the average number of assets in each peer group
and total number of observations in each sample. We use five distinct sample to capture Metropolitan
Statistical Areas (MSA) of headquarter locations of firms, common analyst coverage of stocks, individual
share price groups, common ownership of stocks by mutual funds, and shared prime brokers for hedge
funds.

Panel A. Main sample characteristics

Mean 10th% Median 90th% Std. dev.

Ex. Ret 0.007 -0.165 -0.004 0.171 0.190
B/M 0.769 0.140 0.602 1.587 0.717
Mom 0.119 -0.488 0.037 0.739 0.572
AG 0.259 -0.152 0.080 0.660 0.771
OP 0.122 -0.289 0.191 0.468 0.619
Size ($ million) 1,103.160 7.314 94.145 2,119.013 3,606.520

Panel B. Own and peer group returns

Group ri r−i rm # Peers # Obs

Headquarters 0.89 0.89 0.57 174 824,123
[18.84] [7.04] [4.53]

Analyst coverage 0.85 0.88 0.66 68 1,048,798
[16.83] [8.18] [4.32]

Stock price 0.78 0.78 0.56 589 3,405,870
[17.50] [7.15] [4.73]

Mutual Fund Ownership 0.52 0.52 0.45 1,185 476,640
[12.46] [5.29] [4.53]

Prime Broker 0.47 0.47 0.51 135 196,822
[5.37] [2.57] [1.96]
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Table 2: Simulations: Latent Factors and Characteristics

This table reports simulation results of Eq.(1) in Section 3 for 240 months of returns for 2,400 assets, where we assume
that Ft and Zt follow an AR(1) process with σF = 4.52%. Assets are assigned a random size at t = 0, which grows by
(1+rit) each period. We define groups g to contain 10, 20, 40, 80, or 160 assets. For each group size, we report the median
estimate of γ in the regression: rigt = α + βrmt + γr−igt + εit, where rmt is the value-weighted excess market return at
t, and r−igt is the excess return of group g at time t, excluding asset i. We form groups based on sorts of characteristic
Xi = ρΓ + (1 − ρ)ui, ui ∼ N(0, σΓ). Each column corresponds to a different value of ρ. Each panel corresponds to a
different value of σZ , expressed as a multiple of σF . The model is simulated 1,000 times for each specification.

ρ = 0 ρ = .1 ρ = .25 ρ = .5 ρ = .75 ρ = .9 ρ = 1

σZ = 0× σF

10 0.1256 0.1280 0.1263 0.1243 0.1293 0.1251 0.1254
20 0.2253 0.2214 0.2262 0.2233 0.2238 0.2274 0.2265
40 0.3604 0.3719 0.3611 0.3607 0.3650 0.3679 0.3727
80 0.5334 0.5410 0.5323 0.5316 0.5335 0.5379 0.5330
160 0.6963 0.7006 0.7002 0.7005 0.6938 0.7037 0.6957

σZ = 1/8× σF

10 0.1255 0.1272 0.1271 0.1286 0.1306 0.1348 0.1343
20 0.2322 0.2288 0.2307 0.2269 0.2244 0.2267 0.2242
40 0.3670 0.3699 0.3698 0.3697 0.3730 0.3737 0.3701
80 0.5368 0.5368 0.5385 0.5393 0.5451 0.5378 0.5390
160 0.7026 0.6896 0.6992 0.6953 0.6919 0.7026 0.7031

σZ = 1/4× σF

10 0.1293 0.1297 0.1291 0.1328 0.1354 0.1387 0.1405
20 0.2294 0.2333 0.2257 0.2397 0.2397 0.2365 0.2392
40 0.3709 0.3779 0.3718 0.3780 0.3837 0.3923 0.3777
80 0.5486 0.5418 0.5456 0.5487 0.5538 0.5569 0.5590
60 0.7025 0.7061 0.7057 0.7012 0.7159 0.7055 0.7069

σZ = 1/2× σF

10 0.1373 0.1366 0.1366 0.1487 0.1560 0.1615 0.1614
20 0.2396 0.2421 0.2434 0.2541 0.2794 0.2823 0.2757
40 0.3941 0.3990 0.3918 0.4174 0.4295 0.4362 0.4427
80 0.5576 0.5653 0.5644 0.5795 0.6032 0.6042 0.6031
160 0.7228 0.7198 0.7251 0.7377 0.7507 0.7543 0.7535

σZ = 1× σF

10 0.1757 0.1682 0.1808 0.2136 0.2418 0.2497 0.2543
20 0.2778 0.2818 0.2948 0.3469 0.3948 0.4061 0.4039
40 0.4437 0.4497 0.4565 0.5173 0.5620 0.5702 0.5686
80 0.6100 0.6135 0.6317 0.6812 0.7198 0.7281 0.7282
160 0.7579 0.7686 0.7750 0.8133 0.8360 0.8422 0.8420

σZ = 2× σF

10 0.2798 0.2738 0.3046 0.3983 0.4730 0.4950 0.4906
20 0.4261 0.4441 0.4687 0.5703 0.6499 0.6664 0.6652
40 0.6023 0.6225 0.6335 0.7260 0.7830 0.7941 0.7939
80 0.7576 0.7656 0.7731 0.8396 0.8813 0.8848 0.8869
160 0.8651 0.8674 0.8782 0.9129 0.9345 0.9387 0.9388

σZ = 4× σF

10 0.6730 0.6731 0.7020 0.7928 0.8562 0.8760 0.8700
20 0.8005 0.8056 0.8232 0.8774 0.9231 0.9293 0.9308
40 0.8918 0.8948 0.9017 0.9395 0.9610 0.9634 0.9654
80 0.9416 0.9422 0.9479 0.9677 0.9795 0.9813 0.9814
160 0.9692 0.9713 0.9729 0.9842 0.9900 0.9908 0.9906
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Table 3: Sources of comovement and confidence intervals for bootstrapped null

The table presents estimates of the model rigt = r−igt + rmt + εigt where rigt represents asset i’s excess returns, r−igt

represents the average excess return of all other assets in the same group g as i , and rmt is the excess return on the market.
The groups considered correspond to the following potential sources of comovement: headquarter location (Panel A), analyst
coverage (Panel B), stock price (Panel C), mutual fund ownership (Panel D), and prime broker (Panel E). In each panel,
the bootstrapped confidence intervals are calculated by randomly assigning assets to groups and estimating the model on the
bootstrapped data. The assets considered are stocks for panels A-D, and hedge funds for panel E.

Replicated Coefficient Estimates Confidence Interval for Bootstrapped Null

HQ Location Mkt 1% 5% 10% 50% 90% 95% 99%

Coef 0.636 0.424 0.657 0.658 0.659 0.660 0.662 0.663 0.664
t-stat 150.770 64.710

Analyst Coverage MKt 1% 5% 10% 50% 90% 95% 99%

Coef 0.429 0.675 0.474 0.478 0.480 0.487 0.494 0.496 0.499
t-stat 175.401 145.742

Price Mkt 1% 5% 10% 50% 90% 95% 99%

Coef 0.453 0.399 0.645 0.659 0.663 0.673 0.679 0.681 0.684
t-stat 632.115 503.157

Connections Mkt 1% 5% 10% 50% 90% 95% 99%

Coef 1.027 -0.041 0.924 0.926 0.927 0.932 0.936 0.937 0.939
t-stat 98.866 -3.388

Prime Broker Style Mkt 1% 5% 10% 50% 90% 95% 99%

Coef 0.087 0.725 0.108 0.033 0.052 0.060 0.097 0.135 0.144 0.167
t-stat 14.050 123.600 11.510
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Table 4: Comovement, characteristic groups, and group size

This table presents comovement estimates of risk-adjusted stock returns on returns of other stocks grouped by
different characteristics. Panel A reports the average comovement estimates from a simulation of randomly
grouped stocks. Each subsequent panel reports comovement estimates for stocks grouped by Size, B/M, Momen-
tum, Asset Growth, and Operating Profitability, respectively. The rows of each panel correspond to different
group sizes, (10 to 160). Column 1 uses (raw) excess returns. Each subsequent column adjusts returns for, the
Capital Asset Pricing Model (CAPM), the Fama-French three and five factor model (3 FM and 5 FM), and the
Fama-French model augmented with the momentum factor (6 FM). Columns 6-8 adjust returns for principal
factors from an ex post principal component analysis using the first five (PCA5), ten (PCA10), and twenty
(PCA20) factors. The sample uses monthly returns for all CRSP/Compustat stocks with available data from
1970 to 2016.

# Stocks Raw CAPM 3 FM 5 FM 6 FM PCA5 PCA10 PCA20

Random Groups

10 0.4795 0.1424 0.0535 0.0409 0.0407 0.2692 0.1685 0.0504
20 0.6469 0.1922 0.0722 0.0552 0.0549 0.3631 0.2273 0.0680
40 0.7836 0.2328 0.0875 0.0669 0.0665 0.4399 0.2754 0.0824
80 0.8762 0.2603 0.0978 0.0748 0.0743 0.4918 0.3079 0.0921
160 0.9313 0.2766 0.1040 0.0795 0.0790 0.5228 0.3273 0.0979

Market Equity

10 0.5481 0.2469 0.1675 0.1660 0.1560 0.3602 0.2702 0.1647
20 0.7081 0.3188 0.2162 0.2142 0.2014 0.4652 0.3489 0.2126
40 0.8283 0.3710 0.2503 0.2480 0.2329 0.5428 0.4063 0.2461
80 0.9065 0.4038 0.2713 0.2688 0.2522 0.5928 0.4428 0.2667
160 0.9528 0.4195 0.2791 0.2764 0.2589 0.6202 0.4610 0.2742

Book to Market

10 0.5109 0.1898 0.1051 0.1035 0.0929 0.3105 0.2146 0.1021
20 0.6741 0.2491 0.1371 0.1349 0.1209 0.4089 0.2820 0.1331
40 0.8052 0.2975 0.1637 0.1611 0.1444 0.4885 0.3368 0.1590
80 0.8902 0.3272 0.1788 0.1760 0.1573 0.5389 0.3707 0.1736
160 0.9414 0.3438 0.1864 0.1834 0.1637 0.5687 0.3902 0.1809

Momentum

10 0.5571 0.2613 0.1832 0.1817 0.1719 0.3725 0.2841 0.1805
20 0.8325 0.3885 0.2714 0.2691 0.2544 0.5554 0.4228 0.2673
40 0.8325 0.3885 0.2714 0.2691 0.2544 0.5554 0.4228 0.2673
80 0.9104 0.4226 0.2940 0.2915 0.2754 0.6061 0.4604 0.2896
160 0.9547 0.4394 0.3037 0.3011 0.2841 0.6334 0.4794 0.2990

Asset Growth

10 0.5110 0.1910 0.1065 0.1049 0.0943 0.3113 0.2157 0.1036
20 0.6763 0.2523 0.1405 0.1383 0.1243 0.4117 0.2851 0.1366
40 0.8047 0.2986 0.1651 0.1625 0.1458 0.4889 0.3377 0.1603
80 0.8899 0.3300 0.1822 0.1793 0.1608 0.5404 0.3731 0.1770
160 0.9394 0.3480 0.1919 0.1890 0.1694 0.5702 0.3937 0.1865

Operating Profitability

10 0.5035 0.1797 0.0943 0.0926 0.0819 0.3014 0.2047 0.0913
20 0.6703 0.2403 0.1269 0.1247 0.1104 0.4020 0.2735 0.1229
40 0.7999 0.2854 0.1497 0.1471 0.1300 0.4788 0.3251 0.1449
80 0.8868 0.3165 0.1660 0.1631 0.1443 0.5309 0.3605 0.1608
160 0.9378 0.3347 0.1757 0.1726 0.1526 0.5614 0.3811 0.1699
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Table 5: Squared Sharpe ratio test

This table presents estimates for the ratio of squared Sharpe ratios between stocks grouped by common headquarter
location (Panel A), common analyst coverage (Panel B), similar share price (Panel C), common mutual fund ownership
(Panel D), and hedge fund returns grouped by common prime broker (Panel E). In each setting, an asset is matched to
the nearest match based on size, where size refers to market equity for stocks and assets under management for hedge
funds. For each group of assets, an equally-weighted (value-weighted) portfolio is formed as well as corresponding
portfolio of the matched assets. The table reports the mean and median of the ratio of Sharpe ratios of the sample
portfolio and its match as well as the number of instance where the null of equal ratios is rejected by one-sided F -tail
test. The first four samples use monthly returns for all CRSP stocks with available data, and the last sample uses
all hedge funds in the TASS database.

Equally-weighted portfolios value-weighted portfolios

Mean Median # Reject. Mean Median # Reject. N

Panel A. Headquarter MSA

Coef 1.03 0.89 23 1.06 0.91 23 110
t-stat 14.59 15.00

Panel B. Analyst Coverage

Coef 1.59 1.26 2368 1.64 1.27 2425 6576
t-stat 91.14 89.39

Panel C. Share Price

Coef 1.02 0.95 15 1.30 1.22 32 50
t-stat 26.25 26.21

Panel D. Mutual Fund Holdings

Coef 1.16 1.01 135 1.10 1.01 54 5175
t-stat 37.86 134.93

Panel E. Prime Broker

Coef 1.56 1.33 19 1.54 1.03 14 43
t-stat 9.66 6.78
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Table 6: Portfolio volatilities and Sharpe ratios

This table presents tests volatility and Sharpe ratio estimates for stocks grouped by common headquarter location (Panel A), common analyst coverage
(Panel B), similar share price (Panel C), common mutual fund ownership (Panel D), and hedge fund returns grouped by common prime broker (Panel E).
In each setting, an asset is matched to the nearest match based on size, where size refers to market equity for stocks and assets under management for
hedge funds. For each group of assets, an equally-weighted (value-weighted) portfolio is formed as well as corresponding portfolio of the matched assets.
The table reports the average volatility and Sharpe ratio of the sample portfolios and their matches. The table also reports the difference between these
estimates and t-statistic of the significance of the difference. The first four samples use monthly returns for all CRSP stocks with available data, and the
last sample uses all hedge funds in the TASS database.

Equally-weighted portfolios Value-weighted portfolios

Volatility Sharpe ratio Volatility Sharpe ratio

Sample Match Diff. Sample Match Diff. Sample Match Diff. Sample Match Diff.

Panel A. Headquarter MSA

Coef 0.297 0.321 -0.024 0.407 0.337 0.070 0.300 0.320 -0.020 0.365 0.311 0.055
t-stat 25.113 23.204 -1.75 12.029 9.538 1.69 22.669 20.350 -1.38 12.291 9.282 1.29

Panel B. Analyst Coverage

Coef 0.264 0.225 0.039 0.386 0.430 -0.044 0.225 0.192 0.032 0.325 0.376 -0.051
t-stat 189.526 245.401 30.89 48.985 59.620 -6.9 192.096 229.318 30.76 43.274 51.114 -7.36

Panel C. Share Price

Coef 0.278 0.272 0.006 0.418 0.415 0.003 0.285 0.247 0.037 0.358 0.389 -0.031
t-stat 23.604 41.740 0.96 60.373 52.012 0.3 23.699 42.560 5.79 36.165 68.677 -2.64

Panel D. Mutual Fund Holdings

Coef 0.175 0.169 0.007 0.243 0.271 -0.028 0.152 0.148 0.005 0.248 0.258 -0.010
t-stat 232.882 227.898 25.26 15.481 15.693 -3.79 241.621 246.809 18.54 12.850 14.075 -1.31

Panel E. Prime Broker

Coef 0.115 0.098 0.017 0.587 0.692 -0.105 0.117 0.103 0.014 0.596 0.689 -0.093
t-stat 13.269 23.410 2.2 9.183 14.205 -1.74 10.164 23.820 1.4 8.512 12.465 -1.26
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Table 7: Pairwise return correlations and characteristics

This table presents regression estimates for pairwise stock return correlations on a mea-
sure of similarity in size, book to market (B/M), momentum (mom), asset growth
(AG), and operating profitability (OP). Similarities in characteristics are calculated as
−|xi,t− xj,t|/σ(xt), where xi,t is the characteristic for stock i, xj,t is the characteristic for
stock j, and σ(xt) is the cross sectional standard deviation of characteristic x at time t.
In Panel A, we estimate univariate regressions of each characteristic and in Panel B, we
estimate a multivariate regression for all characteristics jointly. In each panel, we consider
pairwise correlations of residuals from a specific asset pricing model. These models cor-
respond to the columns of the table: CAPM, Fama-French three- and five-factor models
(3FM and 5FM), the three- and five-factor models augmented with momentum (4FM and
6FM), as well as three models based on principal factors (PCA5, PCA10, and PCA20).
The sample uses monthly returns for all CRSP/Compustat stocks with available data from
1970 to 2016.

CAPM 3FM 5 FM 4FM 6FM PCA5 PCA10 PCA20

Panel A. Univariate regressions

Size 0.0034 0.0010 0.0010 0.0009 0.0009 0.0022 0.0014 0.0002
(14.01) (15.76) (14.64) (14.47) (14.39) (5.36) (3.89) (4.90)

B/M 0.0104 0.0052 0.0048 0.0050 0.0047 0.0166 0.0164 0.0066
(5.33) (4.66) (4.25) (4.36) (3.99) (5.16) (4.95) (4.30)

Mom 0.0059 0.0054 0.0041 0.0024 0.0021 0.0058 0.0053 0.0030
(6.39) (8.02) (8.75) (14.79) (13.77) (3.34) (3.59) (10.25)

AG 0.0225 0.0220 0.0186 0.0217 0.0192 0.0309 0.0170 0.0115
(1.91) (2.78) (2.73) (2.95) (2.89) (1.89) (1.45) (3.76)

OP 0.0145 0.0134 0.0112 0.0129 0.0098 0.0007 0.0076 0.0054
(1.98) (2.21) (2.18) (2.07) (2.08) (0.07) (0.94) (2.72)

Panel B. Multivariate regressions

Size 0.0035 0.0011 0.0011 0.0010 0.0010 0.0015 0.0009 0.0002
(16.36) (11.41) (11.63) (11.14) (10.52) (3.43) (2.20) (5.15)

B/M 0.0078 0.0034 0.0036 0.0039 0.0035 0.0146 0.0121 0.0057
(3.82) (3.72) (3.34) (3.94) (3.48) (4.15) (4.02) (3.73)

Mom 0.0050 0.0052 0.0041 0.0021 0.0020 0.0042 0.0035 0.0029
(4.78) (6.57) (6.81) (9.17) (9.15) (2.75) (2.86) (12.35)

AG 0.0011 0.0155 0.0162 0.0196 0.0195 0.0280 0.0140 0.0053
(0.12) (1.77) (1.93) (2.30) (2.33) (1.27) (0.80) (2.36)

OP 0.0125 0.0112 0.0094 0.0121 0.0089 0.0057 0.0042 0.0035
(1.77) (1.98) (1.88) (1.96) (1.93) (0.55) (0.60) (1.89)
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Table 8: Pairwise return correlations, characteristics and alternate sources

This table presents regression estimates for pairwise stock return correlations on a measure of
similarity in size, book to market (B/M), momentum (mom), asset growth (AG), and operating
profitability (OP), Fcap (see Anton and Polk (2014)), Analyst overlap (see Israelsen (2016)), ge-
ographic distance (see Barker and Loughran (2007)), and stock price level (see Green and Hwang
(2009)). Similarities in characteristics are calculated as −|xi,t − xj,t|/σ(xt), where xi,t is the char-
acteristic for stock i, xj,t is the characteristic for stock j, and σ(xt) is the cross sectional standard
deviation of characteristic x at time t. In Panel A, we estimate univariate regressions of each char-
acteristic and in Panel B, we estimate a multivariate regression for all characteristics jointly. In
each panel, we consider pairwise correlations of residuals from a specific asset pricing model. These
models correspond to the columns of the table: CAPM, Fama-French three- and five-factor models
(3FM and 5FM), the three- and five-factor models augmented with momentum (4FM and 6FM),
as well as three models based on principal factors (PCA5, PCA10, and PCA20). The sample uses
monthly returns for all CRSP/Compustat stocks with available data from 1970 to 2016.

CAPM 3FM 5 FM 4FM 6FM PCA5 PCA10 PCA20

Panel A. Univariate regressions

Fcap 0.0128 0.0074 0.0059 0.0059 0.0049 0.0183 0.0139 0.0082
(12.89) (13.76) (13.89) (14.61) (14.65) (12.35) (13.52) (14.27)

Analyst overlap 0.1079 0.0939 0.0831 0.0858 0.0778 0.0674 0.0626 0.0541
(4.62) (4.51) (4.52) (4.50) (4.47) (4.91) (4.98) (5.15)

Distance 0.0020 0.0017 0.0015 0.0015 0.0013 0.0020 0.0018 0.0014
(6.05) (6.12) (6.40) (6.33) (6.25) (6.18) (6.75) (7.40)

Price -0.0147 -0.0099 -0.0079 -0.0067 -0.0060 -0.0160 -0.0115 -0.0064
(-5.99) (-6.44) (-7.36) (-8.21) (-8.14) (-9.16) (-11.48) (-15.53)

Panel B. Multivariate regressions

Size 0.0026 0.0014 0.0013 0.0013 0.0012 0.0013 0.0007 0.0000
(11.10) (8.74) (9.74) (9.92) (9.80) (3.85) (2.79) (0.28)

B/M 0.0080 0.0042 0.0053 0.0046 0.0048 0.0144 0.0095 0.0081
(2.09) (1.85) (2.37) (2.17) (2.44) (5.20) (3.41) (2.51)

Mom 0.0103 0.0077 0.0030 0.0058 0.0022 0.0064 0.0064 0.0043
(5.91) (7.15) (5.91) (6.55) (5.74) (3.80) (6.45) (8.06)

AG 0.0026 0.0014 0.0015 0.0010 0.0012 0.0000 0.0009 0.0003
(1.13) (1.25) (1.43) (1.22) (1.43) (0.09) (1.80) (1.37)

OP 0.0072 0.0036 0.0029 0.0011 0.0006 0.0098 0.0150 0.0057
(0.80) (0.95) (0.85) (0.30) (0.18) (1.07) (2.46) (1.51)

Fcap 0.0104 0.0063 0.0052 0.0049 0.0041 0.0180 0.0138 0.0078
(10.20) (9.48) (9.06) (8.75) (8.03) (7.99) (8.59) (11.01)

Analyst overlap 0.0773 0.0693 0.0620 0.0614 0.0556 0.0517 0.0468 0.0391
(3.78) (3.70) (3.68) (3.81) (3.78) (3.90) (4.05) (4.39)

Distance 0.0021 0.0022 0.0017 0.0017 0.0014 0.0020 0.0019 0.0014
(3.32) (3.70) (4.04) (4.14) (3.93) (3.51) (3.75) (4.55)

Price -0.0067 -0.0057 -0.0032 -0.0047 -0.0032 -0.0121 -0.0081 -0.0043
(-3.74) (-4.15) (-3.91) (-4.55) (-4.08) (-10.63) (-9.59) (-10.81)
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Table 9: Simulations: Shock-based Comovement

This table reports simulation results for a set of assets that experience a change in exposure to a latent
factor. The simulation implements Eq.(1) of Section 3 for 480 months of returns for 2,400 assets, where we
assume that Ft and Zt follow an AR(1) process with σF = 4.52%. Assets are assigned a random size at t = 0,
which grows by (1 + rit) each period. We define groups g to contain 10, 20, 40, 80, or 160 assets. The first
asset of each group experiences a one standard deviation increase in exposure to the factor Zt after t = 240.
For each group size, we report the median estimate of γ in the regression: rigt = α + βrmt + γr−igt + εit,
where rmt is the value-weighted excess market return at t, and r−igt is the excess return of group g at time
t, excluding asset i. The regression is estimated over two subsamples (0 < t ≤ 240 and 240 < t ≤ 480) using
only observations corresponding to the first asset of each group, with each subsample corresponding to a
group of columns in the table. Each column corresponds to a different value of σZ , expressed as a multiple
of σF . The model is simulated 1,000 times for each specification.

0 < t ≤ 240 240 < t ≤ 480

σZ = σZ =
# Firms 1/4× σF 1/2× σF 1× σF 2× σF 1/4× σF 1/2× σF 1× σF 2 ×σF

10 0.146 0.175 0.176 0.230 0.327 0.333 0.456 0.732
20 0.240 0.252 0.279 0.378 0.458 0.500 0.660 0.977
40 0.398 0.393 0.450 0.524 0.635 0.688 0.864 1.142
80 0.554 0.566 0.613 0.709 0.794 0.858 1.008 1.279
160 0.721 0.664 0.746 0.835 0.872 0.923 1.122 1.339
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Figure 1: Excess Comovement: Time Series (alternative)

This figure plots median comovement estimates for each year, obtained by regressing market adjusted returns on
groups of randomly selected stocks in the CRSP universe from 1980-2016. For each panel, we repeat the analysis for
groups containing 10, 20, 40, 80, or 160 randomly selected stocks. Each stock belongs to the same group throughout
the sample period for each iteration. Median comovement estimates are obtained from 1000 iterations.
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Table 1: Simulations: Confidence Intervals

The table shows estimate percentiles for simulations of the model in Section 3. The simulation consists of simulating
240 months of returns for 2,400 assets following Eq. (1) where we assume that Ft and Zt follow an AR1 process. The
volatility of Ft (σF ) is 4.52% and each panel in the table represent different volatilities for Zt as a multiple of σF . Assets
are grouped randomly with 10, 20, 40, 80, or 160 assets in each group. For each asset, the peer returns are the average
group return excluding the current asset from the group. For each grouping, we report the average coefficient γ in the
regression: rit = α + βrmt + γr−it + εit where rmt is the value-weighted market portfolio excess return at t, and r−it is
i’s peer group excess return at t. Value weighting is achieved by randomly assigning market capitalizations to assets at
time t = 0, and adjusting sizes based on realized returns. For each specification, the model is simulated 1,000 times to
extract the reported confidence intervals.

# Stocks 1% 5% 10% 50% 90% 95% 99%

σZ = 0× σF

10 0.0552 0.0701 0.0799 0.1270 0.2145 0.2454 0.3109
20 0.1179 0.1342 0.1472 0.2254 0.3660 0.4104 0.4858
40 0.1963 0.2299 0.2495 0.3674 0.5284 0.5815 0.6396
80 0.3310 0.3793 0.4112 0.5356 0.6944 0.7330 0.7884
160 0.4974 0.5500 0.5797 0.7006 0.8224 0.8430 0.8731

σZ = 1/8× σF

10 0.0598 0.0716 0.0796 0.1285 0.2241 0.2553 0.3221
20 0.1072 0.1356 0.1492 0.2262 0.3725 0.4087 0.4873
40 0.2127 0.2386 0.2606 0.3666 0.5332 0.5746 0.6424
80 0.3298 0.3836 0.4172 0.5438 0.7011 0.7310 0.7801
160 0.5092 0.5476 0.5820 0.6992 0.8254 0.8467 0.8731

σZ = 1/4× σF

10 0.0596 0.0724 0.0807 0.1259 0.2144 0.2504 0.3183
20 0.1074 0.1344 0.1512 0.2332 0.3628 0.4016 0.4759
40 0.2053 0.2430 0.2614 0.3685 0.5305 0.5819 0.6412
80 0.3344 0.3858 0.4139 0.5473 0.7078 0.7438 0.8042
160 0.4933 0.5464 0.5832 0.7035 0.8257 0.8494 0.8765

σZ = 1/2× σF

10 0.0636 0.0782 0.0855 0.1393 0.2534 0.2858 0.3596
20 0.1107 0.1405 0.1572 0.2378 0.3768 0.4200 0.5075
40 0.2227 0.2473 0.2722 0.3921 0.5610 0.6113 0.6809
80 0.3538 0.4057 0.4392 0.5652 0.7226 0.7617 0.8185
160 0.5129 0.5621 0.5971 0.7113 0.8291 0.8500 0.8793

σZ = σF

10 0.0752 0.0919 0.1035 0.1716 0.2949 0.3442 0.4307
20 0.1333 0.1714 0.1863 0.2838 0.4466 0.5036 0.5831
40 0.2439 0.2814 0.3143 0.4478 0.6249 0.6805 0.7659
80 0.3863 0.4534 0.4891 0.6236 0.7795 0.8081 0.8559
160 0.5624 0.6144 0.6445 0.7518 0.8696 0.8944 0.9275

σZ = 2× σF

10 0.0964 0.1233 0.1479 0.2815 0.4920 0.5612 0.6833
20 0.1941 0.2383 0.2684 0.4379 0.6619 0.7139 0.7871
40 0.2921 0.3758 0.4121 0.6139 0.8029 0.8452 0.8921
80 0.4645 0.5378 0.5871 0.7560 0.8852 0.9076 0.9402
160 0.6386 0.7046 0.7401 0.8658 0.9399 0.9525 0.9687

σZ = 4× σF

10 0.2213 0.3120 0.3616 0.6632 0.8885 0.9288 0.9673
20 0.3450 0.4794 0.5540 0.8046 0.9428 0.9600 0.9832
40 0.5013 0.6421 0.7104 0.8869 0.9701 0.9803 0.9906
80 0.6896 0.7871 0.8360 0.9455 0.9849 0.9902 0.9962
160 0.8236 0.8760 0.9024 0.9664 0.9918 0.9947 0.9981
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Table 2: Simulations: Imperfect Market Proxy

This table reports simulation results of Eq.(1) in Section 3 for 240 months of returns for 2,400 assets, where
we set Zt ≡ 0, and Ft follows an AR(1) process with E[Ft] = 0.65%. Assets are assigned a random size at
t = 0, which grows by (1 + rit) each period. We define groups g to contain 10, 20, 40, 80, or 160 assets.
For each group size, we report the median estimate of γ in the regression: rigt = α + βrmt + γr−igt + εit,
where rmt is the value-weighted excess market return at t, and r−igt is the excess return of group g at time
t, excluding asset i. Each column corresponds to a different value of σF , expressed as a multiple of the
volatility of the average monthly value-weighted market return from 1980-2016 (σF = 4.52%). The model
is simulated 1,000 times for each specification.

σF = 1/8 ×
4.52%

σF = 1/4 ×
4.52%

σF = 1/2 ×
4.52%

σF = 1 ×
4.52%

σF = 2 ×
4.52%

σF = 4 ×
4.52%

10 0.0629 0.1697 0.4075 0.6834 0.8892 1.2239
20 0.0637 0.1727 0.4079 0.6829 0.9048 1.2389
40 0.0603 0.1670 0.4170 0.6847 0.9078 1.2156
80 0.0614 0.1717 0.4133 0.6957 0.8971 1.2407
160 0.0615 0.1729 0.4057 0.6934 0.9060 1.2290
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Table 3: Simulations: Unpriced Latent Factor and Characteristics

This table reports simulation results of Eq.(1) in Section 3 for 240 months of returns for 2,400 assets, where we set Ft ≡ 0,
and Zt follows an AR(1) process with E[Zt] = 0. Assets are assigned a random size at t = 0, which grows by (1+rit) each
period. We define groups g to contain 10, 20, 40, 80, or 160 assets. For each group size, we report the median estimate of
γ in the regression: rigt = α+γr−igt +εit, where r−igt is the excess return of group g at time t, excluding asset i. We form
groups based on sorts of characteristic Xi = ρΓ + (1− ρ)ui, ui ∼ N(0, σΓ). Each column corresponds to a different value
of ρ. Each panel corresponds to a different value of σZ , expressed as a multiple of the volatility of the average monthly
value-weighted market return from 1980-2016 (σF = 4.52%). The model is simulated 1,000 times for each specification.

ρ = 0 ρ = .1 ρ = .25 ρ = .5 ρ = .75 ρ = .9 ρ = 1

σZ = 1/8× σF

10 0.0378 0.0382 0.0389 0.0425 0.0448 0.0450 0.0453
20 0.0733 0.0734 0.0747 0.0799 0.0851 0.0873 0.0867
40 0.1355 0.1361 0.1379 0.1469 0.1568 0.1593 0.1600
80 0.2394 0.2393 0.2428 0.2575 0.2736 0.2719 0.2754
160 0.3872 0.3871 0.3914 0.4101 0.4270 0.4307 0.4309

σZ = 1/4× σF

10 0.1372 0.1375 0.1401 0.1493 0.1586 0.1617 0.1616
20 0.2411 0.2413 0.2444 0.2602 0.2741 0.2774 0.2763
40 0.3888 0.3890 0.3926 0.4127 0.4308 0.4333 0.4337
80 0.5611 0.5606 0.5664 0.5825 0.5996 0.6054 0.6055
160 0.7171 0.7184 0.7220 0.7367 0.7506 0.7528 0.7533

σZ = 1/2× σF

10 0.1501 0.1500 0.1634 0.1984 0.2318 0.2407 0.2387
20 0.2625 0.2688 0.2757 0.3302 0.3750 0.3906 0.3869
40 0.4233 0.4205 0.4355 0.5032 0.5493 0.5586 0.5535
80 0.5997 0.5948 0.6051 0.6610 0.7053 0.7152 0.7113
160 0.7413 0.7459 0.7485 0.7961 0.8274 0.8318 0.8329

σZ = 1× σF

10 0.3994 0.3981 0.4023 0.4264 0.4427 0.4503 0.4491
20 0.5698 0.5717 0.5760 0.5953 0.6164 0.6185 0.6203
40 0.7249 0.7255 0.7306 0.7478 0.7618 0.7648 0.7649
80 0.8414 0.8407 0.8434 0.8546 0.8647 0.8668 0.8666
160 0.9132 0.9140 0.9150 0.9215 0.9276 0.9285 0.9286

σZ = 2× σF

10 0.7583 0.7581 0.7646 0.7884 0.8083 0.8127 0.8136
20 0.8631 0.8623 0.8665 0.8806 0.8928 0.8954 0.8973
40 0.9265 0.9272 0.9287 0.9367 0.9438 0.9447 0.9449
80 0.9619 0.9615 0.9627 0.9673 0.9707 0.9719 0.9720
160 0.9803 0.9805 0.9810 0.9832 0.9853 0.9854 0.9856

σZ = 4× σF

10 0.9811 0.9814 0.9842 1.0008 1.0148 1.0169 1.0176
20 0.9901 0.9907 0.9921 1.0001 1.0072 1.0086 1.0086
40 0.9949 0.9982 0.9961 1.0002 1.0036 1.0043 1.0043
80 0.9975 0.9976 0.9980 1.0000 1.0018 1.0021 1.0021
160 0.9987 0.9989 0.9990 1.0000 1.0008 1.0010 1.0011
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Table 4: Simulations: Priced Latent Factor and Characteristics

This table reports simulation results of Eq.(1) in Section 3 for 240 months of returns for 2,400 assets, where we set Ft = 0,
and Zt follows an AR(1) process with E[Zt] = 0.65%. Assets are assigned a random size at t = 0, which grows by (1+rit)
each period. We define groups g to contain 10, 20, 40, 80, or 160 assets. For each group size, we report the median
estimate of γ in the regression: rigt = α + βrmt + γr−igt + εit, where rmt is the value-weighted excess market return at
t, and r−igt is the excess return of group g at time t, excluding asset i. We form groups based on sorts of characteristic
Xi = ρΓ + (1 − ρ)ui, ui ∼ N(0, σΓ). Each column corresponds to a different value of ρ. Each panel corresponds to a
different value of σZ , expressed as a multiple of σF . The model is simulated 1,000 times for each specification.

ρ = 0 ρ = .1 ρ = .25 ρ = .5 ρ = .75 ρ = .9 ρ = 1

σZ = 1/8× σF

10 0.0382 0.0382 0.0390 0.0431 0.0472 0.0482 0.0482
20 0.0733 0.0733 0.0753 0.0821 0.0897 0.0913 0.0922
40 0.1365 0.1378 0.1396 0.1517 0.1639 0.1677 0.1689
80 0.2396 0.2407 0.2454 0.2648 0.2837 0.2885 0.2867
160 0.3852 0.3850 0.3922 0.4182 0.4398 0.4455 0.4469

σZ = 1/4× σF

10 0.1278 0.1308 0.1302 0.1348 0.1329 0.1330 0.1307
20 0.2287 0.2321 0.2300 0.2457 0.2414 0.2385 0.2313
40 0.3775 0.3721 0.3875 0.3752 0.3806 0.3764 0.3841
80 0.5484 0.5381 0.5402 0.5528 0.5527 0.5512 0.5530
160 0.7085 0.7133 0.7108 0.7082 0.7157 0.7168 0.7100

σZ = 1/2× σF

10 0.1368 0.1370 0.1388 0.1509 0.1613 0.1624 0.1637
20 0.2420 0.2418 0.2460 0.2623 0.2765 0.2798 0.2815
40 0.3899 0.3883 0.3925 0.4153 0.4345 0.4372 0.4404
80 0.5606 0.5597 0.5659 0.5848 0.6054 0.6090 0.6117
160 0.7167 0.7198 0.7214 0.7385 0.7541 0.7566 0.7577

σZ = 1× σF

10 0.3971 0.3975 0.4033 0.4266 0.4446 0.4493 0.4503
20 0.5699 0.5701 0.5749 0.5950 0.6186 0.6203 0.6218
40 0.7252 0.7250 0.7295 0.7473 0.7642 0.7653 0.7667
80 0.8404 0.8408 0.8441 0.8547 0.8647 0.8679 0.8675
160 0.9137 0.9134 0.9153 0.9220 0.9273 0.9289 0.9289

σZ = 2× σF

10 0.7576 0.7581 0.7628 0.7886 0.8067 0.8119 0.8131
20 0.8619 0.8638 0.8658 0.8812 0.8933 0.8962 0.8959
40 0.9266 0.9274 0.9286 0.9366 0.9437 0.9450 0.9453
80 0.9617 0.9621 0.9627 0.9674 0.9707 0.9719 0.9720
160 0.9805 0.9805 0.9811 0.9833 0.9853 0.9857 0.9857

σZ = 4× σF

10 0.9808 0.9810 0.9848 1.0005 1.0146 1.0169 1.0175
20 0.9901 0.9900 0.9924 1.0000 1.0070 1.0084 1.0085
40 0.9950 0.9983 0.9959 1.0000 1.0035 1.0042 1.0043
80 0.9975 0.9976 0.9981 0.9999 1.0017 1.0021 1.0021
160 0.9987 0.9988 0.9990 1.0000 1.0008 1.0010 1.0010
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Table 5: Industry Adjusted Returns and Comovement

This table presents comovement estimates of risk-adjusted stock returns on the returns of portfolios
containing randomly selected stocks. In Panel A, we repeat our analysis from Panel A of Table 4
for convenience. Each subsequent panel reports comovement estimates for stocks adjusted for an
industry factor model according to the Fama and French 12, 30, and 48 industry portfolios, and
the 25 fixed, text-based network industry classifications (TNIC) from Hoberg and Phillips (2015)
, respectively. The rows of each panel correspond to different group sizes, (10 to 160). Column 1
uses excess, industry-adjusted returns. Each subsequent column additionally adjusts returns for, the
Capital Asset Pricing Model (CAPM), the Fama-French three and five factor model (3 FM and 5
FM), and the Fama-French models augmented with the momentum factor (4 FM and 6 FM). Columns
7-9 adjust returns for principal factors from an ex post principal component analysis using the first
five (PCA5), ten (PCA10), and twenty (PCA20) factors. The sample uses monthly returns for all
CRSP/Compustat stocks with available data from 1970 to 2016.

# Firms Raw CAPM 3 FM 5 FM 6 FM PCA5 PCA10 PCA20

No Industry Adjustment

10 0.4795 0.1424 0.0535 0.0409 0.0407 0.2692 0.1685 0.0504
20 0.6469 0.1922 0.0722 0.0552 0.0549 0.3631 0.2273 0.0680
40 0.7836 0.2328 0.0875 0.0669 0.0665 0.4399 0.2754 0.0824
80 0.8762 0.2603 0.0978 0.0748 0.0743 0.4918 0.3079 0.0921
160 0.9313 0.2766 0.1040 0.0795 0.0790 0.5228 0.3273 0.0979

Fama-French 12 Industries

10 0.1079 0.1006 0.0438 0.0432 0.0353 0.0708 0.0572 0.0428
20 0.1460 0.1361 0.0595 0.0587 0.0481 0.0959 0.0775 0.0582
40 0.1771 0.1651 0.0724 0.0714 0.0585 0.1165 0.0942 0.0708
80 0.1980 0.1846 0.0808 0.0797 0.0653 0.1301 0.1052 0.0790
160 0.2102 0.1959 0.0857 0.0845 0.0692 0.1381 0.1116 0.0838

Fama-French 30 Industries

10 0.0761 0.0703 0.0368 0.0361 0.0305 0.0611 0.0529 0.0373
20 0.1031 0.0953 0.0501 0.0491 0.0416 0.0829 0.0718 0.0507
40 0.1251 0.1157 0.0610 0.0598 0.0506 0.1006 0.0872 0.0617
80 0.1398 0.1292 0.0681 0.0667 0.0565 0.1124 0.0975 0.0689
160 0.1484 0.1372 0.0722 0.0707 0.0599 0.1193 0.1034 0.0730

Fama-French 48 Industries

10 0.0535 0.0516 0.0328 0.0316 0.0270 0.0463 0.0440 0.0280
20 0.0726 0.0700 0.0446 0.0431 0.0368 0.0629 0.0598 0.0382
40 0.0882 0.0851 0.0543 0.0525 0.0449 0.0764 0.0727 0.0465
80 0.0986 0.0950 0.0606 0.0586 0.0501 0.0854 0.0812 0.0519
160 0.1045 0.1008 0.0642 0.0620 0.0531 0.0905 0.0861 0.0550

TNIC 25

10 0.0602 0.0545 0.0322 0.0306 0.0272 0.0480 0.0433 0.0261
20 0.0799 0.0723 0.0430 0.0408 0.0364 0.0638 0.0576 0.0349
40 0.0955 0.0864 0.0514 0.0489 0.0436 0.0763 0.0689 0.0419
80 0.1055 0.0955 0.0568 0.0540 0.0481 0.0843 0.0762 0.0462
160 0.1112 0.1007 0.0598 0.0569 0.0507 0.0888 0.0802 0.0486
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Table 6: DGTW Adjusted Returns and Comovement

This table presents comovement estimates of stock returns on returns of other stocks grouped by different characteristics.
All stock returns are first characteristic adjusted according to the process outlined in Daniel et al. (1997). Column 1 reports
the average DGTW adjusted return comovement estimates from a simulation of randomly grouped stocks. Each subsequent
Column reports DGTW adjusted return comovement estimates for stocks grouped by Size, Book to Market, Momentum, Asset
Growth, and Operating Profitability, respectively. The rows of each panel correspond to different group sizes, (10 to 160).
The sample uses monthly returns for all CRSP/Compustat stocks with available data from 1970 to 2016.

Grouping Criteria

Random Market Book to Momentum Asset Operating
Equity Market Growth Profitability

10 0.0133 0.0562 0.0182 0.0793 0.0317 0.0340
20 0.0169 0.0733 0.0229 0.1003 0.0406 0.0451
40 0.0236 0.0841 0.0274 0.1160 0.0483 0.0504
80 0.0310 0.0905 0.0288 0.1231 0.0522 0.0563
160 0.0307 0.0926 0.0288 0.1271 0.0540 0.0591
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Table 7: Shock-based Test

This table presents

N Mean Std Dev Min Max

Panel A. Headquater Relocation

Excess Return on the Market (Pre) 6124 0.9145 0.6746 2.1473 6.7285
Excess Return on the Market(Post) 6124 0.8947 0.6488 2.6321 7.0917
Small-Minus-Big Return(Pre) 6124 0.6968 1.1186 16.5935 16.9103
Small-Minus-Big Return(Post) 6124 0.5960 0.9285 3.7981 7.091
High-Minus-Low Return(Pre) 6124 0.2268 1.0902 9.2047 7.1493
High-Minus-Low Return (Post) 6124 0.2402 0.9894 9.2043 6.1811
Momentum Factor (Pre) 6124 -0.1082 0.7028 7.8225 5.3165
Momentum Factor (Post) 6124 -0.1484 0.648 12.0962 3.1874

Panel B. Stock Split

Excess Return on the Market(Pre) 6242 0.9657 0.6004 1.7155 4.3987
Excess Return on the Market(Post) 6242 1.1011 0.6233 2.6758 4.0881
Small-Minus-Big Return(Pre) 6242 0.6684 0.7294 4.1722 5.2727
Small-Minus-Big Return(Post) 6242 0.6529 0.8076 4.3012 5.1877
High-Minus-Low Return(Pre) 6242 0.0003 0.8385 4.9036 4.3973
High-Minus-Low Return (Post) 6242 -0.1108 1.0345 6.8973 8.1035
Momentum Factor (Pre) 6242 0.1766 0.6162 6.686 5.9106
Momentum Factor (Post) 6242 0.0844 0.7044 10.1072 4.0175
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Table 8: Index Additions and Deletions

This table presents
Difference t-stat p-value Difference t-stat p-value Difference t-stat p-value

Panel C. Changes in Beta before and after the addition to Index

’Qtrs: -1 to 1 0.005 0.64 0.520 -0.289 -1.56 0.120 0.247 2.83 0.005
’Qtrs: -2 to 2 0.005 0.87 0.384 -0.107 -0.82 0.410 0.324 4.87 ¡.0001
’Qtrs: -3 to 3 0.020 3.92 ¡.0001 -0.153 -1.25 0.210 0.233 4.11 ¡.0001
’Qtrs: -4 to 4 0.016 3.26 0.001 -0.125 -1.05 0.292 0.224 4.27 ¡.0001
’Qtrs: -5 to 5 0.018 3.73 0.000 -0.131 -1.37 0.170 0.134 3.21 0.001
’Qtrs: -6 to 6 0.015 3.32 0.001 -0.070 -0.90 0.367 0.142 3.88 0.000
’Qtrs: -7 to 7 0.013 2.75 0.006 -0.103 -1.75 0.080 0.114 3.53 0.000
’Qtrs: -8 to 8 0.016 3.50 0.001 -0.061 -1.19 0.233 0.066 2.30 0.021
’Qtrs: -9 to 9 0.016 3.42 0.001 -0.065 -1.56 0.120 0.019 1.00 0.317
’Qtrs: -10 to 10 0.014 2.93 0.003 -0.005 -0.15 0.881 -0.008 -0.57 0.567
’Qtrs: -11 to 11 0.008 1.65 0.100 -0.008 -0.48 0.630 -0.032 -3.67 0.000
’Qtrs: -12 to 12 0.011 2.18 0.029 -0.032 -3.38 0.001 -0.042 -6.63 ¡.0001
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