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Abstract

This paper examines the effect of collusion on allocative efficiency
in a second-price sealed-bid auction, in which bidders’ valuations have
private and common value components. We present a theoretical model
which shows that explicit collusion improves average efficiency. Fur-
thermore, a reduction in common value signal variance increases the
efficiency of allocations when a cartel is present. We test for the pres-
ence of these patterns in a laboratory experiment. Subjects can choose
whether to compete or to form a cartel. Colluding bidders can commu-
nicate and make side payments using a knockout auction. Our results
show that a large majority of bidders join a cartel, collusion has a
negative impact on efficiency, and a reduction in common value signal
variance increases efficiency under a cartel, as well as in a competitive
setting.
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1 Introduction

In an auction market for a single good, full ex post allocative efficiency is
achieved if the player with the highest valuation is awarded the item. When
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bidders’ valuations for a good are known at the time of bidding, even when
they are only privately known, it is typically straightforward to achieve an
efficient allocation with a number of different auction rules (Vickrey, 1961).
When the valuations are correlated, such as in the generalized mineral rights
auction defined by Milgrom and Weber (1982), efficiency is also easy to
achieve (Jehiel and Moldovanu, 2001). If the item sold has a common value
to all bidders, even if the value of the item is not known at the time of
bidding, it is equally efficient to allocate the unit to any demander, so that
preventing inefficiency is a trivial matter.

However, consider an environment in which bidders’ private information
consists of a private value component, known with certainty, as well as a
signal about a common value component. This structure is, for example,
a plausible way to model how individuals value artwork, which is typically
sold by auction. A bidder has an intrinsic preference for the painting based
on her private tastes, the private value component, but may also have beliefs
about the price at which the item can potentially be resold in the future,
a noisy common value signal. Other items sold in auctions, such as real
estate, automobiles, and concert tickets have a similar feature, in that they
have a private use value, as well as common future market value that may
be unknown at the time of bidding. Yet another example is construction
procurement, in which bidders are sellers rather than buyers. Some costs
are uncertain but common to all bidders, for example the market prices for
inputs such as fuel or cement, but the cost effects of some inputs including
experience or access to capital are private and vary by bidder.

In these situations, for an efficient allocation to occur, the bidder with
the highest private value must receive the item. Nevertheless, it is possible
for an auction system, even one that always awards the item to the highest
bidder, to allocate an item inefficiently, despite all bidders behaving opti-
mally. This is because an individual with a low private value but a common
value signal that happens to be much higher than the true common value
component might submit the highest bid.1 In general, no efficient, incen-
tive compatible mechanism exists if types are multi-dimensional (Jehiel and
Moldovanu, 2001).

If bidders could obtain more precise estimates of the common value, the
extent of inefficiency could be reduced. One way to potentially allow this to
happen is to permit bidders to collude. As noted by Groenewegen (1994)

1The winner’s curse is not the source of the inefficiency. Equilibrium bidding strategies
of rational bidders also results in efficiency loss. Goeree and Offerman (2002) find experi-
mental evidence that naive bidding itself does not have a significant impact on efficiency.
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and Goeree and Offerman (2003), collusion with the possibility of explicit
communication is actually beneficial for allocative efficiency. It is commonly
accepted that cartels have a detrimental effect on the seller’s revenue, but an
increase in overall efficiency would provide a rationale for permitting bidder
collusion.2

We examine this issue in this paper, where we report a laboratory ex-
perimental study on second-price auctions. The source of our hypotheses is
a theoretical model assuming rational bidders. The model yields the result
that collusion increases expected allocative efficiency. The intuition stems
from information sharing that occurs during the collusion process. This
sharing increases the likelihood that the bidder with the highest valuation is
chosen to submit the highest bid. The model also predicts that all potential
bidders join the cartel, and that an exogenous reduction in common value
uncertainty increases allocative efficiency, given that a cartel is formed.

Our experiment consists of four treatments. In the first two treatments
of the study, there are two potential bidders who can decide to collude be-
fore the auction takes place. Their valuations consist of private and common
value components. The difference between the two treatments is the spread
of the common value distribution. The LoVar treatment has a lower com-
mon value variance than HiVar. Comparison of these two treatments tests
an implication of our model. It also addresses a question of whether an
authority interested in efficiency should make public any information it has
that might reduce common value uncertainty.3 A third treatment, NoColl,
has the same parametric structure as HiVar, but collusion is prohibited.
Comparison of HiVar and NoColl provides a measure of the consequences
of prohibiting collusion. In a fourth treatment, PVOnly, bidders’ valuations
consist of only a private value component. In PVOnly, at least according
to our model, collusion can provide no additional efficiency, since there is
no common value uncertainty to resolve. If the process of collusion tends to
introduce inefficiencies that are unanticipated in our model, collusion would
lower efficiency in this treatment.

We observe substantial support for a number of the predictions of the

2This argument was made by members of the long-standing Dutch construction car-
tel, who testified in 2002 that the primary motivation of their operation as a cartel was
information pooling (Boone, Chen, Goeree, and Polydoro, 2009). For details of the par-
liamentary hearings, see Parlementaire Enquêtecommissie Bouwnijverheid (2003).

3Milgrom and Weber (1982) show that an auctioneer can increase revenue by releasing
any private information she has that can reduce common value uncertainty on the part
of bidders. In the context of our motivating example, the auctioneer in a construction
procurement auction typically has private information about the construction site, related
projects, or estimated cost.
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model. A large majority of bidders attempt to form a ring. Treatments with
different variance of the common value signal produce the result predicted
by the model, which is that more variance leads to greater efficiency loss.
However, we also find that cartels fail to increase efficiency. Imperfections
in the process of assigning the designated bidder and the side payment to
the other bidder at times fails to make an efficient assignment. This more
than offsets the gain in efficiency from the information sharing among car-
tel members. In the PVOnly treatment, where there is no common value
uncertainty, and thus no gain from pooling information, bidding rings re-
duce efficiency substantially. We also observe that if cartels are prohibited,
outcomes differ from a situation in which bidders voluntarily decline the
opportunity to form a cartel. They bid more aggressively if cartels are in-
terdicted.

The work reported here fits into the large literature initiated by Ver-
non Smith and his colleagues on using laboratory experiments to evalu-
ate game-theoretic models of auctions (Coppinger, Smith, and Titus, 1980;
Cox, Smith, and Walker, 1982). This literature has diverged in a number
of directions in the last three decades. One currently active avenue has
been the investigation of collusion in auctions. Recent lines of research ad-
dress leniency programs (Bigoni, Fridolfsson, Le Coq, and Spagnolo, 2015;
Apesteguia, Dufwenberg, and Selten, 2007; Hinloopen and Soetevent, 2014),
cartel detection (Hinloopen and Onderstal, 2014), communication within the
cartel (Agranov and Yariv, 2016; Llorente-Saguer and Zultan, 2014) and the
effect of reference prices (Armantier, Holt, and Plott, 2013).

The paper is structured as follows. Section 2 describes the model, and
characterizes an equilibrium with risk neutral, rational bidders. Details of
the experimental design are given in Section 3. Section 4 formally states our
hypotheses. Section 5 reports our data analysis and summarizes our results.
Finally, Section 6 concludes with a discussion.

2 Model and equilibrium

In this section, we analyze the auction game that we study in our experi-
ment. The game proceeds in a number of stages. Nature chooses the private
information of the three bidders who have the right to participate in the auc-
tion. Two of the bidders then choose whether or not to create a bidding
ring. If a ring is created, the ring members use a bidding process called a
knockout auction (Mailath and Zemsky, 1991) to determine who will be the
designated bidder in the subsequent main auction, and the side payment
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that the other ring member receives in exchange for withdrawing from the
main auction. The designated bidder then participates in the main auction
against the third bidder.

The environment is one in which bidders’ valuations for the item have
both a private value and a common value component, as in Goeree and
Offerman (2003). The private value component is known with certainty,
and bidders have unbiased signals about the common value component. The
auction follows second-price sealed-bid rules. In the pure-strategy perfect
Bayesian equilibrium to the game that we derive, players always form a
cartel, and the cartel agrees on a transfer from the designated bidder to the
withdrawn bidder equal to half of the expected payoff that the withdrawn
bidder would receive in main auction in the event that he were the designated
bidder.4

2.1 Model

Two strong and one weak bidder have valuations for an item sold in a second-
price sealed-bid auction. The strong bidders i and j are symmetric and
risk neutral. Strong bidders’ valuations consist of two additively separable
components: a private value (PV) and a common value (CV). The private
value of each strong bidder i, denoted by xi, is drawn independently from
a uniform distribution on [xL, xH ]. The common value component y is the
average of the two strong bidders’ independently and identically distributed
common value signals, denoted as yi and yj . The signals are each drawn
from a uniform distribution, so that yi ∈ [yL, yH ]. The distributions of
private values and common value signals are common knowledge. Thus, the
valuation of bidder i, denoted by vi, has the structure shown in Equation
(1).

vi = xi + y = xi +
yi
2

+
yj
2

(1)

The third bidder, called l, is weak in the following sense. Her valuation
consists entirely of a private value component, c, drawn from a uniform
distribution with support c ∈ [cL, cH ], where cL ≤ xL, cH ≤ xH . We assume
that cL, xL and yL are all non-negative.

4This form of collusion is a strong cartel in the sense of McAfee and McMillan (1987),
who define a strong cartel as one that can specify and enforce side payments between ring
members. It is also a strong cartel in the sense of Marshall and Marx (2007), in that it
can enforce a restriction that only the designated bidder submits a meaningful bid.
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Bidders participate in a second-price sealed-bid auction. Bids are sub-
mitted simultaneously. The player submitting the highest bid is awarded
the item for a price equal to the second highest bid. If there is a tie for the
highest bid, the tie is broken randomly. Before the auction, the two strong
bidders can form a cartel by mutual agreement. The game consists of the
following sequence of events.

1. Nature chooses bidders’ private values and common value signals: xi,
yi xj , yj , and c.

2. The strong bidders decide whether or not to form a bidding ring. They
make their choices simultaneously. A cartel is formed if they both
choose to join. Otherwise, no cartel is formed and the game proceeds
to Stage 4.

3. If a bidding ring is formed, the cartel members participate in a knock-
out auction and simultaneously submit their knockout bids ki and kj .
The higher bidder is awarded the right to participate in the subse-
quent main auction. This designated bidder pays the lower of the two
knockout bids to the other ring member, who is forced to bid 0 in the
main auction.5 Ties are broken randomly. Knockout bids are observed
by both members of the ring.

4. The main auction takes place, following second-price, sealed-bid auc-
tion rules. If a cartel is formed, the auction has two active bidders, the
designated bidder and the weak bidder. If no ring is created, there are
three bidders in the main auction, the two strong and the one weak
bidder.

2.2 Equilibrium analysis

In this subsection, we derive a perfect Bayesian equilibrium to the game. We
assume that the two strong bidders use the same strategy. In Subsections
2.2.1 and 2.2.2, we consider the subgames in which no bidding ring is formed,
and in which one is formed, respectively. In Subsection 2.2.3, we analyze the
knockout auction, and in Subsection 2.2.4, we consider the decision about
whether or not to collude. We show that all bidders benefit from collusion.
In Subsection 2.2.5, we derive two results regarding allocative efficiency. We
show that efficiency is greater on average when collusion is permitted than

5The partnership dissolution literature refers to a related mechanism as a Loser’s Bid
Auction (Li, Xue, and Wu, 2013).
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when it is not. We also establish that efficiency is higher when common
value uncertainty is smaller. We solve the game by backward induction,
beginning with the main auction in Stage 4.

2.2.1 The main auction without collusion

Consider the subgame reached in the last stage of the game if the strong bid-
ders choose not to collude.6 We shall refer to this situation as a competitive
auction. In this subgame, players place bids in the main auction indepen-
dently and competitively. Define the composite signal of strong bidder i as
si = xi + yi

2 . The optimal bid of a player is a function of her composite sig-
nal.7 To see this, note that the valuation of bidders consists of the composite
signal, which is known to the bidder at the time of bidding, and an unknown
part yj/2. The private value auction is a special case of this environment, in
which si = xi and player i has a dominant strategy to submit a bid of xi, as
in Vickrey (1961). However, the existence of a dominant strategy does not
carry over to auctions with common value uncertainty, and a strong bidder’s
best response depends upon the strategy the other strong bidder uses.8

Consider a Bayesian equilibrium b∗ = (b∗i (xi, yi) , b
∗
j (xj , yj) , b

∗
l (c)) to

this subgame, where b∗i is the bidding strategy of bidder i. Strong bidder i’s
equilibrium strategy is given by Equation (2).

b∗i (xi, yi) = E (vi|si = sj) = si +
1

2
E (yj |si = sj) (2)

with a similar strategy employed by bidder j. In words, bidder i bids an
amount equal to her expected valuation conditional on bidder j having an
identical composite signal. To see this, first note that bidder i wishes to
submit the highest bid and win the auction in all cases in which her com-
posite signal is greater than that of the other two bidders. In cases in which
her composite signal is not the highest, she would prefer not to outbid the
other player and win the auction. Her willingness-to-pay is then equal to
her expected valuation for the item. However, her valuation depends on the

6As we shall see later, this stage is reached with probability 0 in equilibrium. We assume
that the out-of-equilibrium beliefs about other players’ private values and common value
signals are the same as the initial priors.

7The following derivation is similar to the one given in Goeree and Offerman (2003).
They refer to the composite signal as surplus.

8Consider a bidder with a very low composite signal. Conditional on winning, the CV
of the other bidder is also low. For a higher composite signal, the CV of the other bidder
is not similarly constrained. Consequently, the equilibrium bidding strategy is typically a
piecewise linear function of si.
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other player’s composite signal, because one component of player i’s valua-
tion is yj . The greater the value of yj , the greater is sj , and the greater is
vi as well. Thus, the region in which player i wins the auction profitably is
the region in which she pays less than [vi|si = sj ]. The weak player submits
a bid equal to her valuation c, which is her dominant strategy.

2.2.2 The main auction with collusion

We now analyze the subgame in which the main auction takes place after the
formation of a cartel. Assume that bidder i has won the knockout auction
and is the designated bidder. She is then in a two-player auction facing the
weak bidder. The information she has available is (xi, yi) and the knockout
bid of the other ring member kj . In equilibrium, bidder i updates her belief
about the type of j, and in turn her own valuation. Her equilibrium bid in
the auction is derived in an analogous manner to (2) and equals:

d∗i (xi, yi) = xi +
yi
2

+
1

2
E (yj |kj) = si +

1

2
E (yj |kj) . (3)

2.2.3 Knockout auction

We now turn to the knockout auction in Stage 3. To derive the equilibrium
knockout bids of the subgame with collusion, note that they are determined
by the expected payoff that the agent can earn if she is the designated bidder
in the subsequent main auction. A bidder would rather lose the knockout
auction if she receives at least as much in a side payment as her expected
payoff in the main auction, and would like to win the knockout auction if
she can do so at a price less than her expected payoff in the main auction.
Thus, her optimal bid in the knockout auction is a function of her expected
payoff given her composite signal, and conditional on winning the knockout
auction. Given the strictly monotonic relationship between the composite
signal and the knockout bid, the designated bidder learns the composite
signal of the other strong bidder after the knockout auction is completed.

We denote the expected payoff of i in the main auction as Π̄ (si) =
EΠ (si|si ≥ sj), where Π (·) refers to the expected revenue of i facing only
the weak bidder. The equilibrium knockout bid is half of this value. The
reason is that unlike in the standard second-price auction, the loser receives
her own bid. That is, in equilibrium, conditionally on facing an identical
opposing bid, the bidder must be indifferent between (a) being the winner
of the knockout auction and continuing on to the main auction, and (b)
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receiving the side payment. Therefore, i bids

k∗i (si) =
1

2
EΠ̄ (si) =

1

2
EΠ(si|si ≥ sj). (4)

2.2.4 The collusion decision

We now consider the decision of a bidder, taken in Stage 2, regarding whether
or not to collude. This binary decision is denoted by e ∈ {0, 1}, where 1
refers to joining the ring. The expected payoff of a bidder engaging in
collusion is∫ si

sj=xL+
yL
2

(
Π̄ (si)−

1

2
Π̄ (sj)

)
d H (sj) +

∫ xH+
yH
2

sj=si

1

2
Π̄ (si) d H (sj) (5)

conditionally on all bidder types joining the ring, where H(sj) refers to the
ex ante distribution of the composite signal. The term on the left describes
the payoff in the event of winning the knockout auction, while the term on
the right corresponds to losing the knockout auction and receiving the side
payment.

We provide a sufficient condition under which this total expected payoff
from collusion is higher than the conditional interim expected payoff in a
competitive auction, for all bidder types. If the condition is satisfied, all
bidders would collude, regardless of their private information. Expression
Π̂(si) denotes the expected payoff of a bidder in a competitive auction. We
need to show that

Π̂(si) ≤ E
[
max

{
1

2
Π̄(si), Π̄(si)−

1

2
Π̄(sj),

}]
(6)

where the expectations are over the type of the other bidder. If 1
2Π̄(si) −

1
2Π̄(sj) ≥ 0, rearranged, we get

Π̂(si)−
1

2
Π̄(si) ≤

1

2
Π̄(si)−

1

2
Π̄(sj) (7)

If 1
2Π̄(si)− 1

2Π̄(sj) < 0, we get

Π̂(si)−
1

2
Π̄(si) ≤ 0 (8)

Since the right-hand sides of inequalities (7) and (8) are non-negative, it is
a sufficient condition, that Π̂(si) − 1

2Π̄(si) ≤ 0 ⇐⇒ Π̄(si) ≥ 2Π̂(si). Our
findings are summarized in Proposition 1.
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Proposition 1. All bidder types join the ring, e∗(si) = 1, if Π̄(si) ≥ 2Π̂(si).

That is, all bidder types participate if competition can be successfully sup-
pressed. This condition is satisfied in all treatments of our experimental
design.

The arguments presented above show that there exists an equilibrium
with the following structure.9

e∗i (si) = 1 (9)

d∗i (si) = si +
1

2
E (yj |kj) (10)

k∗i (si) =
1

2
EΠ(si|si ≥ sj) (11)

b∗i (si) = si +
1

2
E (yj |si = sj) (12)

b∗l (c) = d∗l (c) = c (13)

with bidder j employing the same strategy as i.

2.2.5 Theoretical results regarding efficiency

Ex post efficiency is guaranteed in a pure common value auction, since valu-
ations are identical. In a symmetric pure private value auction, equilibrium
bids increase in valuation, and this guarantees that the efficient buyer ob-
tains the commodity. Inefficiencies might appear if both types of information
asymmetry are present, as Goeree and Offerman (2003) argue.

A bidder with high PV and low CV might bid lower in equilibrium than
an opponent with low PV and high CV. For example, consider two strong
bidders, with types (xi = 800, yi = 0) and (xj = 700, yj = 400), where the
supports of PV and CV signals are [0, 800] and [0, 400], respectively. The
weak bidder bids c = 500. In equilibrium, player i submits b∗i = 900, whereas
b∗j = 1050. Bidder j wins the auction, while her opponent has higher PV,
resulting in an efficiency loss of xi − xj = 800− 700 = 100.

9There is clearly a multiplicity of equilibria in this game. Consider for instance the
same strategy profile ,with one modification. Bidder i, conditionally on reaching the main
auction as a designated bidder, submits an arbitrarily high bid if si > cH . However,
equilibria of this type leads to the same payoffs as the one we have derived, in that a
cartel is always formed, the bidder with the highest valuation is always the designated
bidder, and the prices in the knockout and main auctions, as well as the final allocation,
are the same.
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The ranking of knockout bids and competitive auction bids of the strong
bidders coincide, since bids are monotonic in composite signals in both the
competitive and the knockout auctions. However, the information contained
in the knockout bids help the designated bidder to improve her beliefs re-
garding the CV signal of the other ring member, as we have also seen above,

bidding si +
E(yj |kj)

2 . This bid equals the expected valuation of the bidder,
where the distribution of beliefs second-order stochastically dominates that
of the competitive bidder. This means that the probability of winning, con-
ditional on having a valuation greater than that of the weak bidder, is also
greater than in the competitive auction. These arguments are summarized
in Proposition 2.

Proposition 2. Collusion has no effect on the allocation of the good between
the strong players. The overall probability of an efficient allocation is higher
if a bidding ring is formed.

Proof. The first part of the proposition is a consequence of the monotonicity
of bids in composite signals in the competitive auction, and the fact that
the bidder with the highest composite signal within a cartel is always the
designated bidder. To prove the second part of the proposition, one has
to compare the probability of producing an inefficient allocation between
the weak bidder and the strong bidder with the higher composite signal s1
under collusion and under competition. The ranking of these bids in the
main auction is different between collusion and competition if and only if

s1 +
1

2
E (y2|s2 = s1) > c > s1 +

1

2
E (y2|k2) (14)

is satisfied, that a strong bidder who would bid higher than the weak bidder
does so under competition but not under collusion. If the condition in (14)
applies, inefficiency occurs under collusion but not competition if s1+y2 > c.
Similarly, inefficiency occurs under competition but not collusion if c ≥ s1 +
y2. The condition is not vacuous since E (y2|s2 = s1) > E (y2|k2), because
winning the knockout auction causes bidder 1 to revise her beliefs about y2
downward.

The probability of s1 + y2 > c is 1
2 , if c = s1 + 1

2E (y2|k2). This follows
from the fact that for any s1, the conditional probability of y1 ≥ E (y2|k2)
is exactly 1

2 . This is implied by the uniform distribution of types. Also,
Pr [s1 + y2 > c] < 1

2 , if c > s1 + 1
2E (y2|k2). Therefore, the probability

of efficiency loss under collusion compared to under competitive bidding is
strictly smaller than 1

2 and the probability of efficient allocation is greater
under collusion.
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The next result concerns the effect of a mean preserving spread on the
common value of strong bidders. Milgrom and Weber (1982) show that the
effect of disclosing any relevant private information the seller has, which has
the effect of reducing the variance of the common value distribution, is to
make bidders with low private values bid less. Proposition 3 is similar in
spirit in that it shows that an decrease in spread has a similar effect on the
behavior of our strong bidders.

Proposition 3. A mean-preserving spread of the common value distribution
increases the probability of an inefficient choice of designated bidder. It also
the probability of an inefficient allocation in a competitive auction.

Proof. As we argued above, collusion does not alter the ranking of bids
among strong bidders. Therefore, the subject of our interest is the sum
of the probabilities of two cases: (i) si > sj if xj > xi and (ii) sj > si
if xi > xj .

10 We prove monotonicity of the probability of event (i) in the
spread of the common value distribution. The result for (ii) is analogous.
First, observe that

si > sj ⇐⇒ xi +
yi
2

> xj +
yj
2
⇐⇒ yi

2
− yj

2
> xj − xi (15)

All signals are independently drawn, so the distribution of yi
2 −

yj
2 equals

f(
yi
2
− yj

2
) =


2

yH − yL
+

2(yi2 −
yj
2 )

(yH − yL)2
(yL − yH)/2 ≤ yi

2
− yj

2
≤ 0

2

yH − yL
−

2(yi2 −
yj
2 )

(yH − yL)2
0 ≤ yi

2
− yj

2
≤ (yH − yL)/2

(16)

and zero otherwise, for all xj > xi. Thus, letting F (·) denote the cumulative
distribution function,

Pr(
yi
2
− yj

2
≥ xj − xi) = 1− F (xj − xi) =

1

2
(

2

yH − yL
− 2(xj − xi)

(yH − yL)2
)(
yH − yL

2
− xj − xi) =

1

2
((1− 2(xj − xi)

yH − yL
)2 − 2(xj − xi)

yH − yL
) (17)

if xj − xi ≤ (yH − yL)/2 and zero otherwise. The last expression of (17) is
an increasing function of (yH − yL) for any xj , xi with xj > xi.

10This result for competitive auctions is similar to part (iii) of Proposition 2 of Goeree
and Offerman (2003).
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Since the actual common value term of these bidders is identical, effi-
cient allocation is solely based on private values. However, Proposition 3
demonstrates that greater variance of the common value signal implies that
it becomes more likely that the common value signals determine the ranking
of strong bidders.

3 General procedures and treatments

The experiment was conducted between October 2014 and March 2016, at
the CentERlab experimental facility at Tilburg University. We ran nine
sessions with 166 subjects. In each session, an even number of subjects,
numbering between 16 and 22, participated. The average length of a session
was 105 minutes. Subjects were recruited online from a pool of under-
graduate students at Tilburg University, most of whom were majoring in
economics or business. The average total earnings per subject amounted to
14.15 EUR (1 EUR = 1.13 USD at the time the last session was conducted).
Participants’ valuations and earnings were expressed in terms of an experi-
mental currency, called Coin, which was exchanged for Euro at the end of
the session at a rate of 100 Coins for 1 Euro.

There were four treatments, called LoVar, HiVar, PVOnly and NoColl.
Each session only had one treatment in effect so that all treatment com-
parisons in the study are between-subject. LoVar, HiVar and PVOnly were
treatments in which bidding rings were allowed. In NoColl, collusion was
precluded. LoVar and HiVar refer to the variance of the common value
signals. In PVOnly, there was no common value component to subjects’
valuations, which were fully determined by their private values. In NoColl,
the common value variance was identical to HiVar, and thus the only dif-
ference between these two treatments was that collusion was not allowed in
NoColl. Table 1 summarizes the differences between the four treatments.
The intervals indicate the supports of the private value (PV) and common
value (CV) distributions of the strong bidders, as well as the PV distribution
of the weak bidder. Subjects assumed the role of the strong bidders whereas
the weak bidder was computerized.

In order to guarantee non-negative payoffs in any period, two specific
parameter choices were made. The first was to give each bidder a constant
endowment of 800 Coin per period, in addition to the amount they earned
in the auction. The second was to place an upper limit on the bids that
an individual could submit; an individuals bids in the knockout and main
auctions could not total more than 1400, in the LoVar, HiVar and NoColl
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Treatment PV CV Weak Bidder Collusion Sessions N

LoVar [200, 600] [0, 400] [0, 500] Allowed 3 54
HiVar [200, 600] [0, 800] [0, 500] Allowed 2 40
PVOnly [400, 800] [0, 0] [0, 500] Allowed 2 32
NoColl [200, 600] [0, 800] [0, 500] Precluded 2 40

Table 1: Summary of the differences between treatments

treatments. In the PVOnly treatment, a total above 1000 was not permit-
ted. Because payoffs were never below 0 for bids at these maximum levels
(including the additional payment of 800), the bidding caps ensured non-
negative payoffs.11 Furthermore, the caps were set high enough that they
were very rarely, if ever, binding.12 The bidding caps were not expected to
influence observed efficiency and the likelihood of cartel formation. This is
because the predicted bids of the model are well inside the feasible region
for all possible private values and common value signals. Furthermore, the
efficiency of the allocation is determined by the identity of the designated
bidder in the cartel and whether the cartel outbids the weak bidder. These
two variables are unlikely to be affected by a high limit on bid levels.

The weak bidder was computerized and did not interact with the cartel.
While the valuations of the strong bidders ranged from 200 to 1400, de-
pending on the treatment, the weak bidder always submitted a bid between
0 and 500 Coins, following a uniform distribution. The reason behind the
choice to make the computerized bidder weak was to reflect the fact that in
general it is bidders with high valuations who tend to collude (Hu, Offer-
man, and Onderstal, 2011). In a second-price auction, a ring can only reach
a positive collusive gain in equilibrium if the bidders with the two highest
equilibrium bids are members. A low distribution of valuations for the weak
bidder guaranteed that there was a high probability that the two potential
cartel members had the two highest valuations.

3.1 Timing within a session

The experiment consisted of two parts. Both parts were fully computerized
and programmed in z-Tree (Fischbacher, 2007). The first part is of primary
interest, and consisted of 11 periods of the auction game. The first period

11The lowest observed payoff a bidder received in any single period was 301, including
the 800 endowment.

12In only six instances did a bidder bid the maximum permitted. Five of the six cases
were in the PVOnly treatment.
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was played for practice and the remaining 10 periods could count toward
subjects’ earnings. At the end of the session, one period was randomly
chosen to count. Pairs of subjects were randomly rematched anonymously
in each period. In the second part of the experiment, subjects completed
the Holt and Laury (2002) protocol to measure their risk preferences. The
activity within each period is described in Section 3.2.

As the instructions were read out, subjects followed along on their own
printed copies. After subjects were read the instructions for the auction,
they completed a number of control questions to ensure their understanding
of the rules. The instructions and the control questions can be found in
Appendix A and B.13

3.2 Events within an auction period

The sequence of events within a period of the auction game is summarized
below. The stages that appear only when players choose to form a ring are
noted. Since Treatment NoColl precluded collusion, it only included Stages
1, 6 and 7.

1. Subjects learn their private values xi and xj , (as well as their common
value signals yi and yj in the LoVar, HiVar, and PVOnly treatments).

2. Participants answer a yes/no question regarding whether or not they
would like to participate in a prospective bidding ring. The ring is
formed if both strong bidders reply yes. If one or both answer no, no
ring is formed and the game skips to Stage 6.

3. If a ring is formed, the ring members have an opportunity to chat by
computer.14 Players automatically leave the chat by submitting a bid
in the knockout (KO) auction described below. After 90 seconds, they

13The instructions and control questions was identical for all treatments. The exceptions
were the following. (i) The indication of the distribution of types of the strong bidders was
tailored to the actual distributions in effect. (ii) The description of the collusion process
was omitted in NoColl. (iii) The common value was not described in the PVOnly treat-
ment. (iv) The quadratic scoring rule used different parameters in different treatments.
However, the payoff for an exactly correct guess of the other strong bidder’s CV was the
same in all treatments permitting collusion. The Appendix contains the materials for the
LoVar Treatment.

14The chat data was coded by three individuals who did not participate in any of the
sessions, and who were paid a fixed fee of 70 EUR. The instructions to the coders can be
found in Appendix D. If at least two of the three coders interpreted a statement in the
same way, it was entered in the dataset that we used for our analysis.
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receive a warning on their screens asking them to submit their bid.
They must submit a knockout bid to continue to the next stage.

4. There is an incentivized elicitation of bidders’ beliefs about the PV
and CV signals of the other strong bidder. The belief elicitation is
conducted regardless of whether or not a cartel is formed.

5. If a ring is formed, members are informed of the winner and both
knockout bids. Side payments are transferred.

6. The main auction takes place.

7. Players receive feedback about the outcome of the main auction. They
are informed of all bids submitted and their payoff for the period,
except for their earnings from the belief elicitation, which they are not
informed of until the entire experiment has ended.

Bidders’ private value and common value signals were drawn indepen-
dently from each other, and were also independent between one period and
the next. They were drawn from uniform distributions with ranges as indi-
cated in Table 1, which summarizes the parameters in effect in each treat-
ment. Subjects knew their own values and the distributions from which all
subjects’ private information was drawn.

In Stage 3 above, subjects who had agreed to join a bidding ring could
communicate with each other in an unrestricted manner, except that they
were not allowed to signal their identity, they could only send messages
phrased in English, and they could only interact through the computer.
When a player no longer wished to communicate, she entered a bid in the
knockout auction. If at least one prospective cartel member declined to join
the cartel, there was no chat stage.

The knockout auction in Stage 3 proceeded as follows. Each member
of the cartel submitted a sealed bid. The higher bidder won the knockout
auction and thus earned the right to bid in the main auction. The winning
bidder in the knockout auction then transferred an amount of money, equal
to the losing bid, to the other strong bidder.

In Stage 4, after bids were submitted in the knockout auction, but be-
fore the results from the auction were displayed, we elicited player’s beliefs
about the private value and common value signal of the other strong bid-
der. This was required of all subjects, regardless of whether a ring was
formed or not. The payoff was calculated by a simple quadratic scoring
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rule, with a payoff of 200 Coins for a perfect guess.15 That is, the payoff was
determined by function max

{
0, (10000− (xguess − xj)

2)/(50)
}

in PVOnly,
and max

{
0, (20000− (xguess − xj)

2 − (yguess − yj)
2)/(100)

}
in LoVar and

HiVar, where xguess and yguess denote the elicited beliefs.16

In Stage 5, cartel members received information about the knockout
auction. The knockout bids, the side payment, and the identity of the
designated bidder, were displayed on the screen.

The game then proceeded to the main auction in Stage 6. If a cartel
was formed in the period, the designated bidder submitted a bid. The com-
puterized competing weak bidder also submitted a bid equal to her private
value. In the final Stage 7, own submitted bids and own payoff for the auc-
tion game, except for the payoff of the belief elicitation, were displayed on
subject’s screens. That is, at the end of the period, players were informed
of (a) their payoff in the main auction if no ring was formed; and (b) their
total payoff in the main auction and in the knockout auction if they engaged
in collusion.

Subjects’ risk aversion was measured using the Holt and Laury (2002)
protocol.17 Subjects made 10 choices between a low-variance and a high-
variance lottery. The choices took the form of p · l1 + (1− p) · l2 vs. p · h1 +
(1− p) · h2, where h2 > l2 > l1 > h1, and where p varied between 0.1 and
1 with 0.1 increments. Values were set at h1 = 25 Coins, l1 = 400 Coins,
l2 = 500 Coins and h2 = 960 Coins. The full set of 10 choices were presented
on the same screen and subjects could revise their choices before submitting
them. One of the choices was randomly selected to count for the earnings
in this task. The number of safe choices of p · l1 + (1− p) · l2 was taken as
our measure of the risk aversion of the individual.

4 Hypotheses

The hypotheses that are evaluated in the experiment are general patterns
that are implied by the model in Section 2. The model also makes precise
point predictions about bids in both the knockout and main auctions, and
by implication the winning bidders and efficiency levels. However, to expect

15The exact function did not appear on subjects’ instruction sheets, but the functional
forms were explained to subjects if they requested that we do so.

16Quadratic scoring rules are widely used in experimental economics to incentivize belief
elicitation. Brier (1950) shows that they are incentive compatible. See also Selten (1998)
as well as Sonnemans and Offerman (2001). Proper Scoring Rules (PSR) have an extensive
literature. For an overview, see Armantier and Treich (2013).

17The instructions for this task can be found in Appendix C.
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the point predictions from a multi-stage game to accurately characterize
behavior of inexperienced bidders in our view is a very demanding standard.
The experiment was designed with the intent of evaluating a number of
qualitative patterns that emerge from the model. The first prediction of the
model is that efficiency is increased on average by the formation of a bidding
ring.

Hypothesis 1. Forming a bidding ring increases the probability of efficient
allocation.

Hypothesis 1 can be evaluated in two ways. The first is to compare
periods in which cartels were formed and not formed with regard to the
percentage of periods resulting in an inefficient outcome. This comparison
can be conducted for the LoVar and HiVar treatments separately. The sec-
ond way to evaluate Hypothesis 1 is to compare behavior in periods with
a cartel in the HiVar treatment with the NoColl treatment, in which bid-
ding rings were not permitted. While the model predicts greater efficiency
under collusion, it must be recognized that a cartel allows an additional
potential source of inefficiency, potential misallocation during the knockout
auction of the right to bid in the main auction. This can occur if bidders
employ heterogeneous bidding strategies in the knockout auction. Further-
more, knockout auction bids might be influenced by misrepresentation of
private information during the communication stage, if reported common
value signals are believed by other cartel members.

Hypothesis 2 concerns the effect of the spread in the common value
signals. In our model, we have shown that the correlation between common
value uncertainty and the probability of inefficiency also appears when a
cartel is present. It is straightforward to show that the same pattern also
exists when no ring is present.

Hypothesis 2. Greater common value variance has a negative effect on the
efficiency of the assignment of the designated bidder. It also has a nega-
tive effect on allocative efficiency in both the presence and the absence of
collusion.

The third pattern derives from Proposition 1 of the model, which states
that for any private value or common value signal, a bidder finds it advan-
tageous to join the bidding ring. While the model predicts that all players
join a cartel whenever possible, there can be strategic uncertainty about the
behavior of the other ring member during the knockout auction or as a des-
ignated bidder in the main auction. In light of this uncertainty, some players
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may prefer to guarantee their ability to bid freely in the main auction by
not joining a ring.

Hypothesis 3. All bidder types join the ring.

Hypothesis 3 is a stringent prediction and we will say it is supported if
a large majority of individuals join the cartel, the likelihood of joining is
independent of one’s type, and individuals are increasingly likely to join as
the game is repeated.

5 Results

The reporting of the results is organized in the following manner. We first,
in Subsection 5.1, consider how collusion and the variance of the common
value signals influence efficiency, revenue and bid levels. In Subsection 5.2,
we examine the decision to join a cartel. Some additional patterns in the
communication content, beliefs, knockout bids, and behavior in non-collusive
auctions are discussed in Subsection 5.3.

5.1 The effect of collusion on efficiency

Figure 1 shows the average actual and predicted payoffs of the strong and
weak bidders, the revenue to the seller, and the efficiency loss relative to
the maximum possible level. These variables are expressed in percentages
of the maximum possible total surplus. Each of the treatments is displayed
separately, and periods in which collusion did and did not occur are also
distinguished for the treatments that allow for collusion. The panels on the
left illustrate the observed level of these variables and the right side shows
the model’s predictions.18

Figure 1 reveals a number of patterns. The first is that the efficiency
loss is greater than in equilibrium under both collusion and competition.
The efficiency loss is greater under HiVar than in LoVar, both in periods
in which collusion occurs and when it does not. This is consistent with
Hypothesis 2. However, the efficiency loss is greater in collusive than in
competitive periods in both the LoVar and HiVar treatments. Furthermore,
the efficiency loss in the collusive periods of HiVar is greater than in the
directly comparable NoColl treatment. These two patterns indicate a lack

18In the panels on the right side of Figure 1, the averages are taken over the same
periods as those depicted in the corresponding panel on the left of the Figure. Therefore,
comparisons of predicted and actual values of the variables control for the different PV
and CV signal draws in the different periods.
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of support for Hypothesis 1. In PVOnly, the efficiency loss is also higher in
the presence of a cartel than in its absence.

The payoffs to the ring are considerably lower than in equilibrium. Pay-
offs to strong bidders are higher when a cartel forms than when it does not.
The ring is able to extract a larger percentage of total surplus in HiVar than
in LoVar. Seller revenue, as might be expected, follows the opposite pat-
tern. The seller receives much less if a cartel is formed, and receives higher
revenue under LoVar than HiVar. Interestingly, seller revenue is higher and
cartel surplus lower when collusion is interdicted than when it is permitted
but players choose to bid competitively.

Table 2 contains estimates of the effect of collusion on revenue, car-
tel payoffs and efficiency loss, controlling for a number of other variables.
The observed efficiency level is measured in two different ways. The dummy
variable Efficiency Loss, or E.L., is the absolute difference between the max-
imum possible and actual observed welfare. Efficient takes value 1 if the
winner of the auction is the bidder with the highest valuation and 0 other-
wise. The models are applied to Treatments HiVar and NoColl, which have
identical parameters.

The first two columns of the table shows that revenue is increasing in
both the private values and the common value signals of the strong bidders.
Permitting collusion lowers revenue, and revenue tends to increase over time.
Revenue is also greater, the higher the value of the weak bidder. Columns (3)
and (4) indicate the determinants of a bidder i’s payoff. A bidder’s profit is
increasing in his own private value as well as in her own and the other cartel
member’s common value signals, which constitute the three components of
her valuation. A bidder’s payoff is decreasing in the private value of the other
string bidder, as well as in the valuation of the weak bidder, two measures
of the competitiveness of other bidders. Permitting collusion increases a
strong bidder’s earnings. The last four columns of the table reveal that on
average, permitting collusion decreases efficiency, confirming the impression
from Figure 1 and showing a lack of support for Hypothesis 1.

Hypothesis 2 is a claim that the effect of CV uncertainty on efficiency is
negative. This is a consequence of our model that arises with or without a
bidding ring. Our estimates in Table 3 allow us to evaluate the Hypothesis,
while controlling for key variables. The dependent variables are our two
efficiency measures. The first independent variable yH − yL is the range of
possible common value signals, which differ between the LoVar and HiVar
treatments. A greater range significantly reduces efficiency and in both
relevant specifications, and it increases the probability of an inefficient al-
location. Other influences on efficiency are the difference between the two
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Table 3: The effect of CV uncertainty on efficiency, pooled data from the
LoVar and HiVar treatments

(1) (2) (3) (4) (5) (6)
E.A.S. E.A.S. Eff. Eff. E.L. E.L.

yH − yL -0.00078 0.000218 -0.00101∗ 0.000186 0.0473∗ 0.0784∗∗

(0.00042) (0.000268) (0.00042) (0.000270) (0.0239) (0.0269)

|xi − xj | 0.00176∗ 0.0023∗∗∗ 0.00185∗ 0.00233∗∗∗ 0.216∗∗∗ 0.296∗∗∗

(0.0008) (0.00058) (0.00081) (0.000578) (0.0428) (0.0570)

Period -0.0203 0.0148 -0.0388 0.00149 0.732 0.334
(0.0238) (0.0186) (0.0240) (0.0188) (1.303) (1.867)

Risk 0.00760 0.0281 0.00961 0.00728 -1.344 2.498
Aversion (0.0408) (0.0381) (0.0412) (0.0385) (2.411) (3.816)

c -0.00005 -0.00078∗ -0.00022 -0.00174∗∗∗ 0.0536 0.264∗∗∗

(0.0005) (0.00037) (0.00051) (0.00038) (0.0274) (0.0372)

Constant 0.494 -0.392 0.763∗ -0.115 -16.55 -74.02∗∗

(0.317) (0.276) (0.323) (0.278) (17.65) (27.85)

Collusion No Yes No Yes No Yes

Obs. 354 586 354 586 354 586

Random effect probit estimates in (1)-(4). Random effect panel estimates by subject in (5) and
(6). E.A.S.: Efficient ranking of bids or efficient choice of the designated bidder between strong
players. E. L: Efficiency Loss relative to optimum. Eff.: Efficiency, dummy, takes 1 if allocation
is efficient. Robust standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

private values and the valuation of the weak bidder.
Overall, the evidence weakly supports Hypothesis 2. We find that a

larger range of possible common value signals reduces overall efficiency, given
that a cartel is formed. Under competition a larger range lowers the prob-
ability of an efficient allocation as well as the average level of efficiency. A
larger absolute difference in the private values of the two bidders leads to
a greater likelihood of an efficient designated bidder assignment and final
allocation, but a greater average efficiency loss. With a large difference, mis-
assignment of designated bidder or misallocation of the item is less likely,
but more costly when it occurs.
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5.2 The collusion decision

The next prediction of our model, stated as Hypothesis 3, is that all subjects
choose to collude. This implies that the decision to agree to join a ring is
independent of private values, common value signals, and other variables.
In our experiment, collusion was chosen in the vast majority of cases, 78.21
percent of the time in the LoVar treatment, and 82.1 in HiVar.19

Table 4 contains random-effects probit estimates of the determinants of
the decision to collude. The coefficient of composite signal is significant at
the 0.1 or the 5 percent level and negative in all specifications, indicating
that higher types are less inclined to join a ring. The coefficients on xi
and yi reveal that this relationship is true for both the private and common
value components of the composite signal. Higher types exhibit a lower
willingness-to-collude. Risk aversion has an inconsistent effect. Subjects are
less inclined to join in later periods, but the coefficient is significant at the
5 percent level, only in HiVar. Thus, while the model correctly predicts
widespread collusion, it exhibits inaccuracies in that cartel participation
actually declines over time, and is correlated with values and signals.

5.3 Other patterns in the data

In this subsection we investigate four aspects of the data. Subsection 5.3.1
reports on bidding behavior in treatments in which collusion does not occur.
Subsection 5.3.2 concerns communication and truthfulness of information
exchanged between cartel members. The effect of the communication on
beliefs is studied in Subsection 5.3.3. Finally, Subsection 5.3.4 analyzes
knockout bidding strategies.

5.3.1 Bidding behavior when no cartel forms

The regressions reported in Table 5 reveal some determinants of bids in the
main auction when no cartel forms. The estimates confirm that own private
value and common value signal are significant correlates of bids. Prior par-
ticipation in cartels lowers bids in subsequent competitive auctions, perhaps
because of a carry-over of low bidding from the cartel periods. The vari-
able Collusion Percentage is the fraction of the preceding periods in which
the subject was a cartel member. The coefficient estimate for this variable
is negative and significant at 0.1 percent level for all treatments. That is,

19In PVOnly, 70% chose to collude.
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Table 4: Determinants of the Willingness-to-Collude

(1) (2) (3) (4) (5)
LoVar HiVar LoVar HiVar PVOnly

Decision 0.359 0.0892 0.354 0.115 0.0410
in period t− 1 (0.222) (0.332) (0.224) (0.335) (0.273)

si -0.00235∗∗∗ -0.00151∗ -0.00325∗∗∗

(0.000669) (0.000709) (0.000852)

Risk 0.339∗∗ -0.299∗ 0.352∗∗ -0.291∗ -0.00183
Aversion (0.109) (0.132) (0.116) (0.132) (0.131)

Period -0.0199 -0.103∗ -0.0222 -0.105∗ -0.0323
(0.0303) (0.0420) (0.0310) (0.0424) (0.0365)

xi -0.00153∗ -0.00290∗∗

(0.000741) (0.00103)

yi -0.00307∗∗∗ -0.0000602
(0.000791) (0.000503)

Constant 0.807 4.316∗∗∗ 0.870 4.569∗∗∗ 2.785∗∗

(0.600) (1.020) (0.628) (1.040) (0.882)

Observations 504 342 504 342 288

Robust standard errors in parentheses. Composite value equals xi in PVOnly Treatment.

Random effects probit estimates.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 5: Influences on bids in periods with no cartel

(1) (2) (3) (4)
Treatment LowVar HighVar NoColl PVOnly
xi 0.605∗∗∗ 0.315 0.494∗∗∗ 0.721∗∗∗

(0.132) (0.172) (0.0796) (0.0677)

yi 0.279∗∗ 0.236∗ 0.318∗∗∗

(0.105) (0.106) (0.0467)

Risk -6.935 -9.464 -0.920 -31.24
Aversion (10.40) (15.79) (8.325) (20.16)

Period 12.41∗∗ 17.71∗∗ 20.87∗∗∗ 10.83∗∗

(4.575) (6.532) (2.489) (3.786)

Collusion -166.6∗∗∗ -210.8∗ -161.8∗∗

Proportion (43.19) (92.23) (55.49)

Constant 290.0∗∗ 377.3∗ 239.9∗∗∗ 210.1
(97.30) (182.8) (68.48) (112.1)

Observations 210 116 400 152

Random effects panel estimates on competitive bids. Collusion
Percentage: Share of previous periods in which i was ring
member. Robust standard errors are in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

exposure to collusion makes subjects bid less aggressively in competitive
auctions.

Table 5 also shows that bids increase over time in competitive periods
as individuals presumably learn that competitive periods are different from
those in which a cartel forms, and necessitate higher bidding. Learning to
bid higher over time is more rapid in NoColl, in which individuals have more
exposure to competitive auctions. The coefficients on the private value and
the common value signal are greater in NoColl than in the HiVar treatment.
Overall, as illustrated in Figure 1, revenue, bidder surplus, and allocative
efficiency in NoColl are very close to those predicted in our model.20

20The predicted private value coefficients in our theoretical model are 1.1793 in LoVar
and 1.5 in HiVar. Those predicted common value signal coefficients are 0.6255 and 0.75,
respectively.
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Figure 2: Belief updating and its effects

5.3.2 The content of communication

If the strong bidders have agreed to form a cartel, they have the opportunity
to chat. This chat can be used in a cooperative manner to ensure that the
more advantaged bidder wins the knockout auction at an appropriate price.
It can also be used strategically to attempt to convince the other bidder
to bid lower in the subsequent knockout auction. This can be done by
attempting to mislead the other bidder into thinking that one’s common
value signal is lower that it really is, so that the other bidder has more
pessimistic beliefs about her own valuation. The content of communication
in this phase is not verifiable, since at no time do bidders ever learn the
private information of the other cartel member.

Among groups forming a cartel, 90 percent make an explicit attempt
to communicate during the chat stage, in the sense that at least one cartel
member makes a claim about either their private value or common value
signal, or initiates an attempt at an explicit agreement. Among those who
make an attempt to communicate, 62.5 percent manage to reach an agree-
ment or to share private information.

Most ring members make claims about their types in their chat. There
are 457 instances in which a player reports a private value to the other party
and 393 instances of a common value signal report. The influences on these
claims are reported in Table 6. All specifications include the LoVar and
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HiVar treatments.
The coefficients of common value signals are highly significant determi-

nants of the reports of these variables. The other variables in the regression
are not significant, with the exception of the common value variance and
one’s own earnings in the preceding period. Estimates on the constant term
and on yi show that subjects underreport their CV signals. This is con-
sistent with strategic communication, since beliefs about the other bidder’s
common value signals are a component of their beliefs about their own valu-
ation. A lower assessment of the other bidder’s common value signal would
prompt a bidder to bid lower. Risk aversion and earnings in the previous
period are also significant factors, but the estimated effects associated with
these variables are small.

The coefficients of the private value are positive but low, and they are
only significant at 10 percent level. Furthermore, the intercept is substan-
tially above 0. This lack of truthful reporting of private values may reflect
attempts to behave strategically in the belief that keeping one’s private value
information to oneself can be beneficial.

5.3.3 Beliefs

As we have seen, there is widespread misreporting of both private values
and common value signals during the communication stage. The subse-
quent belief elicitation stage allows us to measure whether these reports
were believed.

The two graphs in Figure 2 show Epanechnikov kernel density estimates
of the distribution of the reported and actual distributions of the PV and CV
signals, in both collusive and competitive periods, for the pooled data from
the LoVar and HiVar treatments. The left graph depicts the private value,
while the right one depicts common value beliefs. The distributions illustrate
the absolute differences between elicited beliefs and the corresponding actual
values. The mean difference between actual values and elicited beliefs is
125.4 and 93.4 under competition and collusion for the PV, and 157.7 vs
125.7 for the CV signal. The Kolmogorov-Smirnov test rejects that the
distributions are identical at significance level 0.1 percent. That is, the
performance of subjects in the belief elicitation stage is improved if they
engage in collusion and explicitly communicate, indicating that there is a
leakage of private information during the communication stage.21

21The payoffs in the belief elicitation stage also indicate that collusion improved the
accuracy of beliefs. The mean payoff in the belief elicitation stage was 44.91 under com-
petition and 88.37 under collusion.
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Table 6: Claimed private and common values, pooled data from treatments
LoVar and HiVar

(1) (2) (3) (4)
Claim xi Claim xi Claim yi Claim yi

xi 0.0679 0.0785
(0.0436) (0.0444)

yi 0.574∗∗∗ 0.529∗∗∗

(0.0654) (0.0727)

Period 2.788 3.553 4.200 3.651
(2.129) (2.400) (2.474) (2.772)

Risk Aversion 0.0728 -0.300 12.15∗ 15.02∗

(3.960) (3.999) (6.083) (6.724)

Πt−1 -0.00765 0.112∗∗

(0.0346) (0.0393)

Collusion -16.86 7.219
in t− 1 (14.97) (13.47)

Constant 325.8∗∗∗ 338.0∗∗∗ 32.41 -80.94
(26.90) (45.77) (28.73) (45.69)

Observations 380 360 393 371

Random effect panel estimates by subject. Robust standard errors in
parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Figure 3: Claims, beliefs, and the true distribution of common value signals,
kernel density estimates

The improvement likely stems from the fact that subjects take the claims
of others into account when formulating their own beliefs. However, we have
seen in Subsection 5.3.2 that claims in the communication stage tend to be
highly strategic. Figure 3 shows that these claims are only partially believed.
The upper panels in the Figure compare the submitted beliefs about the
other cartel member’s CV signal to the objective distribution. The panel
on the left contains the data from the LoVar treatment and the one on
the right displays the data from HiVar. They show that the beliefs are on
average unbiased, though beliefs are more concentrated toward the center
of the distribution than they should be. The bottom panels illustrate the
contrast between the claims and the beliefs. The Figure reveals that there
is a tendency for low reports to be disbelieved, as the density of reported
low signals tends to be greater than the density of beliefs.

Table 7 reports estimates of the determinants of beliefs.22 Coefficients
on xj or yj would equal zero if the claims of bidder j were not believed
at all, and would equal 1 if all claims are accepted literally. Clearly, the

22The individuals coding the chat data were instructed to identify certain additional
variables. These included (a) groups in which explicit agreement or disagreement occurred,
(b) claims about one’s own private value or common value signal, (c) suggestions about
one’s own knockout bid or the other cartel member’s knockout bid. The most common of
these events are reports about one’s own PV or CV signals.
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Table 7: Belief updating and its effect

(1) (2) (3) (4) (5)
Belief xj Belief yj Belief xj Belief yj Belief xj

Treatment LoVar LoVar HiVar HiVar PVOnly
Claim xj 0.780∗∗∗ 0.605∗∗∗ 0.656∗∗∗

(0.0683) (0.0675) (0.173)

Claim yj 0.771∗∗∗ 0.649∗∗∗

(0.0425) (0.0875)

Period 1.685 0.393 -5.019 -2.154 -8.835∗∗

(1.970) (1.566) (2.939) (4.333) (2.732)

Risk Aversion 1.464 -2.556 5.315 11.86 5.186
(1.982) (3.285) (6.976) (11.74) (4.698)

Constant 63.04 55.80∗∗ 148.9∗∗∗ 104.8∗∗ 234.4∗

(33.58) (18.81) (34.67) (36.62) (93.26)
Observations 240 238 139 143 60

Random effect panel estimates by subject. Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

coefficients of the communicated private values and common value signals
on beliefs about these variables are significant at conventional levels for all
treatments. This shows that claims are at least partially believed. However,
the coefficients are also all significantly less than one, which means that they
are not taken at face value.

5.3.4 The knockout auction

Our model makes predictions of the bids in the knockout auction and we
compare the observed data to these predictions. Correlates of knockout bids
are identified in the random effects regressions reported in Table 8. The es-
timates show that knockout bids are increasing in one’s own private value,
which is predicted in our model and associated with greater efficiency. How-
ever, the value of the constant is positive, and the coefficients on PV and CV
signal are significantly lower than the model’s prediction. This means that
the bidding function is flatter in its key arguments than predicted.23 Beliefs

23We have run alternative specifications including the own private and common value as
regressors. The estimates are not significant except for the coefficient of yi on the beliefs
about yj , and only in LoVar. The estimated coefficient is low, 0.16.
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about the other cartel member’s common value signal are also correlated
with higher bids, as the model predicts.24

Coefficients of own type and beliefs about the type of the other subject
are significant and consistent with the model. The insignificant effect of the
belief about the PV of the other bidder is also consistent with the model
since this variable does not affect a bidder’s own valuation. The marginal
effect of the private value is lower than 0.2 in all specifications, significantly
lower than in equilibrium.The time trend is significant at the 1 and 5 percent
levels, respectively in the two specifications. In model (4), this corresponds
to an estimated overall increase of 65.1 of the knockout bid on average from
the first to the last period of a session.

The distribution of payoffs between strong bidders is a motivating factor
behind the decision to join the ring. Table 9 contains the average payoffs
of designated and non-designated bidders in the relevant treatments, com-
pared to the predicted levels. High-type bidders have a greater chance to
win the knockout and become designated bidder. The non-designated bid-
der receives the side payment. In the periods in which a ring is formed,
the averages reported in Table 9 show that the designated bidder receives
less than in equilibrium. The opposite is true for the non-designated bid-
der. Comparing the realized payoff of the two ring members, the designated
bidder receives significantly less in PVOnly, marginally less in LoVar and
more in HiVar. These findings may account for the relatively high likelihood
that bidders with high values abstain from collusion, since these bidders are
likely to become designated bidders.

6 Conclusion

Many goods that are sold by auction have a value to bidders that is deter-
mined by both their individual tastes and a component that is only partially
known at the time of bidding. Information that others have about this sec-
ond component is helpful to a bidder in formulating more accurate estimates
about the good’s final value. Under such conditions, inefficiency may arise
because the bidder with the highest valuation may receive a relatively low
common value signal and fail to win the auction. It is well-known that
under such conditions, reducing the uncertainty about the common value
component increases the average efficiency of the allocation.

24The predicted coefficients for own private value are 0.5583 in LowVar and 0.3656 in
HiVar. The predicted coefficients of the common value signal are 0.2778 and 0.1969 in the
same treatments.
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Table 8: The effect of private information and beliefs on knockout bids

(1) (2) (3)
LoVar HiVar PVOnly

xi 0.166∗ 0.169∗∗ 0.269∗

(0.0721) (0.0593) (0.112)

yi 0.0801 0.0462
(0.0465) (0.0275)

Belief 0.0658 0.0503 -0.0119
xj (0.0565) (0.0899) (0.138)

Belief 0.174∗∗ 0.0445
yj (0.0647) (0.0479)

Period 2.507 12.64∗∗∗ 0.630
(3.258) (2.937) (4.494)

Risk Aversion -6.037 4.563 9.033
(7.762) (8.046) (18.61)

Constant 114.0 77.88 86.79
(59.57) (52.64) (166.9)

Observations 332 254 156

Random effect panel estimates by subject.

Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 9: Mean payoffs of the designated and non-designated bidders within
the bidding rings

Designated Bidder Non-designated Bidder
Actual Prediction Actual Prediction

PVOnly 119.43 288.14 204.12 129.60
LoVar 168.72 306.49 180.16 118.43
HiVar 294.13 482.51 229.65 143.04
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One way to decrease the uncertainty about the common value component
is to let bidders collude. Information can be exchanged, bidders can transfer
side payments to each other, and a designated bidder can be chosen in a
manner that increases efficiency. The theoretical model that we propose
describes how this would work. The model describes a situation in which
two bidders have an opportunity to form a cartel and jointly bid against a
weak bidder. A knockout auction determines which bidder is designated to
bid and the side payment the other bidder receives.

Our model makes three main predictions. The first is that efficiency
increases in the presence of a cartel. The second is that an increase in com-
mon value uncertainty decreases the efficiency of the final allocation under
a cartel. The third is that all potential bidders join the cartel, regardless of
their private information.

We report an experiment designed to test the three predictions. We find
that a large majority of individuals do choose to join a cartel. The principal
inaccuracy is a tendency for bidders with higher valuations to sometimes
forego cartel participation, and it appears rational to do so in light of the
relatively small payoffs of designated cartel bidders. Comparison of the
LoVar and HiVar treatments shows that inefficiency is greater in HiVar,
when the common value signal variance is greater, than in LoVar. These
two results are consistent with the model. However, we observe that the
level of inefficiency is actually greater when a cartel forms than when it is
not, indicating that this prediction of the model is not borne out. It appears
that frictions in the collusion process, which involves more stages in which
inefficiency can potentially appear, account for this pattern.

An additional treatment, NoColl, is identical to HiVar except that col-
lusion is not permitted. The NoColl treatment generates higher prices than
the HiVar treatment, even in those trials of HiVar when a cartel was not
formed. This pattern suggests that prior experience with the low prices in a
cartel has a carryover effect that leads to less aggressive bidding and higher
payoffs to bidders in subsequent competitive auctions.

The PVOnly treatment, in which bidder valuations have only a private
value component leads to less cartel formation than the LoVar and HiVar
treatments. This may reflect a recognition on the part of bidders that a
cartel can be helpful to members in learning about their own valuations,
a motivation that does not exist in PVOnly. Indeed, in PVOnly, collusion
lowers efficiency quite substantially.25

25While the PVOnly treatment can be viewed as a special case in which our model
can be applied, it is a setting in which a key element of the model, the common value
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The experiment also identifies a number of consistent behavioral pat-
terns beyond our model’s predictions. Communication between colluding
bidders tends to be strategic, and bidders underreport their common value
signals. These reports tend to be greeted with skepticism and only partially
believed. Nevertheless, reported private values and signals are increasing
in their true values, resulting in a significant improvement of beliefs under
collusion. In the knockout auction, there is some heterogeneity in behavior
between bidders, perhaps reflecting a preference of some bidders to be des-
ignated bidders in the main auction and a preference of some others to leave
the bidding to the other party. Thus, while it is possible that efficiency is
increased by the information exchange within the cartel, it is offset by inef-
ficiencies created by the system of allocation of the role of designated bidder
for the main auction, and of the side payment to the other cartel member.
Our design had features that would enhance the efficiency of the cartel. The
designated bidder was allocated endogenously and communication allowed
for pooling of private information. Despite this, we found that collusion
increases inefficiency.

We are unable to find evidence that allowing collusion can increase inef-
ficiency. Instead, we find that there is a negative effect on efficiency. Allow-
ing collusion hurts sellers, by depressing bids and revenue, even in auctions
where a cartel does not actually form. While bidders gain additional surplus,
this remains below predicted levels. Thus, we find no compelling evidence
arguing in favor of permitting bidders to collude.

component, does not exist.
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Appendices

The appendices are intended as online supplementary material. There are
four appendices. The first consists of the Instructions for the experiment
(Appendix A). The second contains the control questionnaire (Appendix
B). Appendix C reproduce the instructions for the second part of the ex-
periment, in which risk preferences were elicited. The instructions for the
individuals coding the chat data are given in Appendix D.

Appendix A Instructions

The following session is an experiment in decision-making. The instructions
are written here and read out loud before we start. If you follow them and
depending on your decisions, you can earn a considerable amount of money,
which will be transferred to you after the end of the experiment. The amount
of payment you receive depends on your decisions, on the decisions of others,
and on chance. Your ID number for the experiment is the computer ID you
can find next to you. The entire experiment is anonymous, so we will use
this ID to call you when the payments are paid out at the end.

The currency used in the experiment is Coin. All amounts will be ex-
pressed in terms of Coin. The cash payment at the end of the experiment
will be given to you in Euro. The conversion rate is 100 Coins to 1 Euro.
Once the experiment has started, no one is allowed to talk to anybody other
than the experimenter. If you have a question please raise your hand and we
will go to your place. During the entire experiment, please remain seated.

The experiment consists of two parts. Your final payment will be the
sum of your payments for these two parts. In the following you will learn
the details of the first part.

Auction experiment

The experiment will consist of a sequence of 11 rounds in which you partic-
ipate in an auction where you can bid for an object X. Of these 11 rounds,
the first one will be for practice and the other 10 might count towards your
payment. At the beginning of each round, you will begin with an endow-
ment of 800 Coins. A round’s outcome is independent from other rounds.
So, your payment in any given round will not be affected by your or others’
decisions in other rounds.

In each round, you are randomly paired with an anonymous other par-
ticipant in the room. That is, we will never tell you the identity of the
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participant you are paired with. Neither will we tell the other participant
your identity. When a new round starts, new pairs are formed, and everyone
in the room has equal chance to be paired up with you.

Before the auction takes place, you are allowed to communicate with the
other bidder in your group and to make an agreement. The following list
summarizes the timing of each round; you can read the details below.

1. Redemption value: In the first stage you learn values Ayou and Byou

affecting your redemption value. If you acquire a unit of X, you can
redeem it for Coin. The amount of Coins that a unit of X gives you
is called your redemption value.

2. Decision: You are asked about your willingness to cooperate with the
other bidder in your group. If you both reply ’Yes’, you continue with
the Chat stage. In other words, no agreement is made unless both of
you wants to make one.

3. Chat : If you and the other bidder decide to cooperate, you can chat
and make an agreement.

4. Guessing game: You are asked to guess the redemption value of the
other bidder in the group.

5. Agreement : If you and the other bidder decide to cooperate, and make
an agreement, you can read the details of this agreement on your
screen.

6. Auction: The auction takes place.

7. Results: You can read the final results of the round.

Redemption value

In the auction you are bidding for a good called X with the other bidder
and a computerized bidder.

If you acquire the good in the auction, you redeem it for your redemption
value. The redemption value can be different for bidders in the same auction.
Your redemption value will be denoted by Ryou. Now we explain how is it
calculated.

You and the other human bidder are given two random numbers pri-
vately, denoted by A and B. A is between 200 and 600 Coins, B is between
0 and 400 Coins. Your and the other bidder‘s numbers are denoted by Ayou,
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Aother, Byou and Bother. These numbers are integers, and all possible num-
bers have an equal chance of being drawn. All numbers are independently
drawn.

Your redemption value is calculated from these numbers. Before the
auction, you only know Ayou and Byou but you do not know Aother and
Bother. Similarly, the other player knows Aother and Bother, but does not
know Ayouand Byou.

Your redemption value is calculated from Ayou, Byou and Bother as:

Ryou = Ayou +
Byou + Bother

2

Similarly redemption value of the other human bidder is:

Rother = Aother +
Byou + Bother

2

That is, the first component is different for you and the other human bidder.
The second one,

Byou+Bother

2 is the same, and determined by Byou, which only
you can see, and Bother, which only the other bidder can see.

Decision

Before the auction takes place, you are allowed to chat with the other human
player, and you can make an agreement. Participation at the decision stage
depends on your and the other player‘s decision. A question appears in each
round and your answer only affects that particular round.

The following question appears on your screen. ’Do you wish to coop-
erate with the other bidder in your group?’ If you both reply ’Yes’, you
continue with the chat stage. If at least one of you replies ’No’, you proceed
to the guessing game and to the auction. In other words, no agreement is
made unless both of you wants to make one.

Chat

If you both replied ’Yes’ at the decision stage, a chat box and a proposal
box appear. In the chat box you send a message by pressing the [Enter]
button on your keyboard. You have 90 seconds available for chat. During
that time, you are allowed to talk about the numbers you observed (Ayou,
Byou) and you can agree on a strategy for the remainder of the round. The
other player in your group is able to see the message that you send, but
nothing more. So he or she cannot see on the screen whether you write the
truth.
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You are free to discuss whatever you like except: Do not use any words
or phrase which helps to identify you. Only communicate in English. In
case you violate these rules, you must leave the experiment and you receive
no payment.

You leave the chat by making a proposal to other player in your group
next to the text ’Please, make your proposal!’. By clicking OK, you leave the
chat. The purpose of this part of the round is to decide who will participate
in the auction and how much compensation the other participant should get
for not participating.

In the bracket ’Make your proposal’, you are allowed to type a number,
which is not bigger than your endowment. The one making the higher
proposal has to pay the lower of the two amounts (in other words, the
second highest proposal) to the other player, which is deducted from her
endowment. If the numbers are equal, one of you is chosen with equal
chance to do so. If you receive a payment, you do not participate in the
auction, and your bid will be automatically 0. The payoff of this round is:

payoff = endowment + smaller proposal

The other player participates in the auction with the computerized bidder
with:

balance = endowment− smaller proposal

The proposal part can make two things possible for your group. First,
you can share information during chat. Second, you can decide who should
participate in the auction. If an agreement is made, one of you who pays
can have only one opposing bidder, the computer.

Guessing game

The next stage is a guessing game in which everyone participates, even
the pairs who decided not to cooperate. On your screen you can see two
questions and two brackets in which you are asked to write numbers. These
are ’How much do you think Aother is?’ and ’How much do you think Bother

is?’
In the brackets, you are asked to guess the numbers of the other player

in your group. The available information to you is what you can have read
in the instructions and what the other player writes to you during the chat.
There is an extra payment for guessing right. The closer your guesses are to
the actual number, the more you earn. This amount is not added to your
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balance in this round, but it is counted at the end of the experiment if the
round is the one that counts. The maximum you can earn with guessing is
200 Coins, with a perfect guess.

For example, if Aother = 550, Bother = 200 and your guesses are 550
and 200, your payoff is 200 Coins for the guessing game. Your payoff is
determined using the difference between Aother, Bother and your guesses.
Suppose your guesses are 630 and 280 it means your guess was more far
away from Aother, you get 72 Coins. The least you can earn is 0 Coin.

Agreement

Before the auction, a new stage appears, which provides you information
about the outcome of the proposals. This can only be seen by pairs who
decided to cooperate. You can see your new balance and whether you are
allowed to participate in the auction.

Auction

The auction has two or three participants, depending on whether you and
the other player in your group made an agreement. The auction has similar
rules as the proposal part. That is, you are required to make your bids at
the same time. The winner of the auction is the one making the highest bid.
In case of a tie, the winner is chosen randomly among the ones with the
highest bids. The amount paid is the second highest bid submitted. In the
auction stage, you are allowed to submit an integer number in the bracket
’Please, make your bid’, that is at least 0.

The computer submits a number, that is between 0 and 500 Coins.
The highest bidder receives the unit of X being sold and earns his or

her redemption value for it. If you win, your redemption value equals Ryou.
Other participants, who do not win any X, do not pay any Coin and do not
receive any X, so their earnings for the period equal their balance. Thus, if
you win, your payoff is:

yourpayoff = yourbalance− second highest bid +Ryou

= yourbalance− second highest bid +Ayou +
Byou + Bother

2

Let us see an example. Suppose you have cooperated with the other player in
your group and you have given 150 Coins. Your new balance is 800− 150 =
650 Coins. Suppose your values are Ayou = 500 and Byou = 100. You decide
to bid 650. The computer bids 200. The other bidder does not participate,
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so the second highest bid is 200 Coins. You win the auction, pay 200 Coins,
and receive your redemption value. In order to calculate your redemption
value, you also need to know Bother. The only way you can learn it before
the auction is by participating in the Chat round. Even in that case, you
can only see what the other human bidder writes, we do not show you the
actual Bother.

Suppose Bother = 300. So, you redemption value is Ryou = 500 +
300+100

2 = 500+200 = 700. So, your payoff of this round is 650+700−200 =
1150 Coins. If someone does not win the auction, his resulting payoff is
payoff = balance. So, the other player receives 800 + 150 = 950 Coins,
the sum of the endowment and the amount he or she has received by the
agreement.

Results

After all bidders have submitted their bids, the outcome of the auction is
announced. You can read whether you have won, all the submitted bids
and your earnings for the round. You can see this screen even if you did
not participate in the auction. The process is repeated 11 times. The first
round is only practice, whereas one of the remaining 10 counts towards your
payment. At the beginning of the first round which could count, we ask you
to type in your seat number. You can find this number on the separating
wall, and it is between 1-24. We need this in order to make the payments
at the end of the session.

Your payoff and end of session

After the second part of the experiment, you will receive your payments in
cash. The amount you receive for the first part of the experiment is your
payoff from a random round, including the payment of the guessing game of
the same random round. After the 11 rounds of the auction game, you will
participate in a second part of the experiment. Your earnings in the second
part will be added to your final payment.

After the two parts, payments are made anonymously and individually.
Please remain seated until we call you.
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Appendix B Control questions

Please make a choice for each question by encircling (a), (b) or (c).

1. In a round you learn that your numbers are Ayou = 500 and Byou =
200. In the previous round, your number was Ayou = 400 and Byou =
100. In this round

(a) My redemption value is 700, it does not depend on the previous
round.

(b) My redemption value is 500.

(c) I do not know my own redemption value with certainty.

2. Before the chat part, to the question ’Do you wish to cooperate with
the other player in the auction?’, you reply ’Yes’ and the other player
replies ’No’. What does happen next?

(a) We proceed to the auction, since we both need to reply ’yes’ in
order to start the chat and make an agreement.

(b) We proceed to the chat, since I replied ’yes’.

3. At the proposal for making an agreement, you offer 150 Coins, whereas
the other player offers 100 Coins. What does happen next?

(a) We can both participate in the auction and we keep our endow-
ments.

(b) I can participate in the auction but the other player cannot. I pay
100 Coins to the other player, so my new balance is 700 Coins,
my endowment minus what I paid out.

(c) I can participate in the auction, but the other player cannot. I
pay 150 Coins to the other player, so my new balance is 650
Coins, my endowment minus what I paid out.

4. In the auction

(a) there are always three bidders.

(b) there are two or three bidders, but I always participate.

(c) there are two or three bidders, and I do not participate if we
cooperated and I received an amount for my proposal.
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5. You are the winner of the auction and you are required to pay 300
Coins. Previously, you have made an agreement, and paid 100 Coins
to the other player. Your numbers are Ayou = 500 and Byou = 200.
Your payoff for this round

(a) is 800− 100 + 500 + 200− 300 = 1100 Coins.

(b) is 800− 100− 300 = 400 Coins.

(c) you do not know with certainty.
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Appendix C Instruction HL protocol

In this part of the experiment you will be making choices between two
lotteries, such as those represented as ”Option A” and “Option B” below.
The money prizes are determined by the computer equivalent of throwing
a ten-sided die. Each outcome, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, is equally likely.
If you choose Option A in the decision shown below, you will have a 1 in
10 chance of earning 500 Coins and a 9 in 10 chance of earning 400 Coins.
Similarly, Option B offers a 1 in 10 chance of earning 960 Coins and a 9 in
10 chance of earning 25 Coins.
Decision 1:

Option A: 500 Coins if the die is 1 and 400 Coins if the die is 2 - 10.
Option B: 960 Coins if the die is 1 and 25 Coins if the die is 2 - 10.

Each box of the decision table contains a pair of choices between Option A
and Option B. You make your choice by clicking on the “A” or “B“ buttons
on the bottom. Only one option in each box can be selected, and you may
change your decision as you wish before you submit it.
Even though you will make ten decisions, only one of these will end up being
used. The selection of the one to be used depends on the “throw of the die”,
that is, it is determined by the computer’s random number generator. No
decision is any more likely to be used than any other, and you will not
know in advance which one will be selected, so please think about each one
carefully.
For example, suppose that you make all ten decisions and the roll of the die
is 9, then your choice, A or B, for decision 9 would be used and the other
decisions would not be used.
After the random die throw determines the decision box that will be used, a
second random number is drawn that determines the earnings for the option
you chose for that box. In Decision 9 below, for example, a throw of 1, 2,
3, 4, 5, 6, 7, 8, or 9 will result in the higher payoff for the option you chose,
and a throw of 10 will result in the lower payoff.
Decision 9:

Option A: 500 Coins if the die is 1-9 and 400 Coins if the die is 10
Option B: 960 Coins if the die is 1-9 and 25 Coins if the die is 10

For decision 10, the random die throw will not be needed, since the choice
is between amounts of money that are fixed: 500 Coins for Option A and
960 Coins for Option B.
Your earnings in this part of the experiment will be added to your final
payoff.
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Appendix D Instructions chat coding

The following task is part of an experiment in decision-making. The in-
structions are written here. If you follow them, you can earn a considerable
amount of money, which will be transferred to you after completion of the
task. The amount of payment is fixed, 70 EUR. The content of all attached
files is confidential. You are not allowed to share it with anybody other than
the experimenter. If you have a question, please contact us.

The instructions for the coding follow. Attached you can find a MS Excel
file with two spreadsheets, chat and data. Your task is to read the content of
chat and fill in the content of data. You can do this job anytime before the
deadline of December 17, at 17:00. At that point, the spreadsheet must be
complete. After delivering the completed file, you will receive your payment
by bank transfer, which will be sent to your account.

Chat

Spreadsheet chat contains observations from an anonymous economic exper-
iment. The entries are chat messages and identification values. The meaning
of each column is explained below. This database records the chat messages
of participants in experimental sessions.

• Period: This refers to the round in which the chat has taken place.
There were 11 rounds, numbered between 0 and 10. Note that not
every participant had a chat in every round.

• Text: This is a chat message.

• Group: Code number of the group. A group consists of two partici-
pants in a Period.

• Time: The time the message was sent.

• ID: identification number of the participant used (only) in the experi-
ment.

In spreadsheet chat, the entries are ordered such that you can read a
conversation between two participants easily. For example, rows 2, 3 and 4
contain a conversation between subjects 102 and 105 in round 0, with chat
messages in chronological order. Note that not all participants participated
in chat for all periods. In all chats there were exactly two participants, but
it is possible that only one of them has chat entries.
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Data

The second spreadsheet must be filled in using the Chat spreadsheet. Each
row corresponds to a participant with identification ID in a certain Period.
These two variables are already filled in, please do not modify them or
change their order.

There are three cases. A participant with ID in a Period

• has no chat entry in a period. In this case, leave that row empty.
Never delete entries for ID and Period.

• has chat entry, but he or she was the only one communicating. Please
write 1 in the row onesided. In any other case, leave this variable
empty.

• has participated in a chat with two-sided communication. That is,
both participants of the group have sent at least one line.

If a participant has chat entries (case 2 and 3), you need to fill in the
remaining cells. The conversation is about a proposal. After this chat, both
participants in the group made a proposal, which was always a number.
They can refer to this as offer, proposal, payment or bid. This is a decision
made by the participants after the chat.

Furthermore, they mention values, which they refer to as A or B. If in
a conversation they mention only one value without explicitly saying A or
B, you should assume they talk about value A. All participants knew their
own values before the chat.

In the chat, participants mainly talked about these numbers. It is pos-
sible, that a chat contains no mention of some or all of them. You need to
fill in the following. As a general rule, do not write anything in a cell if the
respective information cannot be found in the chat. In each case, the prefix
own refers to chat messages of the participant ID, this is the information the
participant provided. The prefix other always refers to the other participant
in the same group. This is the information the participant received. As a
general rule, if there are multiple numbers for one entry, please type in only
the last one.

• ownproposal : If ID in Period mentions a offer, proposal, payment or
bid with a specific number, please write that number here.

• otherproposal : If the participant receives an offer, please write it here.
Similarly, if there are multiple numbers, write the last one here.
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• ownproposaltoother : If the participant suggests a number what the
other participant should propose, please write it here.

• otherproposaltoown: If the participant is suggested a number, please
write it here.

• ownavalue: Claim about value A.

• otheravalue: Received claim about A.

• ownbvalue: Claim about value B.

• otherbvalue: Received claim about B.

• agreement : Please fill in 1, if an agreement has been reached in the
conversation.

• disagreement : Please fill in 1, if there was a disagreement at the end
of the conversation, and 0 otherwise. Do not fill it in if there is no
chat entry.

• noresponse: Please fill in 1, if there was an attempt to make an agree-
ment, but the conversation ended without explicit agreement or dis-
agreement.

It is possible that there was only a hint about a certain value, but no
precise number. In that case, write down your best guess in that cell, i.e.
the midpoint of an interval, do not leave it empty.

Good luck with finishing the task. If you have any questions, please
write an email to g.seres@tilburguniversity.edu. It is important that you
only send inquiries to this email address, do not discuss any part of this
task with other participants.
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