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Abstract

We study the evolution of cooperation in the indefinitely repeated prisoner’s

dilemma when it is costly for players to adjust their strategy. Our experimental

interface allows subjects to design a comprehensive strategy that then selects ac-

tions for them in every period. We conduct lab experiments in which subjects can

adjust their strategies during a repeated game but may incur a cost for doing so. We

find three main results. First, subjects learn to cooperate more when adjustments

are costless than when they are costly. Second, subjects make more adjustments to

their strategies when adjustments are costless, but they still make adjustments even

when they are costly. Finally, we find that cooperative strategies emerge over time

when adjustments are costless but not when adjustments are costly. These results

highlight that within-game experimentation and learning are critical to the rise of

cooperative behavior. We provide simulations based on an evolutionary algorithm

to support these results.
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1 Introduction

A strategy is defined as a complete plan that specifies what a player would do at any point in a

given interaction. Since it is a complete plan, it is assumed that a player chooses this strategy

before starting the interaction and sticks with it throughout. Implicit in this assumption is that

a player has considered every possible contingency and determined an action to be played in each

case. This may be problematic in repeated games in which the number of possible contingencies

(or histories) grows exponentially as the number of periods of the interaction increases. In this

paper, we distinguish between a permanent strategy and a provisional strategy. In a permanent

strategy, the player carefully considers an action after each history. However, specifying such a

strategy may be costly (since there are a lot of histories to consider), impossible (if the player is

boundedly rational), or not worthwhile (if some histories seem reasonably unlikely). Alternatively,

in a provisional strategy, the player sets some contingencies but may not fully consider his action

after every possible history. Therefore, if something unanticipated happens, then the player may

want to change his strategy during an interaction.1

Unanticipated changes to a strategy can carry a substantial cost (either explicit or implicit). For

example, in an organization, changes to a strategy may require a board meeting, a shareholder vote,

or consultants’ advice. Similarly, conducting a vote on a state, county or municipal proposition,

which specifies or revises a strategy, carries a substantial cost. Lastly, at the individual level,

making changes to the strategy requires additional effort to re-analyze the problem rather than

simply continuing with the current strategy. Such decision-making costs have long been accepted

as significant (Simon, 1957; Shugan, 1980). In all of these examples, though it is costless to follow

the current strategy, revisions during an ongoing interaction are costly. In this paper, we focus on

the role of costly strategy adjustments during ongoing interactions and, therefore, pay particular

attention to provisional strategies (and refer to these as strategies for simplicity).

An ongoing interaction is typically modeled as a repeated game (also referred to as a supergame),

and much work has been done to understand strategies that arise across multiple repeated games

(Dal Bó and Fréchette, 2011; Fudenberg, Rand, and Dreber, 2012; Bigoni, Casari, Skrzypacz, and

Spagnolo, 2015; Dal Bó and Fréchette, 2015). However, to the best of our knowledge, little work

has been done to understand factors that are important within supergames. This paper aims to

identify one such factor. Specifically, we examine whether costly strategy adjustments during an

indefinitely repeated prisoner’s dilemma impact the evolution of cooperation and strategies.

Our experiment contains two treatments – one in which strategy adjustment is costless and

one in which it is costly. The two setups are otherwise identical and include a costless strategy

construction stage before each supergame begins. Furthermore, in both treatments, subjects can

specify equally complex strategies, and we provide a substantial amount of time for them to do

1Consider the following example of a revision to established strategy as a response to an unanticipated event: “Oil
ministers from six Persian Gulf countries are to meet today to set a strategy for dealing with price reductions by
North Sea producers and Nigeria. Algeria has also called for an emergency meeting of the 13-member Organization
of Petroleum Exporting Countries to try to avoid a price war....” – New York Times, Feb 22, 1983.
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so. Thus, because the strategy is set ahead of time, the addition of costs during the supergame

should not affect the outcome unless players adjust their strategy during the supergame. However,

we find different levels of cooperation and different types of strategies when strategy adjustments

are costly compared to when they are costless.

We have three main results from our experiments. First, we find higher levels of cooperation

when strategy adjustments are costless compared to when they are costly. Second, we find that

subjects make more within-supergame strategy adjustments when they are costless but still make

changes to their strategies even when they are costly. Finally, in both treatments, players start

with strategies that favor defection but learn to play more cooperative strategies only when it

is costless. The key takeaway from the experiment is that imposing costs on within-supergame

strategy adjustments restricts subjects’ ability to experiment and learn, which ultimately hinders

the evolution of cooperation.

Our work contributes to three strands of literature. First, we contribute to the growing exper-

imental research that investigates conditions under which cooperation arises in repeated prisoner’s

dilemma games (Dal Bó, 2005; Duffy and Ochs, 2009; Camera and Casari, 2009; Stahl, 2011;

Dal Bó and Fréchette, 2011; Bruttel and Kamecke, 2012; Friedman and Oprea, 2012; Fudenberg,

Rand, and Dreber, 2012; Stahl, 2013; Peysakhovich and Rand, 2013; Honhon and Hyndman, 2015;

Bigoni, Casari, Skrzypacz, and Spagnolo, 2015; Breitmoser, 2015; Dal Bó and Fréchette, 2015; Em-

brey, Fréchette, and Yuksel, 2015; Cason, Lau, and Mui, 2016; Romero and Rosokha, 2017). Dal Bó

and Fréchette (2016) provide a review of the literature on repeated prisoner’s dilemma games. A

closely related paper that does not examine the prisoner’s dilemma, Embrey, Mengel, and Peeters

(2016b), investigates whether strategy revision opportunities affect collusion and strategy choices

in indefinitely repeated games of strategic complements and substitutes. They find that allowing

a unilateral revision opportunity (at a small cost) affects collusive behavior in games of strategic

complements but not in games of strategic substitutes.2

Our goal is unique in that we aim to understand the evolution of cooperation and strategies

across supergames in an indefinitely repeated prisoner’s dilemma in which strategy adjustment is

costly within an interaction. Our experiment uses a modified version of the experimental interface

of Romero and Rosokha (2017). The interface is designed to run lab experiments with high continu-

ation probability and to elicit strategies from the subjects. The flexibility of the elicitation method

allows subjects to create arbitrarily complex strategies, which ensures that they can implement

their desired strategy from the beginning of the supergame and not incur any adjustment costs. If

subjects do choose to change their strategy, then the interface allows them to make these changes

in an intuitive manner in real time during the supergame.We find that when strategy adjustments

are costly, the cooperation rate is significantly lower than when it is not.

The second strand of literature to which our paper contributes is the research in game the-

2Other work has been done to try to understand cooperation in repeated games other than the prisoner’s dilemma.
These include public goods games (Lugovskyy, Puzzello, Sorensen, Walker, and Williams, 2017); games of strategic
complements and substitutes (Embrey, Mengel, and Peeters, 2016a); and trust games (Engle-Warnick and Slonim,
2004, 2006; Casari and Cason, 2009).
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ory and experimental economics that investigates learning in repeated games (see Ho, 2008, for a

review). Models in which players learn over actions often have a difficult time explaining exper-

imentally observed levels of cooperation. However, models in which players learn over strategies

have had more success (Hanaki, Sethi, Erev, and Peterhansl, 2005; Ioannou and Romero, 2014).

When modeling strategy learning, it is not clear whether subjects play a fixed strategy for the entire

supergame and then adjust their strategy between supergames, or whether subjects adjust their

strategies within the supergame. By imposing the strategy adjustment costs within supergames

and allowing free modification of strategies between supergames, our experimental interface allows

us to investigate whether subjects learn by adjusting strategies within a supergame or only across

supergames. We find that this within-game experimentation is critical to cooperation in an indefi-

nitely repeated setting: cooperation is higher when strategy adjustment is costless and lower when

plan adjustment is costly.

Finally, we contribute to a third strand of literature that bridges agent-based computational

economics and human subject experiments (see Duffy, 2006, for a review). Specifically, we conduct

computational simulations based on an established evolutionary algorithm (Holland, 1975) in order

to shed light on the difference in learning dynamics that may arise between the two treatments.

We implement a simple model in which an agent is viewed as a collection of strategies, and one

strategy is chosen to be played. Similar to our experimental design, a cost is incurred when the

previously played strategy is adjusted in favor of another strategy. We find that by imposing an

adjustment cost, we substantially hinder the likelihood that cooperative outcomes are achieved for

a large set of parameter combinations.

The rest of the paper is organized as follows: in Section 2, we present details of the experimental

design. In Section 3, we present the data and main results of the lab experiment. In Section 4,

we consider several computational benchmarks that provide intuition for the main results of the

paper. Finally, in Section 5, we conclude.

2 Experimental Design and Administration

We recruited 138 students for the experiment using ORSEE software (Greiner, 2015) on the campus

of Purdue University. Six sessions of the experiment were administered in April 2016, with the

number of participants varying between 20 and 26. The experiment lasted for 90 minutes, of

which approximately 35 minutes were devoted to the instructions and the quiz. There were no

participant identifiers within the game interface, and participants remained anonymous throughout

the experiment.
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2.1 Experimental Interface

We conducted the experiment using a novel interface that was a modified version of the one used in

Romero and Rosokha (2017).3 The interface allows implementation of the strategy method for long

repeated games and has been shown to match data when subjects make choices directly (Romero

and Rosokha, 2017). The strategy method has been commonly used in experimental economics,

and much work has been undertaken to understand its similarities to and differences from the

game method, also known as the direct-response method (Brandts and Charness, 2011). Unlike the

literature reviewed by Brandts and Charness (2011), we do not aim to compare the strategy method

to the game method. Rather, we focus on environments in which actions have to be implemented

through the strategy.

The interface implements the strategy method via a collection of if-then rules that the partic-

ipants construct, and this collection of rules, which we term a rule set, makes choices for them.

The key feature of the interface is that it allows subjects with minimal programming experience

to design complex strategies in an intuitive manner. Furthermore, subjects can condition on as

many periods as they want, with virtually no restrictions on the type of strategies that they can

construct. Figure 1 presents a screenshot of the interface.

3More information about the interface, including the code, the instructions and the quiz, are available at http:

//jnromero.com/research/strategyChoiceCosts/.
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(a) Unlocked Rules View of Constructor Part of the Screen
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4

(b) Locked Rules View of Constructor Part of the Screen

Figure 1: Interface Screenshot. Notes: (a) Locked rules view of the interface. The screen consists
of four main parts: 1) history of play at the top of the screen; 2) current set of rules in the middle
of the screen; 3) rule constructor at the bottom/bottom-left of the screen; and 4) payoff table at
the bottom-right of the screen. No changes can be made to the rule set while rules are locked. To
unlock the rule constructor, the subject must press the “Click Here To Unlock Rules” button. The
cost to unlock rules is displayed on the button and is added to to the total amount in the top right
once the button is clicked. (b) Unlocked rules view of the constructor part of the interface. The
history, the current rule set, and the payoff table parts of the screen are the same under both views.

Each rule consists of two parts: i) Input Sequence - a sequence of action profiles; and ii) Output

Choice - an action to be played by the subject after the input sequence occurs. Figure 1 displays

some examples of rules. For example, Rule #2 (third rule from the left in the middle of Figure

1 (a)) has an input sequence of (W ,W ), (W ,Y ), (W ,W ) and an output of Y . This means that if
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the subject plays W , W , and W in the last three periods, and the participant that he is paired

with plays W , Y , and W , then this rule will play Y in the next period. The length of the rule

is measured by the length of the input sequence. Thus, rule #2 has a length of 3; rule #5 has a

length of 2; and rule #6 has a length of 1.

There are several ways that subjects can modify their rule sets during the experiment. First,

subjects can use the rule constructor (displayed in Figure 1 (b)) to construct the rules and add

them to the rule set. Second, subjects can delete rules from the rule set by pressing the delete

button next the rule in the rule list. Third, they can copy an existing rule down to the constructor

and create a similar rule by pressing the copy button next to the rule in the rule list. Note that

it is not possible to have two rules with the same input sequence but different outputs; if subjects

to do this, then they get an error message that says “Conflicting rule in set,” and a button that

says “Switch Rule” appears. If subjects press this button, it will delete the conflicting rule from

the rule set and add the rule from the constructor.

As the match progresses, subjects see the history of play across the top of the screen (marker

#1 of Figure 1 (a)). A rule of length n is said to fit the history if the input sequence matches the

last n periods of the history. For example, if the last period of play in the above history (period 14)

is (W ,Y ), and that sequence is also the input for rule #6 (fifth rule from the left in the middle of

Figure 1 (a)), then rule #6 is said to fit the history. If more than one rule fits the history, then the

rule with the longest length will determine the choice. If no rules fit the history, then the “default

rule” (second rule from the left near marker #2 of Figure 1 (a)) will be selected. The default rule is

a memory-0 rule, which is set prior to the start of the first match and can be switched at any time

prior to each supergame or when the rule constructor is unlocked. Additionally, since no history is

available in the first period, we require subjects to specify the “first-period rule,” which selects an

action only in the first period. Similar to the default rule, the first-period rule is set prior to the

start of the first match and can be switched at any time prior to each supergame and when the

rule constructor is unlocked.

2.2 Design Details

Given the relative complexity of the interface, our goal was to make sure that subjects understood

the interface, had a sufficient amount of time, and were able to construct a meaningful strategy

even before the first supergame began. To this end, we took steps that went beyond the typical

experiment. Specifically, upon entering the lab, subjects were randomly assigned to a computer and

given a handout containing the instructions. The experiment proceeded as follows: first, recorded

video and audio instructions were played on a projector at the front of the lab and also displayed

on each computer terminal. Second, subjects played a practice match against a computer that was

playing randomly. Third, subjects completed a ten-question quiz to make sure that they understood

the interface. To ensure that subjects devoted sufficient effort to following the instructions, the

quiz was monetarily incentivized. Fourth, subjects were given ten minutes to construct their initial

strategy. Fifth, the experiment began. Next, we describe each of these steps in more detail.
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2.2.1 Video Instructions

The video instructions took approximately 20 minutes. The video was displayed on each subject’s

computer screen, as well as on the screen at the front of the laboratory. The audio was played on the

speakers from the computer at the front of the laboratory. The video followed the paper instructions

word for word and was read by a computerized voice to ensure a neutral tone. The video provided

an extensive explanation of all the steps of the experiment and an elaborate demonstration of the

experimental interface. Subjects learned whether editing their rule sets would be costly or costless

during these video instructions.

2.2.2 Practice Match

After the instructions, there was a practice match that lasted approximately ten minutes. In the

practice match, subjects played against a computer that was playing randomly. Note that no

information about the actual payoff table had been provided at this point. Furthermore, the payoff

table during the practice match contained all zeros; thus the focus was on being able to construct

and modify the rule set and getting comfortable with the interface, rather than on thinking about

payoffs and the rules to be used in the experiment.

2.2.3 Quiz

After the practice match, there was a quiz to make sure that everyone understood the instructions.

The quiz was incentivized and served two purposes: i) to provide incentives for paying attention

to the instructions; and ii) to isolate interaction and data analysis to the participants who under-

stood the interface. Specifically, each participant could earn $10.00 for answering all ten questions

correctly. If participants made at least one mistake, they would earn $0.00. Upon making the first

mistake, since subjects would not be able to earn the $10.00, their quiz would stop. Subjects were

told that they had ten minutes for the quiz, but this constraint was never binding. Subjects learned

these details before the instructions began.

To isolate the subjects who understood the interface, we decided on the most stringent criteria

and divided the subjects so that the first group consisted of those who received $10.00 for the

quiz (subjects who answered all questions correctly). These subjects were told the number of

participants in their group and that all participants had received $10.00 for the quiz. Thus, they

knew the number of participants in their group and that all participants in the group had an

excellent understanding of the interface. The second group consisted of all subjects who received

$0.00 for the quiz and, at most, one subject who received $10.00 for the quiz (in case an odd number

of subjects received $10.00 for the quiz). Subjects in the second group were told only the number

of participants in their group. We used data only from the first group (74 participants in total) for

the analysis carried out in this paper.4

4A similar experimental interface was also used in Romero and Rosokha (2015), as well as in a pilot for this
experiment (details on pilot experiment in Appendix D). In both previous experiments, we used an incentivized quiz
in which subjects had ten questions and could earn $0.50 if they answered correctly on their first try, $0.25 if they
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2.2.4 Constructing the Initial Set of Rules

After the quiz, subjects were given one minute to focus exclusively on the payoff table to be used

in the experiment. Next, subjects were given ten minutes to construct their initial set of rules.

During that ten minutes, subjects where presented with a split-screen view of the interface (Figure

2). On the left side of the screen, which we named “hypothetical rules,” subjects were able to see

the choice that their hypothetical rules would make for a variety of histories. Note that they would

have to fill in their own histories for consideration. On the right side of the screen, which we named

“Starting Rules,” subjects could store rules for the start of the first match. Thus, subjects could

consider a multitude of “what-if” scenarios without changing their starting set of rules. In this

way, subjects could get comfortable with their rule sets and gain some experience with the game

without actually playing.

answered correctly on their second try and $0.00 if they didn’t get the question right on their first two tries, at which
point they were given a hint and still had to correctly answer the question. We found that most subjects were able
to correctly answer a large percentage of the questions quickly (in about five minutes). However, several subjects
took much longer (up to 20 minutes) to complete the quiz. The subjects that completed the quiz quickly often did
the best, while those that took the longest on the quiz often did the worst. This led to several potential problems:

1. Subjects that make a large number of incorrect guesses may not understand the complex interface.

2. Subjects that did well on the quiz had to wait a long time for a small number of subjects to finish.

3. Subjects that are waiting for others to finish may think that everyone else is taking a long time (even if they
are waiting for only one subject to finish) and, therefore, believe that no one else understands what is going
on.

Based on this previous experience, we designed the quiz with the three corresponding features in an attempt to avoid
the above problems:

1. In order to ensure that all subjects understand the interface, we apply the stringent all-or-nothing incentives.
We then focus our analysis on those subjects that answered all questions correctly.

2. Since the analysis focuses only on the subjects that correctly answered all quiz questions, once a subject
misses a question (and, therefore, his payment has been determined), the quiz ends for him. This ensures that
subjects don’t have to wait a long time for a subject who doesn’t understand to finish the quiz.

3. After all subjects have finished the quiz, they are divided into a high quiz group and a low quiz group. The
high quiz group is told the exact number of subjects that are in their group, and that every subject in their
group correctly answered all questions on the quiz. This ensures that there is common knowledge in the high
quiz group that all subjects in that group understand the interface.

This setup gives us confidence that all the subjects analyzed understand the interface.
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Figure 2: Split-screen screenshot. Notes: To construct the initial set of rules, subjects were pre-
sented with a split-screen view of the interface. On the left side of the screen, labeled “Hypothetical
Rules,” subjects could construct a variety of strategy-history combinations for consideration. On
the right side of the screen, labeled “Starting Rules,” subjects could maintain a “starting” rule set
that they would like to start the experiment with. Subjects could move rules from the left side to
the right side using the Ü button.

Note that an alternative approach —whereby subjects become familiar with the interface

through playing against each other via the direct-response (Dal Bó and Fréchette, 2015)— is not

the best option for our experiment for two reasons. First, the direct-response with costs creates

strategically different incentives for the participants. Specifically, subjects may select their strate-

gies so as to minimize the number of action changes, which directly affects the types of strategies

that subjects choose. Second, our motivation is for scenarios in which direct-responding may not

be practical or feasible to begin with.

2.2.5 Experiment

The steps described in Sections 2.2.1-2.2.4 took approximately 45 to 50 minutes and were imple-

mented so that the analysis could be carried out starting with the first supergame. After these

steps, the experiment began. The experiment consisted of ten supergames. At the beginning of

each supergame, participants were randomly paired and remained in the same pairs until the end

of the supergame. The number of periods in each supergame was determined using a geometric

distribution with a probaiblity of continuation of δ = .98. To ensure a valid comparison, the same
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sequence of random numbers was used in every session, resulting in the same number of periods

within each supergame (Figure 3 (a)). Figure 3 (b) displays the stage game used in our experiment.

Supergame:

Number of Periods:

1 2 3 4 5 6 7 8 9 10

46 36 52 85 60 7 68 41 44 42

(a) Supergame Lengths

38,38 12,50

50,12 25,25

(b) Stage Game

Figure 3: Supergame Details.

Prior to each supergame (including the first one), subjects had one minute to make changes

to their strategies with no costs. Once a supergame began, subjects had one minute per period

to make changes to their rules and to confirm their action (they were given a ten-second warning

before their time expired in a given period). On the history section of the screen, subjects could

see a preview of the action that their current rule set would play in the next period. To confirm an

action, subjects had to click the preview of their next-period action. They were required to lock

the rule constructor before confirming their action. If a subject failed to confirm the action within

a minute, the rule constructor was locked automatically, the action was confirmed automatically,

and the experiment proceeded to the next period. Once both participants in a pair confirmed their

actions, the game proceeded to the next period. In practice, the one-minute time limit was rarely

reached, and supergames proceeded relatively quickly.

By providing subjects the freedom to modify their strategies within each period for a whole

minute (if they chose to do so), we gave up some control over the duration of the experiment. This

resulted in a situation in which some matches proceeded more slowly than others, and in two of

the sessions, we had to stop the experiment before reaching the tenth supergame (one session after

supergame 7 and another session after supergame 8).

2.3 Treatments

The experiment consisted of two between-subject treatments: costless strategy adjustment (C = 0)

and costly strategy adjustment (C = 250). In the costless strategy adjustment treatment, subjects

incurred a cost of C = 0 for changing their strategy during the supergame. In the costly strategy

adjustment treatment, subjects incurred a cost of C = 250 for changing their strategy during the

supergame.5 To make a change during the supergame, the subject needed to click the “unlock

5The cost of editing the rule set was set to C = 250, which is five times the highest stage game payoff, 6.5 times
the cooperative payoff, and ten times the stage game equilibrium payoff. We chose this based on a pilot experiment
that we ran and describe in Appendix D. The chosen cost is high enough that it will have a substantial impact on
expected future earnings, but low enough that a subject still can benefit from making a change in expectation. For
example, if subject #1 is playing ALLC and subject #2 is playing ALLD, then subject #1 would get an expected
benefit of 650 by switching to ALLD, so the cost of editing the rule set is 38% of that benefit. Based on the pilot
and these calculations, the chosen cost is high enough to impact the decision to make the adjustment, while not so
prohibitively high as to make any adjustment not worthwhile.
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rules” button, which would cause the rule constructor to be uncovered (marker #3 in Figure 1(a)

would change to marker #3 in Figure 1(b)). The subject could then freely edit his rules until

either i) he clicked the “lock rules” button, or ii) the allotted time for the period expired. Subjects

incurred the cost every time they clicked the “unlock rules” button and, therefore, could incur

multiple costs in the same period. In the C = 0 treatment, subjects still had to click the “unlock

rules” button but incurred zero cost for doing so.

Stage Game

Payoff

50,12

38,38 12,50

25,25

C D

C

D

Treatment

C = 0

C = 250

Continuation

Probability

δ = .98

δ = .98

Sessions

3

3

N. Sub.

38

36

Description

Costless strategy adjust-

ment within supergames

Costly strategy adjust-

ment within supergames

Table 1: Treatments summary

Table 1 presents a summary of the two treatments. To reiterate two points: i) the only difference

between the treatments is whether or not strategy adjustment during the supergame is costly; and

ii) in both treatments, subjects had a chance to construct and modify strategies at no cost for the

ten minutes before the start of the first supergame, and for one minute before each subsequent

supergame. Therefore, if subjects make no changes to their strategies during the supergame, then

the two treatments should give the same results, as the cost is only incurred for making changes

within a supergame.

3 Results

Recall that in order to change the set of rules, the subjects need to click an unlock button. Not

surprisingly, we find a significantly higher number of unlocks in the C = 0 treatment than in the

C = 250 treatment (2.37 unlocks per subject per supergame in the C = 0 treatment vs. 0.18 unlocks

per subject per supergame in the C = 250 treatment). The main results of this paper examine the

effect that this difference has on subjects’ ability to learn and cooperate. In Section 3.1, we present

the results on aggregate cooperation observed during our experiment. In Section 3.2, we examine

how the unlock cost affects subjects’ ability to experiment within and across supergames. In Section

3.3, we examine strategies that subjects use and how they change throughout the experiment.
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3.1 Cooperation

(a) Realized Cooperation (b) Simulated Cooperation
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Figure 4: Cooperation Rate Across Supergames. Notes: (a) Unit of observation is subject’s
realized average cooperation over all periods in the supergame. (b) Unit of observation is subject’s
simulated average cooperation over 50 periods. Cooperation is simulated using subjects’ rule sets
taken at the beginning of each supergame. The simulations are run with all possible matchings,
so each subject is matched with every other subject for a total of n(n − 1) pairs. The number
inside the circle/rectangle represents the number of subjects. 95% bootstrap confidence intervals
are superimposed. Supergames 8-10 in the C = 0 treatments have fewer observations because some
sessions were stopped due to time.

Figure 4 and Table 2 give information about the cooperation rates in the two treatments. The co-

operation rate is defined as the percentage of a periods that a subject cooperated over a given range

of periods. Figure 4 (a) presents the evolution of cooperation across supergames in our experiment.

Each point represents the average cooperation rate among all subjects over the corresponding su-

pergame. Figure 4 (b) presents the evolution of cooperation simulated using subjects’ rule sets

taken at the beginning of each supergame. Table 2 presents a further breakdown of cooperation

rates within the supergame. Cooperation rates are provided for the first period, for the first four

periods, for the last four periods, and for all periods for the different treatments during the early

stages (supergames 1-5) and the later stages of the experiment (supergames 6-10). In the table,

we provide bootstrapped standard errors, as well as results of the probit regressions with standard

errors clustered at the session level. Figure 4 and Table 2 yield the following result:

Result 1 Cooperation is higher when rule set adjustment is costless (C = 0) than when rule set

adjustment is costly (C = 250).
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Supergames 1-5

C = 0

First

0.553
(0.036)

∼

First 4

0.425
(0.025)

∼

Last 4

0.332
(0.031)

∼

All

0.359
(0.026)

∼

C = 250 0.522
(0.037)

0.349
(0.026)

0.211
(0.025)

0.233
(0.024)

Supergames 6-10

First

0.713
(0.038)

>

First 4

0.649
(0.033)

≫

Last 4

0.528
(0.04)

�

All

0.573
(0.035)

�

0.528
(0.037)

0.344
(0.028)

0.257
(0.03)

0.272
(0.029)

Periods:

Table 2: Average Cooperation. Notes: Unit of observation is subject’s realized average cooperation
rate. Bootstrapped standard errors are in parentheses. Tests are carried out using probit regressions
with standard errors clustered at the session level. >, �, and ≫ denote significance at the 0.10,
0.05, and 0.01 levels, respectively.

Result 1, the main result of this paper, states that cooperation is higher when no cost is incurred

to adjust the rule set (C = 0) than when a cost is incurred to adjust the rule set (C = 250). Table

2 shows that the difference in cooperation rates (over the last four periods and all periods) between

the C = 0 and C = 250 treatments is significant at the 0.05 level in the later stages (supergames

6-10). In addition, Figure 4(a) shows that the realized average individual cooperation rate is higher

in the C = 0 treatment in all supergames, except for supergame 4 and Figure 4(b) shows that

simulated average individual cooperation rate is higher in the C = 0 treatment in all supergames,

except for supergame 2.

We also find that cooperation increases across supergames when C = 0 and stays constant when

C = 250. This can be seen by comparing cooperation in the C = 0 treatment over supergames 1-5

(0.359) to that in supergames 6-10 (0.573), which is significant (p-value 0.001) using a matched-

pair randomization test. In contrast, in the C = 250 treatment, cooperation is not significantly

different in supergames 1-5 (0.233) versus supergames 6-10 (0.272, p-value 0.441 using a matched-

pair randomization test). This can also be seen in Figure 4, as the C = 0 line is trending upward,

while the C = 250 line is relatively flat.

3.2 Within Supergame Adjustments

To understand what is causing the difference in cooperation between the two treatments, we examine

adjustments within the supergame. We find that, even when it is costly, subjects make changes to

their rule sets during the supergame, which highlights the importance of adjustments during long

repeated interactions. In addition, we find significantly more unlocks and significantly larger payoff

changes during the supergame in the C = 0 treatment as compared to the C = 250 treatment. All

of this suggests that more experimentation and easier adjustments to the strategies could be one

of the causes of the higher level of cooperation in the C = 0 treatment.
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Figure 5: Unlocks Per Period. Notes: 95% bootstrap confidence intervals are superimposed. The
unit of observation is number of unlocks per 50 periods for each subject-supergame. The number
inside circle/rectangle represents the number of units of observation in each supergame.

Figure 5 presents the average number of times per period that subjects click the unlock button

for each supergame. The figure shows that the number of times that subjects unlock the rule

constructor is significantly higher in the C = 0 treatment than in the C = 250 treatment in

each supergame. In addition, the figure suggests that the number of unlocks is decreasing across

supergames in both treatments. More precisely, the average number of unlocks per 50 periods in

the first five supergames versus the last five supergames is 3.16 compared to 2.07 in the C = 0

treatment (p-value=.010) and 0.29 compared to 0.10 in the C = 250 treatment (p-value=.046).6

Finally, the figure shows that even when unlocking is costly, subjects still choose to unlock the rule

constructor within the supergame. (There were 64 unlocks in the C = 250 treatment across all

supergames.) These results demonstrate that subjects are unlocking the rule constructor while the

supergame is progressing, especially in the C = 0 treatment.

Though Figure 5 does provide evidence that subjects are unlocking the rule constructor within

the supergame, it may not be sufficient evidence that subjects have actually changed their strategies

within the supergame. In order to determine whether subjects are changing their strategies within

the supergame, we consider the three possible scenarios that could occur after a subject clicks the

unlock button:

• Scenario #1: A subject unlocked the rule constructor and made an adjustment to his rule

set in order to change his underlying strategy.

• Scenario #2: A subject unlocked the rule constructor but did not make any adjustments

to his rule set, and, therefore, made no change to his underlying strategy.

• Scenario #3: A subject unlocked the rule constructor and made an adjustment to the rule

6p-values are obtained using a non-parametric matched-pairs randomization test.
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set, but only to implement his underlying strategy. An extreme example of this would be

a subject who fully intends to play the Alternator strategy, and does this by unlocking the

rules in every period and changing only the default rule. This subject would appear to have

many unlocks, while the underlying strategy would stay the same.

In Scenario #1, subjects are changing their strategies, while in scenarios #2 and #3, they are

not. Scenario #3 is particularly problematic because it cannot be distinguished from Scenario #1

in the data. Thus, looking solely at the number of unlocks may be overstating the number of actual

strategy changes.

Given that the number of unlocks may overstate the number of strategy adjustments within

the supergame, we next turn to joint payoffs as additional evidence of adjustments made within

the supergame. If subjects use relatively simple strategies (e.g., those that can be represented by

one or two state automata) and do not change their strategies within the supergame, then play will

converge to a deterministic sequence of action profiles after the first several periods. Therefore, the

average joint-payoff will not change from periods 4-15 of the supergame to the last 12 periods of the

supergame.7 Note that this is true even if the two problematic scenarios (Scenarios #2 and #3)

stated above occur. Alternatively, if subjects use relatively simple strategies, but they change their

strategies within the supergame, then the average joint-payoff may be different in periods 4-15 of

the supergame when compared to the last 12 periods of the supergame. For example, consider a

supergame of length 50 in which player 1 plays the TFT strategy, and player 2 starts by playing the

TFT strategy for the first 20 periods, but then switches to the ALLD strategy for the remaining

periods. In this case, the average payoff will be 38 for each player in periods 4-15 but only 25 for

each player in the last 12 periods of the supergame.

Figure 6 examines the change in average payoffs from the beginning to the end of the supergame.

Panel (a) shows the change in joint average payoffs from periods 4-15 to the last 12 periods of

each supergame. The length of the arrow indicates the magnitude of the change in payoff from

the beginning to the end of the supergame. A green arrow denotes a pair that had a Pareto

improvement. Pairs that had no change are denoted with a circle (the relative size of the circle

captures the number of pairs at that point). Panel (b) compares the magnitude of these changes

between the two treatments.

7Previous literature on indefinitely repeated prisoner’s dilemma games has suggested that a majority of players use
memory-1 strategies (Dal Bó and Fréchette, 2016). If both players use memory-1 strategies, then play will converge
to a deterministic pattern of action profiles of length 1, 2, 3 or 4 by, at the latest, the fourth period of the supergame.
In addition, a sequence with a pattern of length 1, 2, 3 or 4 will always give the same average payoff over a block of
12 periods. Therefore, we compare average payoff in periods 4-15 with the average payoff in the last 12 periods of
the supergame.
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Figure 6: Payoff Changes Within Supergames. Notes: (a) The arrows denote the change from the
average joint payoff in periods 4-15 to the last 12 periods. Green arrows highlight those pairs that
had strict increases in both payoffs from periods 4-15 to the last 12 periods of a given supergame.
The circles represent pairs that had no change in payoff, with the relative size indicating the number
of subjects at a given point. (b) Cumulative distribution of the change magnitude from the average
joint payoffs. C = 0 is in blue. C = 250 is in red. Supergame 6 is omitted because it had only seven
periods and, therefore, trivially would lead to no change in payoff. All other supergames contained
at least 27 periods, which ensured that there was no overlap between periods 4-15 and the last 12
periods of the supergame.

Figure 6 provides evidence that subjects in the C = 0 treatment change their strategies more

than the subjects in the C = 250 treatment. This is evidenced by the significantly larger number

of arrows with positive length in each supergame of the C = 0 treatment (16, 13, 12, 12, 14, 10,

respectively, or 68% of all pairs) when compared to the C = 250 treatment (10, 9, 5, 9, 10, 5,

respectively, or 45% of all pairs, p-value < 0.001, using a non-parametric permutation test). In

addition to the higher number of arrows, the bottom panel shows that the arrows also have a

greater magnitude in the C = 0 treatment than in the C = 250 treatment. To confirm, we find

that the average magnitude in the C = 0 treatment (0.48) is significantly higher than the average
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magnitude in the C = 250 treatment (0.20, p-value < .001), using a non-parametric permutation

test. These findings are summarized in Result 2.

Result 2 Subjects make changes to their strategies within the supergame in both treatments. Sig-

nificantly more of these changes occur when rule set adjustment is costless (C = 0) than when rule

set adjustment is costly (C = 250).

Result #2 states that subjects make substantial changes to their strategies within an ongoing

interaction, and significantly more changes occur in the C = 0 treatment. In the C = 250 treatment,

despite the cost of unlocking the rule set—five times the highest stage game payoff—subjects still

unlocked their rule sets 64 times in that treatment. The fact that subjects were willing to incur this

substantial cost to change their rule set suggests that changing the rule set during the interaction

was important to them. In the C = 0 treatment, we find significantly more changes to the strategies

than in the C = 250 treatment. This is shown by the significantly higher number of times that

subjects unlocked their rule sets, as well as significantly more and significantly larger changes in

joint payoffs from the beginning to the end of the supergame.

3.3 Discussion of Strategies

Although the interface provides a unique way to elicit strategies, this experiment is not designed

to investigate the strategies. First, we cannot necessarily rely on the constructed strategies in the

C = 0 treatment, as there is no explicit incentive for subjects to construct strategies. Second,

the evidence that subjects modify their strategies within a supergame means that the estimation

results should be interpreted with caution. Despite these caveats, we still may be able to get some

idea of the strategies that people play by looking at rules and estimating strategies. In Section

3.3.1, we provide data on the number and type of rules constructed in the two treatments, and in

Section 3.3.2, we estimate strategies from the data using the maximum likelihood approach.

3.3.1 Rules In Set

Figure 7 presents the total number of rules across supergames (panel a) and the number of rules

by memory length (panel b). We find no difference between the treatments in either the number

or the length of rules.
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Figure 7: Number of Rules in Set.

Next, we take a more in-depth look at which rules are constructed in each treatment. Figure 8

presents the proportion of subjects having the memory-0 and memory-1 rules at the beginning of

each supergame.
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Figure 8: Proportion of Memory-1 Rules. Notes: The proportion of each of the memory-0 and
memory-1 rules at the beginning of each supergame. Blue squares denote C = 0 treatment. Red
circles denote C = 250 treatment. Dashed line denotes 50%.

The main difference between the two treatments is that the proportion of CC → C and → C

rules increases across supergames in the C = 0 treatment (0.39 to 0.66 and 0.24 to 0.37, respec-

tively), while the proportion of corresponding rules in the C = 250 treatment stays largely the
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same (0.44 to 0.5 and 0.17 to 0.19, respectively). However, looking at rules by themselves may not

be sufficient because multiple combinations of rules can comprise the same strategy (for example,

subjects can make TFT with either {C(first), → C, DD → D, CD → D} or {C(first), → D,

CC → C, DC → C}). Next, to get a better idea about the complete strategies that subjects

play, we use the strategy frequency estimation method (Dal Bó and Fréchette, 2011). Note that

we implement a method that infers strategies from observed actions rather than from constructed

rules (as done in Romero and Rosokha (2017)), because there are no explicit incentives to construct

a strategy with rules in the C = 0 treatment.

3.3.2 Strategies

In this section, we use the maximum likelihood estimation approach (Dal Bó and Fréchette, 2011)

to find the most likely strategies among the population, given the observed action choices. As noted

earlier, all sessions contain at least seven supergames, but some of the sessions were stopped early

due to time constraints. Therefore, for the analysis, we partitioned the data into two sets of three

supergames: early stages (supergames 1-3) and late stages (supergames 5-7).8

Table 3 presents frequencies estimated for the full 20-strategy set from Fudenberg, Rand, and

Dreber (2012). Bootstrapped standard errors are calculated by drawing 100 random samples (with

replacement) of the appropriate size, estimating the maximum likelihood estimates of the strategy

frequencies corresponding to each of these samples, and then calculating the standard deviation of

the sampling distribution (Efron and Tibshirani, 1986).
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1-3 0 0.26 ***

(0.08)
0.14 **

(0.07)
0.16 **

(0.07)
0.08 *

(0.05)
0.18 **

(0.08)
0.03
(0.03)

0.08 *

(0.05)
0.00
(0.00)

0.05
(0.05)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.84 0.38 38

250 0.45 ***

(0.10)
0.15 **

(0.07)
0.14 **

(0.08)
0.10 **

(0.05)
0.03
(0.03)

0.00
(0.00)

0.00
(0.00)

0.06 *

(0.04)
0.00
(0.01)

0.03
(0.03)

0.02
(0.03)

0.00
(0.00)

0.90 0.20 36

5-7 0 0.18 ***

(0.06)
0.36 ***

(0.09)
0.00
(0.00)

0.03
(0.03)

0.04
(0.04)

0.13 *

(0.08)
0.04
(0.04)

0.06
(0.05)

0.00
(0.02)

0.07 *

(0.05)
0.00
(0.00)

0.05 *

(0.03)
0.91 0.53 38

250 0.39 ***

(0.08)
0.17 *

(0.10)
0.17 *

(0.12)
0.10 **

(0.05)
0.01
(0.02)

0.00
(0.00)

0.00
(0.00)

0.00
(0.03)

0.06 *

(0.05)
0.00
(0.00)

0.07 *

(0.05)
0.00
(0.00)

0.94 0.26 36

Table 3: MLE Strategy Estimates. Notes: Bootstrapped standard errors are in parentheses. *, **,
***, denote significance at the 0.10, 0.05, and 0.01 levels, respectively.

We find that subjects relied predominantly on memory-1 strategies (AllD, TFT, Grim, False

Cooperator, ETFT, ALLC). For supergames 1-3, the cumulative proportions of memory-1 strategies

are 0.82 and 0.90 for the C = 0 and C = 250 treatments, respectively. For supergames 5-7, the

cumulative proportions of memory-1 strategies are 0.68 and 0.83 for the C = 0 and C = 250

8We chose this partition because it is the partition with the largest number of supergames and no overlap, given
our seven supergames of complete data.
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treatments, respectively. Furthermore, our results are consistent with Dal Bó and Fréchette (2016),

who review 17 separate treatments (across six studies) and find that in 15 of them the majority of

subjects use one of the three simple commonly observed strategies (ALLD, TFT, GRIM).

The main observation from the rules and the MLE estimates is summarized in the result below:

Result 3 Subjects develop cooperative strategies when adjusting the rule set is costless (C = 0) but

not when adjusting the rule set is costly (C = 250).

Result #3 states that the evolution of strategies is different in the two treatments. Though

subjects play less-cooperative strategies in the early stages of both treatments, more-cooperative

strategies arise when it is costless to adjust strategies (C = 0), and less-cooperative strategies

prevail when it is costly to adjust strategies (C = 250). More specifically, the most common

strategies in supergames 1-3 of the C = 0 treatment are less cooperative (AllD 0.26, Grim 0.16,

False Cooperator 0.08 and Exploitative Tit For Tat 0.18), while more-cooperative strategies are less

prevalent (Tit For Tat 0.14, Lenient Grim 2 0.08 and Tit For 2 Tats 0.03). In supergames 5-7 of the

C = 0 treatment, subjects shift away from the less-cooperative strategies (AllD 0.18, Grim 0.00,

False Cooperator 0.03, and Exploitative Tit For Tat 0.04) and towards more-cooperative strategies

(Tit For Tat 0.36, Tit For 2 Tats 0.13, and ALLC 0.07). Meanwhile, in the C = 250 treatment,

the three most common strategies are the same between supergames 1-3 (ALLD 0.45, Grim 0.14,

False Cooperator 0.10) and supergames 5-7 (ALLD 0.39, Grim 0.17, False Cooperator 0.10).

To better show this learning, Figure 9 displays MLE estimates for groups of three supergames

over time. For expositional purposes, we classified strategies into six types: AllDs, ETFTs, Grims,

TFTs, AllC and Alternator. The leftmost entries in the figure correspond to supergames 1-3 in

Table 3, and the entries labeled 5-7 correspond to supergames 5-7 in Table 3. Panel (a) shows

the evolution of strategy types for the C = 0 treatment. In the C = 0 treatment, the fraction of

TFTs steadily increases (from 0.17 to 0.62), while AllDs and Grims steadily decrease (from 0.38

to 0.22 and from 0.27 to 0.04, respectively). Panel (b) shows the evolution of strategy types for

the C = 250 treatment. In the C = 250 treatment, the fraction of AllDs remains roughly at 0.50

throughout, while the fractions of Grims and TFTs take up the other 0.50.
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Figure 9: Evolution of Strategies. Notes: MLE estimation is carried out for each of the supergame
sets: 1-3, 2-4, ... , 8-10. ALLDs include ALLD and False Cooperator; ETFTs include Exp. Tit For
Tat and Exp. Tit for 2 Tats; Grims include Grim, Lenient Grim 2, Lenient Grim 3; TFTs include
Tit For Tat, Tit for 2 Tats, Tit for 3 Tats, 2 Tits for 1 tat, WSLS, WSLS 2 Puns.

Strategy estimates corroborate Result #1 in both cooperation levels and cooperation dynamics

throughout the experiment. Specifically, consistent with the difference in cooperation rates, subjects

in the C = 0 treatment use more-cooperative strategies, such as Tit For Tat, more frequently,

and less-cooperative strategies, such as ALLD, less frequently than in the C = 250 treatment.

Additionally, consistent with the evolution of cooperation, subjects in the C = 0 treatment learn

to play more-cooperative strategies towards the second half of the experiment.

4 Simulations

In this section, we conduct a simulation exercise to provide further intuition about the role of

adjustment costs in the learning process. In particular, we use the Genetic Algorithm approach

(Holland, 1975) to model the strategy selection and adjustment process. We chose this approach for

several reasons. First, the design of the interface fits well with the way that chromosomes typically

are encoded with the genetic algorithm. Second, genetic algorithms have been successfully applied

to model learning in many economic environments (e.g., Andreoni and Miller, 1995; Bullard and

Duffy, 1999). Third, genetic algorithms have been shown to be a good match for behavioral regu-

larities in human subject experiments (e.g., Arifovic, 1994; Duffy, 2006). Though the model does

not fit the experimental environment exactly, the simplified environment still yields some intuition

about the effect of costs on learning. In particular, higher costs lead to less experimentation, which

hinders subjects’ ability to learn to cooperate.

4.1 Genetic Algorithm Details

A chromosome, a binary string of length l, represents a strategy. We relate each chromosome to a

strategy in our experiment as follows: each bit of a chromosome represents an output of a single
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rule.9 Given that subjects rely primarily on memory-1 strategies, we limit our analysis in this paper

to memory-1 strategies. An additional benefit of this simplifying assumption is that computational

time declines substantially. Thus, we set the number of bits in a chromosome to be l = 5.

We set each bit to represent an output for one of five possible inputs: the first bit is the output

of the first-period rule; the second bit is the output of a rule with an input of CC; the third bit is

the output of a rule with an input of CD; the fourth bit is the output of a rule with an input of

DC; and the fifth bit is the output of a rule with an input of DD. Figure 10 presents an example

of three chromosomes that correspond to three of the frequent strategies in our experiment.

Chromosome

0 0 1 0 1

0 0 1 1 1

0 0 1 1 0

Rule Set

C C

C

C C

D

D D

C

C D

D

D

C C

C

C C

D

D D

C

D D

D

D

C C

C

C C

D

D D

C

D D

D

C

Strategy

TFT

Grim

WSLS

Figure 10: Examples Of Chromosomes Representing Memory-1 Strategies Notes: The first bit is
the output of the first-period rule; the second bit is the output of a rule with an input of CC; the
third bit is the output of a rule with an input of CD; the fourth bit is the output of a rule with an
input of DC; and the fifth bit is the output of a rule with an input of DD.

A population of chromosomes, At, represents a collection of strategies that a subject considers

in generation t. The population of chromosomes evolves over time using three genetic operators –

reproduction, mutation, and crossover. Reproduction makes copies of a chromosome i with prob-

ability pi (defined below). Mutation randomly changes the value of each bit within a chromosome

with probability pmut. Crossover exchanges the parts of k pairs of randomly selected chromosomes.

The subject chooses one strategy from the set At in each generation. In the subsequent gen-

eration, if a subject wants to switch to another strategy, then he would incur a cost C. This

adjustment cost influences the evolutionary learning process through the reproduction operator.

Specifically, the probability of choosing a chromosome i will depend on two parts: i) the fitness, fi,

which measures the average payoff against all other chromosomes in At:

fi =
1

|At| − 1

∑
j∈At/{i}

πi (i, j) ,

9A more general approach would model both the input and the output of a rule using the genetic algorithm. We
leave this for future research.
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where πi(i, j) is the total payoff over 50 periods for strategy i when it is matched with strategy j;

and ii) the cost, ci, associated with selecting that chromosome:

ci =

{
0 if i was chosen last generation

−C if i was not chosen last generation

We assume the logit process, such that the probability that a chromosome i ∈ At is selected to

the next generation is

pi =
eλ∗(fi+ci)∑

j∈At

eλ∗(fj+cj)
,

where λ determines how stringent the selection is from generation t to generation t+ 1. Figure 11

presents the summary details of the algorithm.

Algorithm 1 Incorporating Costs into Genetic Algorithm

1: Initialize A0 of n chromosomes and randomly label one as “chosen”
2: For t = 0 to T do
3: For all i ∈ At do

4: Evaluate fitness, fi
5: Determine cost, ci
6: Select n chromosomes to At+1 // Reproduction

7: Probability that i ∈ At is selected to At+1 is pi
8: Chromosome with highest (fi + ci) is labeled as “chosen”

9: Mutate each bit of every i ∈ At+1 with probability pmut // Mutation
10: Exchange parts of k randomly selected chromosomes // Crossover
11: t = t+ 1

1

Figure 11: Genetic Algorithm Summary.

4.2 Simulation Results

Figure 12 presents the evolution of cooperation for several combinations of λ and pmut and the two

values of C used in our experiment. For expositional purposes, we limit the simulations to the case

in which k = 0. We present additional simulation results for k > 0 in the Appendix E.
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Figure 12: Evolution of Cooperation within the Population. Notes: Fifty simulations of population
of n = 50 chromosomes are conducted. 95% bootstrapped confidence intervals around the average
cooperation are superimposed.

We find that, regardless of the costs, cooperation starts out at 50% and immediately dips. Thus,

defection is discovered early on. The difference arises as the simulations progress. When costs for

strategy adjustment are low (C = 0), cooperation is discovered after the defection, while, when

costs for strategy adjustment are high (C = 250), cooperation is either not discovered or discovered

much later.

The simulation results in Figure 12 show three variables that affect cooperation: costs, sensi-

tivity parameter λ, and mutation probability pmut. These variables affect cooperation by varying

the agents’ ability to experiment with different strategies. Specifically, high costs make experimen-

tation among the strategies in At costly, and low costs make experimentation cheap. Similarly,

high values of λ lead to less experimentation (via the logistic choice function) and low values of λ

lead to more experimentation. Finally, high values of pmut lead to more mutations, which allow for

more variation in the set At. The simulations show that as the value of λ decreases, there is more

cooperation when the costs are C = 250. However, as λ continues to decrease beyond λ = 0.5,

the choices become more random, and would eventually lead to less cooperation. So, although

experimentation can lead to more cooperation, too much experimentation can be detrimental.

Figure 13 presents the evolution of strategies for the intermediate values of λ and pmut.
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Figure 13: Evolution of Strategies within the Population. Notes: Fifty simulations of population
of n = 50 chromosomes are conducted with λ = 1, pmut = .01, and k = 0. 95% bootstrapped
confidence intervals around the average fractions are superimposed.

Results in Figure 13 provide further intuition behind our experimental results. Specifically, when

costs are high, agents are less likely to change the strategy because experimentation is costly, and,

therefore, defective and unforgiving strategies dominate once chosen initially (ALLD and GRIM).

When costs are low, even though agents initially choose defective and unforgiving strategies (ALLD

and GRIM), experimentation allows them to learn a forgiving strategy (TFT) and to cooperate

over time.

5 Conclusion

We report results obtained from the indefinitely repeated prisoner’s dilemma with costly strategy

adjustment. We find that cooperation is lower when strategy adjustments are costly (C = 250)

than when strategy adjustments are costless (C = 0). This difference occurs even though subjects

have the ability to specify the full strategy before the start of the supergame for free. These findings

suggest that the ability to learn and experiment during the supergame is an important factor in

learning to cooperate. Therefore, in environments in which actions are made through strategies

(either explicitly or implicitly), the level of cooperation may depend on how costly it is to modify

the strategy.

We identify the source of the difference in cooperation between the two treatments: in the

C = 250 treatment, less-cooperative strategies predominate, while in the C = 0 treatment, subjects

learn to play more-cooperative strategies over time. To gain further insight into the mechanism

at play, we conducted simulations using a popular evolutionary algorithm. We incorporated the

adjustment costs into the algorithm and found that when costs are high, evolutionary agents are

less likely to discover the cooperative behavior due to the fact that experimentation is more costly.

The only difference between the two treatments in our experiment is the cost for adjusting
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strategies during the supergame. Therefore, if players learn across but not within supergames,

then the cost should have no effect on cooperation, as all adjustments would be made in the free

period between supergames. However, since we see a difference in cooperation between the two

treatments, this provides evidence that there is within-supergame learning.

Our results suggest two interesting avenues for future research. The first is to develop new

models of within-game learning. These models would likely need to incorporate learning over

strategies rather than learning over actions, as standard action-learning models have a difficult

time explaining the high incidence of cooperation in repeated prisoner’s dilemma games (e.g.,

Hanaki, Sethi, Erev, and Peterhansl, 2005; Ioannou and Romero, 2014). The second avenue involves

developing new techniques of identifying strategies in the presence of within game-learning. These

would include either strategy elicitation (e.g. Dal Bó and Fréchette, 2015; Romero and Rosokha,

2017) or new maximum likelihood estimation methods that factor in within-game learning.
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Appendices

A Quiz

The quiz consisted of ten questions displayed on the screen after the instructions were completed. There

were three different types of questions:

1. Given the current rule set, what action will be played next? (Four questions: #1, #4, #7 and #10.)

2. Given the current rule set, what payoffs will be received in the next period if the other subject chooses

a given action? (Three questions: #2, #5 and #8.)

3. Modify the rule set so that it plays a given action. (Three questions: #3 add rule, #6 delete rule, #9

swith rule.)

The full screenshot of each of the ten questions is available here: http://web.ics.purdue.edu/~yrosokha/

docs/quizCosts.pdf
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B Additional Figures and Tables

B.1 Cooperation by Session
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Figure B.1: Evolution of Cooperation by Session. Notes: Cooperation is increasing in all three
sessions of C = 0. Cooperation is flat in two out of three in C = 250 and increasing, then
decreasing, in one.
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B.2 Evolution of Strategies by Session
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Figure B.2: Evolution of Strategies by Session.
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B.3 Simulations with Crossover
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Figure B.3: Evolution of Cooperation within the Population. Notes: Fifty simulations of population
of n = 50 chromosomes are conducted (pmut = 0.01 and λ = 1). Each generation, 4% of the
population is selected for crossover (hence k = 2). 95% bootstrapped confidence intervals around
the average cooperation are superimposed.
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B.4 Simulations for Different Expected Match Lengths
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Figure B.4: Evolution of Cooperation For Different Match Lengths. Notes: Fifty simulations
of population of n = 50 chromosomes are conducted (pmut = 0.01, λ = 1, and k = 0). 95%
bootstrapped confidence intervals around the average cooperation are superimposed.

B.5 Simulations for Different Payoff Matrix
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Figure B.5: Evolution of Cooperation For Different Values of R. Notes: R denotes benefit to
cooperation. Fifty simulations of population of n = 50 chromosomes are conducted (pmut = 0.01,
λ = 1, and k = 0). 95% bootstrapped confidence intervals around the average cooperation are
superimposed.
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C Original Set of Experiments

Six sessions of the experiment were conducted, with sessions in May and September 2015. The following list

summarizes the differences from the experiment described in the main body of the paper:

1. In the original set of experiments, each period lasted exactly four seconds.

2. In order to provide sufficient time to modify the strategies, we did not restrict the strategy construction

to be done within one period. Instead, subjects incurred a cost of one point per second when rules

were unlocked. Fixed costs for clicking the “Unlock Rules” button were the same as in the current

experiment.

3. There was no split into two groups based on quiz scores.

4. The first five supergames were implemented using the game method. In other words, to get familiar

with the game, subjects played the first five supergames via direct-response.

In the experiments presented in the main body of the paper, we chose to modify these four items in

order to 1) provide a sufficient amount of time; 2) simplify the cost structure; 3) ensure that subjects who do

not understand the interface do not influence the outcome; and 4) ensure that learning via direct-response

under different costs had no effect on the initial propensity to cooperate via strategy-method. Table C.1

summarizes parameters and sessions for the original set of experiments.

Stage Game

Payoff

50,12

38,38 12,50

25,25

C D

C

D

Treatment

C = 0

C = 25

C = 250

Continuation

Probability

δ = .98

δ = .98

δ = .98

Sessions

2

2

2

N. Sub.

34

36

32

Description

Costless strategy adjust-

ment within supergames

Medium Costs to

strategy adjustment

within suupergames

High Costs to strat-

egy adjustment

within suupergames

Table C.1: Treatments summary
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C.1 Cooperation
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Figure C.1: Cooperation. Notes: Unit of observation is subject’s average cooperation over all periods in
the supergame. Number inside circle/rectangle represents number of subjects. 95% bootstrapped confidence
intervals are superimposed.

Cooperation rates in the original set of experiments are comparable to those of the main experiment. There

are some differences in the dynamics of cooperation for the C = 0 treatment. These differences may be

attributed to including all subjects and having supergames 1-5 use the game method.

C.2 Strategy Estimates
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(0.04)

0.10∗

(0.07)

0.17∗∗

(0.09)

0.06
(0.05)

0.05
(0.05)

0.10∗

(0.06)

0.04
(0.04)

0.06
(0.06)

0.03
(0.05)

0.13∗

(0.09)

0.04
(0.04)

0.03
(0.04)

0.03
(0.04)

0.13∗∗

(0.08)

0.05
(0.05)

0.06
(0.06)

0.02
(0.02)

0.08∗∗

(0.05)

0.03
(0.03)

0.02
(0.03)

0.03
(0.02)

0.04
(0.04)

0.03
(0.02)

0.09∗

(0.06)

0.05
(0.05)

0.05
(0.06)

0.03
(0.04)

0.06∗

(0.04)

0.02
(0.03)

0.06
(0.05)

0.07
(0.05)

0.06
(0.05)

0.04
(0.05)

0.06∗

(0.05)

0.10∗

(0.07)

0.04
(0.03)

0.03
(0.03)

0.04
(0.03)

0.03
(0.03)

0.03
(0.03)

0.04
(0.03)

0.05
(0.05)

S
u
p
er
ga
m
es

1-3

5-7

8-10

C
os
t

0

25

250

0

25

250

0

25

250

β C
o
op

er
at
io
n

#
of

S
u
b
je
ct
s

0.88 0.50 34

0.87 0.35 36

0.91 0.32 32

0.94 0.58 34

0.93 0.46 36

0.92 0.37 32

0.94 0.60 34

0.89 0.42 36

0.93 0.50 32

Table C.2: MLE Strategy Estimates. Notes: Bootstrapped standard errors are in parentheses. *,
**, ***, denote significance at the 0.10, 0.05, and 0.01 levels, respectively. Labels 1-3, 5-7, etc.
refer to strategy-method ordering (6-8, 10-12, etc. overall)
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