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Abstract

This paper studies a Bayesian Persuasion model in which multiple
senders sequentially persuade one Receiver. Players can always ob-
serve signaling rules of prior players and their realizations. I develop
a recursive concavification method to characterize the set of SPEa. I
prove the existence of a special type of equilibrium, called the Silent
Equilibrium, where at most one sender designs a nontrivial signaling
rule. Also, I show that in zero-sum games, the truth-telling infor-
mation structure is always supported in equilibrium. Finally, I make
comparisons with the simultaneous multi-sender Bayesian persuasion
model of Gentzkow and Kamenica (2017b) and examine the impact
of the order of persuasion. A geometric version of Blackwell’s order is
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1 Introduction

Bayesian persuasion, introduced by Kamenica and Gentzkow (2011), de-
scribes a situation in which a sender can fully commit to a signaling rule
that maps states of nature into signals. When there is only one sender, he is
able to manipulate the Receiver’s belief and exploit the rent of persuasion.
The Receiver follows the sender’s suggestions, even though she realizes that
the information is generated from a biased source.

When multiple senders get involved in persuasion, however, not only does
the Receiver need to integrate information from different sources, but also the
senders have to consider what information others disclose. Strategic interac-
tions and conflicts of interest confound senders’ behavior and require in-depth
analysis. Gentzkow and Kamenica (2017b) study this class of Bayesian per-
suasion games with multiple senders who move simultaneously; in contrast,
this paper is devoted to its counterpart in which senders move sequentially.

Assuming that previously designed signaling rules and their realizations
are public, subsequent senders can correlate the probabilities of their signals
with previous senders’.1 Correlation makes this a coordinated information
structure (Li and Norman 2017a, 2017b). From the perspective of informa-
tiveness, this setting implies that subsequent senders can select any weakly
more transparent information structure than the existing one (Gentzkow and
Kamenica 2017b).

I approach this problem by a recursive method that decomposes this
multi-sender Bayesian persuasion game into separate single-sender games.
Considering each sender’s decision making, it is rational for him to update
his belief based on previous information and evaluate the consequences of his
persuasion as affected by reactions of subsequent players. Then, he confronts
an updated “prior” and a current value referring to future equilibrium pay-
offs as if he is the only sender. Therefore, the equilibrium of the entire game
is achieved by summarizing these decentralized analyses. Next, I present an
example to illustrate the above idea.

Example 1: Judge, Prosecutor and Attorney

This example extends the judge-prosecutor example in Kamenica and
Gentzkow (2011) by adding an attorney who defends the suspect. The game
proceeds as follows: the prosecutor moves first 2 and picks a signaling rule
that sends signal I or G randomly conditional on the underlying states inno-

1This is the same assumption on the space of signaling rules in Gentzkow and Kamenica
(2017b).

2The equilibrium outcome is independent of the order in this example.
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Figure 1: Judge-prosecutor-attorney persuasion game

cent or guilty. After observing the prosecutor’s rule and signal, the attorney
designs his own signaling rule that yields another signal. Finally, the judge
reviews reports from both sides and makes a decision. No one knows the
truth, while the common prior of the person’s being guilty is 30% (µ0 = 0.3).

Suppose the judge wants to convict the guilty but acquit the innocent.
She obtains 1 unit for doing so, 0 units if she fails. The prosecutor (attor-
ney) only wants to have the person convicted (acquitted). The prosecutor’s
(attorney’s) payoff is 1 for conviction (acquittal) and 0 otherwise. This is a
Bayesian persuasion game with the state space {innocent, guilty}, the sig-
nal space {I,G}, and the action space {acquit, convict}. The belief held by
players starts with µ0 and keeps changing as the game proceeds. After the
prosecutor’s persuasion the belief is updated to µ1 and the attorney’s disclo-
sure further leads to a new belief µ2. I denote by V k

t (µt) Sender k’s value
depending on the posterior of period t, where the superscript indexes the
player and the subscript the period. A complete explanation of notation is
in Section 3.1. Specifically, {V k

0 (µ0)}∀k are equilibrium payoffs to the senders
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for a game starting with a prior µ0.

Consider the final phase where the judge moves. Her optimal strategy
for all possible beliefs, µ2, she may hold at the end, can be described as: if
µ2 < 0.5, she acquits ; if µ2 > 0.5, she convicts ; if µ2 = 0.5, she randomizes
arbitrarily between convict and acquit. Endogenizing the judge’s responses,
the prosecutor’s values can be defined as below:

V 1
2 (µ2) =


0 if µ2 ∈ [0, 0.5),

[0, 1] if µ2 = 0.5,

1 if µ2 ∈ (0.5, 1].

Similarly, the attorney’s payoff is defined as a function of final beliefs as
below:

V 2
2 (µ2) =


1 if µ2 ∈ [0, 0.5),

[0, 1] if µ2 = 0.5,

0 if µ2 ∈ (0.5, 1].

When it is the attorney’s turn at the beginning of the second period, he
has observed the prosecutor’s persuasion and formed a new belief, µ1. No
matter which µ1 is realized, the attorney acts as if he is the only sender in a
Bayesian persuasion game with this new prior µ1 and the value V 2

2 . Hence,
the attorney’s value dependent on the result of the prosecutor’s persuasion,
V 2

1 , is given by the concave closure of V 2
2 (the lowest concave function which

is weakly higher than V 2
2 ), as the lower red curve shows. In equilibrium, the

judge must break the tie by acquitting the person in favor of the attorney,
otherwise, the attorney has a profitable deviation to a persuasion that ran-
domizes between µ2 = 1 and 0.5 − ε, where ε is a sufficiently small positive
number.3

V 2
1 (µ1) =

{
1 if µ1 ∈ [0, 1

2
],

2− 2µ1 if µ1 ∈ (1
2
, 1].

Furthermore, as the prosecutor and attorney play a zero sum game, the
prosecutor’s value defined on µ1, V 1

1 , can be obtained by subtracting V 2
1 from

1.

3Referring to Theorem 1, Section 4.
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V 1
1 (µ1) =

{
0 if µ1 ∈ [0, 1

2
],

−1 + 2µ1 if µ1 ∈ (1
2
, 1].

With the knowledge of V 1
1 , the prosecutor completely understands the

consequence of his persuasion. Like the attorney, he is equivalently playing
a single-sender Bayesian persuasion game with the prior µ0 and value V 1

1 .
His initial value V 1

0 is indicated as the concave closure of V 1
1 , shown as

the blue line, which suggests that full revelation is his unique equilibrium
strategy. Symmetrically, one can obtain the attorney’s initial value, V 2

0 , by
substracting V 1

0 from 1.

V 1
0 (µ) = µ, µ ∈ [0, 1]

V 2
0 (µ) = 1− µ, µ ∈ [0, 1]

Therefore, the equilibrium payoffs for both senders are V 1
0 (µ0) = 0.3 and

V 2
0 (µ0) = 0.7. During this process, the equilibrium strategy is recovered by

repeatedly imposing concave closures over relevant values. As a result, the
prosecutor chooses a truth-telling signaling rule in equilibrium and the judge
follows the prosecutor’s suggestion. As one main contribution of this paper,
I formally develop this method as the “recursive concavification method” in
Section 4.

Besides the general technique, this paper solves for the Subgame Per-
fect Equilibrium which is more general than the equilibrium concepts in the
existing literature, e.g. the Sender-preferred SPE and Markov Perfect Equi-
librium (Kamenica and Gentzkow 2011; Gentzkow and Kamenica 2017b; Li
and Norman 2017b; Ely 2017). Compared to those concepts, SPE has two
advantages: 1) no behavioral restrictions and 2) exhausting the strategic
interactions among players. As will be shown in Sections 4.5 and 5.3, the
sets of equilibrium payoffs of the Sender-preferred SPE and MPE are proper
subsets of that of SPE.

Notice that it is an equilibrium for the prosecutor to reveal the true state
and the attorney to send a null signal. 4 In Section 6, I will show the pervasive
existence of this type of equilibrium, called the Silent Equilibrium, where at
most one sender reveals information. The existence of this equilibrium relies
on the accessibility of an abundant set of signaling rules to the senders, which

4A signal from a babbling signaling rule that leaves the belief unchanged.
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allows them to reveal beforehand what their followers would otherwise have
revealed.

The economic implication of this example is also significant. In con-
trast with the previous judge-prosecutor game (Kamenica and Gentzkow,
2011), which incorporates only partial revelation in equilibrium, introducing
a sender with an opposite interest to the previous sender improves informa-
tion transparency significantly. More strikingly, this result can be generalized
to any pair of senders who have zero sum utilities (Section 7), which demon-
strates that two competing senders can form a stable system that supports
full revelation. More broadly, this example can be regarded as a justification
for the adversarial system.

Unlike in the simultaneous multi-sender Bayesian model (Gentzkow and
Kamenica 2017b), full revelation is not always an equilibrium. As discussed
in Section 9, games could have unique partial revelation in equilibrium. The
relationship between a sequential game and its corresponding simultaneous
game is that when the sequential equilibrium is unique,5 no simultaneous
equilibrium is less informative than the sequential one (Li and Norman
2017b).

In this paper, the informativeness is ordered by Blackwell’s order. For the
purpose of comparing informativeness in an intuitive way, I adopt a geometric
version of Blackwell’s order in regard to posterior dispersion, as will be shown
by Theorem 5. Roughly speaking, it is shown that more informative signaling
rules lead to more dispersed posteriors under some condition. For example,
the null signal and full revealing signals lead to posteriors concentrated at
the prior and vertices, respectively.

The remainder of this paper is organized as follows. Section 2 summa-
rizes the existing literature in this area. Section 3 presents the basic model,
explains the information environment, and introduces mathematical prelim-
inaries. Section 4 explains the recursive concavification method and applies
it to characterize SPE paths. Section 5 characterizes the MPE. Section 6
proves the existence of the Silent Equilibrium. Section 7 discusses the equi-
librium in a zero sum game. Section 8 explores a geometric way of comparing
informativeness under Blackwell’s order. Section 9 discusses the relationship
with the coordinated simultaneous multi-sender Bayesian persuasion model.
Section 10 explores the effects of the order of persuasion. Section 11 con-
cludes.

5Any equilibrium can be constructed using multiple equivalent signaling rules. So
uniqueness can not be defined in regard to strategies. Instead, uniqueness in this paper
means that the distribution of induced posteriors and associated receiver’s optimal actions
are unique.
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2 Literature Review

This paper lies in the domain of Bayesian Persuasion with multiple senders.
Kamenica and Gentzkow (2011) lay out a formal framework of the Bayesian
persuasion game with a single sender and characterize the Sender-preferred
SPE6 by the concavification method (Aumann and Maschler 1995). Gentzkow
and Kamenica (2017a) (2017b) analyze the case in which multiple senders
move simultaneously and conclude that competition increases disclosure of
information. Li and Norman (2017a) attract attention to the Bayesian per-
suasion game with multiple senders who move sequentially by constructing
a counter example to Kamenica and Gentzkow (2017a) (2017b)’s general
conclusion that competition improves transparency. They also propose the
Markov Perfect Equilibrium as an important equilibrium concept for the se-
quential Bayesian persuasion game, where “belief” serves as the state variable
(Li and Norman 2017a, 2017b; Ely 2017).

Li and Norman (2017b) independently address the same problem as this
paper and conclude the same result that the Silent Equilibrium (the “one-
step” equilibrium in their language) always exists. However, there are still
many differences. First, they express coordinated signaling rules in the
form of a partition framework (Li and Norman 2017a, 2017b; Kamenica and
Gentzkow 2017b), instead of the traditional definition set forth in this paper.
Second, they assume a finite action space so that value functions can be di-
vided into finite polytopes; the present paper, in contrast, allows a compact
action set and smooth value functions. Third, they frame the question as
a linear programming problem and characterize the MPE, while this paper
develops the recursive concavification method to characterize both the SPE
and MPE. Fourth, this paper discusses several related topics of zero-sum
games, a geometric Blackwell’s order, and the order of perusasion.

Harris (1985), Harris, Reny and Robson (1995) and Hellwig, Leininger,
Reny and Robson (1990) discuss the existence and characterization of SPE of
infinite games, which class of games the Bayesian persuasion model belongs
to. Following Harris (1985), I characterize the SPE paths by translating
his method into a geometric way, i.e., the recursive concavification method.
Ely (2017) uses a similar method as the recursive concavification method to
solve a dynamic persuasion mechanism, where one sender controls the re-
ceiver’s belief over a stochastic process. To solve a Bellman equation with a
concave closure on the right side, he approximates it by repeatedly concav-
ifying a value function. In contrast, this paper concavifies a group of value

6In this equilibrium, the receiver takes an action in favor of the sender when she is
indifferent.

7



correspondences7 of all senders.
This paper also broadly relates to the literature in communication games

with multiple senders or receivers. Krishna and Morgan (2001), Battaglini
(2002) and Ambrus and Takahashi (2008) extend Crawford and Sobel (1982)
into multi-sender case and discuss the conditions under which full revealing
equilibrium can be induced. Similar to Prop. 10, Krishna and Morgan (2001)
have a result that it is beneficial for the receiver to consult both senders with
interests biased in opposite directions. Milgrom and Roberts (1986) and
Forges and Koessler (2008) study information disclosure models, introduced
by Milgrom (1981) and Grossman (1981), with multiple senders. Bergemann
and Morris (2016) introduce a new equilibrium concept, Bayesian Correlated
Equilibrium, which can be interpreted as the equilibrium of a persuasion
model with one sender and multiple receivers.

3 Model

3.1 Basic Setup

This section lays out a formal framework of a multi-sender sequential Bayesian
persuasion game. The states of the world are Ω = {ω1, . . . , ωl}, l ∈ N. There
are T senders and 1 Receiver. Each sender has access to a set of costless
signaling rules, Π. A signaling rule is a mapping from the state space to dis-
tributions over the signal space π : Ω→ ∆(S), where the finite signal space
is S = {s1, . . . , sm}, m ∈ N.8 Equivalently, Π =

∏l
ω=1 ∆(S). Specifically, let

St denote Sender t’s signal space and st the signal realized in period t.
Players have a common prior µ0 in ∆(Ω). µt represents the updated

posterior belief after period t, for any t = 1, . . . , T . The Receiver takes an
action a ∈ A, where A is compact. Utility functions of all players depend on
the state of the world and the action taken by the Receiver. Additionally,
I impose continuity on the senders’ utility functions, vt(a, ω), t = 1, . . . , T ,
and the Receiver’s utility function, u(a, ω).

The timing of the game is as follows:

Date 0 Nature picks a state ω according to the probability µ0. ω is unknown
to all players.

7As will be shown by Theorem 1, “concavifying correspondences” means imposing
concave closure over the minimum of the correspondences, which becomes a criterion for
selecting SPE paths.

8The assumption of finite signal space is made WLOG for expositional simplification.
As Prop. 6 will show, the equilibrium values are invariant in the cases of finite and infinite
signal spaces.
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Figure 2: The game tree of a path in a Bayesian persuasion model with 2
senders

Date 1 Sender 1 chooses π1 ∈ Π which generates s1 ∈ S.

Date 2 After observing {π1, s1}, Sender 2 chooses π2 ∈ Π which generates
s2 ∈ S.

. . .

Date T After observing {πi, si}T−1
i=1 , Sender T chooses πT ∈ Π which gener-

ates sT ∈ S.

Date T + 1 After observing {πi, si}Ti=1, the Receiver makes a decision a ∈ A.

There are two types of information sets, one at which a sender has chosen
the signaling rule but has not sent the signal, and the other at which both the
signaling rule and the signal have been sent (denoted by nodes labeled “S1”,
“S2” and “R”). The former leads to fixed simple probability distributions
over the second type of information sets without any strategic interaction.
So it suffices to focus on the second type. Combining a pair of a signaling
rule and its signal into a period of history, a history up until the end of date
t is denoted by et = (π1, s1, . . . , πt, st). Et is the set of histories including et.
For t = 1, . . . , T , Sender t’s strategy is a mapping σt : Et−1 → Π and the
Receiver’s strategy is ρ : ET → A. The set of Sender t’s strategies is Σt, for
∀t, and the Receiver’s strategy set is ΣT+1.
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In this paper, I focus on pure-strategy equilibrium. However, the result
equivalently applies to the mixed strategy equilibrium with finite actions.
Because for senders, there is no difference between using mixed strategies
and pure strategies;9 for the Receiver, the mixed strategy set with finite
actions is compact.

Next, let me clarify the meaning of “subgame” in this paper. A subgame
is defined to begin at an information set for each history et ∈ Et, t = 1, . . . , T ,
instead of at a single decision node as SPE usually requires. The rationale
depends on that in each history and its corresponding information set, players
observe, equivalently, a sequence of “experiments” and their realizations, so
that it is possible to prescribe beliefs over all information sets by Bayes rule,
no matter whether they are on or off the equilibrium path. With such a fixed
belief system, the sequential rationality is satisfied by the players’ maximizing
their expected payoffs in all “subgames” originating from those information
sets. Throughout this paper, I refer to SPE as with subgames in this sense.10

I denote the subgame starting at history et by Γ(et), and denote the
unique belief over the information set associated with et by µt(et). One
SPE of Γ(et) is represented as γ(et) which consists of a strategy profile of
subsequent players {σt+1, . . . , σT , ρ}. One SPE of the whole game is then
γ(e0). The set of SPE paths of Γ(et) is denoted by Γ̄(et), and the equilibrium
path of γ(et) is written as γ̄(et). With these preliminaries at hand, I can give
the formal definition of SPE:

Definition 1. A Subgame Perfect Equilibrium of this game, γ(e0), is a
strategy profile {σ1, . . . , σT , ρ} such that for any t = 0, . . . , T , et ∈ Et and
σ′h ∈ Σh, h ∈ {t+ 1, . . . , T}, it satisfies:

Eµt(et)[v
h(σh, σ−h)] ≥ Eµt(et)[v

h(σ′h, σ−h)]

And for all eT ∈ ET and a′ ∈ A,

EµT (eT )[u(ρ(eT ), ω)] ≥ EµT (eT )[u(a′, ω)]

Of special importance is a collection of values {V k
t (µ)}∀t,∀k, t ∈ {0, . . . , T}.

k ∈ {1, . . . , T}. V k
t : ∆(Ω)⇒ R is defined as V k

t (µ) = {v ∈ R|v is the payoff

9Kamenica and Gentzkow 2011, footnote 3.
10This variation of SPE agrees with Li and Norman (2017a) (2017b). They propose

SPE as a proper concept because there is no private information and players don’t have
to update beliefs about others’ types.
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for Sender k in some γ̄t(et) where µt(et) = µ, et ∈ Et}, for ∀t,∀k,∀µ. They
represent the set of equilibrium payoffs for sender k after period t at a certain
posterior belief µ. For example, if v ∈ V k

t (µ), it means there is an SPE in
which Sender k holds a belief µ after period t and his expected payoff is v. In
Section 4, I use V̄ and V

¯
to represent the maximum and minimum selections

of a sender’s value. I also use V k : Γ̄(et) → R, for ∀t, to denote Sender k’s
expected payoff on SPE paths.

3.2 Coordinated Information Structure

The information structure is determined by signaling rules designed by senders.
The signaling rule is equivalent to the “experiment” defined in Blackwell
(1951) (1953) which provides the Receiver with a more “informative” en-
vironment. If senders impose signaling rules individually, the probabilities
of signals are independent with each other. However, in this model senders
move sequentially and subsequent senders can vary their signaling rules over
previous realizations, so each strategy profile specifies a sequence of signaling
rules as {π1, {π2,s}s∈S1 , . . . , {πT,s}s∈S1×···×ST−1

}.
In the coordinated information structure, senders are able to correlate

the probabilities of their own signals with that of previous senders’. Denote
a coordinated signaling rule by πc.

Definition 2. {πc1, . . . , πcT} are coordinated signaling rules if for ∀t,
∀{πc1, . . . , πct−1} and their realizations {s1, . . . , st−1}, πct is a mapping: Ω →
∆(
∏t

i=1 Si) consistent with the probability distribution ∆(
∏t−1

i=1 Si) prescribed
by {πc1, . . . , πct−1}, i.e.,

∑m
j=1 P (s1, . . . , st−1, s

j
t |ω) = P (s1, . . . , st−1|ω), for

∀ω, ∀{s1, . . . , st−1} ∈ S1 × · · · × St−1.

With a coordinated signaling rule a sender can unilaterally deviate to
any information structure weakly more informative than the existing one
(Gentzkow and Kamenica 2017b), which plays an important role in the proof
of Theorem 4 and Prop. 12.

Prop. 1 reveals the equivalence relation between information structures
generated by {π1, {π2,s}s∈S1 , . . . , {πT,s}s∈ST−1

} and {πc1, . . . , πcT}. It also clar-
ifies the coordinated information structure embedded in this game and es-
tabilishes connections with other work in multi-sender persuasion games (Li
and Norman 2017a, 2017b; Gentzkow and Kamenica 2017b). It shows that
the analysis in this paper also applies to an alternative game in which senders
move sequentially and design coordinated signaling rules.

Proposition 1. The information structure given by independent signaling
rules {π1, {π2,s}s∈S1 , . . . , {πT,s}s∈S1×···×ST−1

} is equal to that generated by some
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coordinated signaling rules {πc1, . . . , πcT}. The converse is true.

Proof. See appendix.

3.3 Preliminaries

This part mentions a series of knowledge about Bayesian plausibility, some
facts in convex analysis, and Blackwell’s order, that form the mathematical
basis of following sections. In addition, I introduce notation for expositional
simplification.

3.3.1 Signaling rules and posteriors

Each signal sj from a signaling rule π leads to a posterior φj by Bayes Law.
These posteriors, {φj}mj=1, and the probabilities of their associated signals,
{p(φj)}mj=1, construct a distribution of distributions that summarizes all in-
formation content of a signaling rule. The relationship between signaling
rules and their posteriors is called Bayesian plausibility.11

Definition 3. (Bayesian plausibility) For any π ∈ Π and its posteriors
{φj}mj=1, µ =

∑m
j=1 p(φj)φj, p(φj) ∈ [0, 1], for ∀j. Conversely, any Bayesian

plausible distributed posteriors are outcomes of some signaling rule.

This equivalence relation allows me to define a signaling rule indirectly as
its posteriors. Specifically, I refer 〈φ1, . . . , φm〉µ to a signaling rule that gen-
erates a distribution of posteriors {φ1, . . . , φm} whose expectation is µ, such
that µ =

∑m
j=1 p(φj)φj, p(φj) ∈ [0, 1], for ∀j. {〈φ1, . . . , φm〉µ, γ̄1, . . . , γ̄m} rep-

resents an SPE path on which a sender designs a signaling rule 〈φ1, . . . , φm〉µ,
and his followers stay on an SPE path, γ̄j, receiving his signal sj, for ∀j.
Furthermore, I denote by 〈φn1 , . . . , φnm〉µ → 〈φ1, . . . , φm〉µ the convergence
of a sequence of signaling rules, where posteriors φnj → φj and coefficients
p(φnj ) → p(φj), for ∀j. I should point out that Bayesian plausibility is pre-
served in the limit, i.e., 〈φ1, . . . , φm〉µ still represents a signaling rule. Notice
that p(φj) could be zero that makes the corresponding signal redundant, but
it is a convenient expression in Section 4.

3.3.2 Convex Analysis

Most proofs draw on useful results from convex analysis, so it is necessary to
point them out at this stage. The first is a key concept that has been widely
used in economics to identify the potential rents of persuasion for senders,

11Referring to Kamenica and Gentzkow (2011), Prop. 1.
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that is, the concave closure. Mathematically, there are two equivalent defi-
nitions.12 The most well known definition describes it as the lowest concave
function that is not lower than a specific function. Another definition, how-
ever, is given by Eq. (1). Though complicated, it perfectly fits the context
of a persuasion game, and is adopted as the main definition in this paper.

cl(f(x)) = sup
{ m∑

j=1

αjf(xj)|α ∈ ∆m,

m∑
j=1

αjxj = x,m = 1, 2, . . .
}

(1)

Each component of the equation contains a corresponding economic mean-
ing. The objective function f refers to a value function of a sender, the set
{xj}mj=1 a distribution of posteriors of a singaling rule, {αj}m1 the probabili-
ties of these signals. In addition, the restriction “α ∈ ∆m,

∑m
j=1 αjxj = x”

implies the satisfication of Bayesian plausibility. This definition is central to
the recursive concavification method in Sections 4 and 5.

On a belief space ∆(Ω), one posterior belief is a point and the convex
hull of a set of posteriors {φ1, . . . , φm} is denoted by conv{φ1, . . . , φm}. A
regularity in regard to convex hulls, which determines uniqueness in Section
8, is Carathéodory’s Theorem.13

Carathéodory’s Theorem
For any set S ⊂ Rn and x ∈ convS, x can be represented as a convex

combination of n+ 1 elements of S.

3.3.3 Blackwell’s Order

Adopted as the measure of informativeness, Blackwell’s order is a partial
order on the space of signaling rules. A more informative signaling rule
creates a better environment for a decision maker to achieve higher expected
payoffs. Specifically, the meaning of Blackwell’s order is given by Definition 4
and Definition 5, both of which are equivalent based on Blackwell’s theorem.

Suppose there are two signaling rules π = 〈λ1, . . . , λm1〉µ0 and π′ =
〈µ1, . . . , µm2〉µ0 , i.e. µ0 = p1λ1 + · · ·+ pm1λm1 and µ0 = q1µ1 + · · ·+ qm2µm2 .
The signal generating mechanisms can be described as two matrices Am1×l
and Bm2×l, where the (i, j)th entry represents the probability of generat-
ing the i-th signal at state j, i.e. aij = P (si|ωj) and bij = P (si′|ωj)
where si induces λi and si′ induces µi. Given the Receiver’s utility func-
tion u, her value for a posterior µ is defined as Vu : ∆(Ω) → R, Vu(µ) =

12Hiriart-Urruty, Jean-Baptiste, and Claude Lemaréchal, “Fundamentals of Convex
Analysis,” pp.99, Proposition 2.5.1.

13Ewald, Günter, “Combinatorial convexity and algebraic geometry,” Section 2.3, pp.10.
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maxa∈AEµ[u(a, ω)]. Her value for a signaling rule π = 〈λ1, . . . , λm1〉µ0 is
V̄u : Π → R, V̄u(π) = p1Vu(λ1) + · · · + pm1Vu(λm1). An action rule is a
mapping from the signal space to the action space, f : S → A, and the set of
action rules is F . Defining the expected payoff of an action rule f at state i
as vi(f, π) =

∑m
j=1 π(sj|ωi)u(f(sj), ωi), ∀i = 1, . . . , l, the range of the payoff

vector is denoted by Dπ = {(v1(f, π), . . . , vl(f, π))|f ∈ F}.
Before introducing Blackwell’s theorem, I define sufficiency and informa-

tiveness as two relations among signaling rules.

Definition 4. (Sufficiency) If π′ is sufficient for π, written π′ � π, then
there exists a matrix Cm1×m2 , cij ≥ 0,

∑
i cij = 1,∀i, j, such that A = CB.

Definition 5. (Informativeness) If π′ is more informative than π, written
π′ ⊃ π, then Dπ′ ⊃ Dπ, for any utility function u and any compact action
set A.

Blackwell (1951)(1953) demonstrates the equivalence between the statisti-
cal relation (sufficiency) and the Bayesian decision relation (informativeness),
regardless of the common prior, the action set and the payoff structure. This
model, however, is endowed with a common prior that facilitates a geometric
expression of Blackwell’s order, as discussed in Section 8.

Blackwell’s Theorem π′ � π iff π′ ⊃ π.

4 Subgame Perfect Equilibrium

This section provides the characterization of the set of SPE paths. In this
extensive game, senders’ persuasion forms a process of strategic information
revelation, where the realized beliefs become the “priors” of following sub-
games. Not only does the Receiver, but also the senders depend their actions
on those realized beliefs, which gives rise to a continuum of values for players
conditional on each posterior belief of each period, i.e. {V k

t }∀t,∀k.
To resolve multiplicity, I adopt Harris (1985)’s method to characterize the

SPE paths recursively. This method relies on imposing the lower bound on
the SPE payoff to the active sender in each period, called Harris condition
in this paper, to identify the sequence of signaling rules that constitute SPE
paths. Furthermore, Harris condition is sufficient for selecting SPE and takes
a geometric form of the concave closure of the minimum value function.

In application, the set of SPE paths is characterized backward. It is
immediate to figure out the Receiver’s behavior given information from all
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sources, which leads to the set of all senders’ equilibrium payoffs dependent
on the final beliefs, i.e. {V k

T }Tk=1. By applying Harris condition on Sender
T, one can solve his equilibrium signaling σST and its payoff implications to
other senders conditional on the belief of the second to the last period, i.e.,
{V k

T−1}Tk=1. Repeating this process yields senders’ strategies and equilibrium
payoffs at each stage until the set of SPE paths is achieved.

4.1 Harris (1985)

Implicit in any SPE is credible punishment for all potential deviations, which
is reflected in Harris condition. This condition measures the highest payoff a
sender can defend himself against the most credible “punishment” from his
followers. It is necessary and sufficient that senders receive payoffs no less
than Harris condition in equilibrium.

Harris condition can be found in two steps. First, for any t ∈ {1, . . . , T},
suppose Γ̄t(et) are known for ∀et ∈ Et, calculate the worst equilibrium pay-
off for Sender t when he takes a signaling rule πt := 〈φ1, . . . , φm〉µt−1(et−1),
denoted by b(πt).

b(πt) =min
{ m∑

j=1

p(φj)vj | vj ∈ V t
t (µt(et−1, πt, s

j)),∀j
}

=
m∑
j=1

p(φj) min{V t
t (µt(et−1, πt, s

j))}

=
m∑
j=1

p(φj)V
¯

t

t
(µt(et−1, πt, s

j)) (2)

This is well defined because all value correspondences have closed graphs
by Prop. 2 and Prop. 5, and thus the minimum can be achieved. The second
step is to find out the supremum of these worst payoffs, sup{b(π′)|π′ ∈ Π}
(Harris condition). 14

Formally, suppose γ̄j is an SPE path in Γ̄((et−1, πt, s
j)) for ∀j, then

{πt, {γ̄1, . . . , γ̄m}} is one of the SPE paths in Γ̄t−1(et−1) if and only if Sender
t’s expected payoff from it is no less than sup{b(π′)|π′ ∈ Π}. Because of the
definition of the concave closure in Eq. (1) and the equivalence between sig-
naling rules and Bayesian plausible distributed posteriors, Harris condition
takes another geometric form: the concave closure of the minimal values.

14Referring to Harris (1985), Sec. 4.1.
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sup{b(π′)|π′ ∈ Π}

= sup
{ m∑

j=1

p(φ′j)V
¯

t

t
(µt(et−1, πt, s

j)) | ∀〈φ′1, . . . , φ′m〉µt−1(et−1)

}
= cl(V

¯

t

t
)(µt−1(et−1)) (3)

Eq. (3) establishes a connection between the condition and the concavifi-
cation method, with which one can pin down the sequence of values {V k

t }∀t,∀k
as well as the set of SPE paths recursively:

{V t
T}Tt=1 ⇒ cl(V

¯

T

T
)⇒ {V t

T−1}Tt=1 ⇒ cl(V
¯

T−1

T−1
)⇒ . . .⇒ {V t

0 }Tt=1

4.2 Recursion

4.2.1 Period T + 1

At the beginning of period T + 1, the Receiver has observed all signaling
rules and signals from senders and formed a new belief µT , based on which
she optimizes her expected utility by choosing an action. The optimal action
set is A∗(µT ) = {a ∈ A|a ∈ arg maxa∈AEµT (u(a, ω))}. Because of continuity
of u and compactness of the domain, by the Maximum Theorem, A∗ is non-
empty valued and has a closed graph. The next proposition establishes a
more significant result that V t

T is non-empty valued and has a closed graph
for t = 1, . . . , T .

Proposition 2. For each t = 1, . . . , T , V t
T (µT ) = {EµT (vt(a, ω))|a ∈ A∗(µT )}.

V t
T is non-empty valued and has a closed graph.

Proof. For ∀{µn} → µ and {vn|vn ∈ V t
T (µn)} → v, ∃{an} ⊂ A s.t. an ∈

A∗(µn), Eµn(vt(an, ω)) = vn.
Because A is compact and A∗ has a closed graph, ∃{ank} ⊂ {an} → a∗ ∈

A∗(µ). Therefore Eµ(vt(a∗, ω)) ∈ V t
T (µ).

Because {ank} → a∗ and vt continuous,

v = lim
n→∞

vn = lim
k→∞

Eµnk [vt(ank , ω)] = Eµ[vt(a∗, ω)] ∈ V t
T (µ)

Prop. 2 shows that the condition for the application of Harris condition
is satisfied. The set of SPE paths, Γ̄T (eT ), for ∀eT ∈ ET , is

Γ̄T (eT ) = A∗(µT (eT )) (4)
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4.2.2 Period T

Subgames of period T consisting of the Receiver and Sender T resemble
single-sender persuasion games. Equivalently, one can solve them by the
concavification method with Harris condition.

Proposition 3. For ∀µ ∈ ∆(Ω), v ∈ V T
T−1(µ) if and only if ∃〈θ1, . . . , θm〉µ

s.t. v =
∑m

j=1 p(θj)vj, vj ∈ V T
T (θj) and v > cl(V

¯

T

T
)(µ).

Proof. (Sufficient) Let Sender T send a null signal and the Receiver take an
action that support v in a SPE. For other signaling rules Sender T designs,
〈φ1, . . . , φm〉µ, let the Receiver take an optimal action that yields V

¯

T

T
(φj) for

Sender T upon receiving each φj, ∀j = 1, . . . ,m. Then by the definition
of cl(V

¯

T

T
)(µ), the value for Sender T of playing any other signaling rule is

dominated by cl(V
¯

T

T
)(µ), and by v as well.

(Necessary) If v < cl(V
¯

T

T
)(µ), by the definition of cl(V

¯

T

T
),∃〈φ1, . . . , φm〉µ

s.t.∑m
j=1 p(φj)V¯

T

T
(φj) > v, i.e. the signaling rule 〈φ1, . . . , φm〉µ dominates the

value v in any SPE following this strategy.

As Harris condition is necessary and sufficient, the SPE paths are simply
action profiles satisfying it.

Γ̄T−1(eT−1) =
{
{πT , a1, . . . , am} | πT := 〈φ1, . . . , φm〉µT−1(eT−1),

aj ∈ Γ̄T (eT−1, πT , s
j),∀j, and

m∑
j=1

p(φj)V
T ({aj}) ≥ cl(V

¯

T

T
)(µT−1(eT−1))

}
(5)

Eq. (5) identifies Γ̄T−1(eT−1),∀eT−1 ∈ ET−1, which naturally yield the
values of senders in period T − 1. As mentioned before, all subgames at
this period, starting with the same “prior,” share the same set of SPE paths,
which allows me to group histories by beliefs and define value correspondences
on the belief space. Therefore, {V t

T−1}Tt=1 incorporate all payoffs supported
in SPE, i.e., Γ̄T−1(eT−1),∀eT−1 ∈ ET−1.

V t
T−1(µ) =

{
V t(γ̄) | ∃eT−1 ∈ ET−1, µT−1(eT−1) = µ,

γ̄ ∈ Γ̄T−1(eT−1)
}

(6)
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The existence of SPE is also guaranteed. In contrast with the minimum
of the value for characterization, I use the maximum of the value to show
the existence. Due to the closedness of V T

T , the maximum of the value cor-
respondence is USC. With this property, those signaling rules that support
the concave closure of the maximum of the value are equilibrium strategies
by Prop. 3, as they also generate payoffs no less than Harris condition.

Proposition 4. For ∀µ ∈ ∆(Ω), and any v = cl(V̄ T
T )(µ), v is an equilibrium

payoff for Sender T in a SPE γ(eT−1) s.t. µT−1(eT−1) = µ.

Proof. By the definition of cl(V̄ T
T ), ∃{〈θn1 , . . . , θnm〉µT−1

}, such that
∑m

k=1 p
n
k V̄

T
T (θnk )

→ v. Because ∆(Ω) is compact, ∃〈θnk
1 , . . . , θnk

m 〉µT−1
→ 〈θ∗1, . . . , θ∗m〉µT−1

.

Because V T
T has a closed graph, V̄ T

T is USC, i.e. V̄ T
T (θ∗j ) > lim V̄ T

T (θnk
j ), for

∀j. Therefore,
∑m

j=1 p
∗
j V̄

T
T (θ∗j ) > lim

∑m
j=1 p

nk
j V̄

T
T (θnk

j ) = v = cl(V̄ T
T )(µT−1) >

cl(V
¯

T

T
)(µT−1). Also, as V T

T has closed graph, V̄ T
T (θ∗j ) ∈ V T

T (θ∗j ), so 〈θ∗1, . . . , θ∗m〉µT−1

is an equilibrium play of Sender T at period T .

4.2.3 Period t, t < T

This part extends the analysis to earlier stages by repeating the above argu-
ment. Similar results to Prop. 3 and 4 hold for {V t

t }Tt=1, for ∀t. Take period
T − 1 for instance. With the knowledge of V T−1

T−1 , Sender T − 1 can evaluate
the consequence of a certain signaling rule as well as Sender T does. Thus,
the set of SPE paths, Γ̄T−2, is derived from the same condition except for
using a new value correspondence, V T−1

T−1 . Then one can obtain Sender T−2’s

value V T−2
T−2 he cares about and continue to solve Γ̄T−3, so on and so forth.

Theorem 1. For ∀t, ∀µ ∈ ∆(Ω), v ∈ V t+1
t (µ) if and only if ∃〈θ1, . . . , θm〉µ

s.t. v =
∑m

j=1 p(θj)vj, vj ∈ V t+1
t+1 (θj) and v > cl(V

¯

t+1

t+1
)(µ).

Proof. Similar to the proof of Prop. 3.

Theorem 2. For ∀t, ∀µ ∈ ∆(Ω), and any v = cl(V̄ t+1
t+1 )(µ), v is an equilib-

rium payoff for Sender t+ 1 in a SPE γt(et) s.t. µt(et) = µ.

Proof. Similar to the proof of Prop. 4.

Theorems 3 and 4 suggest that the set of SPE paths, Γ̄t−1(et−1), and its
corresponding set of equilibrium payoffs, V k

t−1, for ∀k, can be obtained by
formulas similar with Eq. (5)(6). For ∀et−1 ∈ Et−1,
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Γ̄t−1(et−1) =
{
{πt, γ1, . . . , γm} | πt := 〈φ1, . . . , φm〉µk−1(ek−1),

γ̄j ∈ Γ̄t(et−1, πt, s
j),∀j, and

m∑
j=1

p(φj)V
t({γ̄j}) ≥ cl(V

¯

t

t
)(µt−1(et−1))

}
(7)

V k
t−1(µ) =

{
V k(γ̄) | ∃et−1 ∈ Et−1, µt−1(et−1) = µ,

γ̄ ∈ Γ̄t−1(et−1)
}

(8)

Now I have given the set of SPE paths and defined a sequence of values for
each sender at each period, the remaining challenge is to show that {V k

t }∀t,∀k
are closed. This desirable mathematical property builds on many features
of this game, including the continuous value functions, the compact action
space, and the compact set of signaling rules, Π. In addition, finiteness is
another important condition approached by focusing on equilibrium paths
including only finite action profiles. In summary, all these properties such
as continuity, compactness and finiteness, lead to the closedness of the value
correspondences.

For any V k
t , any converging sequence of value points has a limiting point

supported by the limiting SPE path. This Upper hemi-continuity property is
similar with the result in Hellwig, Leininger, Reny and Robson (1990), where
they use SPE paths of “nearby” finite games to approximate the SPE path
of a targeting infinite game.

Proposition 5. V k
t have closed graphs, for ∀t,∀k.

Proof. See Appendix.

Finally, the assumption of a finite signal space can be relaxed. Denote
a persuasion game with an infinite signal space by Γ∞, and another with
a sufficiently large finite signal space by Γ0, such that |S| ≥ T + l. The
equivalence between Γ∞ and Γ0 is presented below.

Proposition 6. All equilibrium values in Γ∞ are also equilibrium values in
Γ0.

Proof. See Appendix.
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4.3 A Geometric Illustration

Figure 3 shows how I use Harris condition to characterize the set of SPE
paths in a recursive way. In the left column are both senders’ equilibrium
payoffs V 1

2 and V 2
2 , that are defined on the final belief space, taking into

account the Receiver’s optimal response.
In the second period, Harris condition on Sender 2 is illustrated by the

red curve. A typical signaling rule designed by Sender 2 in equilibrium, for a
prior of the second period, θ∗, is to randomize between posteriors θ1 and θ2.
Followed by the Receiver’s optimal responses that generates payoffs A1, B1 or
A2, B2 to both senders, this signaling rule 〈θ1, θ2〉θ∗ is justified in equilibrium
if and only if Sender 2’s payoff from using it is no lower than Harris condition.
Satisfying this condition, Sender 2’s expected payoff is contained in Sender
2’s value of the second period at θ∗, i.e. w2

1 ∈ V 2
1 (θ∗). In parallel, Sender 1’s

expected payoff on this path belongs to his value of the second period, i.e.,
w1

1 ∈ V 1
1 (θ∗).

In the middle column, V 1
1 and V 1

2 consist of all equilibrium payoffs to
Sender 1 and Sender 2, in subgames starting from the second period. Sim-
ilarly, Sender 1’s behavior can be analyzed by imposing Harris condition as
the concave closure of the minimal value of V 1

1 , indicated by the blue curve.
For the prior of the game, θ0, Sender 1’s signaling rule 〈φ1, φ2〉θ0 , followed
by the SPE paths of subsequent periods, is supported in equilibrium because
Sender 1 receives expected payoff no lower than Harris condition. Sender 1
and Sender 2’s payoffs on this path are therefore contained in V 1

0 (θ0) and
V 2

0 (θ0), respectively. In the end, V 1
0 (θ0) and V 2

0 (θ0) summarize the equilib-
rium payoffs to both senders.

4.4 Ranges of Values

Figure 4 illustrates the limits of persuasion in three scenarios: a single-sender
case, a multi-sender case and a case in which the player can not persuade.
Suppose the sender, given the Receiver’s optimal actions, has a value corre-
spondence identified by the union of the two black curves.15 In a single-sender
case, SPE payoffs are no less than cl(V

¯
) according to Theorem 1 and no larger

than cl(V̄ ), lying in the area A. When the sender competes with others, his
payoffs may fall below cl(V

¯
), but not lower than the hyperplane going across

the two lowest values at vertices, denoted by h; this is his guaranteed payoff
by revealing the truth. The range of payoffs in the second case is A ∪ B. If
the sender is not allowed to persuade, he may get a more detrimental result

15By construction, the receiver has 2 optimal actions at each µT .
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Figure 4: Ranges of values in 3 cases

in C. The lower bound of C is the convex closure of V
¯

from bottom, denoted

by b. The possible equilibrium payoffs are confined in A∪B ∪C, the convex
hull of the value correspondence.

Proposition 7. For any Bayesian persuasion model with one Receiver and
one sender: 1) the range of SPE payoffs in a single sender game is between
cl(V̄ ) and cl(V

¯
); 2) the range of potential SPE payoffs in a multi-sender

sequential game is between cl(V̄ ) and hyperplane h; the range of potential
SPE payoffs when he cannot persuade is between cl(V̄ ) and surface b.

The inclusion relation between these sets sheds light on the impact of
persuasion on senders’ welfare. When a sender monopolizes information dis-
closure, he is able to receive the highest range of payoffs. When he competes
with other senders, his payoff may drop down, but is still guaranteed a basic
rent from revealing the truth. If he cannot persuade, his equilibrium payoff
could be even lower.

4.5 Multiplicity

There could be multiple equilibria, resulting from the abundant strategy sets
of both senders and the Receiver. Once the Receiver has multiple opitmal
actions, those value correspondences become “thick,” and Harris condition is
slack in a sense that uncountably many action profiles satisfy it. Thus, the
explicit form of the set of SPE could be intractable, even in a simple example
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Figure 5: The judge charges a penalty

as below.

Example 2: The Judge Charges a Penalty

Suppose the judge should not only decide to “acquit” or “convict”, but
also impose a penalty on the defendant once he gets convicted. The penalty
could be any number between 0.2 and 1 (thousand dollars), constructing a
compact action set {0} ∪ [0.2, 1] (“0” refers to “acquit”). The judge’s target
is still raising the judgement accuracy, and her optimal strategies can be
described as: a = 0 if µ < 0.5; a ∈ {0} ∪ [0, 1] if µ = 0.5 and a ∈ [0.2, 1] if
µ > 0.5. Though the judge is herself indifferent to the penalty, the prosecutor
would like as high a fine to be charged as possible. Specifically, his payoff
function is v(a, ω) = a and his value is represented as a correspondence in
Figure 5.

Harris condition is represented as the red curve implying that the pros-
ecutor’s expected payoff in equilibrium should be at least 0.12. The SPE is
non-unique. For example, {〈0, 0.5〉0.3, 0, a},∀a ∈ [0.2, 1] is a family of SPE
paths that identifies the range of SPE payoffs for the prosecutor as [0.12, 0.6].
However, there are still uncountably many other SPE paths, which are im-
possible to explicit individually.

5 The Markov Perfect Equilibrium

As shown above, the SPE might be intractable due to multiplicity, while
the Markov Perfect Equilibrium can be a desirable refinement. Because in
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a persuasion game the only payoff relevant factor is “belief,” it is the only
candidate for the state variable (Li and Norman 2017a, 2017b; Ely, 2017).
In MPE, players respond to realized beliefs instead of histories, in which
context players only consider making full use of information regardless of
how the information is revealed. This section discusses MPE from 3 respects.
First of all, I characterize the MPE with a simpler version of the recursive
concavification method. Next, I present a general example of the MPE.
Finally, I show that the MPE payoff set is properly included by the SPE
payoff set.

5.1 Characterization

Formally speaking, Sender t’s Markovian stratege is defined as a mapping
σMt : ∆(Ω) → Π, for ∀t, and the Receiver’s Markovian strategy as ρM :
∆(Ω)→ A. The MPE shared by the class of subgames {Γ(et), µt(et) = µ} is
denoted by ΓMt (µ).

In MPE, the Receiver takes an action for each final belief, reducing
senders’ values to functions. Therefore, cl(V̄ ) coincides with cl(V

¯
) and Harris

condition is satisfied when the expected payoff reaches the concave closure.
However, existence is preserved only for value functions satisfying achievabil-
ity, a condition that substitutes “maximum” in Eq. (1) for “supremum.”

Proposition 8. For each sender, given his value function of posterior be-
liefs, f(x), the optimal signaling rule exists for each prior if and only if:

cl(f)(x) = max
{∑m

j=1 αjf(xj)|α ∈ ∆l,
∑m

j=1 αjxj = x
}

. When this condi-

tion is satisfied, the value function is called “achievable”.

Proof. When cl(f)(x) = max
{∑m

j=1 αjf(xj)|α ∈ ∆l,
∑m

j=1 αjxj = x
}

, for

any prior µ, there exists {φ1, . . . , φm} such that
∑m

j=1 p(φj)φj = µ and∑m
j=1 p(φj)f(φj)

= cl(f)(µ). Obviously, 〈φ1, . . . , φm, 〉µ is an optimal signaling rule.

If for some µ ∈ ∆(Ω), max
{∑m

j=1 αjf(xj)|α ∈ ∆l,
∑m

j=1 αjxj = µ
}

is

not well defined, which means that there is a sequence of signaling rules
〈φn1 , . . . , φnm〉µ whose values approximate cl(f)(µ) but do not reach the limit,
which rejects the existence of an optimal signaling rule.

The recursive concavification method resembles that for SPE. In period
T + 1, the Receiver takes an action ρM(µ) ∈ A∗(µ), for ∀µ, that defines
ΓMT (µ). For any µ, the MPE ΓMT (µ) exists and determines senders’ values of
the last period, {V t

T (µ)}Tt=1.
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V t
T (µ) = Eµ[vt(ρM(µ), ω)] (9)

{V t
T}Tt=1 could be any selections of the value correspondences {V t

T}∀t with-
out restriction, but the MPE of period T −1, ΓMT−1(µ), exists for any µ if and
only if V T

T is achievable according to Prop. 8. Based on the concavification
method, σMT := 〈φ1(µ), . . . , φm(µ)〉µ is an optimal strategy if and only if for
∀µ:

cl(V T
T )(µ) =

m∑
j=1

p(φj(µ))V T
T (φj(µ)) (10)

The satisfication of Eq.(10) directly implies that {σMT (µ), ρ} ∈ ΓMT−1(µ) by
Prop. 8. Furthermore, this definition disentangles the contingent strategies
of Sender T for all possible priors µT−1, and exhibits the influence of his
persuasion on other passive senders. In parallel, {V t

T−1}∀t can be transformed
from {V t

T}∀t by a formula,

V t
T−1(µ) =

{ m∑
j=1

p(φj(µ))V t
T (φj(µ)) | σMT (µ) = 〈φ1(µ), . . . , φm(µ)〉µ

}
(11)

In the same pattern, σMT−1(µ), for ∀µ, is an MPE strategy if and only
if V T−1

T−1 is achievable. Similarly, {σMT−1(µ), σMT , ρ} ∈ ΓMT−2(µ) if and only if

Sender T − 1’s payoff reaches cl(V T−1
T−1 )(µ), so on and so forth. As long as

{σM1 , . . . , σMT , ρM} is an MPE, this recursive process will go through until it
yields the sequence of value functions {V t

k}∀t,∀k.
Theorem 3. {σM1 , . . . , σMT , ρM} form an MPE if and only if, for ∀µ ∈ ∆(Ω),
k = 1, . . . , T , t = 1, . . . , T and σMt (µ) = 〈φt1(µ), . . . , φtm(µ)〉µ:

ρM(µ) ∈ A∗(µ) (12)

V k
T (µ) = Eµ[vk(ρM(µ), ω)] (13)

cl(V t
t )(µ) =

m∑
j=1

p(φtj(µ))V t
t (φtj(µ)) (14)

V k
t−1(µ) =

m∑
j=1

p(φtj(µ))V k
t (φtj(µ)) (15)
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5.2 A General Example

In the MPE, the recursive concavification method takes a more transpar-
ent form. I present such an example in Figure 6. Suppose the Receiver’s
Markovian strategy yields senders’ value functions on final beliefs in the left
column. Analogous to the analysis in Section 4.2, the persuasion rents for
both senders are concave closures over V 1

1 and V 2
2 .16 When Sender 1 (Sender

2) reveals information, he designs signaling rules that randomizes posteri-
ors between the vertices of the domain of the blue (red) line the prior lies
in. Also, their persuasion causes parallel randomization for the other sender
that leads to transformation from V 1

2 , V 2
2 to V 1

1 , V 2
1 , and from V 1

1 , V 2
1 to

V 1
0 , V 2

0 , respectively. Geometrically, these transformations are as obvious as
connecting two value points.

Finally, the equilibrium payoffs are given as V 1
0 (µ0) and V 2

0 (µ0), and the
equilibrium paths can be recovered from V 1

1 and V 2
2 . If µ0 ∈ (0, µ

¯
), the

equilibrium path is that Sender 1 sends 〈0, µ
¯
〉µ0 , Sender 2 designs a null

signaling rule; if µ0 ∈ (µ
¯
, µ̄), nobody reveals any information; if µ0 ∈ (µ̄, 1),

Sender 1 sends 〈µ̄, 1〉µ0 , while Sender 2 does not reveal any information.

5.3 MPE vs. SPE

This part differentiates SPE from MPE by presenting SPE payoffs that are
not in MPE. In this example, there are two states {ω0, ω1}, µ = P (ω1), and
µ0 = 1

2
. Denote the SPE payoffs by (v1

s , v
2
s) and the MPE payoffs by (v1

m, v
2
m).

Suppose the Receiver’s action set is [4, 6] ∪ [0, 2] and her optimal reactions
to final beliefs are represented by A∗(µ).

A∗(µ) =

{
[4, 6] if µ ∈ [0, 1

2
],

[0, 2] if µ ∈ [1
2
, 1].

There are two senders, whose utilities are given as below.

v1(a, ω0) =

{
10− a if a ∈ [4, 6],

2− a if a ∈ [0, 2].

v1(a, ω1) = 6− a
16Here the concave closures of the minimum and the maximum of value correspondences

coincide, Harris condition is satisfied by signaling rules that achieve the concave closure.
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Figure 7: One SPE that is not an MPE

v2(a, ω0) = a

v2(a, ω1) =

{
a− 4 if a ∈ [4, 6],

a+ 4 if a ∈ [0, 2].

Under this payoff structure, V 1
2 and V 2

2 are depicted as the grey areas in
Figure 11. One feature of this payoff structure is that v1 and v2 are increasing
and decreasing functions in a, respectively, which means they have opposite
interests in the Receiver’s actions. The Receiver’s “punishment” on one
sender can automatically become a “reward” to the other.

For any MPE in which v2
m = 4, the Receiver must take 4 at µ = 0 and 0

at µ = 1, generating the lowest payoffs Sender 2 could receive in equilibrium.
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Otherwise, he can deviate to the truth-telling signaling rule that brings about
a payoff higher than 4. But the Receiver’s behavior against Sender 2 is
beneficial for Sender 1, in a sense that as long as he reveals the state, his
payoff is 6, the highest possible payoff for him in this game. Therefore,
(v1
m, v

2
m) = (6, 4) is the unique pair of MPE payoffs in which v2

m = 4.
In SPE, however, the Receiver has more lattitude in punishing senders for

deviations from certain information structures, and consequently there will
be more abundant equilibria. Focusing on a class of equilibria where Sender
2 keeps “silent” and the Receiver takes actions satisfying Harris condition of
the second period, a subset of V 1

1 is shown as the deeper grey area in the
upper figure.17 It is sufficient to obtain Harris condition of the first period
from this subset of V 1

1 , as shown by the blue line.18 Then, I have one SPE
path: Sender 1 designs 〈1

4
, 3

4
〉 1
2
, Sender 2 sends null signals and the Receiver

takes 5 at µ = 1
4

and 1 at µ = 3
4
. Here, (v1

s , v
2
s) = (4, 4).

6 The Silent Equilibrium

When the equilibrium information structure is unique, in either Example 1 or
Figure 6, it is an equilibrium that only Sender 1 sends a nontrivial signaling
rule, while Sender 2 babbles. This is called the Silent Equilibrium.

Definition 6. (The Silent Equilibrium) An SPE in which at most one sender
reveals information on the equilibrium path.

This section demonstrates the existence of this class of equilibria by con-
struction.

Suppose that when the Receiver is indifferent between multiple optimal
actions at a belief, she chooses those in favor of Sender T ; if there are still
multiple actions, among these actions she chooses those in favor of Sender
T − 1, so on and so forth. That is, the Receiver breaks the tie by benefiting
senders in an order of priority: T � T − 1 . . . � 1.

Furthermore, I focus on partially conservative senders. That a sender is
conservative means that he would rather not revealing any information if
not necessary. He is partially conservative if he is conservative only when he
thinks that following senders would not reveal anything; otherwise he will
reveal the amount of information his followers would have revealed.

17Because my goal is to find a specific SPE, I do not need to characterize the whole set
of V 1

1 .
18Harris condition cannot be higher than the concave closure of the minimum of this

subset, and it cannot be lower than the hyperplane going across the value points at the
verticies, according to Prop. 7.
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Below I formalize the main result in Theorem 4 and go through the proof
in the remainder of this part. The proof is separated into several steps, some
of which are postponed to the appendix for the expositional simplification.

Theorem 4. There always exists a Silent Equilibrium.

Proof. As below in Sec 5.3.1, 5.3.2 and 5.3.3.

The senders’ behavior creates a pattern that earlier senders prefer to
reveal information his followers would have revealed, but if nobody else
“speaks,” they have no incentive to do so. In any equilibrium formed by
these senders, Sender T − 1 leaves Sender T nothing to “say” as he has said
what Sender T would have, Sender T − 2 makes Sender T − 1 silent, so on
and so forth. In the limit of this logic, Sender 1 is the only one who could
possibly reveal any information.

6.1 Period T

Suppose the MPE of interest is {σS1 , . . . , σST , ρS}. ρS is any Markovian strat-
egy satisfying the tie breaking rule, which derives senders’ value functions
{V t

T}∀t. Before diving into the recursion, I make two definitions: the pseudo
value functions Ṽ t

t and the active set Gt. Ṽ t
t is an instrumental value function

treated by Sender t as his “real” value function when designing his strategy.
It turns out that this pseudo value function is achievable and generate an op-
timal strategy σSt . Next, the active set, Gt, is a set of beliefs at which Sender
t designs non-trivial signaling rules, prescribed by σSt , to improve his welfare.
In the transformation, Gt is an area in which {V k

t−1}∀k differs from {V k
t }∀k.

In the opposite, the complement (Gt)c identifies the set of belief space where
the value functions are unchanged at that step. The formal definitions of the
pseudo value function and the active set are given inductively as below,

Definition 7. The pseudo value function Ṽ T
T = V T

T . For t = 1, . . . , T − 1,

Ṽ t
t = { V t

t µ ∈ (Gt+1)c

−∞ otherwise

where −∞ can be regarded as a sufficiently small constant lower than the
worst payoff in the game.

Definition 8. For ∀t, the active set Gt = {µ ∈ ∆(Ω)|cl(V t
t )(µ) > Ṽ t

t (µ)}.
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In period T , because the Receiver gives Sender T the highest priority,
Sender T is endowed with an USC value function V T

T (= Ṽ T
T ). Satisfying

partial conservativeness, Sender T ’s optimal strategy σST is recovered by the
concavification method, such that σST (µ) := 〈φ1(µ), . . . , φm(µ)〉µ,

cl(V T
T )(µ) =

m∑
j=1

p(φj(µ))Ṽ T
T (φj(µ))

Based on σST , other senders’ value functions {V t
T−1}∀t are generated sym-

metrically,

V t
T−1(µ) =

{ m∑
j=1

p(φj(µ))V t
T (φj(µ)) | σST (µ) = 〈φ1(µ), . . . , φm(µ)〉µ

}
Here are some important lemmas for following steps.

Lemma 1. For ∀µ ∈ ∆(Ω) and σST (µ) = 〈θ1, . . . , θm〉µ, θj /∈ GT , for ∀j.
Proof. If θ1 ∈ GT has an optimal signaling rule 〈φ1, . . . , φm〉θ1 . Then 〈〈φ1, . . . ,
φm〉θ1 , θ2, . . . , θm〉µ 19 is a signaling rule that dominates σST (µ).

Lemma 2. GT is open.

Proof. In (GT )c, V T
T coincides with cl(V T

T ), which is LSC. Suppose there is a
sequence of beliefs µn ∈ (GT )c,∀n and {µn} → µ. {ρ(µn)} is a sequence of the
Receiver’s optimal responses. ρ(µn) ∈ A∗(µn),∀n, has a converging subse-
quence ρ(µnk)→ a′ ∈ A. a′ ∈ A∗(µ) by the Maximum Theorem. Because of
the tie breaking rule, V T

T (µ) > Eµ[vT (a′, µ)] = limk→∞Eµnk [vT (ρ(µnk), µnk)] =
limk→∞ cl(V

T
T )(µnk) > cl(V T

T )(µ). µ ∈ (GT )c, (GT )c closed.

Lemma 3. V T
T is continuous in (GT )c.

Proof. See Appendix.

In period T−1, Sender T−1 is active in face of the transformed value func-
tion V T−1

T−1 . Because Sender T is partially conservative, V T−1
T−1 only possibly

differs from V T−1
T within GT , where Ṽ T

T is defined generically as −∞. Next,
I take a detour to prove that V T−1

T−1 is achievable by showing the achievability

of Ṽ T−1
T−1 first.

19〈〈φ1, . . . , φm〉θ1 , θ2, . . . , θm〉µ means that µ = p(θ1)p(φ1)φ1 + · · · p(θ1)p(φm)φm +
p(θ2)θ2 + · · ·+ p(θm)θm. One may be concerned with the restriction on the size of the sig-
nal space. But strictly speaking, what actually contradicts is that 〈φ1, . . . , φm〉θ1 cannot
generate an expected payoff that matches the concave closure, which is not restricted in
the size of posteriors according to its definition in Eq. (1).
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Lemma 4. Ṽ T−1
T−1 is USC.

Proof. See Appendix.

An USC Ṽ T−1
T−1 is achievable without any doubt. V T−1

T−1 , however, can be

shown to be achievable by Lemma 5, cl(Ṽ T−1
T−1 ) = cl(V T−1

T−1 ). One important
observation used in the proof of Lemma 5 is that when µT−1 /∈ GT , Sender
T would not reveal any information as a conservative person. Therefore,
Ṽ T−1
T−1 (µ) = V T−1

T−1 (µ) = V T−1
T (µ), ∀µ /∈ GT . For µ ∈ GT , however, it can

be shown that the concave closure of Ṽ T−1
T−1 , which is supposed to lie weakly

below cl(V T−1
T−1 ), weakly dominates V T−1

T−1 . This is true only when both concave
closures coincide.

Lemma 5. cl(Ṽ T−1
T−1 ) = cl(V T−1

T−1 )

Proof. See Appendix.

With the knowledge of Ṽ T−1
T−1 , GT−1 is given by Definition 7. Lemma 6

shows the openness of GT−1, in parallel with Lemma 2, and that the active
set of Sender T − 1 contains Sender T ’s.

Lemma 6. GT−1 is open and GT−1 ⊃ GT .

Proof. See Appendix.

6.2 Period t, t < T

Lemma 1− 6 are preliminary to deriving similar results for t < T . Suppose
Sender t designs his optimal signaling rule as if Ṽ t

t is his value function,
which is an equivalent way of solving for the equilibrium based on similar
results with Lemmas 4 and 5, that are proved in Prop. 9. Therefore, for
∀k = 1, ..., T , σSk (µ) := 〈φ1, . . . , φm〉µ is any strategy satisfying,

cl(V k
k )(µ) =

m∑
j=1

p(φj)Ṽ
k
k (µ) (16)

subject to the constraint of partial conservativeness. Also, other senders’
value functions are generated from σSk ,

V t
k−1(µ) =

{ m∑
j=1

p(φj(µ))V t
k (φj(µ)) | σSk (µ) = 〈φ1(µ), . . . , φm(µ)〉µ

}
(17)
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{σS1 , . . . , σST , ρS} are constructed by the recursive concavification method
as above, generating a sequence of value functions {V k

t }∀t,∀k. Prop. 9 is
divided into two parts, the first of which includes preconditions that have
been satisfied for t = T by Lemmas 2 and 3. While the second part shows
useful conclusions corresponding to Lemmas 1, 4, 5, 6.

Proposition 9. (Induction) For ∀t, if following conditions are satisfied:

1. V k
t is transformed based on Eq. (17) for k ≥ t.

2. Gt open.

3. V k
T continuous in (Gt)c, ∀k ≥ t.

4. Gt ⊃ Gt+1 · · · ⊃ GT .

It can be concluded that:

1. Gt−1 open.

2. V k
T continuous in (Gt−1)c, for ∀k ≥ t− 1.

3. Gt−1 ⊃ Gt.

4. Let σSt (µ) := 〈φ1(µ), . . . , φm(µ)〉µ, then φj(µ) ∈ (Gt)c, for ∀j,∀µ.

5. Ṽ t−1
t−1 USC.

6. cl(Ṽ t−1
t−1 ) = cl(V t−1

t−1 ).

Proof. See Appendix.

6.3 Proof of Theorem 3

Once the recursion proceeds to the end, I can obtain two results that are
essential for the final proof. First, the active sets are growing as t decreases,
i.e. G1 ⊃ G2 ⊃ · · · ⊃ GT . The interpretation is that earlier senders are
more active due to their prescribed personalities. Second, Sender 1’s equi-
librium signaling rule spreads posteriors within (G1)c. Combining these two
sentences, one could find that all the posteriors of Sender 1’s signaling rule lie
out of Gt, ∀t. It is equivalent to say that no matter what signal is generated
after Sender 1’s persuasion that leads to a certain belief, no other senders
would think necessary to change it. Then conservative senders will simply
stay “silent.” This argument closes the proof of Theorem 3.
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7 Zero Sum Game

This section generalizes the full revelation result20 in Example 1 to any
Bayesian persuasion game with two senders who have zero-sum utilities.
Consistent with Gentzkow and Kamenica (2017a) (2017b), this result has
a strong economic implication that the extremist conflicts between senders
would improve the information revelation to the highest level.

The intuition is that the evidence from the second sender suppresses the
first sender’s ambition in manipulating the Receiver’s belief, such that he
cannot exploit his advantage of persuasion more than telling the truth. It is
unavoidable that his signals become vague once the first sender gives a strong
persuasion, that tilts the Receiver to the second sender as a more reliable
information source. Then the second sender can counteract the influence
of the first sender by giving a slightly more convincing persuasion in the
opposite direction. The first sender knows that so he reveals the true state
at the beginning.

Proposition 10. In a zero-sum sequential Bayesian persuasion model, full
revelation can always be sustained as an equilibrium outcome.

Proof. A zero-sum game implies that for any MPE, V 1
t + V 2

t = c, for t =
0, 1, 2, c ∈ R. Let the Receiver break the tie in favor of Sender 2, then V 2

2 is
USC and Sender 2’s strategy is generated accordingly. The concave closure
of V 2

2 is V 2
1 , of which the opposite V 1

1 is convex. Most importantly, Sender 1
faces a convex value function now, and his optimal signaling rule is identified
by imposing a concave closure over this convex value function, that turns out
to be a hyperplane going across all vertices of the graph. It suggests that the
full revelation is one optimal choice for Sender 1. Given Sender 1’s choice,
Sender 2’s action has no effect once the true state has been disclosed.

8 Blackwell’s Order and Posterior Dispersion

In this section, I extend Blackwell’s order to a more specific case in which
more informative signaling rules are equivalent to having more dispersed
posteriors under a certain condition. By “dispersed” I mean that the convex
hull of the induced posteriors contains that of a less informative signaling rule.

20The full revealing equilibrium is a desirable outcome that attracts attention from many
related work. Krishna and Morgan (2001), Battaglini (2002), and Ambrus and Takahashi
(2008) discuss conditions under which full revelation would occur in a multi-sender cheap
talk. Milgrom and Roberts (1986) study when sophistication of the decision maker and
the competition among senders are sufficient for this result.

34



This geometric way of expressing Blackwell’s order is useful for the analysis in
Sections 9 and 10. The notation is inherited from Section 3.3.3. Specifically,
π = 〈λ1, . . . , λm1〉µ0 and π′ = 〈µ1, . . . , µm2〉µ0 , i.e. µ0 = p1λ1 + · · · + pm1λm1

and µ0 = q1µ1 + · · ·+ qm2µm2 .
Initially, I propose the definition of dominance to capture the idea of

dispersed posteriors.

Definition 9. (Dominance) π′ dominates π if for ∀j, λj ∈ conv{µ1, . . . , µm2},
denoted by π′ > π.

Next, I define that a signaling rule π′ is singular as below.

Definition 10. (Singularity) A signaling rule π is singular when the number
of its distinct posteriors21 is equal to the dimension of their convex hull plus
1.

With the property of singularity, the signaling rule’s convex combination
coefficients for any point in the convex hull of its posteriors are unique.22

Then I can extend Blackwell’s theorem as below.

Theorem 5. In a game with a common prior, if π′ is singular, π′ � π iff
π′ ⊃ π iff π′ > π.

Proof. See Appendix.

This geometric version of Blackwell’s theorem derives from the property
of Bayesian plausibility that links distributions of posteriors with signaling
rules. Absent the common prior, the traditional Blackwell ordering can not
be expressed this way.

Though Theorem 5 is restrictive, it is sufficient for the analysis in Sections
9 and 10. The reason is that I only focus on a specific case with unique
equilibrium, where the equilibrium is represented by a singular signaling
rule. Uniqueness in this paper means that the distribution of the induced
posteriors and the associated optimal actions are unique.

Proposition 11. For a Bayesian persuasion game that has a unique equi-
librium, this equilibrium is a Silent Equilibrium, in which one sender sends
a singular signaling rule.

21A posterior induced by different signals counts one. Under Blackwell’s order, it is
equivalent to view signals inducing the same posterior as one signal.

22Fixed any posterior, vectors pointing from this posterior to any other posteriors are
linearly independent and form a basis for their convex hull. Therefore, any point within
this convex hull has unique coordinate values.
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Figure 8: Comparison with Simultaneous Games

Proof. Because of Theorem 4, the unique equilibrium can be a Silent Equi-
librium. WLOG, let Sender 1 designs a signaling rule 〈φ1, . . . , φm〉µ0 such
that {φj}∀j are distinct with each other. The optimality of the signaling
rule requires that {V 1

1 (φi)}mi=1 are on a hyperplane H that weakly dominates
cl(V 1

1 ).

Suppose dim(conv{φ1, . . . , φm}) = n and m > n+ 1. By Carathéodory’s
Theorem, there exist φk1 , . . . , φkn+1 , ki ∈ {1, . . . ,m},∀i, such that µ0 =
b1φk1+· · ·+bn+1φkn+1 , bi ∈ [0, 1], ∀j,∑j bj = 1. Because V 1

1 (φk1), . . . , V
1

1 (φkn+1)
are on H, Therefore, 〈φk1 , . . . , φkn+1〉µ0 is another optimal signaling rule for
Sender 1 as an equilibrium outcome, contradiction to uniqueness.
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9 Comparison with the Coordinated Simul-

taneous Bayesian Persuasion Model

Gentzkow and Kamenica (2017b) study a multi-sender persuasion game that
shares the coordinated information structure but assumes simultaneity in
senders’ move. Their equilibrium predictions depart from this paper dra-
matically, which is illustrated by two examples in this section.

They characterize the equilibrium outcome, i.e. the information structure
in equilibrium, by emphasizing the intersection of all unimprovable sets,23 as
the feasible location of posteriors. For example, in Figure 8, the intersections
of unimprovable sets are denoted by the red area; the equilibrium outcome
is the set of signaling rules with posteriors lying in this area.

In Figure 8, I present simultaneous and sequential equilibrium outcomes
with red and blue colors, respectively. Hereafter, I use red segments as the
value transformation of period 2 and blue segments as that of period 1. The
dashed lines point out boundaries of unimprovable sets. In subfigures (a)
and (b), equilibria of a sequential game are characterized by the two blue
points as posteriors. Compared to the simultaneous games, the sequential
model narrows down the set of equilibria. However, it is not true that the
former is always a refinement of the latter. In (a), the equilibrium outcome
of the sequential game belongs to that of the simultaneous game; but in (b),
the sequential equilibrium is strictly less informative than any simultaneous
equilibrium based on Theorem 5.

A stronger result, given unique equilibrium, is pointed out by Li and
Norman (2017b), as claimed in Prop. 12. Their proof draws on the fact
that the equilibrium outcome of a sequential case is a “one-step” equilibrium
(Silent Equilibrium), which also holds in this paper (Theorem 4). Moreover,
the two examples in this section support this result.

Proposition 12. (Li and Norman 2017b) If a coordinated sequential Bayesian
persuasion model has a unique equilibrium outcome, its corresponding simul-
taneous model can not have a less informative equilibrium outcome.

Proof. Suppose an information structure π is less informative than the Silent
Equilibrium. If π is an equilibrium outcome in the simultaneous game, Sender
1 knows that if he chooses π no following senders have incentive to reveal
information.24 Apparently, Sender 1 prefers the Silent Equilibrium more than
π as the Silent Equilibrium is the unique equilibrium in the sequential game.

23The area of belief space where the concave closure coincides with the value function.
24Given a “prior” in the unimprovable set, it is optimal for any sender to send a null

signal, which form an equilibrium.
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Figure 9: Equilibrium outcomes in reversed orders

It conversely implies that Sender 1 can deviate to the Silent Equilibrium to
strictly improve his payoff in the simultaneous model, which rejects π as an
equilibrium in the simultaneous game, contradiction.

10 Order of Persuasion

So far I have been assuming fixed order of senders’ move, while in this section
I make comparative static analysis by relaxing this assumption. Even for the
same set of senders and the Receiver, interchanging their persuasion order
could significantly affect senders’ behavior. All senders are exposed to the
risk of excessive information revelation from their followers, however, the
direction of this effect is ambiguous. In some cases, this threat could deter
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Figure 10: Sender x plays with Sender A

earlier senders from “saying” anything (Figure 9, Order 2);25 but it is also
possible that this threat would stimulate information revelation (Figure 10,
Order 2). Also, the impact on informativeness is obscure. In Figure 9, two
reversed orders result in equilibria with two uncomparable signaling rules
according to Theorem 5.

Another interesting question is about a sender’s favorite moving spot.
One may conjecture that for any sender, it is the best for him to move as late
as possible, because then he has the later word power to adjust his revelation
flexibly. But an earlier mover has an advantage of setting up the minimal
level of revelation, which could outweigh the benefits from late word power.

25There is an equilibrium where the first sender keeps “silent,” which is not the case
when he is the single sender.
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Figure 11: Sender x plays with Sender B

It turns out that even one specific sender could have different preferences
over moving spots depending on his opponent. To justify, I construct two
examples where Sender x plays with Sender A and Sender B, separately.
The results are illustrated in Figure 10 and 11, where Sender x’s equilibrium
payoffs are denoted by v∗. As the pictures show, when playing with Sender
A, Sender x would like to move afterwards; but when his opponent becomes
Sender B, he prefers to move first.

These examples emphasize the sensitivity of equilibrium outcomes to the
order of persuasion, and suggest the necessity of examining them case by case.
Generally speaking, because the permutation of order is finite, one can solve
the whole set of games with different orders and then make comparisons.
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11 Conclusion

This paper extends the Bayesian persuasion model (Kamenica and Gentzkow
2011) into a multi-sender sequential case where subsequent players are able
to observe previous signaling rules and their realizations. This setting allows
senders to correlate probability of their signals with previous senders’, and
to accurately pick a weakly more transparent information structure than the
existing one. This class of games, called “coordinated sequential Bayesian
persuasion,” gives rise to an environment different from the case in which
senders move simultaneously (Gentzkow and Kamenica 2017b).

The main contributions contain two aspects. First, this paper solves for
SPE of a Bayesian persuasion model. SPE is more general an equilibrium
concept than those in the literature, which exhausts the strategic information
release and identifies the ranges of equilibrium payoffs to senders. Second,
in the spirit of Harris (1985), I develop the recursive concavification method
to characterize the SPE paths, that draws on decentralization of the overall
persuasion phase into single-sender Bayesian persuasion games.

Another implication of the coordinated information environment is the
existence of a specific type of equilibria, the Silent Equilibrium. Under certain
tie breaking rules, senders, who have flexibility in increasing the information
revelation level, would reveal what subsequent senders would have revealed,
so that it is only necessary for one sender to design a non-trivial signaling
rule.

Also, this paper proves that full revelation can always be maintained as
an, in many cases unique, equilibrium outcome in a zero sum game. This
result shows the improvement caused by competition on information revela-
tion in the persuasion game. An intuitive example consisting of the judge,
prosecutor and attorney is proposed at the beginning for illustration.

Finally, this paper extends Blackwell’s theorem in a game with a common
prior. It turns out that Blackwell’s order can be conditionally represented by
the posterior dispersion of an information structure. This geometric version
of Blackwell’s theorem provides a convenient way of examing informative-
ness of equilibrium outcomes in certain examples, by which I compare simul-
taneous with sequential games and conclude the sensitivity of equilibrium
outcomes to the order of persuasion.
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12 Appendix

12.1 Proposition 1

Proof. WLOG, it is sufficient to show that the proposition holds in a two-
sender case. Suppose there are two senders, Sender 1 and Sender 2, and
Sender 2 moves later. In Case 1 both senders propose coordinated signaling
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rules {πc1, πc2}, while in Case 2 they propose a constellation of independent
signaling rules, {π1, {π2,s}s∈S1} where Sender 2 varies his signaling rules over
different signals received. In this part, I use PC(·) to represent the probabil-
ity of the coordinated signaling rules and PI(·) that of the independent ones.
sik represents the ith signal sent by Sender k.

(Case 1 ⇒ Case 2)

Suppose {πc1, πc2} is given. Construct the independent signaling rule π1 as
that PI(s

i
1|ω) = PC(si1|ω) and {π2,s}S1 as that PI(s

j
2|si1, ω) = PC(si1, s

j
2|ω)/PC(si1|ω),

where
∑m

j=1 PI(s
j
2|si1, ω) = 1 for ∀i, ∀j, ∀ω. By this construction, for ∀i, ∀j,

∀ω,

PI(s
i
1, s

j
2|ω) = PI(s

j
2|si1, ω)PI(s

i
1|ω)

= PI(s
j
2|si1, ω)PC(si1|ω)

= PC(si1, s
j
2|ω)

(Case 2 ⇒ Case 1)

Now {π1, {π2,s}s∈S1} are given. Let πc1 satisfy that PC(si1|ω) = PI(s
i
1|ω)

and πc2 satisfy that PC(si1, s
j
2|ω) = PI(s

j
2|si1, ω)PI(s

i
1|ω) for ∀i, ∀j,∀ω. To ver-

ify that πc2 is consistent with πc1, we have that
∑m

j=1 PC(si1, s
j
2|ω) =

∑m
j=1 PI(s

j
2|si1, ω)

PI(s
i
1|ω) = PI(s

i
1|ω) = PC(si1|ω) for ∀i, ∀ω. Furthermore, {πc1, πc2} generates

the same information structure because PC(si1, s
j
2|ω) = PI(s

j
2|si1, ω)PI(s

i
1|ω) =

PI(s
i
1, s

j
2|ω), for ∀i, ∀j,∀ω.

12.2 Proposition 5

Proof. This proof is divided into 3 parts. I devote the first two parts to show-
ing that {V t

T−1}∀t have close graphs, which provides the general idea of the
whole proof. Later on, the closedness of {V t

k}∀t,∀k is concluded by induction.

Step 1 : V T
T−1 has a closed graph.

For ∀(θn, vn), vn ∈ V T
T−1(θn), i.e. ∃〈φn1 , . . . , φnm〉θn , such that

∑m
j=1 p(φ

n
j )wnj =

vn, wnj ∈ V T
T (φnj ) and

∑m p(φnj )wnj > cl(V
¯

T

T
)(θn).

If {θn, vn} → (θ∗, v∗), the corresponding signaling rules of Sender T as-
sociated with {θn, vn} are {πnT} ∈

∏l ∆(S). Because the space of signaling
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rules is compact, there exists a subsequence {πnk
T } → π∗T ∈

∏l ∆(S).

Lemma 7. Suppose π∗T results in 〈φ∗1, . . . , φ∗m〉θ∗, then 〈φnk
1 , . . . , φnk

m 〉θnk →
〈φ∗1, . . . , φ∗m〉θ∗.

Proof. To show the convergence, I start from the convergence of coefficients
and then the posteriors. The convergence of coefficients is directly given by:

p(φnk
j ) =

∑
ω∈Ω

θnk(ω)πnk
T (sj|ω)→

∑
ω∈Ω

θ∗(ω)π∗T (sj|ω) = p(φ∗j)

for ∀j = 1, . . . ,m. Then discuss the convergence of posteriors in two
cases: 1) p(φ∗j) 6= 0. φnk

j (ω) = θnk(ω)πnk
T (sj|ω)/p(φnk

j )→ φ∗(ω), for ∀ω ∈ Ω;
2) p(φ∗j) = 0. Select the subsequence such that {φnk

j } converges to φ∗j , and
because signal j will disappear, φ∗j can be assigned as the limit of {φnk

j }.

Because V T
T is closed and A compact, the subsequence {nk} can be fur-

ther selected such that the actions supporting {wnk
j }, i.e. {ank}, converge to

āj ∈ A∗j(φ∗j), for ∀j. Due to continuous payoff functions, the values from sub-
games, wnk

j → w∗j , for ∀j. The existence of such a subsequence is justified by
the Weierstrass Theorem, based on finite action profiles on equilibrium paths.

Lemma 8. (π∗T , {āj}sj∈ST
) ∈ Γ̄T−1(θ∗)

Because a concave function is LSC over ∆(Ω) (continuous in int(∆(Ω))).

m∑
j=1

p(φ∗j)w
∗
j = lim

k→∞

m∑
j=1

p(φnk
j )wnk

j > lim
k→∞

cl(V
¯

T

T
)(θnk) > cl(V

¯

T

T
)(θ∗) (18)

Then Prop. 3 concludes Lemma 2.

Suppose the equilibrium payoff of (π∗T , {āj}sj∈ST
) for Sender T is v. Then

v ∈ V T
T−1(θ∗), and because vT is continuous and πnk

T → π∗T ,
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v =
∑
ω∈Ω

∑
sj∈ST

vT (āj, ω) · π∗T (sj|ω) · µT−1(ω)

= lim
k→∞

∑
ω∈Ω

∑
sj∈ST

vT (ank
j , ω) · πnk

T (sj|ω) · µT−1(ω)

= lim
n→∞

vn

= v∗

Therefore v∗ ∈ V T
T−1(θ∗).

Step 2 : {V t
T−1}∀t have closed graphs.

For any (θn, v̄n) such that v̄n ∈ V t
T−1(θn) and (θn, v̄n) → (θ, v̄), there

is corresponding (θn, vn) ⊂ graph(V T
T−1) supported by the same SPE. Be-

cause graph(V T
T−1) is compact, ∃ a subsequence {(θnk , vnk)} → (θ∗, v∗) ∈

graph(V T
T−1).

From above, the subsequence {(θnk , vnk)} can also be selected such that
they represent a converging sequence of SPE paths.

{πnk , {ank
j }sj∈ST

} → {π∗T , {a∗j}sj∈ST
}

Additionally, vt is continuous, so

v̄ = lim
n→∞

v̄n

= lim
k→∞

∑
ω∈Ω

∑
sj∈ST

vt(ank
j , ω)πnk

T (sj|ω)µT−1(ω)

=
∑
ω∈Ω

∑
sj∈ST

vt(a∗j , ω)π∗T (sj|ω)µT−1(ω)

= v∗

where v∗ is Sender t’s value of (π∗T , {a∗j}sj∈ST
).

Step 3: {V k
t }∀t,∀k have closed graphs.

Lemma 9. Suppose for t, 1 6 t 6 T , V k
t is non-empty and has a closed graph

for ∀k = 1, . . . , T . And for any sequence (φn, wn) → (φ,w) ∈ graph(V k
t ),
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we have in accordance a subsequence of SPE paths γ̄(φni) that yield payoffs
wni for Sender k, converging to a SPE path γ̄(φ) that yields payoff w for
Sender k. Then, V k

t−1 is non-empty and closed for ∀k, and for any sequence
(φ′n, w′n) → (φ′, w′) ∈ graph(V k

t−1), there is in accordence a subsequence of
SPE paths γ̄(φ′ni) that yields payoff w′ni, converging to a SPE path γ̄(φ′) that
yields payoff w′ for Sender k.

Proof. (non-emptiness) The proof of non-emptiness of V k
t−1, k = 1, . . . , T

could be given in the same way as that in Theorem 2, based on the fact that
V t
t is closed.

(Closedness) ∀(θn, vn) such that vn ∈ V t
t−1(θn) i.e. ∃{〈φn1 , . . . , φnm〉θn} such

that
∑m

j=1 p(φ
n
j )wnj = vn, wnj ∈ V k

k (φnj ) and vn ≥ cl(V
¯

t

t
)(θ∗).

Suppose (θn, vn) → (θ∗, v∗) and their corresponding signaling rules {πnt }
yield {〈φn1 , . . . , φnm〉θn}. By assumptions, there is a subsequence {ni}∞i=1 such
that {πni

t } → {π∗t }, wni
j → w∗j ,∀j = 1, . . . ,m and γ̄ni

j (φni
j ) → γ̄∗j ,∀j =

1, . . . ,m. Here γ̄∗j simply denotes the SPE path starting from the point
when Sender k sends signal j.

(π∗t , {γ̄∗j }mj=1) is a SPE path according to Theorem 1 because,

m∑
j=1

p(φ∗j)w
∗
j = lim

i→∞

m∑
j=1

p(φni
j )wni

j > lim
i→∞

cl(V
¯

t

t
)(θni) > cl(V

¯

t

t
)(θ∗)

Relying on the continuity of vt and the convergence of SPE paths and
prior beliefs,

v∗ = lim
n→∞

vn

= lim
i→∞

∑
ω∈Ω

∑
s∈St×···×ST

vt(ani(s), ω)πni
t (st|ω) · · · πni

T (sT |ω)θn(ω)

=
∑
ω∈Ω

∑
s∈St×···×ST

vt(a∗(s), ω)π∗t (st|ω) · · · π∗T (sT |ω)θ∗(ω)

Therefore, v∗ ∈ V t
t−1(θ∗). For V k

t−1, k 6= t, we can adopt the same step
as in the proof of Step 2. For ∀(θ̄n, v̄n) ⊂ graph(V t

k−1) → (θ̄, v̄), there is
a convergent sequence of subgame paths that, given continuity of vk, the
convergence of prior beliefs and SPE paths implies that v̄ ∈ V k

t−1(θ̄).

12.3 Proposition 6

Proof. It suffices to demonstrate the equivalence between {V k
t }∀k,∀t in both

games. {V k
T }∀k are dependent on the Receiver’s actions and therefore in-

47



variant in both games. Inductively, if {V k
t+1}∀k are identical, Harris con-

dition cl(V
¯

t+1

t+1
) is the same for both games. Because the transformation

from {V k
t+1}∀k is no more than taking convex combinations of points in the

graph of {V k
t+1}∀k subject to Harris condition, {V k

t }∀k are the same in Γ0

and Γ∞ according to the Carathéodory’s Theorem, taking into account that
graph(V 1

t+1, . . . , V
T
t+1)

⊂ RT+l−1, for ∀t.

12.4 Theorem 4

Lemma 3

Proof. In (GT )c, V T
T coincides with cl(V T

T ), which is continuous in int(∆(Ω))
and LSC over the whole belief space ∆(Ω). Therefore, I only need to check
the boundary of the belief space.

For any µ ∈ bd(∆(Ω)) and {µn} ⊂ int(∆(Ω)) such that {µ, {µn}} ⊂ (GT )c

and {µn} → µ, I want to show that V T
T (µ) = limn→∞ V

T
T (µn).

Because V T
T is LSC in (GT )c, V T

T (µ) ≤ limn→∞V
T
T (µn). It only remains

to be shown that V T
T (µ) ≥ limn→∞V

T
T (µn). Because A is compact, there

exists a subsequence {µnk} s.t. {ρ(µnk)} → a′. By the Maximum Theorem,
a′ ∈ A∗(µ). Because the Receiver favors Sender T in indifference,

V T
T (µ) ≥ Eµ[vT (a′, µ)] = lim

k→∞
Eµnk [vT (ρ(µnk), µnk)] = lim

k→∞
V T
T (µnk)

For any µ ∈ bd(∆(Ω)), {µn} ⊂ bd(∆(Ω))) such that {µ, {µn}} ⊂ (GT )c

and {µn} → µ. The above analysis applies.

Lemma 4

Proof. For ∀µ ∈ GT , because GT is open, it is trivial Ṽ T−1
T−1 USC at µ.

For ∀µ ∈ (GT )c, if {µn} → µ from GT , the statement is trivially true. Oth-
erwise, if {µn} → µ from (GT )c and suppose limn→∞Ṽ

T−1
T−1 (µn) > Ṽ T−1

T−1 (µ),

which implies limn→∞V
T−1
T−1 (µn) > V T−1

T−1 (µ). There exists a subsequence

{nk} such that limk→∞ V
T−1
T−1 (µnk) = limn→∞V

T−1
T−1 (µ) and ρ(µnk) → a′ ∈

A∗(µ). By the Maximum Theorem, Eµnk [vT (ρ(µnk), ω)] = V T
T (µnk) implies

Eµ[vT (a′, µ)] = V T
T (µ). So a′ is the optimal action taken by the Receiver

which also favors Sender T . Therefore, by the tie breaking rule, once Sender
T have been satisfied, Sender T − 1 has the highest priority.
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V T−1
T−1 (µ) = Eµ[vT−1(ρS(µ), µ)] > Eµ[vT−1(a′, µ)] = lim

k→∞
Eµnk [vT−1(ρS(µnk), µnk)]

= lim
k→∞

V T−1
T−1 (ρS(µnk), µnk) = limn→∞V

T−1
T−1 (µn)

Contradiction.

Lemma 5

Proof. It is immediate that cl(Ṽ T−1
T−1 ) ≤ cl(V T−1

T−1 ). The remaining part is

to show cl(Ṽ T−1
T−1 ) ≥ cl(V T−1

T−1 ). If there is µ∗, cl(Ṽ T−1
T−1 )(µ∗) < cl(V T−1

T−1 )(µ∗),

∃〈θ1, . . . , θm〉µ∗ s.t. cl(Ṽ T−1
T−1 )(µ∗) <

∑m
j=1 p(θj)V

T−1
T−1 (θj). WLOG, suppose

θ1 ∈ GT , and {θi}i 6=1 ⊂ (GT )c. Then, V T−1
T−1 (θ1) =

∑m
j=1 p(ηj)V

T−1
T (ηj)

s.t. σST (θ1) := 〈η1, . . . , ηm〉θ1 . By Lemma 1, ηj ∈ (GT )c, for ∀j. Therefore,
Ṽ T−1
T−1 (ηj) = V T−1

T−1 (ηj), for ∀j.

cl(Ṽ T−1
T−1 )(µ∗) < p(θ1)

m∑
j=1

p(ηj)Ṽ
T−1
T−1 (ηj) +

m∑
j=2

p(θj)Ṽ
T−1
T−1 (θj)

Contradiction with the fact that {η1, . . . , ηm, θ2, . . . , θm} ⊂ (GT )c.

Lemma 6

Proof. As GT−1 is the active set for Ṽ T−1
T−1 , trivially, GT−1 ⊃ GT and on the

opposite (GT−1)c ⊂ (GT )c. It is equal to prove that (GT−1)c closed, that is,
for any {µn} ⊂ (GT−1)c and {µn} → µ, it can be shown that µ ∈ (GT−1)c, i.e.
V T−1
T−1 (µ) = cl(V T−1

T−1 ). Because cl(V T−1
T−1 ) is LSC, suppose limn→∞ V

T−1
T−1 (µn) =

limn→∞V
T−1
T−1 (µn) = x, it suffices to prove that V T−1

T−1 (µ) ≥ x ≥ cl(V T−1
T−1 )(µ).

BecauseA is compact, there exists a subsequence {µnk} such that ρS(µnk)→
a′. By the Maximum Theorem and the continuity of V T

T in (G)c, we have
a′ ∈ A∗(µ) and V T

T (µ) = Eµ[vT (a′, µ)], which means that a′ has been an
action that favors Sender T . Additionally, Sender T − 1 enjoys the highest
priority among the remaining senders, s.t.

V T−1
T (µ) ≥ Eµ[vT−1(a′, µ)] = lim

k→∞
Eµnk [vT−1(ρS(ank), µnk)] = lim

k→∞
V T−1
T (µnk) = x.

Because µ ∈ (GT−1)c ⊂ (GT )c, V T−1
T (µ) = V T−1

T−1 (µ). Then V T−1
T−1 (µ) ≥

x.
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12.5 Proposition 9

Proof. The proof is organized in an order as: (4) ⇒ (5) ⇒ (6) ⇒ (3) ⇒
(1) ⇒ (2). And below I abbreviate terms in the condition part as cond. (·)
and terms in the conclusion part as res. (·).

Proof of res.(4)
Sender t’s optimal signaling rules are derived from Ṽ t

t and cl(V t
t ) accord-

ing to cond.(1). For any µ ∈ Gt+1, Ṽ t
t (µ) = −∞ which can not serve as an

induced posterior in equilibrium. For any µ ∈ Gt − Gt+1, cl(V t
t )(µ) > V t

t (µ).
Following the same argument in the proof of Lemma 1, it cannot be an in-
duced posterior in equilibrium.

Proof of res.(5)
The proof is a counterpart of the proof of Lemma 4 with little modifi-

cation. Because of cond. (2), Ṽ t−1
t−1 is USC in Gt by definition. For (Gt)c,

the proof follows the same logic with that of Lemma 4 with an additional
condition that based on cond. (3), the converging action a′ in the proof of
Lemma 4 is now one of the Receiver’s optimal actions favoring Sender k,
k ≥ t+ 1. Then Ṽ t−1

t−1 is USC by the same reason why Ṽ T−1
T−1 is USC.

Proof of res.(6)
The proof is a counterpart of the proof of Lemma 5. The key is that for

any µ ∈ ∆(Ω), cl(V t−1
t−1 )(µ) can be achieved by signaling rules with posteriors

in (Gt)c. Here according to cond.(1) and (4), Sender t − 1’s value functions
have only been transformed within the area Gt with posteriors outside, such
that for any θ ∈ Gt, V t−1

t−1 (θ) =
∑m

j=1 qj(φj)V
t−1
t (φj) =

∑m
j=1 qj(φj)V

t−1
t−1 (φj),

where φj /∈ Gt for ∀j.

Proof of res.(3)
It is immediate from the definition of Ṽ t−1

t−1 .

Proof of res.(1)
The proof is a counterpart of the proof of Lemma 2 where I only need

to replace V T
T and GT with V t−1

t−1 and Gt−1, respectively. Furthermore, the
converging a′ is now one of the Reveiver’s optimal actions that also favors
Sender k, k ≥ t, because of cond.(3) and res.(2). Then the similar proof
applies.

Proof of res.(2)
The proof is a counterpart of the proof of Lemma 3. Because of cond.(3),
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(4) and res.(3), it is obvious that V k
T is continuous in (Gt−1)c, for ∀k ≥ t.

As for the continuity of V t−1
T , I only need to adopt the proof of Lemma

3 with GT and V T
T replaced by Gt−1 and V t−1

T , respectively. Same with the
proof of res.(1), the converging a′ becomes one of Reveiver’s optimal actions
that also favors Sender k, k ≥ t because of cond.(3) and res.(2). Then the
proof of Lemma 3 applies.

12.6 Theorem 5

(π′ > π ⇒ π′ � π)

Because π′ > π, we can write down π’s posterior as convex combinations

λi =

m2∑
j=1

rijµj, s.t. rij ∈ [0, 1],

m2∑
j=1

rij = 1,∀i, ∀j (19)

As π′ is singular, the sequence of numbers {rij}∀i,∀j is unique. Also, by
the property of Bayesian plausibility, π and π′ share the same average of
posteriors,

p1λ1 + · · ·+ pm1λm1 = q1µ1 + · · ·+ qm2µm2 (20)

Plug Eq. (19) into Eq. (20), obtaining that
∑

i

∑
j pirijµj =

∑
j qjµj.

Interchanging the summation signs on the left side of the equation,

m2∑
j=1

(

m1∑
i=1

pirij)µj =

m2∑
j=1

qjµj

Because of singularity and the uniqueness of those coefficients, for ∀j =
1, . . . ,m2,

m1∑
i=1

pirij = qj (21)

To prove sufficiency I turn to construct the matrix C such that for ∀i, j,

aij =

m2∑
k=1

cikbkj (22)
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Based on a formula in Kamenica and Gentzkow (2011), one can refer
posteriors back to their signal generating mechanisms, such that for ∀i, j,

aij =
λi(ωj)pi
µ0(ωj)

(23)

bkj =
µk(ωj)qk
µ0(ωj)

(24)

Substitute (23) (24) into (22) and obtain a necessary condition for Eq.
(22),

λi(ωj)pi =

m2∑
k=1

cikµk(ωj)qk (25)

It could be easily verified that Eq. (25) is satisfied when for ∀i, j,

cij =
pirij
qj

(26)

Specifically,
∑

i cij = 1 according to Eq. (21). Therefore, there exists a
matrix C that satisfies the requirement.

(π′ ⊃ π ⇒ π′ > π)

Prove by contradiction. For any utility function u and action set A, Vu is
a convex function as the maximization over a set of linear functions, which
is almost the only restriction on Vu for different u and A. Then, if there
exists a λk, k ∈ {1, . . . ,m1} lying out of conv{µ1, . . . , µm2}, it is feasible to
find a u and A such that Vu takes on an extremely high value at λk but a low
value within conv{µ1, . . . , µm2}. As a result, V̄u(π

′) < V̄u(π). Because V̄u is
the maximal expected payoff of the entries of payoff vectors, V̄u(π

′) < V̄u(π)
means that it is impossible for π′ to be more informative than π.

By Blackwell’s theorem, it suffices to conclude Theorem 5 with the two
claims: π′ > π ⇒ π′ � π and π′ ⊃ π ⇒ π′ > π.
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