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Abstract

This paper develops a dynamic model of rational behavior under uncertainty, in which
the agent maximizes the stream of the future τ-quantile utilities, for τ ∈ (0, 1). That is, the
agent has a quantile utility preference instead of the standard expected utility. Quantile
preferences have useful advantages, such as robustness and ability to capture heterogene-
ity. We provide an axiomatization of the recursive quantile preferences to motivate its
use. Although quantiles do not have some of the helpful properties of expectations, such
as linearity and the law of iterated expectations, we are able to establish all the standard
results in dynamic models. Namely, we show that the quantile preferences are dynami-
cally consistent, the corresponding dynamic problem yields a value function, via a fixed
point argument, establish its concavity and differentiability and show that the principle
of optimality holds. Additionally, we derive the corresponding Euler equation, which is
well suited for using well-known quantile regression methods for estimating and testing the
economic model. In this way, the parameters of the model can be interpreted as structural
objects. Therefore, the proposed methods provide microeconomic foundations for quantile
regression models. To illustrate the developments, we construct an asset-pricing model and
estimate the discount factor and elasticity of intertemporal substitution parameters across
the quantiles. The results provide evidence of heterogeneity in these parameters.

Keywords: Quantile utility, dynamic programing, quantile regression, asset pricing.

JEL: C22, C61, E20, G12

∗The authors thank Rabah Amir, Dan Bernhardt, Odilon Camara, Christopher Chambers, Eddie Dekel,
Juan Carlos Escanciano, Sergio Firpo, Edi Karni, Roger Koenker, Wilfredo Maldonado, John Quah, Marzena
Rostek, Anne Villamil, Peter Wakker and seminar participants at Boston University, Johns Hopkins University,
University of Arizona, USC, University of Illinois Urbana-Champaign, Vanderbilt University, University of
Iowa, Time, Uncertainties & Strategies IV in Paris, 2017 Asian Meeting of the Econometric Society, 2017 North
American Summer Meeting of the Econometric Society, 2016 Latin American Meeting of the Econometric
Society, 2016 Workshop on Advanced Econometrics at the University of Kansas, and XVII JOLATE for helpful
comments and discussions. All the remaining errors are ours.

†Department of Economics, University of Iowa, Iowa City, USA. decastro.luciano@gmail.com
‡Department of Economics, University of Arizona, Tucson, USA. agalvao@email.arizona.edu

1



1 Introduction

Modeling dynamic economic behavior has been a concern in economics for a long time (see,

e.g., Samuelson (1958), Baumol (1959), Koopmans (1960), Brock and Mirman (1972)). These

models are critical for learning about economic effects, incentives, and to design policy analysis.

We contribute to this literature by developing a new dynamic model for an individual, who,

when selecting among uncertain alternatives, chooses the one with the highest τ-quantile of

the stream of future utilities for a fixed τ ∈ (0, 1), instead of the standard expected utility.

This quantile preference model is tractable, simple to interpret, and substantially broadens

the scope of economic applications, because it is robust to fat tails and allows to account for

heterogeneity through the quantiles.1

Quantile preferences were first studied by Manski (1988) and axiomatized by Chambers

(2009) and Rostek (2010). Manski (1988) develops the decision-theoretic attributes of quantile

maximization and examines risk preferences of quantile maximizers. In the context of prefer-

ences over distributions, Chambers (2009) shows that monotonicity, ordinal covariance, and

continuity characterize quantile preferences. Rostek (2010) axiomatizes the quantile preference

in Savage (1954)’s framework, using a ‘typical’ consequence (scenario). Thus, quantile prefer-

ences are a useful alternative to the expected utility, and a plausible complement to the study

of rational behavior under uncertainty.2

This paper initiates the use of quantile preferences in a dynamic economic setting by

providing a comprehensive analysis of a dynamic rational quantile model. As a first step in the

developments, and to motivate our model, we axiomatize the recursive quantile preferences.

We build on the results in Bommier, Kochov, and Le Grand (2017) on monotone recursive

preferences to derive the recursive quantile utility representation. The preferences induce an

additively separable quantile utility model with standard discounting, that is, the recursive

equation is characterized by the sum of the current period utility function and the discounted

value of the certainty equivalent, which is a quantile function. In addition, we discuss the

notion of risk attitude and elasticity of intertemporal substitution (EIS) in our model, and

show that by using the recursive quantile preferences, it is possible to separate the notion of

risk attitude from the intertemporal substitution.

We then introduce the dynamic programming for intertemporal decisions whereby the

economic agent maximizes the present discounted value of the stream of future τ-quantile

utilities by choosing a decision variable in an feasible set. Our first main result establishes

dynamic consistency of the quantile preferences, in the sense commonly adopted in decision

1Rostek (2010) discusses several advantages of the quantile preferences, such as robustness, ability to deal
with categorical (instead of continuous) variables, and the flexibility of offering a family of preferences indexed
by quantiles.

2Quantile preferences can be associated with Choquet expected utility (see, e.g., Chambers (2007); Bassett,
Koenker, and Kordas (2004)). The method of Value-at-Risk, which is widespread in finance, also is an instance
of quantiles (see, e.g., Engle and Manganelli (2004)).
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theory. Second, we show that the optimization problem leads to a contraction, which therefore

has a unique fixed-point. This fixed point is the value function of the problem and satisfies the

Bellman equation. Third, we prove that the value function is concave and differentiable, thus

establishing the quantile analog of the envelope theorem. Fourth, we show that the principle

of optimality holds. Fifth, using these results, we derive the corresponding Euler equation for

the infinite horizon problem. To obtain our Euler equation, we offer a sufficient condition for

exchanging derivative and quantile operators, which does not hold in general.

We note that the theoretical developments and derivations in this paper are of indepen-

dent interest. The main results for the dynamic quantile model – dynamic consistency, value

function, principle of optimality, and Euler equation – are parallel to those of the expected

utility model. However, because quantiles do not share all of the convenient properties of

expectations, such as linearity and the law of iterated expectations, the generalizations of the

results from expected utility to quantile preference are not straightforward.

The derivation of the Euler equation is an important feature of this paper because it allows

to connect economic theory with empirical applications. We show that the Euler equation has

a conditional quantile representation and relates to quantile regression econometric methods,

and hence, our methods provide microeconomic foundations for quantile regression. The Euler

equation, which must be satisfied in equilibrium, implies a set of population orthogonality

conditions that depend, in a nonlinear way, on variables observed by an econometrician and

on unknown parameters characterizing the preferences. Thus, empirically, one can employ

practical existing econometric methods, such as instrumental variables for nonlinear quantile

regression, for estimating and testing the parameters of the model. In this fashion, these

parameters can be interpreted as structural objects. In addition, varying the quantiles τ enables

one to empirically estimate a set of parameters of interest as a function of the quantiles.3

Finally, we briefly illustrate the methods with a dynamic asset-pricing model, which is

central to contemporary economics and finance.4 We use a variation of Lucas (1978)’s model

where the economic agent decides on how much to consume and save by maximizing a quantile

utility function subject to a linear budget constraint. We solve the dynamic problem and

obtain the Euler equation. Following a large body of literature, we specify an isoelastic utility

function and estimate the implied discount factor and EIS parameters at different levels of

risk attitude (quantiles). The empirical results document evidence that both parameters vary

across quantiles. On the one hand, the discount factor is relatively larger for lower quantiles

and smaller for upper quantiles; on the other hand, the EIS coefficient is relatively smaller for

the lower quantiles and larger for the upper quantiles.

More broadly, this paper contributes to the literature by proposing methods that could be

3We note that the theoretical methods do not impose restrictions across quantiles, and thus the parameter
estimates might (or might not) vary across quantiles.

4See, among others, Hansen and Singleton (1982), Campbell (2003), Cochrane (2005), and Ljungqvist and
Sargent (2012), and references therein.
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applied to any dynamic economic problem, substituting the standard expected utility prefer-

ence by a dynamic quantile preference. This preference has the following advantages: it is

robust to outliers and to monotonic transformations, and allows for a strong separation of

beliefs and tastes, while still maintaining most of the useful characteristics of the standard

model: dynamic consistency, probabilistic sophistication and monotonicity. Moreover, it also

allows the separation between risk aversion and elasticity of intertemporal substitution, which

the standard expected utility model is not able to deliver, while maintaining monotonicity,

an important feature that the main method to obtain such separation (the Epstein-Zin-Weil

preferences) fails to satisfy. Since dynamic economic models are now routinely used in many

fields, such as macroeconomics, finance, international economics, public economics, industrial

organization and labor economics, among others, our methods expand the scope of economic

analysis and empirical applications, providing an alternative to expected utility models.

The remaining of the paper is organized as follows. Section 2 presents definitions and

basic properties of quantiles and provides an axiomatization of quantile preferences both in

the static and recursive cases. A reader that is not interested in the technical details of the

decision theoretic axiomatization of the preferences can safely skip Subsections 2.2 and 2.3.

Section 3 describes the dynamic economic model and presents the main theoretical results.

Section 4 illustrates the empirical usefulness of the the new approach by applying it to an

asset pricing model. Finally, Section 5 concludes. We relegate all proofs to the Appendix.

1.1 Review of the Literature

This paper has a broad scope and relates to a number of streams of literature in economic

theory and econometrics.

First, the paper relates to the extensive literature on dynamic nonlinear rational expec-

tations models. Many models of dynamic maximization that use expected utility have been

proposed and discussed. These models have been workhorses in several economic fields. We

refer the reader to more comprehensive works, such as Stokey, Lucas, and Prescott (1989) and

Ljungqvist and Sargent (2012). Another related segment of the literature studies recursive

utilities. We refer the reader to Epstein and Zin (1989), Marinacci and Montrucchio (2010),

Bommier, Kochov, and Le Grand (2017), among others. We extend this literature by replacing

expected utility and its variations with quantile utility.

Second, this paper is related to a few works on economic models using the quantile prefer-

ences, such as Manski (1988), Chambers (2007, 2009), Bhattacharya (2009), Rostek (2010) and

Giovannetti (2013). We contribute to this line of research by taking the quantile maximization

to a general dynamic optimization model and deriving its properties.

Third, the paper relates to an extensive literature on estimating Euler equations. Since

the contributions of Hall (1978), Lucas (1978), Hansen and Singleton (1982), and Dunn and

Singleton (1986) it has become standard in economics to estimate Euler equations based on
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conditional expectation models. There are large bodies of literature in micro and macroeco-

nomics on this subject. We refer the reader to Attanasio and Low (2004) and Hall (2005), and

the references therein, for a brief overview. The methods in this paper derive a Euler equation

that has a conditional quantile function representation and estimate it using existing quantile

regression (QR) econometric methods.

Finally, this paper relates to the QR literature, for which there is a large body of work in

econometrics.5 In a seminal paper Koenker and Bassett (1978) introduced QR methods for

estimation of conditional quantile functions. These models have provided a valuable tool in

economics and statistics applications to capture heterogeneous effects, and for robust inference

when the presence of outliers is an issue (see, e.g., Koenker (2005)). QR has been largely used

in program evaluation studies (Chernozhukov and Hansen (2005) and Firpo (2007)), identifi-

cation of nonseparable models (Chesher (2003) and Imbens and Newey (2009)), nonparametric

identification and estimation of nonadditive random functions (Matzkin (2003)), and testing

models with multiple equilibria (Echenique and Komunjer (2009)). This paper contributes to

the effort of providing microeconomic foundations for QR by developing a dynamic optimiza-

tion decision model that generates a conditional quantile restriction (Euler equation).

2 Quantile Preferences

This section formally defines quantiles, provides an axiomatization of the static and dynamic

quantile preferences and discusses the notions of risk and intertemporal substitution attitudes

for these preferences. The main objective is to provide foundations and motivations for the

recursive equation (equation (5) below), that is characterized by the sum of the current period

utility function and the discounted value of the quantile certainty equivalent. The recursive

equation is the central element in the definition of the dynamic quantile preferences, which is

completed in Section 3.

The justification for the recursive equation (5) can be divided in two parts: the risk and/or

uncertainty attitude, which has already been discussed in the literature about the static quan-

tile preference, and the intertemporal attitude that is relevant for the dynamic setting.

For the static quantile preference, Rostek (2010) discusses different motivations among

which are its robustness, invariance with respect to ordinal transformations of the consequences

and the ability to model a family of preferences indexed by the quantiles, where the agent is

governed by his/her attitude toward downside risk. The separation of tastes and believes,

which is a desirable property of preferences as discussed by Ghirardato, Maccheroni, and

Marinacci (2005), can be added as motivation. Quantile preferences allow for a very strong

5This paper is also related to an econometrics literature on identification, estimation, and inference of general
conditional moment restriction models. We refer the reader to, among others, Newey and McFadden (1994),
Chen, Linton, and van Keilegom (2003), Chen and Pouzo (2009), Chen, Chernozhukov, Lee, and Newey (2014),
and Chen and Liao (2015).
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version of the separation between tastes and beliefs. Namely, the utility attributed to the tastes

does not interfere with the beliefs part of the preference, which is robust to any monotonic

transformation (and not only affine ones). These (mainly normative) motivations support our

choice of quantiles as our certainty equivalent operators.

Regarding the intertemporal attitude, the ordinality that characterizes the static quantile

preferences may seem at odds with the additive separability that characterizes the intertempo-

ral aspect of (5). However, building on Bommier, Kochov, and Le Grand (2017), we show that

this additive separability is a consequence of a widely accepted monotonicity property. This

monotonicity property, which is well aligned with the ordinality property of quantiles, justifies

our intertemporal attitude and additive separability. Therefore, taken together, one can say

that ordinality and monotonicity justify our preferences.

The above aspects are formalized in the remaining of this section. Subsection 2.1 defines

quantiles and establishes well-known basic results that are useful later. Subsection 2.2 offers

a alternative axiomatization of the static quantile preferences. Subsection 2.3 provides an

axiomatization of the recursive quantile preferences. Subsection 2.4 defines the notion of risk

and elasticity of intertemporal substitution associated with the quantile preferences.

2.1 Preliminaries

Given a random variable (r.v.) X, let FX (or simply F) denote its cumulative distribution

function (c.d.f.), that is, FX(α) ≡ Pr[X ⩽ α]. The quantile function Q ∶ [0, 1] → R = R ∪
{−∞,+∞} is the generalized inverse of F:

Q(τ) ≡
⎧⎪⎪⎨⎪⎪⎩

inf{α ∈ R ∶ F(α) ⩾ τ}, if τ ∈ (0, 1]
sup{α ∈ R ∶ F(α) = 0}, if τ = 0.

The definition is special for τ = 0 so that the quantile assumes a value in the support of

X.6 It is clear that if F is invertible, that is, if F is strictly increasing, its generalized inverse

coincide with the inverse, that is, Q(τ) = F−1(τ). Usually, it will be important to highlight the

random variable to which the quantile refers. In this case we will denote Q(τ) by Qτ[X]. For

convenience, throughout the paper we will focus on τ ∈ (0, 1), unless explicitly stated.

In Lemma A.1 in the appendix, we develop some useful properties of quantiles, such as the

fact that it is left-continuous and F (Q(τ)) ⩾ τ. Another well-known and useful property of

quantiles is “invariance” with respect to monotonic transformations, that is, if g ∶ R → R is a

continuous and strictly increasing function, then

Qτ[g(X)] = g (Qτ[X]) . (1)

6Indeed, inf{α ∈ R ∶ F(α) ⩾ 0} = −∞, no matter what is the distribution.
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For τ ∈ (0, 1], the conditional quantile of X with respect to Z is defined as:

Qτ[X∣z] ≡ inf{α ∈ R ∶ Pr ([X ⩽ α] ∣Z = z) ⩾ τ}.

Lemma A.2, in the appendix, generalizes (1) to conditional quantiles. More precisely,

Lemma A.2 proves that if g ∶ Θ ×Z → R is non-decreasing and left-continuous in Z ∈ Z, then,

Qτ[g(θ, ⋅)∣Z = z] = g (θ, Qτ[X∣Z = z]) .

This property is repeatedly used in the rest of the paper.

2.2 Static Quantile Preferences

This subsection provides an axiomatization of the static quantile preferences. Manski (1988)

was the first to study such preferences, which was recently axiomatized by Chambers (2009)

and Rostek (2010). Rostek (2010) axiomatized the quantile preferences in the context of

Savage (1954)’s subjective framework. Rostek (2010) modifies Savage’s axioms to show that

they are equivalent to the existence of a τ ∈ (0, 1), probability measure and a quantile utility

function.7,8 In contrast, Chambers (2009) departs from a framework where the utility function

and the probability distributions are already fixed (risk setting, in contrast with Rostek’s

uncertainty setting). He shows that the preference satisfies monotonicity, ordinal covariance,

and continuity if and only if the preference is a quantile preference.9

We want to work with the uncertainty setting, but for a technical reason, we cannot appeal

directly to Rostek (2010)’s results. The reason is that she works with a necessarily infinite

state space (because of her event continuity axiom). This is not suitable for our extension

to the dynamic case, which is based on Bommier, Kochov, and Le Grand (2017): they work

with a finite state space. Therefore, we build on Chambers (2007) and provide an alternative

set of axioms for the one-period preference. In doing so, we contribute to the literature by

introducing a new axiom, which we call ordinality - axiom Q4 below, that is central to specifying

the quantile preference.

2.2.1 Axiomatization of Static Quantile Preference

Let S be a finite set and let Σ = 2S denote the set of all its subsets. The following definitions

and notation will be useful below. Any E ∈ Σ is called an event. The topological space X is

7If τ ∈ {0, 1}, the statement is more complex; see her paper for details.
8 Rostek (2010) also shows that the quantiles preferences are probabilistic sophisticated for τ ∈ (0, 1), by

using a variation of the original concept of probabilistic sophistication introduced by Machina and Schmeidler
(1992).

9Since the upper semicontinuity property is a technical condition and first-order stochastic dominance is
a mild property, also satisfied by expected utility, the really important property is invariance with respect
to monotonic transformations. We have stated this property in equation (1). Thus, this property could be
considered the essence of the quantile preference considered here.
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called the set of consequences. Any function f ∶ S → X is called an act and F denotes the set

of all acts. Endow F with the product topology of XS. An event E is null if for all f,g ∈ F ,

if (f(s) = g(s),∀s ∉ E) implies f ∼ g. We denote by xEy the act f ∈ F defined by f(s) = x if

s ∈ E and f(s) = y if s ∉ E. As usual, X is seen a subset of F . Also as usual, we write f ≻ g if

(f ≽ g) ∧ ¬(g ≽ f), f ∼ g if (f ≽ g) ∧ (g ≽ f), f ≼ g if g ≽ f and analogously for ≺.

Our first three axioms are standard.

Axiom Q1 (Weak order). The binary relation ≽ is complete and transitive on F .

Axiom Q2 (Continuity). For any f ∈ F , the sets {g ∈ F ∶ g ≽ f} and {g ∈ F ∶ f ≽ g} are

closed.

Axiom Q3 (Monotonicity). For any f,g ∈ F , (f(s) ≽ g(s),∀s ∈ S)⇒ f ≽ g.

The next axioms are the ones that allow to characterize quantile preferences. We need the

following definition: we say that a function ϕ ∶ X→ X as increasing if x ≽ y⇒ ϕ(x) ≽ ϕ(y).

Axiom Q4 (Ordinality). For any increasing ϕ ∶ X→ X, we have

f ≽ g⇒ ϕ(f) ≽ ϕ(g). (2)

Axiom Q4 requires that the preference is ordinal, that is, the only importance for the

ranking of any act is the order of the consequences, not its cardinal value. Since ϕ is not

restricted to be “strictly increasing”, the implication is required in just one direction. Of

course, if ϕ is “strictly increasing” with inverse ϕ−1, then we could apply Q4 to ϕ−1 to obtain

f ≽ g⇔ ϕ(f) ≽ ϕ(g).10

Ordinality may seem unusual as an axiom for increasing functions ϕ ∶ X→ X. However, the

ordinality is similar to other axiom previously used in the literature. To see this, let C denote

the set of functions ϕ ∶ X→ X for which there exists y ∈ X such that ϕ(x) = αx+(1−α)y,∀x ∈ X.

Then, the weak certainty independence axiom used by Maccheroni, Marinacci, and Rustichini

(2006a) is just the requirement that (2) holds for all ϕ ∈ C. Moreover, it seems possible to

rephrase ordinality in terms of comonotonicity (as used by Schmeidler (1989)), since f and

ϕ(f) are comonotonic for an increasing ϕ. The above form seems simpler, however.

It should also be noted that ordinality allows full separation of beliefs and tastes, a char-

acteristic that is desirable but not obtained in other models. Indeed, Ghirardato, Maccheroni,

and Marinacci (2005) observe that economists often operate under an implicit assumption that

the tastes of a decision maker are quite stable, while his beliefs change with the availability of

10This equivalence holds for a quantile preference because we focus on simple acts. In the general case, it is
necessary to require extra conditions, as left-continuity; see Lemma A.2 in the appendix.
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new information. They attempt to offer a result with this separation, but they are able to ob-

tain only a partial separation, with their certainty independence axiom. Ordinality guarantees

the desired full separation of beliefs and tastes.

Ordinality is the central axiom of our axiomatization of static quantile preferences. It

is also our main contribution to this axiomatization, since our proof follows closely that of

Chambers (2007).11

The following axiom is taken directly from Chambers (2007) and its role is to allow to

obtain a probability that defines the preference as a quantile preference. Axioms Q1-Q4 alone

are not sufficient for this conclusion.

Axiom Q5 (Betting Consistency). Let {A1, ...,An} ⊂ Σ and {B1, ...,Bn} ⊂ Σ be such

that ∑ni=1 1Ai ⩾ ∑ni=1 1Bi . Then, there exists x,x ∈ X and i ∈ {1, ...,m} such that

xAix ≽ xBix.

We refer the reader to Chambers (2007) for a discussion and justification of this axiom.

Our axiomatization of quantile preferences is provided through the following:

Proposition 2.1. The preference ≽ satisfies axioms Q1-Q5 if and only if there exists utility

function u ∶ X → [0, 1], probability p ∶ Σ → [0, 1] and τ ∈ (0, 1) such that U ∶ F → [0, 1]
represents ≽, where

U(f) ≡ inf{α ∶ p({s ∈ S ∶ u(f(s)) ⩾ α}) ⩽ τ}. (3)

2.3 Recursive Quantile Preferences

Now we provide an axiomatization of the recursive quantile preferences. To do so, we will

apply the results in Bommier, Kochov, and Le Grand (2017). We restrict the analysis to the

particular case of stationary IID Markov.12 The extension of the results to a general Markov

case is left for future work. The notion of stationary IID relies on the following: (i) restriction

of the analysis to cases where the passing of time has no impact on the structure of the domain

of choice; and (ii) introduction of a set of assumptions implying that a decision maker who

uses, at all dates, the same history independent preference relation is time-consistent. The

setup and notation are taken verbatim from Bommier, Kochov, and Le Grand (2017).

2.3.1 Setup and Notation

Let S be a finite set representing the states of the world to be realized in each period. We

note that for the axiomatization of the dynamic preferences we work with a finite space S,

which is required by Bommier, Kochov, and Le Grand (2017). A finite space S is also used in

11 Ordinality is simpler than the alternative proposed by Chambers (2007, footnote 2, p. 422).
12The notion of IID was first introduced in Epstein and Schneider (2003a) in the context of ambiguity for the

case of max-min expected utility representation.
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Maccheroni, Marinacci, and Rustichini (2006b). We assume that S has at least three elements

and let Σ ∶= 2S be the associated algebra of events. The full state space is Ω ≡ S∞, with a state

ω ∈Ω specifying a complete history (s1, s2, . . . ). In each period t > 0, the individual knows the

partial history (s1, . . . , st). Such knowledge can be represented by a filtration G = (Gt)t on Ω

where G0 ∶= {∅,Ω} and, for every t > 0, Gt ∶= Σt × {∅,S}∞. We again let C = [c, c̄] be the set

of all possible consumption levels. A consumption plan, or an act, is a C-valued, G-adapted

stochastic process, that is, a sequence h = (h0,h1, . . . ) such that ht ∶ Ω → C is Gt-measurable

for every t. The set of all consumption plans is denoted by H and endowed with the topology

of pointwise convergence.

We consider a binary relation ≽ on H and introduce a set of axioms. Some notation is

needed first. Given an act h ∈ H and state ω ∈ Ω, let h(ω) ∈ C∞ be the deterministic

consumption stream induced by h in state ω ∈Ω, that is, h(ω) = (h0,h1(ω), . . . ). Moreover,

for any act h ∈H and any s ∈ S, we define the conditional act hs ∈H by

∀ω = (s1, s2, . . . ) ∈Ω ∶ hs(s1, s2, . . . ) = h(s, s2, . . . ) = (h0,h1(s, s2, . . . ), . . . ) .

The act hs is obtained from h when knowing that the first component of the state of

the world is equal to s ∈ S. Notice that hs(s1, s2, . . . ) is independent of s1. Given h =
(h0,h1,h2, . . . ) ∈H, let h1 be defined by

∀ω = (s1, s2, . . . ) ∈Ω ∶ h1(s1, s2, . . . ) = (h1(s1, s2, . . . ),h2(s1, s2, . . . ) . . . ) .

The set of those h1 can be identified with HS.

Last, for any c ∈ C and h ∈H, we define the concatenated act (c,h) ∈H by

(c,h) ∶ω = (s1, s2, . . . ) ∈Ω↦ (c,h)(ω) = (c,h(s2, . . . )) ∈ C∞.

The notions of conditional, continuation, and concatenated acts are related to each other.

In particular, the conditional act is the concatenation of first-period consumption and the

continuation act. Formally, for h = (h0,h1, . . . ) ∈ H and s ∈ S, we have hs = (h0,hs,1).
Moreover, any concatenated act (c,h) has continuation h. In mathematical terms, for any

c ∈ C, h ∈H, and s ∈ S, we have (c,h)s,1 = h.

2.3.2 Axioms

We borrow the axioms below from Bommier, Kochov, and Le Grand (2017). See their paper

for a discussion and motivation of these axioms.

Axiom D1 (Weak Order). The binary relation ≽ is complete and transitive on H.
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Axiom D2 (Continuity). For all h ∈ H, the sets {ĥ ∈ H ∣ ĥ ≽ h} and {ĥ ∈ H ∣ h ≽ ĥ} are

closed in H.

Axiom D3 (Recursivity). For all acts h = (h0,h1, . . . ) and ĥ = (ĥ0, ĥ1, . . . ) in H with

h0 = ĥ0,
(∀s ∈ S,hs ≽ ĥs) Ô⇒ h ≽ ĥ.

If, in addition, one of the former rankings is strict, then the latter ranking is strict.

Axiom D4 (History Independence). For all acts h = (h0,h1, . . . ) and ĥ = (h0, ĥ1, . . . )
in H, and ĥ0 ∈ C,

(h0,h1, . . . ) ≽ (h0, ĥ1, . . . ) ⇐⇒ (ĥ0,h1, . . . ) ≽ (ĥ0, ĥ1, . . . ).

Axiom D5 (Stationarity). For all c ∈ C and h, ĥ ∈H, we have (c,h) ≽ (c, ĥ) ⇐⇒ h ≽ ĥ.

Axiom D6 (Monotonicity for Deterministic Prospects). For all c∞, ĉ∞ ∈ C∞, if

c∞ ≥ ĉ∞, then c∞ ≽ ĉ∞. The latter ranking is strict whenever c∞ ≩ ĉ∞.

Axiom D7 (Monotonicity). For any h and ĥ in H,

(h(ω) ≽ ĥ(ω) for all ω ∈Ω) Ô⇒ h ≽ ĥ.

2.3.3 Characterization of Monotone Preferences

Let B0(Σ) be the set of simple Σ-measurable functions from S into R+. A function I ∶ B0(Σ)→
R+ is a certainty equivalent if it is continuous, strictly increasing and satisfies I(x) = x for any

x ∈ R+, where we see real numbers as constant functions in B0(Σ). A certainty equivalent

I ∶ B0(Σ) → R+ is translation-invariant if I(x + f) = x + I(f) for any x ∈ R+ and f ∈ B0(Σ) and

it is scale-invariant if for all λ ∈ R+ and f ∈ B0(Σ), I(λf) = λI(f). Given a function V ∶ H → R
and an act h ∈H, we let V ○h1 denote the function s↦ V(hs,1). If V is a utility function, then

V ○h1 is the state-contingent profile of continuation utilities induced by the act h in period 1.

A time aggregator is a function W ∶ C × [0, 1]→ [0, 1].
We say that ≽ admits a recursive representation (V,W, I) if

h ≽ h ′ ⇐⇒ V(h) ≽ V(h ′), (4)

where V ∶H → [0, 1], W is a time aggregator and I is a certainty equivalent satisfying

V(h) =W(h0, I(V ○ h1)).

Bommier, Kochov, and Le Grand (2017)’s Proposition 4 is the following:
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Proposition 2.2 (Bommier-Kochov-Le Grand). A binary relation ≽ on H satisfies axioms

D1-D7 if and only if it admits a recursive representation (V,W, I) such that either:

1. I is translation-invariant and W(c,x) = u(c) + βx, where β ∈ (0, 1) and u ∶ C → [0, 1] is

a continuous, strictly increasing function such that u(c) = 0 and u(c̄) = 1 −β, or

2. I is translation-invariant and scale-invariant, and W(c,x) = u(c) + b(c)x, where u,b ∶
C → [0, 1] are continuous functions such that b(C) ⊂ (0, 1), the functions u and u + b
are strictly increasing, and u(c) = 0 and u(c̄) = 1 − b(c̄).

2.3.4 Axiomatization of Recursive Quantile Preferences

Let Ω = S∞, C and H be as in Subsection 2.3.1. Consider the following axioms:

Axiom A1 (Time Separability for Deterministic Prospects). For all c∞, ĉ∞ ∈ C∞,

c, c ′,d,d ′ ∈ C, we have:

(c,d, c∞) ≽ (c ′,d ′, c∞)⇔ (c,d, ĉ∞) ≽ (c ′,d ′, ĉ∞).

Axiom A2 (Ordinality). For any c0 ∈ C, functions f,g ∶ S → C, h = (h0,h1,h2, ...) ∈ H,

and increasing ϕ ∶ C→ C,

(c0, f(⋅),h2(⋅),h3(⋅), ...) ≽ (c0,g(⋅),h2(⋅),h3(⋅), ...)
⇒ (c0,ϕ(f(⋅)),h2(⋅),h3(⋅), ...) ≽ (c0,ϕ(g(⋅)),h2(⋅),h3(⋅), ...).

Axiom A3 (Betting Consistency). Let {A1, ...,An} ⊂ 2S and {B1, ...,Bn} ⊂ 2S be such

that ∑ni=1 1Ai ⩾ ∑ni=1 1Bi . Then, there exists c, c ′ ∈ C and i ∈ {1, ...,m} such that

cAic
′ ≽ cAic

′, where c = (c, c, ...) and c ′ = (c ′, c ′, ...).

Axiom A1 is just Koopmans (1972)’s Postulate 3”. Note that this is required only for

deterministic prospects. A version of A1 has been required by Epstein and Schneider (2003b),

Maccheroni, Marinacci, and Rustichini (2006b), Kochov (2015), among others. This axiom

allows us to show that in Proposition 2.2, b(c) = β ∈ (0, 1), that is, the discounting factor is a

constant and does not depend on the consumption.

Axioms A2 and A3 are adaptations of axioms Q4 and Q5, respectively, which allow us to

show that the certainty equivalent I[⋅] in Proposition 2.2 is in fact a quantile. We are now able

to state and prove our axiomatization result:
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Proposition 2.3. A binary relation ≽ on H satisfies axioms D1-D7 and A1-A3 if and only

if there exist a utility function u ∶ X → R, a probability p ∶ Σ → [0, 1] on Σ = 2S and β,τ ∈
(0, 1) such that ≽ admits a recursive representation (V,W, I), where W(c,x) = u(c) + βx and

I ∶ B0(Σ)→ R+ is given by I(b) = Qpτ[b], for any b ∈ B0(Σ). That is, V satisfying the recursive

equation

V(h) = u(h0) +βQpτ[V(h1)], (5)

represents ≽, where h = (h0,h1, ...) ∈H and h1 = (h1,h2, ...) ∈HS.

It is important to discuss some aspects of Proposition 2.3 and the representation it delivers.

Focusing only on the representation itself and ignoring the axioms that imply it, one could be

tempted to describe it as combining cardinal and ordinal properties. With respect to the time

component, the representation seems to have a “cardinal” flavor, in the sense that W is given

by an additively separable cardinal expression: W(c,x) = u(c) +βx. On the other hand, with

respect to uncertainty, the certainty equivalent I[⋅] = Qpτ[⋅] is purely ordinal. An inspection

of the axioms, however, reveal that these properties come, essentially, from monotonicity (D7)

and ordinality (Q4). One could say that these axioms share the common principle of respecting

the order on time, events and consequences and are, therefore, harmonious. Monotonicity with

respect to deterministic prospects (D6) and Monotonicity (D7) indeed imply that W(c,x) =
u(c)+b(c)x, according to Proposition 2.2. Ordinality and betting consistency, that come from

A2 and A3, imply that the certainty equivalent is of the quantile form. Ordinality, which is the

central axiom for this result, essentially requires that only the order of the consequences (not

its cardinal index) matters for the rank of uncertain prospects. This also allows to separate

beliefs and tastes, as commented above in Subsection 2.2.1, in the discussion after axiom Q4.

It remains only to restrict b(c) to be constant, which is obtained with the time separability

of deterministic prospects (A1). In sum, the additive separability of the recursive function W

and the ordinality of the certainty equivalent I[⋅] are characteristics that combine well leading

to our model.

2.4 Risk and Intertemporal Attitudes in the Quantile Model

In this section, we discuss risk and intertemporal attitudes in the recursive quantile model.

2.4.1 Risk Attitude in the Static Quantile Model

The risk attitude in the quantile model was studied by Manski (1988) and Rostek (2010). They

show this model admits a notion of comparative risk attitude, related to τ. Rostek (2010)

argues that quantile maximizers are concerned with downside risk, which can be defined as

follows, for the case of real valued consequences.
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Figure 1: X has more downside risk than Y.

Definition 2.4. 1. We say that FY crosses FX from below at x if

(i) FY(y) ⩽ FX(y),∀y < x and (ii) FY(y) ⩾ FX(y),∀y > x. (6)

In this case, we say that X involves more downside risk than Y with respect to x.

2. The class of all r.v. with the single-crossing property is the set SC = {(X,Y) ∶ FY crosses

FX from below at some x}.

3. We say that ≽1 is more risk-averse than ≽2 if, for all pairs (X,Y) ∈ SC,

Y ≽2 X⇒ Y ≽1 X. (7)

Figure 1 illustrates (6), that is, that FY crosses FX from below at x. Notice that X is more

widespread than Y, which justifies the notion that it is riskier or that it involves more downside

risk than Y. The picture also helps to understand (7) and Proposition 2.5 below.

Intuitively, this comparative notion allows ranking the attractiveness of distributions by

comparing the likelihood of losses with respect to outcome x. The following result establishes

the connection between the risk attitude and quantiles; see Rostek (2010, Section 6.1) and

Manski (1988, Section 5) for discussion.

Proposition 2.5 (Rostek, 2010). In the Quantile Maximization model, τ < τ ′ if and only if a

τ-maximizer is weakly more averse toward downside risk than a τ ′-maximizer.

Proposition 2.5 shows that ≽τ is more risk-averse than ≽τ ′ if and only if τ < τ ′. Thus, a

decision maker that maximizes a lower quantile is more “risk-averse” than one who maximizes

a higher quantile. In other words, the risk-attitude can be related to the quantile rather than

to the concavity of the utility function. To understand this, fix u(x) = xρ and remember that

(1) implies ϕρτ(X) ≡ Qτ[(X)ρ] = (Qτ[X])ρ. Thus, ϕρτ and ϕρ
′

τ represent the same preference,

for any ρ,ρ ′ > 0, that is,

X ≽ Y ⇐⇒ ϕρτ(X) ⩾ ϕρτ(Y) ⇐⇒ Qτ[X] ⩾ Qτ[Y] ⇐⇒ ϕρ
′

τ (X) ⩾ ϕρ ′τ (Y). (8)

Therefore, we can represent this preference just by ϕτ(X) ≡ Qτ[X]. However, if ϕρ(X) ≡
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E[(X)ρ] and 0 < ρ < ρ ′ < 1, then ϕρ represents a more risk-averse preference (in the standard

sense) than ϕρ ′ .

2.4.2 Risk Attitude in the Dynamic Quantile Model

Now we discuss the notion of risk attitude in the dynamic quantile model. For this discussion,

consider preferences ≽i, i ∈ {1, 2}, satisfying axioms D1-D7 and A1, so that they are represented

by Vi satisfying the following recursive equation:

Vi(h) = u(h0) +βIi[Vi(h1)].

As Epstein and Zin (1989), we adapt definition (7) for the dynamic case as follows: we say

that ≽1 is more risk averse than ≽2 if, for all c∞ ∈ C∞ and h ∈H,

c∞ ≽2 h Ô⇒ c∞ ≽1 h. (9)

Observe that if Y is a deterministic prospect, it crosses from below any other distribution, so

that (7) holds. Since c∞ is a deterministic prospect, this justifies (9). We have the following:

Lemma 2.6. ≽1 is more risk averse than ≽2 if and only if I1[⋅] ⩽ I2[⋅].

Specializing the above result to the quantile case, we conclude that ≽1 is more risk averse

than ≽2 if and only if I1(⋅) =Qτ1[⋅] ≤Qτ2[⋅] = I2(⋅) which is equivalent to τ1 ≤ τ2. This is exactly

the notion obtained in Proposition 2.5 above. Hence, as in Manski (1988) and Rostek (2010),

the dynamic quantile model admits a notion of comparative risk attitude, where τ captures

a measure of risk attitude, but agents are not characterized as risk-averse, risk-neutral, or

risk-seeking. Moreover, this definition of risk allows for the risk attitudes to be disentangled

from the degree of intertemporal substitutability, as we discuss next.

2.4.3 Timing of Resolution of Uncertainty and Intertemporal Substitution

Since Kreps and Porteus (1978) and Epstein and Zin (1989), it is well understood that a

separation of risk and intertemporal attitudes is possible only if the timing of the resolution

of uncertainty matters. More recently, Bommier, Kochov, and Le Grand (2017, Proposition

3) show that scale-invariant certainty equivalents generate what they call restricted indiffer-

ence toward the timing of resolution of uncertainty. This is, in a sense, the weakest form of

indifference toward the timing of the resolution of uncertainty that still accommodates the sep-

aration of risk and intertemporal substitution attitudes. Since the quantile certainty equivalent

operator is scale-invariant, it belongs to this selected class and thus allows for this separation.

We illustrate how this separation can be achieved. Consider the utility index u(c) = cρ.

If ρ ∈ (0, 1) this corresponds to the case of risk aversion in the expected utility model and if

ρ1 < ρ2, 1 is more risk averse than 2, in the sense that he has a higher coefficient of relative
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risk aversion. However, in the static quantile preferences, any ρ > 0 leads to exactly the same

choices, as discussed above; see (8). In other words, the parameter ρ does not capture any

aspect of the decision maker attitude towards risk.13 If we have multiple periods, however,

the parameter ρ plays an important role. Indeed, consider equation (5) with the same utility

index above, that is,

V(c0, c̃1) = cρ0 +βQτ [c̃ρ1 ] .

Applied to a deterministic prospect, that is, c̃1 = c1, this yields cρ0 +βc
ρ
1 . It is easy to see that

the elasticity of intertemporal substitution (EIS) in this case is simply 1
1−ρ . Subsection 4.4

illustrates how to estimate the EIS with our dynamic quantile model using standard methods.

It is useful to compare our method with the most widely used method to separate risk

aversion and the EIS, which is the following specification of Epstein and Zin (1989) and Weil

(1990), with ρ /= 0, α /= 0:

VEZ(c0, c̃1) = (cρ0 +β (E [c̃α1 ])
ρ
α )

1
ρ

.

As observed by Bommier, Kochov, and Le Grand (2017), this model satisfies monotonicity

if and only if ρ = α, in which case the model collapses to the standard expected utility model,

where the separation of risk aversion and EIS is not possible. In other words, for achieving

its goal this popular Esptein-Zin-Weil preferences is necessarily non-monotonic. Bommier,

Kochov, and Le Grand (2017, Lemmas 2 and 3) illustrate some of the problems that arise from

this lack of monotonicity. In short, a Epstein-Zin-Weil decision maker may prefer to reduce

lifetime utility in all states of the world, just out of his willingness to reduce risk. In contrast,

the willingness to reduce risk by a decision maker with monotonic preferences will never lead

him to reduce lifetime utility in all states of the world. This seems, therefore, a shortcoming

of those preferences. Since dynamic quantile preferences are monotonic, they are immune to

this criticism.

3 Economic Model and Theoretical Results

This section describes a dynamic economic model and develops a dynamic program theory

for quantile preferences. We try to follow closely Stokey, Lucas, and Prescott (1989, chapter

9). Our first task is to define the dynamic quantile preference over plans from the recursive

equation (5). This is necessary because (5) only describes the preference from one period to the

next. We begin in Subsection 3.1 by defining a general dynamic environment, suitable for our

analysis. Subsection 3.2 states and discusses the assumptions used for establishing the main

results. Subsection 3.3 establishes the existence of recursive functions, necessary to extend

13As discussed in subsections 2.4.1 and 2.4.2, the attitude towards risk is captured by τ in both the static and
dynamic cases.
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the preferences from recursive equation (5) to the time contingent preferences. Subsection

3.4 shows that the preference is dynamically consistent. In Subsection 3.5 we establish the

existence of the value function and its differentiability. Subsection 3.6 states and proves, in

our context, the Bellman’s Principle of Optimality, which allows to pass from plans to single

period decisions and vice-versa, thus establishing that the value function corresponds to the

original dynamic problem in a precise sense. Finally, Subsection 3.7 derives the Euler equation

associated to this dynamic problem, which describes the agents behavior and is useful for the

econometric part of the paper.

The main results in this section are generalizations to the quantile preferences’ case of the

corresponding ones in Stokey, Lucas, and Prescott (1989), which focus on expected utility.

First, our results increase the scope of potential applications of economic models substantially

by using quantile utility. Second, the generalizations are of independent interest. The demon-

strations are not routine since quantiles do not possess several of the convenient properties of

expectations, such as linearity and the law of iterated expectations.

3.1 Dynamic Model

In Subsection 2.3, we axiomatized the recursive equation (5). This equation describes the

preference from one period to the next; it is now necessary to show how it determines the

preferences over plans. To do this, we need some definitions and new notation.

3.1.1 States and Shocks

Let X ⊂ Rp denote the state space, and Z ⊆ Rk the range of the shocks (random variables) in

the model. Let xt ∈ X and zt ∈ Z denote, respectively, the state and the shock in period t,

both of which are known by the decision maker at the beginning of period t. We may omit

the time indexes for simplicity, when it is convenient. Let Zt = Z ×⋯ ×Z (t-times, for t ∈ N),

Z∞ = Z ×Z ×⋯ and N0 ≡ N ∪ {0}. Given z ∈ Z∞, z = (z1, z2, ...), we denote (zt, zt+1, ...) by tz

and (zt, zt+1, ..., zt ′) by tzt ′ . A similar notation can be used for x ∈ X∞.

The random shocks will follow a time-invariant (stationary) Markov process. More pre-

cisely, a probability density function (p.d.f.) f ∶ Z×Z → R+ establishes the dependence between

Zt and Zt+1, such that the process is invariant with respect to t. For simplicity of notation,

we will frequently represent Zt and Zt+1 by Z and Z ′, respectively. We will assume that f and

Z satisfy standard assumptions, as explicitly stated below in Subsection 3.2.

For any topological space S, we will denote by σ(S) the Borel σ-algebra. For each z ∈ Z
and A ∈ σ(Z), define

K(z,A) ≡ ∫
A
f(z ′∣z)dz ′,

where f(z ′∣z) = f(z,z ′)

∫Z f(z,z
′)dz ′

. Thus, K is a probabilistic kernel, that is, (i) z ↦ K(z,A) is

measurable for every A ∈ σ(Z); and (ii) A↦ K(z,A) is probability measure for every z ∈ Z. In

17



other words, K represents a conditional probability, and we may emphasize this fact by writing

K(A∣z) instead of K(z,A). We will also abuse notation by denoting K(z,{z̃ ∶ z̃ ⩽ z ′}) simply

by K(z ′∣z).

3.1.2 Plans

At the beginning of period t , the decision maker knows the current state xt and learns the shock

zt and decides (according to preferences defined below) the future state xt+1 ∈ Γ(xt, zt) ⊂ X ,

where Γ(x, z) is the constraint set.14 From this, we can define plans as follows:

Definition 3.1. A plan h is a profile h = (ht)t∈N where, for each t ∈ N, ht is a measurable

function from X ×Zt to X .15 The set of plans is denoted by H.16

The interpretation of the above definition is that a plan ht(xt, zt) represents the choice

that the individual makes at time t upon observing the current state xt and the sequence of

previous shocks zt. The following notation will simplify statements below.

Definition 3.2. Given a plan h = (ht)t∈N ∈ H, x ∈ X and realization z∞ = (z1, ...) ∈ Z∞,

the sequence associated to (x, z∞) is the sequence (xht )t∈N0 ∈ X∞ defined recursively by xh1 = x
and xht = ht−1(xht−1, zt−1), for t ⩾ 2. Similarly, given h ∈ H, (x, zt) ∈ X × Zt, the t-sequence

associated to (x, zt) is (xhl )tl=1 ∈ X t defined recursively as above.

We may write xht (⋅), xht (x, zt) or xht (x, z∞) to emphasize that xht depends on the initial

state x and on the sequence of shocks z∞, up to time t.

Definition 3.3. A plan h is feasible from (x, z) ∈ X × Z if ht(xht , zt) ∈ Γ (xht , zt) for every

t ∈ N and z∞ ∈ Z∞ such that xh1 = x and z1 = z.

We denote by H(x, z) the set of feasible plans from (x, z) ∈ X ×Z. Let H denote the set of

all feasible plans from some point, that is, H ≡ ∪(x,z)∈X×ZH(x, z).

3.1.3 Preferences

Let Ωt represent all the information revealed up to time t.17 We assume that in time t

with revealed information Ωt, the consumer/decision-maker has a preference ≽t,Ωt over plans

14This model is very close to the one discussed in Stokey, Lucas, and Prescott (1989, Chapter 9). There are
different, slightly more complicated dynamic models where the state is not chosen by the decision maker, but
defined by the shock. The arguments in the current model can be extended to those models when preferences
are expected utility, as Stokey, Lucas, and Prescott (1989, Chapter 9) discuss. In our setup, this extension may
be more involved.

15In the expressions below, h0(z0) should be understood as just h0 ∈ X .
16The set H is deeply related to the set H used in Subsection 2.3, but they are formally different. For this

reason, we maintain slightly different notation.
17With the knowledge of a fixed h, Ωt reduces to the initial state x1 and the sequence of shocks zt. More

generally, we could take the sequence of states and shocks (xt, zt).
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h,h ′ ∈ H(x, z), which is represented by a function Vt ∶ H ×X ×Zt → R, that is,

h ′ ≽t,x,Ωt h ⇐⇒ Vt(h ′,x, zt) ⩾ Vt(h,x, zt). (10)

Notice that the preferences in (10) are time, information and state contingent.18

A special case of this model corresponds to the standard case of expected utility, that is,

Vt(h,x, zt) = E [∑
s⩾t

βs−tu(xhs ,xhs+1,Zs)∣Zt = zt] , (11)

where u ∶ X × X × Z → R is the current-period utility function. That is, u (x,y, z) denotes

the instantaneous utility obtained in the current period when x ∈ X denotes the current state,

y ∈ X , the choice in the current state, and z ∈ Z, the current shock.

A first attempt to define the dynamic quantile preference would be to substitute the ex-

pectation operator E by the quantile operator Qτ in (11). Although this seems the natural

way to adapt the standard definition, this would lead to dynamically inconsistent preferences,

because the analog of the “law of iterated expectations” does not hold for quantiles.19 Instead,

we will need to take a different route. Note that that the functions Vt defined by (11) satisfy

the following recursive equation:

Vt(h,x, zt) = u(xht ,xht+1, zt) +βE [Vt+1(h,x, (zt,Zt+1))∣Zt = zt] . (12)

We adapt equation (12) by replacing the expectation operator E with the quantile operator

Qτ, that is, we impose:

Vt(h,x, zt) = u(xht ,xht+1, zt) +βQτ [Vt+1(h,x, (Zt, zt+1))∣Zt = zt] . (13)

The recursive equation (13) is the building block of our dynamic quantile preferences and it

leads to dynamically consistent preferences, as we show below. This is the reason why Section

2 provided a detailed justification of recursive equation (13) in the simpler form of (5).

In Subsection 3.3 below, we explicitly define a sequence of functions Vt that satisfy (13) and

will specify the preferences (10). Nevertheless, before we provide an additional formalization

for the definition of the sequence of recursive functions, it is useful to build intuition on how

the recursive equation (13) leads to an expression in quantiles that would be different from the

expected utility case, developed from (12).

To see this, let us adopt t = 1 and substitute the expression of Vt+1 = V2 by the expression

18 In contrast, the preferences in (4) considered in last section were stationary IID, not depending on the
state.

19This fact is formally stated and proved in Proposition 3.7 in Subsection 3.4 below. See also Example 3.1
there.
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in (12) and use superscript E to denote the expected utility case, we obtain:

VE
1 (h,x, zt) = u(xh1 ,xh2 , z1) +βE

⎡⎢⎢⎢⎢⎣
u(xh2 ,xh3 , z2) +βE[VE

2 (h,x, zt)∣Z2 = z2]∣Z1 = z
⎤⎥⎥⎥⎥⎦
.

Above, we could eliminate the expectation with respect to Z2 = z2 using of the law of iterated

expectations. Since the same simplification is not possible in the quantile case, we will avoid

it here. Moreover, we are able to put all the terms inside the expectations. That is, we can

write:

VE
1 (h,x, zt) = E

⎡⎢⎢⎢⎢⎣
E[u(xh1 ,xh2 , z1) +βu(xh2 ,xh3 , z2) +β2VE

2 (h,x, zt)∣Z2 = z2]∣Z1 = z
⎤⎥⎥⎥⎥⎦

= E [E [E [
3

∑
t=1

βt−1u(xht ,xht+1, zt) +β3VE
3 (h,x, zt)∣Z3 = z3] ∣Z2 = z2] ∣Z1 = z]

= E [⋯E [
n

∑
t=1

βt−1u(xht ,xht+1, zt) +βnVE
n(h,x, zt)∣Zn = zn] ∣⋯∣Z1 = z] ,

where there are n expectation operators E and corresponding conditionals Zt = zt in the last

line above. Following the same developments from (13), we obtain:

V
Qτ
1 (h,x, zt) = u(xh1 ,xh2 , z1) +βQτ

⎡⎢⎢⎢⎢⎣
u(xh2 ,xh3 , z2) +βQτ[V

Qτ
2 (h,x, zt)∣Z2 = z2]∣Z1 = z

⎤⎥⎥⎥⎥⎦

= Qτ

⎡⎢⎢⎢⎢⎣
Qτ[u(xh1 ,xh2 , z1) +βu(xh2 ,xh3 , z2) +β2V

Qτ
2 (h,x, zt)∣Z2 = z2]∣Z1 = z

⎤⎥⎥⎥⎥⎦

= Qτ [Qτ [Qτ [
3

∑
t=1

βt−1u(xht ,xht+1, zt) +β3V
Qτ
3 (h,x, zt)∣Z3 = z3] ∣Z2 = z2] ∣Z1 = z]

= Qτ [⋯Qτ [
n

∑
t=1

βt−1u(xht ,xht+1, zt) +βnV
Qτ
n (h,x, zt)∣Zn = zn] ∣⋯∣Z1 = z] , (14)

where the operator Qτ[⋅] and corresponding conditionals Zt = zt appear n times in the last

line above. In order to simplify the above equation, we will introduce the following notation:

Qnτ [⋅] ≡ Qτ [⋯[Qτ [ ⋅ ∣Zn = zn] ∣⋯]∣Z1 = z] , (15)

where the operator Qτ and corresponding conditionals appear n times. Therefore, by using

the notation defined by (15), we are able to rewrite (14) as

V
Qτ
1 (h,x, zt) = Qnτ [

n

∑
t=1

βt−1u(xht ,xht+1, zt) +βnV
Qτ
n (h,x, zt)] .

Our next step is to take the limit as n goes to ∞. The formalization of such limit will be made
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in Subsection 3.3 below, but one can now intuitively understand the following:

V
Qτ
1 (h,x, zt) = Q∞

τ [
∞

∑
t=1

βt−1u(xht ,xht+1, zt)] , (16)

as a notation for an (infinite) sequence of applications of Qnτ [⋅∣Zt = zt].
Note that if we introduce an analogous notation of (15), that is E∞ for a(n infinite) sequence

of conditional expectations, because of the law of iterated expectations, we obtain

VE
1 (h,x, zt) = E∞ [

∞

∑
t=1

βt−1u(xht ,xht+1, zt)] = E [
∞

∑
t=1

βt−1u(xht ,xht+1, zt)∣Z1 = z1] ,

which is the expression in (11). Therefore, our expression (16) is the corresponding generaliza-

tion of (11): the difference, that is, the fact that we can substitute E∞ by E but not Q∞
τ by Qτ,

is explained by whether or not the law of iterated expectations hold. Indeed, as Proposition

3.7 below shows, this law does not hold for quantiles.

3.2 Assumptions

Now we state the assumptions used for establishing the main results. We organize the as-

sumptions in two groups. The first group collects basic assumptions, which will be assumed

throughout the paper, even if they are not explicitly stated. The second group of assumptions

will be used only to obtain special, desirable properties of the value function.

Assumption 1 (Basic). The following properties are maintained throughout the paper:

(i) Z ⊆ Rk is convex;

(ii) f ∶ Z ×Z → R+ is continuous, symmetric and f(z, z ′) > 0, for all (z, z ′) ∈ Z ×Z;20

(iii) X ⊂ Rp is convex;

(iv) u ∶ X ×X ×Z → R is continuous and bounded;

(v) The correspondence Γ ∶ X × Z ⇉ X is continuous, with nonempty, compact and convex

values.

Note that in the above assumption, property (i) allows an unbounded multidimensional

Markov process, requiring only that the support is convex. Property (ii) imposes continuity

of f, the pdf that establishes the dependence between Zt and Zt+1 and requires it to be

strictly positive in the support of the Markov process, Z. The state space X is not required

to be compact, but only convex by property (iii). Property (iv) is the standard continuity

20Symmetry guarantees stationarity since Pr ([Z1 ∈ A]) = ∫Z ∫A f(z1, z2)dz1dz2 = ∫A ∫Z f(z1, z2)dz1dz2 =
Pr ([Z2 ∈ A]).
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assumption. Property (v) and the continuity of u required in property (iv) guarantee that an

optimal choice always exist.

For some results we will also require differentiability, concavity and monotonicity assump-

tions.

Assumption 2 (Differentiability, Concavity and Monotonicity). The following holds:

(i) Z ⊆ R is an interval;

(ii) If h ∶ Z → R is weakly increasing and z ⩽ z ′, then:

∫
Z
h(α)f(α∣z)dα ⩽ ∫

Z
h(α)f(α∣z ′)dα; (17)

(iii) u ∶ X ×X ×Z → R is C1, strictly concave in the first two variables and strictly increasing

in the last variable;

(iv) For every x ∈ X and z ⩽ z ′, Γ(x, z) ⊆ Γ(x, z ′);

(v) For all z ∈ Z and all x,x ′ ∈ X , y ∈ Γ(x, z) and y ′ ∈ Γ(x ′, z) imply

θy + (1 − θ)y ′ ∈ Γ[θx + (1 − θ)x ′, z], for all θ ∈ [0, 1].

To work with monotonicity, we restrict the dimension of the Markov process to k = 1 in

Assumption 2(i). Assumptions 2(ii) − 2(v) are standard conditions on dynamic models (see,

e.g., Assumptions 9.8 − 9.15 in Stokey, Lucas, and Prescott (1989)). Assumption 2(ii) implies

that whenever z ⩽ z ′,

K(w∣z ′) = ∫
{α∈Z ∶α⩽w}

f(α∣z ′)dα ⩽ ∫
{α∈Z ∶α⩽w}

f(α∣z)dα = K(w∣z), (18)

for all w.21 In other words, K(⋅∣z ′) first-order stochastically dominates K(⋅∣z). Assumption

2(iii) allows us to establish the continuity and differentiability of the value function. Assump-

tion 2(iv) only requires the monotonicity of the choice set. Assumption 2(v) implies that

Γ(x, z) is a convex set for each (x, z) ∈ X ×Z, and that there are no increasing returns.

It should be noted that monotonicity also is important for econometric reasons. Indeed,

Matzkin (2003, Lemma 1, p. 1345) shows that two econometric models are observationally

equivalent if and only if there are strictly increasing functions mapping one to another. Thus,

in a sense, the quantile implied by a model is the essence of what can be identified by an

econometrician.

21To obtain (18), it is enough to use h(z) = −1{α∈Z ∶α⩽w}(z) in (iii).
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3.3 The Sequence of Recursive Functions

In this subsection, we define the sequence of functions Vt that satisfy (13) and specify the

preferences (10). For this, we need to define a transformation. Let L be the set of real-valued

functions from X ×Z to R and let C ⊂ L denote the set of bounded continuous functions from

X × Z to R, endowed with the sup norm. It is well known that C is a Banach space. Let us

fix h ∈ H and τ ∈ (0, 1), and define the transformation Th ∶ C → L (the dependency on τ is

omitted) by the following:

Th(V)(x, z) = u (xh1 ,xh2 , z1) +βQτ[V(xh2 ,Z2))∣Z1 = z],

where (xh1 , z1) = (x, z) and xh2 = h(x, z). We show that the image of Th is indeed in C continuous

and that Th is a contraction and, therefore, has a unique fixed point:

Theorem 3.4. Th(V) is continuous and bounded on X ×Z, that is, T(C) ⊂ C. Moreover, Th

is a contraction and has a unique fixed point, denoted Vh ∈ C.

Now we can define Vt as follows:

Vt(h,x, zt) = Vh(xht , zt),

where (xhl )tl=1 is the associated t-sequence to (x, zt) (see Definition 3.2). From the fact that

Vh is the unique fixed point of Th, it is clear that (13) holds. This completes the definition of

the preferences (10).

It is possible to write Vh in a more explicit form. For this, let us define

Vh,n(x, z) = u(xh1 ,xh2 , z1) +Qτ

⎡⎢⎢⎢⎢⎣
βu(xh2 ,xh3 , z2) +Qτ[β2u(xh3 ,xh4 , z3) + . . .

. . . +Qτ[βnu(xhn+1,xhn+2, zn)∣Zn = zn] . . . ∣Z1 = z
⎤⎥⎥⎥⎥⎦

= Qτ

⎡⎢⎢⎢⎢⎣
⋯ [Qτ[

n

∑
t=0

βtu(xht+1,xht+2, zt)∣Zn = zn]⋯] ∣Z1 = z
⎤⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎦

= Qnτ [
n

∑
t=0

βtu(xht+1,xht+2, zt)] ,

where the expression Qnτ [⋅] in the last line is just a short notation for the conditional quantiles

applied successively, as shown in the previous line; see (15). With this definition, we obtain:

Proposition 3.5. Vh(x, z) = limn→∞V
h,n(x, z).

Thus, the existence of the limit limn→∞V
h,n(x, z) allows us to define the notation Q∞

τ [⋅],
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that is,

Vh(x, z) = Q∞
τ [

∞

∑
t=0

βtu(xht ,xht+1, zt)] (19)

= u(xh1 ,xh2 , z1) +Qτ

⎡⎢⎢⎢⎢⎣
βu(xh2 ,xh3 , z2) +Qτ[β2u(xh3 ,xh4 , z3) + . . .

. . . +Qτ[βnu(xhn+1,xhn+2, zn+1) +⋯∣⋯]⋯∣Z2 = z2∣Z1 = z
⎤⎥⎥⎥⎥⎦
.

We turn now to verify that this preference is dynamically consistent.

3.4 Dynamic Consistency

Our objective is to develop a dynamic theory for quantile preferences. Thus, the dynamic

consistency of such preferences is of uttermost importance. In this subsection we formally

define dynamic consistency and show that it is satisfied by the above defined preferences.

The following definition comes from Maccheroni, Marinacci, and Rustichini (2006b); see also

Epstein and Schneider (2003b).

Definition 3.6 (Dynamic Consistency). The system of preferences ≽t,Ωt is dynamically con-

sistent if for every t and Ωt and for all plans h and h ′, ht ′(⋅) = h ′t ′(⋅) for all t ′ ⩽ t and

h ′ ≽t+1,Ω ′

t+1,x
h for all Ω ′

t+1,x, implies h ′ ≽t,Ωt,x h.

In principle, there is no reason to expect that quantile preferences would be dynamically

consistent. For instance, the law of iterated expectations, which is important to the dynamic

consistency of expected utility, does not have an analogous for quantile preferences, as the

following result shows.

Proposition 3.7. Let Σ1 ⊃ Σ0 be two σ-algebras on Ω, τ ∈ (0, 1), and consider random

variables X ∶Ω→ R and Y ∶Ω→ R. Then, in general,

Qτ[Qτ[X∣Σ1]∣Σ0] /= Qτ[X∣Σ0]. (20)

and it is possible that

Qτ[X∣Σ1](ω) ⩾ Qτ[Y∣Σ1](ω),∀ω ∈Ω, but Qτ[X∣Σ0](ω) < Qτ[Y∣Σ0](ω),∀ω ∈Ω. (21)

Note that (21) suggests a potential negation of dynamic consistency for quantile preferences

in general. Indeed, this failure would be fatal for dynamic consistency if we had chosen the

preference to seek the maximization of Qτ [∑∞t=0βtu(xht ,xht+1, zt)∣Zt = zt] , because changing

from one period to the other could imply a reversion of choices, which is exactly what (21)

illustrates. However, because we have adopted as preference Q∞
τ [∑∞t=0βtu(xht ,xht+1, zt)] ,which
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involves an infinite sequence of nested conditional quantiles, as explained in Subsection 3.1.3,

where the notation Q∞
τ [⋅] is also introduced. This is exactly what allows to obtain dynamic

consistency. Indeed, in our framework, quantile preferences are dynamically consistent and

amenable to the use of the standard techniques of dynamic programming, as the following

result establishes.

Theorem 3.8. The quantile preferences defined by (10) are dynamically consistent.

This result is important, because it implies that no money-pump can be used against a

decision maker with quantile preferences. Many preferences that departure from the expected

utility framework do not satisfy dynamic consistency.

The reason why this result holds is that we imposed the recursive structure (13). This

implies that in each period, the decision will be made taking in account a fixed succession of

conditional quantiles. Thus, there is no reversal in choices. The following example allows to

understand this point in more detail.

Example 3.1. Let τ ∈ (0.5, 0.75) and consider the variables X and Y defined in the proof

of Proposition 3.7 in the appendix to establish (21). Assume that both X and Y are paid

in period 2 and let Σt be the information σ-algebra known in period t = 0, 1; these are also

defined in the appendix. Suppose now that the decision maker evaluates X and Y according to

a preference defined from (11) by substituting the operator E by the operator Qτ, that is, by

using Ṽt(h,x, zt) = Qτ [∑s≥tβs−tu(xhs (x,Zs),xhs+1(x,Zs),Zs)∣Σt], which particularized to our

example gives:

Ṽ0(X) = Qτ[X∣Σ0] < Qτ[Y∣Σ0] = Ṽ0(Y)

as shown in the appendix. There we also show that ∀ω ∈Ω,

Ṽ1(X,ω) = Qτ[X∣Σ1](ω) ⩾ Qτ[Y∣Σ1](ω) = Ṽ1(Y,ω),

which proves that this preference is not dynamically consistent: the initial preference for Y

is reversed at time 1 in all states of nature. Consider, however, our preference defined by

Vt(h,x, zt) = Q∞
τ [∑s≥tβs−tu(xhs (x,Zs),xhs+1(x,Zs),Zs)] as in (19). Particularized to this

example, we have:

V0(X) = Qτ[Qτ[X∣Σ1]∣Σ0] ⩾ Qτ[Qτ[Y∣Σ1]∣Σ0] = V0(Y)

and, ∀ω ∈Ω,

V1(X,ω) = Qτ[X∣Σ1](ω) ⩾ Qτ[Y∣Σ1](ω) = V1(Y,ω).

In other words, X is always preferred to Y and there is no reversal because the sequence of

events is fixed and taken into account.

Our approach to establish dynamic consistency is similar to that taken by Epstein and
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Schneider (2003b) for the maximin expected utility dynamic preferences, in the sense that the

filtration of events where decisions are made is fixed. As discussed by Strzalecki (2013, p.

1048), this is one of the main approaches that have been used to obtain dynamic consistency

for different preferences.

We also note that Epstein and Le Breton (1993) essentially prove that dynamic consistent

preferences are “probabilistic sophisticated” in the sense of Machina and Schmeidler (1992).

Probabilistic sophistication roughly means that the preference is “based” in a probability. Ex-

tending Machina-Schmeidler’s definition, Rostek (2010) shows that the static quantiles prefer-

ences are probabilistic sophisticated for τ ∈ (0, 1). Her observation is also valid for our dynamic

quantile preference. However, we do not use these developments, since Theorem 3.8 offers a

direct proof of dynamic consistency.

3.5 The Value Function

In this subsection we establish the existence of the value function associated to the dynamic

programming problem for the quantile utility and some of its properties. This is accomplished

through a contraction fixed point theorem.

The first step is to the define the contraction operator; this is similar to what we have

defined in Subsection 3.3. For τ ∈ (0, 1), define the transformation Mτ ∶ C → C as

Mτ(v)(x, z) = sup
y∈Γ(x,z)

u (x,y, z) +βQτ[v(y,w)∣z]. (22)

Note that this is similar to the usual dynamic program problem, in which the expectation

operator E[⋅] is in place of Qτ[⋅]. The main objective is to show that the above transformation

has a fixed point, which is the value function of the dynamic programming problem. The

following result establishes the existence of the contraction Mτ under the basic assumptions

assumed throughout this paper.

Theorem 3.9. Mτ is a contraction and has a unique fixed point vτ ∈ C.

The unique fixed point of the problem will be the value function of the problem. Notice

that the proof of this theorem is not just a routine application of the similar theorems from

the expected utility case. In particular, the continuity of the function (x, z) ↦ Qτ[v(x,w)∣z]
is not immediate as in the standard case. Since v is not assumed to be strictly increasing in

the second argument, it can be constant at some level. Constant values may potentially lead

to discontinuities in the c.d.f or quantile functions; see illustration in Subsection A.1 in the

appendix. Thus, some careful arguments are needed for establishing this continuity.

The next step is to establish the differentiability and monotonicity of the value function.

Theorem 3.10. If Assumption 2 holds, then vτ ∶ X × Z → R is differentiable in x, strictly

26



increasing in z, and strictly concave in an interior point x. Moreover,

∂vτ

∂xi
(x, z) = ∂u

∂xi
(x,y∗, z),

where y∗ ∈ Γ(x, z) is the unique maximizer of (22), assumed to be interior to Γ(x, z).

This theorem is the most important result in the paper since it delivers interesting and

important properties of the value function. It establishes that the value function that one

obtains from quantile functions possesses, essentially, the same basic properties of the value

function of the corresponding expected utility problem. The second part of Theorem 3.10 is

very important for the characterization of the problem. It is the extension of the standard

envelope theorem for the quantile utility case. Notice that since the quantile function does not

have some of the convenient properties of the expectation, we assumed that z were unidimen-

sional (see Assumption 2) in order to establish the conclusions of Theorem 3.10. However, this

unidimensionality requirement does not seem overly restrictive in most practical applications.

For example, it allows us to tackle the standard asset pricing model, as Section 4 shows.

Remark 3.11. The result in Theorem 3.9 is related to that in Marinacci and Montrucchio

(2010). They establish the existence and uniqueness of the value function in a more general

setup. Nevertheless, we are able to provide sharper characterizations of the fixed point vτ. In

particular, Theorem 3.9 establishes that vτ is continuous and Theorem 3.10 that it is differen-

tiable, concave, and increasing.

3.6 The Principle of Optimality

This subsection establishes that the principle of optimality holds in our model (Theorem 3.15

below). That is, we show that optimizing period after period, as in the recursive problem (22),

yields the same result as choosing the best plan for the whole horizon of the problem. In order

to do that, we have to complete three tasks. First, we define the problem of choosing plans.

Next, we revisit the recursive problem to establish a result that will be useful in the sequel.

Finally, we show that choosing plans for the entire horizon and solving the problem step by

step as in the recursive problem, lead to the same values.

Let us begin by establishing that the set of feasible plans departing from (x, z) ∈ X ×Z at

time t is nonempty. More formally, let us define:

Ht(x, z) ≡ {h ∈ H(x, z) ∶ ∃(x, zt) ∈ X ×Zt, with zt = z, such that xht (x, zt) = x}.

Thus, H1(x, z) is just H(x, z). We have the following result regarding the set of feasible plans:

Lemma 3.12. For any x ∈ X and t ∈ N, Ht(x, z) /= ∅.
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This result allows us to define a supremum function as:

v∗t(x, z) ≡ sup
h∈Ht(x,z)

Vt(h,x, z). (23)

We first observe that t plays no role in the above equation (23), that is, we prove the

following:

Lemma 3.13. For any t ∈ N and (x, z) ∈ X ×Z, v∗t(x, z) = v∗1(x, z).

Thus, we are able to drop the subscript t from (23) and write v∗(x, z) instead of v∗t(x, z).
The next step is to relate v∗ to vτ, the solution of the functional equation studied in

the previous subsection, which was proved to exist in Theorem 3.9 and satisfies the Bellman

equation:

vτ(x, z) = sup
y∈Γ(x,z)

{u (x,y, z) +βQτ[vτ(y,w)∣z]} . (24)

In the rest of this section we will denote vτ simply by v.

To achieve this aim, we first establish important results relating v in equation (24) to the

policy function that solves the original problem. In particular, the next result allows us to

define the policy function:

Lemma 3.14. If v is a bounded continuous function satisfying (24), then for each (x, z) ∈
X ×Z, the correspondence Υ ∶ X ×Z ⇉ X defined by

Υ(x, z) ≡ {y ∈ Γ(x, z) ∶ v(x, z) = u (x,y, z) +βQτ[v(y,w)∣z]}

is nonempty, upper semi-continuous and has a measurable selection.

Let ψ ∶ X × Z → X be a measurable selection of Υ. The policy function ψ generates the

plan hψ defined by hψt (zt) = ψ(ht−1(zt−1), zt) for all zt ∈ Zt, t ∈ N.

The next result provides sufficient conditions for a solution v to the functional equation to

the be supremum function, and for the plans generated by the associated policy function ψ to

attain the supremum.

Theorem 3.15. Let v ∶ X ×Z → R be bounded and satisfy the functional equation (24) and ψ

be defined as above. Then, v = v∗ and the plan hψ attains the supremum in (23).

We highlight that this generalization is not straightforward. When working with expected

utility, one can employ the law of iterated expectations. However, unfortunately a similar rule

does not hold for quantiles, as we have already observed in Proposition 3.7.
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3.7 Euler Equation

The final step is to characterize the solutions of the problem through the Euler equation. Let

v = vτ be the unique fixed point of Mτ, satisfying (24). By Theorem 3.10, v is differentiable in

its first coordinate, satisfying vxi(x, z) = ∂v
τ

∂xi
(x, z) = ∂u

∂xi
(x,y∗, z) = uxi(x,y∗, z).

Given that we have shown the differentiability of value function, we are able to apply the

standard technique to obtain the Euler equation, as formalized in the following theorem:

Theorem 3.16. Let Assumption 2 hold and let h = hψ be an optimal plan, as in Theorem 3.15.

Assume that xht+1 ∈ intΓ(xht , zt), that is, the optima are interior, and zt ↦ ∂u
∂xi

(xht ,xht+1, zt)
is strictly increasing. Then, the following first order condition (called Euler equation in this

setting) necessarily holds for every t ∈ N and i = 1, ...,p:

uyi (xht ,xht+1, zt) +βQτ[uxi (xht+1,xht+2, zt+1) ∣zt] = 0. (25)

In the expression above, uy represents the derivative of u with respect to (some of the

coordinates of) its second variable (y) and ux represents the derivative of u with respect to

(some of the coordinates of) its first variable (x).

Theorem 3.16 provides the Euler equation, that is the optimality conditions for the quantile

dynamic programming problem. This result is the generalization the traditional expected

utility to the quantile utility. The Euler equation in (25) is displayed as an implicit function,

nevertheless for any particular application, and given utility function, one is able to solve an

explicitly equation as a conditional quantile function.

The proof of Theorem relies on a result about the differentiability inside the quantile

function. Indeed, for a general function h, we have ∂
∂xi

Qτ[h(x,Z)] /= Qτ [ ∂h∂xi (x,Z)]. However,

we are able to establish this differentiability under some assumptions. We are not aware of

this result in the theory of quantiles, and given its usefulness, we state it here:

Proposition 3.17. Assume that h ∶ X × Z → R is differentiable in x and that h and d are

increasing in z, where d(z) ≡ h(x ′i,x−i, z) − h(xi,x−i, z) for xi,x
′
i satisfying 0 < x ′i − xi < ε, for

some small ε > 0. Then,
∂Qτ
∂xi

[h(x,Z)] = Qτ [
∂h

∂xi
(x,Z)] .

4 Application: Asset Pricing Model

This section illustrates the usefulness of the new quantile utility maximization methods through

an empirical example. We apply the methodology to the standard intertemporal allocation of

consumption model, which is central to contemporary economics and finance. It has been used

extensively in the literature and has had remarkable success in providing empirical estimates for

the study of the elasticity of intertemporal substitution (EIS) and discount-factor parameters.
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We refer the readers to Campbell (2003), Cochrane (2005), and Ljungqvist and Sargent (2012),

and the references therein, for a comprehensive overview.

There is a large empirical literature that attempts to estimate the EIS; among others,

Hansen and Singleton (1983), Hall (1988), Campbell and Mankiw (1989), Epstein and Zin

(1991), Blundell, Browning, and Meghir (1994), Attanasio and Browning (1995), Atkeson and

Ogaki (1996), Campbell and Viceira (1999), Campbell (2003), and Yogo (2004). The majority

of the literature relies on the traditional expected utility framework.

4.1 Economic Model

We employ a variation of Lucas (1978)’s endowment economy (see, also, Hansen and Singleton

(1982)). The economic agent decides on the intertemporal consumption and savings (assets

to hold) over an infinity horizon economy, subject to a linear budget constraint. The decision

generates an intertemporal policy function, which is used to estimate the parameters of interest

for a given utility function.

Let ct denote the amount of consumption good that the individual consumes in period t.

At the beginning of period t, the consumer has xt units of the risky asset, which pays dividend

zt. The price of the consumption good is normalized to one, while the price of the risky asset

in period t is p(zt). Then, the consumer decides how many units of the risky asset xt+1 to

save for the next period, and its consumption ct. Using the notation introduced in (19), we

can write the consumer problem as22

max
(ct)∞t=0

Q∞
τ [

∞

∑
t=0

βtτU (ct)] , (26)

subjected to

ct + p(zt)xt+1 ⩽ [zt + p(zt)] ⋅ xt, (27)

ct,xt+1 ⩾ 0, (28)

where βτ ∈ (0, 1) is the discount factor for the quantile τ ∈ (0, 1) of interest, and U ∶ R+ → R is

the utility function. Note that βτ is written with a subscript τ, to emphasize the fact that we

may have a different parameter for each τ ∈ (0, 1). Because there is a single agent, the holdings

must not exceed one unit. In fact, in equilibrium, we must have x∗tk = 1,∀t,k. Let x̄ > 1 and

X = [0, x̄].
From (27), we can determine the consumption entirely from the current and future states,

that is, ct = zt ⋅ xt + p(zt) ⋅ (xt − xt+1). Following the notation of the previous sections, we

denote xt by x, xt+1 by y, and zt by z. Then, the above restrictions are captured by the

22Recall (19): Q∞

τ [∑∞

t=0 β
t
τu(ct)] = u(c0) +Qτ[βτU(c1) +Qτ[β2

τU(c2) +Qτ[β3
τU(c3) +⋯ ∣Ω2]∣Ω1]∣Ω0].
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feasible correspondence Γ ∶ X ×Z → X = X defined by:

Γ(x, z) ≡ {y ∈ X ∶ p(z) ⋅ y ⩽ (z + p(z)) ⋅ x} .

For each pricing function p ∶ Z → R+, define the utility function as:

u(x,y, z) ≡ U [z ⋅ x + p(z) ⋅ (x − y)] .

We assume the following:

Assumption 3. (i) Z ⊆ R is a bounded interval and X = [0, x̄];

(ii) U ∶ R+ → R is given by U(c) = 1
1−γc

1−γ, for γ > 0;

(iii) z follows a Markov process with pdf f ∶ Z × Z → R+, which is continuous, symmetric,

f(z,w) > 0, for all (z,w) ∈ Z × Z and satisfies the property: if h ∶ Z → R is weakly

increasing and z ⩽ z ′, then:

∫
Z
h(α)f(α∣z)dα ⩽ ∫

Z
h(α)f(α∣z ′)dα;

(iv) z↦ z + p(z) is C1 and non-decreasing, with z (ln(z + p(z))) ′ ⩾ γ.

Assumptions 3(i) − (ii) are standard in economic applications. Assumption 3(i) specifies

an isoelastic utility function (constant elasticity of substitution – CES). This is a standard

assumption in a large body of the literature, as for example, among others, Hansen and Sin-

gleton (1982), Stock and Wright (2000), and Campbell (2003). Condition 3(ii) states that

the idiosyncratic shocks follow a Markov process. Assumption 3(iii) means that a high value

of the dividend today makes a high value tomorrow more likely. It implies Assumption 2(ii).

Assumption 3(iv), z ↦ z + p(z) is non-decreasing, is natural. It states that the price of the

risky asset and its return are a non-decreasing function of the dividends. Note that it is natural

to expect that the price is non-decreasing with the dividends, but Assumption 3(iv) is even

weaker than this, as it allows the price to decrease with the dividend; only z+p(z) is required

to be non-decreasing.23

Given Assumption 3, we can verify the assumptions for establishing the quantile utility

model in the asset pricing model context. Thus, we have the following:

Lemma 4.1. Assumption 3 implies Assumptions 1 and 2 and that zt ↦ ∂u
∂xi

(xht ,xht+1, zt) is

strictly increasing.

Therefore, Theorems 3.9 and 3.10 imply the existence of a value function v, which is strictly

23In our dataset, when regressing the returns on the dividends, we find a statistically positive correlation.
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concave and differentiable in its first variable, satisfying

v(x, z) = max
y∈Γ(x,z)

{U [z ⋅ x + p(z) ⋅ (x − y)] +βτQτ[v(y, z ′)∣z]},

where, ∂v
∂x

= ∂u
∂x

. Note that

∂u

∂x
(x,y, z) = U ′ [z ⋅ x + p(z) ⋅ (x − y)] (z + p(z)) ;

∂u

∂y
(x,y, z) = U ′ [z ⋅ x + p(z) ⋅ (x − y)] (−p(z)) .

Because, in equilibrium, the holdings are xt = 1 for all t, we can derive the Euler equation

as in (25) for this particular problem to obtain:

− p(zt)U ′ (ct) +βτQτ[U ′ (ct+1) (zt+1 + p(zt+1))∣Ωt] = 0. (29)

Let us define the return by: 1 + rt+1 ≡ zt+1+p(zt+1)p(zt)
. Assumption 3(i) implies that the ratio

of marginal utilities can be written as
U ′(ct+1)
U ′(ct)

= (ct+1
ct

)
−γ

. Thus, the Euler equation in (29)

simplifies to

Qτ

⎡⎢⎢⎢⎢⎣
βτ(1 + rt+1) (

ct+1

ct
)
−γτ

− 1
RRRRRRRRRRR
Ωt

⎤⎥⎥⎥⎥⎦
= 0. (30)

Now, for illustration purposes, we compare the quantile utility maximization results with

the corresponding ones for the expected utility, which can be written as

max
(ct)∞t=0

E [
∞

∑
t=0

βtU (ct)] ,

subject to the same constraints in (27)-(28). This problem can be rewritten and the associated

value function is:

v(x, z) = max
y∈Γ(x,z)

{U [z ⋅ x + p(z) ⋅ (x − y)] +βE[v(y, z ′)∣z]}.

Finally, the corresponding Euler equation can be expressed as

−p(zt)U ′ (ct) +βE[U ′ (ct+1) (zt+1 + p(zt+1))∣Ωt] = 0,

and by rearranging the previous equation we obtain

E

⎡⎢⎢⎢⎢⎣
β(1 + rt+1) (

ct+1

ct
)
−γ

− 1
RRRRRRRRRRR
Ωt

⎤⎥⎥⎥⎥⎦
= 0. (31)
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When comparing the Euler equations in (30) and (31) one can notice similarities and differ-

ences. The expressions inside the conditional quantile in (30) and the conditional expectation

in (31) are practically the same, except that, for the quantile model, the parameters (βτ, γτ)

depend on the quantile τ. That is, for each τ, we may have (potentially) different parameters.

4.2 Estimation and Inference

The previous section derives the Euler equation for the quantile utility model. Now we describe

how to estimate the vector of parameters of interest. The basic idea underlying our proposed

estimation strategy is to use the theoretical economic model to generate a family of nonlinear

conditional quantile functions, and apply the instrumental variables (IV) quantile regression

(QR) for nonlinear models developed in de Castro, Galvao, and Kaplan (2017).24

For a given parametrized utility function, one is able to isolate the implicit quantile func-

tion defined by equation (25). In particular, (30) can be written as the following nonlinear

conditional quantile model:

Qτ[m (ct, rt,θ0τ) ∣Ωt] = 0, (32)

where τ ∈ (0, 1) is a quantile of interest, m (ct, rt,θ0τ) ≡ βτ(1 + rt+1) (ct+1ct )
−γτ − 1, with

θ0τ = (βτ,γτ)⊺, is a function known up to a finite dimensional vector of parameter of interest

θ0τ, Ωt denotes the σ-field generated by {ws, s ≤ t} that contains the information up to time t.

The vector (ct, rt,wt) are the observable variables, with consumption ct ∈ Y, the real return

on the asset rt ∈ X , the full instrument vector wt ∈ W, and parameters θ0τ ∈ B ⊆ R2. The

quantile model in (32) is valid for each given quantile τ. We aim to estimate the parameters

θ0τ that describe the Euler equation for specified quantiles of interest.

The model in (32) can be represented by non-smooth conditional moment restrictions as

E[τ − 1{m (ct, rt,θ0τ) ≤ 0}∣wt] = 0, (33)

where 1{⋅} is the indicator function. Since E[1{m (ct, rt,θ0τ) ≤ 0}∣wt] = F[m (ct, rt,θ0τ) ∣wt],
when F(⋅) is invertible, one is able to recover (32) from (33).

For a given quantile index τ ∈ (0, 1), estimation of the parameter vector θ0τ uses the method

of moments. Rewrite (33) as the following moment condition

E [wt [1{m(ct, rt,θ0τ) ≤ 0} − τ]] = 0, (34)

where instruments, wt, are used to achieve a valid orthogonality condition, that is, the (con-

24It has been standard in the literature to estimate Euler equations derived from the expected utility models.
It is an important exercise to learn about the structural parameters that characterize the economic problem
of interest. After parametrizing the utility function, the restrictions imply a conditional average model and
the parameters are commonly estimated by the generalized method of moments (GMM) of Hansen (1982).
Estimation and inference of GMM have been discussed by, among many others, Newey and McFadden (1994),
Chen, Linton, and van Keilegom (2003), Chen and Pouzo (2009), and Chen and Liao (2015).

33



ditional) moment condition equals to zero.

We now present the smoothed IVQR (SIVQR) estimator. Let the population map M ∶
B × T ↦ R2 be

M(θ,τ) ≡ E [gut (θ,τ)] , (35)

gut (θ,τ) ≡ gu(ct, rt,wt,θ,τ) ≡ wt [1{m (ct, rt,θ) ≤ 0} − τ] , (36)

where superscript “u” denotes “unsmoothed.” The population moment condition (34) is

M(θ0τ,τ) = 0. (37)

The method of moments is constructed by replacing the population moments, the ex-

pectation E(⋅), with their corresponding sample expectation Ê(⋅), i.e., the sample average.

Analogous to (35), using (36), the unsmoothed sample moment map is

M̂u
T (θ,τ) ≡ Ê [gu(c, r,w,θ,τ)] ≡ 1

T

T

∑
t=1

gut (θ,τ). (38)

Even if population system (37) has a unique solution, the unsmoothed system M̂u
T (θ,τ) =

0 may have zero or multiple solutions. Although this issue can be overcome theoretically,

smoothing addresses it directly. The SIVQR estimator is the solution to the system of smoothed

sample moments, shown in (40) below. With smoothing (no “u” superscript), the sample

analogs of (35), (36), and (37) are

gTt(θ,τ) ≡ gT (ct, rt,wt,θ,τ) ≡ wt[Ĩ(−m (ct, rt,θ) /hT) − τ],

M̂T (θ,τ) ≡ 1

T

T

∑
t=1

gTt(θ,τ),
(39)

M̂T (θ̂τ,τ) = 0, (40)

where hT is a bandwidth (sequence), Ĩ(⋅) is a smoothed version of the indicator function

1{⋅ > 0}, and I(⋅) may stand for “indicator-like function” or “integral of kernel.” An example

function Ĩ(⋅) is the integral of a fourth-order polynomial kernel.

Finally, given a random sample {(ct, rt,wt) ∶ t = 1, ...T}, the parameters θ0τ can be esti-

mated by (39) and (40). The objective function depends only on the available sample informa-

tion, the known function m(⋅), and the unknown parameters. Solutions of the above problem

are denoted by θ̂τ, the SIVQR estimator. de Castro, Galvao, and Kaplan (2017) discuss and

give conditions for identification of the parameters of interest, and consider estimation and

inference with weakly dependent data. The parameter θ0τ is “locally identified” if there ex-

ists a neighborhood of θ0τ in which only θ0τ satisfies (34). This property holds if the partial
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derivative matrix of the right-hand side of (34) with respect to the θ argument is full rank.25

In addition, de Castro, Galvao, and Kaplan (2017) establish the asymptotic properties, namely

consistency and asymptotic normality, of the SIVQR estimator.

Theorem 4.2 (de Castro, Galvao and Kaplan, 2017). Under standard regularity conditions,

as T →∞, the estimator is consistent, i.e., θ̂τ
p→ θ0τ, and

√
T(θ̂τ − θ0τ)

d→N(0,G−1ΣMτ[G⊺]−1),

where ΣMτ = limT→∞ Var (T−1/2∑Tt=1 gTt(θ0τ,τ)), G = ∂
∂θ⊺

E[wt1{m(ct, rt,wt,θ) ≤ 0}]∣
θ=θ0τ

=
−E[wtd⊺tf(0∣wt,dt)], dt ≡ ∇θm(ct, rt,θ0τ), and fm∣w,d(⋅∣w,d) is the conditional pdf of mt

given wt = w and dt = d.

Given the result in Theorem 4.2, one is able to estimate the variance-covariance matrix

and conduct practical inference. One is also able to apply the SIVQR methods and estimate

(γτ,βτ) across different quantiles by simply varying τ. One advantage of the quantile Euler

equation is that it may be log-linearized with no approximation error, differently from the

standard Euler equation. Thus, we use a model as Q1−τ[ln(ct+1/ct) − γ−1τ ln(βτ) − γ−1τ ln(1 +
rt+1)∣Ωt] = 0. From ln(βτ)/γτ and 1/γτ we are able to recover the parameters of interest.

Remark 4.3. In this paper, we are interested in estimating the conditional quantile functions

to learn about the potential underlying heterogeneity among quantiles. Nevertheless, it is possi-

ble to see the quantile τ as a parameter to be estimated together with the parameters θ0τ. Bera,

Galvao, Montes-Rojas, and Park (2016) develop an approach that delivers estimates for the

coefficients together with a representative quantile. In their framework, τ captures a measure of

asymmetry of the conditional distribution of interest and is associated with the “most probable”

quantile in the sense that it maximizes the entropy.

4.3 Data

We use a data set that is common in the literature. We use monthly data from 1959:01 to

2015:11, which produces 683 observations. As is standard in the literature (see, e.g., Hansen

and Singleton (1982)), two different measures of consumption were considered: nondurables,

and nondurables plus services. The monthly, seasonally adjusted observations of aggregate

nominal consumption (measured in billions of dollars unit) of nondurables and services were

obtained from the Federal Reserve Economic Data. Real per capita consumption series were

constructed by dividing each observation of these series by the corresponding observation of

population, deflated by the corresponding CPI (base 1973:01).

Each measure of consumption was paired with four sets of stock returns from the Center

for Research in Security Prices (CRSP) U.S. Stock database, which contains month-end prices

25Identification for general nonlinear semiparametric and nonparametric conditional moment restrictions mod-
els is presented in Chen, Chernozhukov, Lee, and Newey (2014).
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for primary listings for the New York Stock Exchange (NYSE). We use the equally-weighted

average of returns (EWR) (including and excluding dividends) on the NYSE. The nominal

returns were converted to real returns by dividing by the deflator associated with the measure

of consumptions. Instruments include lags of log real consumption growth, nominal interest

rate, inflation, and a log dividend-price ratio for equities. We use two instruments (same

excluded instruments used in Yogo (2004)): constant, and the linear projection of the real

interest rate onto a constant and nominal interest rate, inflation, and log consumption growth.

All instruments are lagged twice to avoid problems with time aggregation in consumption

data. We use smoothing bandwidth of h = 10−4. The bandwidth for the estimation of the

variance-covariance matrix is usually k = 1.

4.4 Results

Before we present the estimation results, it is important to discuss the interpretation of the

parameters of interest (βτ,γτ). We notice that as discussed in Subsection 2.4 it is possible

to separate the risk attitude from the intertemporal substitutability in the quantile model.

First, the present notion of risk preference differs in several respects from the one familiar in

the expected utility literature. The quantile τ captures the risk attitude in the model. As

discussed previously, given that the notion of risk attitude is comparative and captured by

varying the quantile index, we estimate the model for several different quantiles. Thus, an

important point in the application is to compare estimates across quantiles, that is, different

measures of risk. Second, for a given quantile τ, βτ is the usual discount factor. Finally, from

the discussion in Subsection 2.4 and equation (26), one can notice that the parameter 1/γτ
captures the standard measure of EIS implicit in the CES utility function. Thus, by employing

the quantile maximization model, for each specific risk attitude τ, we are able to estimate the

associated discount factor and EIS.

Now we present the empirical results. Because the literature reports results for conditional

mean models, for comparison purposes, we also include estimates of the standard conditional

average regression IV (TSLS) version of the model.

The results for the estimates of the parameters at different quantiles are reported in Table

1 and Figure 2. We present estimates using consumption of nondurables and stock return

with and without dividends. The panels on the left display the estimates for EWR exclud-

ing dividends (EWRwo), and the right panel including dividends (EWRw). The results for

consumption nondurables plus services are qualitatively similar, for brevity, we omit them.
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Table 1: SIVQR and TSLS estimates for Discount Factor and EIS

EWRwo EWRw

τ βτ 1/γτ βτ 1/γτ
0.1 1.156∗ 0.105∗ 1.146∗ 0.112∗

0.2 1.061∗ 0.165∗ 1.059∗ 0.159∗∗

0.3 1.033∗ 0.190∗ 1.029∗ 0.193∗

0.4 1.006∗ 0.380∗ 1.003∗ 0.368∗

0.5 0.991∗ 0.314∗ 0.989∗ 0.325∗

0.6 0.979∗ 0.543∗ 0.974∗ 0.195∗

0.7 0.968∗ 0.836∗ 0.963∗ 0.527∗∗∗

0.8 0.802∗∗∗ 0.159∗ 0.832 0.170

0.9 0.806∗∗∗ 0.300∗ 0.729∗∗∗ 0.160∗

TSLS 0.992∗ 0.203 0.989∗ 0.204

This table shows coefficients returned from applying SIVQR and TSLS methods to estimate the Euler equation.

*, **, and *** represent statistical significance at the 1%, 5%, and 10% levels, respectively.

First we consider the estimates of the discount factor using EWRwo. The results show

empirical evidence that estimates of the discount factor are decreasing across the quantiles.

For the upper quantiles the estimates are close to 0.80. Table 1 shows that, for low quantiles,

the discount factor estimates are larger than one. Epstein and Zin (1991, p. 282) also estimate

a discount factor larger than one. Nevertheless, for the first four deciles we are not able to

reject the null hypothesis of the discount factors being statistically equal to one. Overall, Table

1 shows evidence that the discount factor is smaller for upper quantiles (higher risk aversion).

In the same way, the smaller risk aversion, the more patient. The results for the TSLS case

are consistent with the literature and show a discount factor of 0.992.

Next we consider the estimates the EIS, 1/γτ. The left panels in Table 1 and Figure 2

present the results using EWRwo. The first interesting observation is that the results document

evidence of heterogeneity in EIS across quantiles. In particular, the table shows that overall the

EIS increases across quantiles, especially for τ ∈ (0.1, 0.7), such that EIS is relatively larger for

upper quantiles. The smaller EIS, for low quantiles (less risk preferring), means less sensitivity

to changes in intertemporal consumption. There is an existing literature exploring whether the

EIS varies with the level of consumption (or wealth) which rejects the constant-EIS hypothesis

(Blundell, Browning, and Meghir (1994); Attanasio and Browning (1995); Atkeson and Ogaki

(1996)). In this paper we shed light on the discussion and allow the EIS to vary with the risk

attitude, indexed by the quantile. We show that the EIS varies substantially in this case.

The right panels in Table 1 and Figure 2 display the estimates when considering EWRw.

They serve as a robustness check. The results are qualitatively similar to those in the left panel

and Figure 2. The coefficients of EIS present variation over the quantiles. The relative EIS

increases across quantiles. The discount factor estimates also present heterogeneity, especially
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Figure 2: Nondurables plus services and EWRwo and EWRw
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for upper quantiles. The discount factor is smaller for larger quantiles (more risk-taking),

which suggests less patient. On the contrary, for lower quantiles, the risk aversion is large, as

is the discount factor, providing evidence that more risk-averse is related to more patient.

Remark 4.4. It should be noted that our model does not control for income or wealth. Thus,

the agents that correspond to low quantiles do not necessarily correspond to low income, but to

low risk aversion. This observation is important to avoid confusion with the results in a branch

of the literature that links discount factors with income and wealth (see, e.g., Hausman (1979),

and Lawrance (1991)). Moreover, there is empirical evidence that documents small discount

factors estimates. This literature estimates discount factors by using a quasi-hyperbolic dis-

count function (see, e.g., Paserman (2008), Fang and Silverman (2009), and Laibson, Maxted,

Repetto, and Tobacman (2015)). In contrast to these streams of literature, this paper abstracts

from a relationship between discount rates and poverty and employs a simple model to esti-

mate the discount factor. Our objective is to illustrate the potential empirical application of

the quantile utility maximization model. We leave the connection with income and wealth and

related extensions for future research.

In all, the application illustrates that the new methods serve as an important alternative

tool to study economic behavior. The methods allow one to estimate the discount factor and

EIS at different levels of risk attitude (quantiles). Our empirical results document heterogeneity

in both discount factor and EIS across quantiles.
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5 Summary and Open Questions

This paper develops a dynamic model of rational behavior under uncertainty for an agent

maximizing the quantile utility function indexed by a quantile τ ∈ (0, 1). More specifically,

an agent maximizes the stream of future τ-quantile utilities, where the quantile preferences

induce the quantile utility function. We first axiomatize the recursive quantile preferences.

We then show dynamic consistency of the preferences and that this dynamic problem yields a

value function, using a fixed-point argument. We also obtain desirable properties of the value

function. In addition, we derive the corresponding Euler equation.

Empirically, we show that one can employ existing general instrumental variables nonlinear

quantile regression methods for estimating and testing the rational quantile models directly

from stochastic Euler equations. An attractive feature of this method is that the parame-

ters of the dynamic objective functions of economic agents can be interpreted as structural

objects. Finally, to illustrate the methods, we construct an asset-pricing model and estimate

the implied discount factor and elasticity of intertemporal substitution (EIS) parameters for

different quantiles. The results provide evidence that both discount factor and EIS vary across

quantiles.

Many issues remain to be investigated. First, although Subsection 2.4 discusses risk attitude

for quantile preferences, much more needs to be studied and clarified. Our axiomatization could

be further generalized to include the Markov case. Another interesting direction would be to

generalize our model to the case where the future state is a randomly defined instead of directly

chosen. The extension of the quantile maximization model from considering a single quantile

to multiple quantiles simultaneously would be important. Extensions of the methods to general

equilibrium models pose challenging new questions. In addition, aggregation of the quantile

preferences is also a critical direction for future research. Applications to asset pricing and

consumption models would appear to be a natural direction for further development of quantile

utility maximization models.
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Figure 3: c.d.f. and quantile function of a random variable.

A Appendix

A.1 Properties of Quantiles

Figure 3 illustrates the c.d.f. F of a random variable X, and its corresponding quantile function Q(τ) =
inf{α ∈ R ∶ F(α) ⩾ τ}, for τ > 0.26 In this case, X assumes the value 3 with 50% probability and is

uniform in [1, 2] ∪ [4, 5] with 50% probability. This picture is useful to inspire some of the properties

that we state below. Note, for instance, the discontinuities and the values over which the quantile is

constant.

The following lemma is an auxiliary result that will be helpful for the derivations below.

Lemma A.1. The following statements are true:

(i) Q is increasing, that is, τ ⩽ τ̂ Ô⇒ Q(τ) ⩽Q(τ̂).

(ii) limτ↓τ̂Q(τ) ⩾Q(τ̂).

(iii) Q is left-continuous, that is, limτ↑τ̂Q(τ) =Q(τ̂).

(iv) Pr ({z ∶ z <Q(τ)}) ⩽ τ ⩽ Pr ({z ∶ z ⩽Q(τ)}) = F (Q(τ)).

(v) If g ∶ R→ R is a continuous and strictly increasing function, then Qτ[g(X)] = g (Qτ[X]).

(vi) If g,h ∶ R→ R are such that g(α) ⩽ h(α),∀α, then Qτ[g(Z)] ⩽ Qτ[h(Z)].

(vii) F is continuous if and only if Q is strictly increasing.

(viii) F is strictly increasing if and only if Q is continuous.

Proof. (i) Let us first assume τ > 0. If τ ⩽ τ̂, then {α ∈ R ∶ FZ(α) ⩾ τ} ⊇ {α ∈ R ∶ FZ(α) ⩾ τ̂}. This

implies QZ(τ) ⩽ QZ(τ̂). Next, if sup{α ∈ R ∶ FZ(α) = 0} = −∞, there is nothing else to prove. If

sup{α ∈ R ∶ FZ(α) = 0} = x ∈ R, then FZ(x − ε) = 0 for any ε > 0. Let τ̂ > 0. Then, y ∈ {α ∈ R ∶
FZ(α) ⩾ τ̂} Ô⇒ y > x − ε, which in turn implies QZ(τ̂) ⩾ x − ε. Since ε > 0 is arbitrary, this implies

QZ(τ̂) ⩾ x =QZ(0), which concludes the proof.

(ii) From (i), limτ↓τ̂QZ(τ) ⩾ infτ⩾τ̂Qz(τ) ⩾ Qz(τ̂). Figure 3 illustrates (for example for τ̂ = 0.25)

that the inequality can be strict.

(iii) From (i), we know that limτ↑τ̂QZ(τ) ⩽Qz(τ̂). For the other inequality, assume that limτ↑τ̂QZ(τ)+
2ε <Qz(τ̂) <∞, for some ε > 0. This means that for each k ∈ N, we can find αk ∈ {α ∶ FZ(α) ⩾ τ̂− 1

k
} such

26For τ = 0, Q(0) = sup{α ∈ R ∶ F(α) = 0} is just the lower limit of the support of the variable.
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that QZ(τ̂− 1
k
) ⩽ αk ⩽QZ(τ̂− 1

k
)+ ε <QZ(τ̂)− ε. We may assume that {αk} is an increasing sequence

bounded by Qz(τ̂) and thus converges to some ᾱ ∈ R. Then, limτ↑τ̂QZ(τ) ⩽ ᾱ ⩽ Qz(τ̂) − ε < Qz(τ̂).
Since FZ(αk) ⩾ τ̂ − 1

k
and FZ is upper semi-continuous, FZ(ᾱ) ⩾ τ̂, which implies that ᾱ ⩾ QZ(τ̂), a

contradiction. Now, assume that QZ(τ̂) = ∞. Since limα→∞ FZ(α) = 1, the set {α ∈ R ∶ FZ(α) ⩾ τ} is

non-empty for all τ < 1, that is, QZ(τ) < ∞ for all τ < 1. Thus, τ̂ = 1. If limτ↑1QZ(τ) = x ∈ R, then

FZ(x + 1) ⩾ 1 − ε for all ε > 0, which implies that FZ(x + 1) = 1 and QZ(1) ⩽ x + 1, a contradiction.

(iv) As above, if QZ(τ) =∞, then τ = 1, which implies 1 = Pr ({w ∶ z <∞}) = Pr ({w ∶ z ⩽∞}) and

there is nothing to prove. Let ᾱ =QZ(τ) <∞. If αk ↓ ᾱ is such that FZ(αk) ⩾ τ, then FZ(ᾱ) ⩾ τ, by the

well-known upper-semicontinuity of FZ. That is, τ ⩽ FZ(QZ(τ)). For the other inequality, let αk ↑ ᾱ =
QZ(τ). Since αk < ᾱ, then Pr[Z ⩽ αk] < τ, by the definition of ᾱ. Thus, Pr[Z < αk] ⩽ Pr[Z ⩽ αk] < τ
and Pr[Z < ᾱ] ⩽ supkPr[Z < αk] ⩽ τ.

(v) The proof is direct as follows:

Qτ[g(Z)] = inf{α ∈ R ∶ Pr [g(Z) ⩽ α] ⩾ τ}
= inf{α ∈ R ∶ Pr [Z ⩽ g−1(α)] ⩾ τ}
= inf{α ∈ R ∶ g−1(α) = β, Pr [Z ⩽ β] ⩾ τ}
= inf{g(β) ∶ Pr [Z ⩽ β] ⩾ τ}
= g (inf{β ∶ Pr [Z ⩽ β] ⩾ τ})
= g (Qτ[Z]) .

(vi) Since g ⩽ h, then for any α, {z ∶ g(z) ⩽ α} ⊇ {z ∶ h(z) ⩽ α}, which implies Fg(Z)(α) = Pr [g(Z) ⩽ α] ⩾
Pr [h(Z) ⩽ α] = Fh(Z)(α). If τ > 0, {α ∈ R ∶ Pr [g(Z) ⩽ α] ⩾ τ} ⊇ {α ∈ R ∶ Pr [h(Z) ⩽ α] ⩾ τ̂}. Taking

infima, we obtain Qg(Z)(τ) ⩽Qh(Z)(τ). On the other hand, {α ∈ R ∶ Fh(Z)(α) = 0} ⊂ {α ∈ R ∶ Fg(Z)(α) =
0} and taking the supremum in both sides we obtain the same conclusion.

(vii) Assume that FZ is discontinuous at x0, that is, limx↑x0 FZ(x) = y0 < y1 = FZ(x0). If y0 < y2 <
y3 < y1, then QZ(y2) = inf{α ∶ FZ(α) ⩾ y2} = inf{α ∶ FZ(α) ⩾ y3} = QZ(y3), that is, QZ is not strictly

increasing. Conversely, assume that QZ is not strictly increasing, that is, there exists y2 < y3 such that

QZ(y2) =QZ(y3) = x. By definition, this means that FZ(x − ε) < y2 < y3 ⩽ FZ(x + ε), for all ε > 0. But

this implies that FZ is not continuous at x.

(viii) Suppose that FZ is not strictly increasing, that is, there exists x1 < x2 such that FZ(x1) =
FZ(x2) = y. Then, QZ(y − ε) = inf{α ∶ FZ(α) ⩾ y − ε} ⩽ x1 < x2 ⩽ inf{α ∶ FZ(α) ⩾ y + ε} = QZ(y + ε).
Thus, QZ cannot be continuous at y. Conversely, assume that QZ is not continuous at y0. Since QZ

is increasing by (i) and left-continuous by (iii), this means that QZ(y0) = x0 < x1 = limy↓y0QZ(y). If

x0 < x2 < x1, then FZ(x2) ⩽ y0, otherwise limy↓y0QZ(y) ⩽ x2. By (iv), we have y0 ⩽ FZ(QZ(y0)) =
FZ(x0) ⩽ FZ(x2) ⩽ y0 , that is, FZ is not strictly increasing between x0 and x2.

Let Θ be a set (of parameters) and g ∶ Θ × Z × Z → R be a measurable function. We denote by

Qτ[g(θ, ⋅)∣z] the quantile function associated with g, that is:

Qτ[g(θ, ⋅)∣z] ≡ inf{α ∈ R ∶ Pr ([g(θ,W) ⩽ α]∣Z = z) ⩾ τ}. (41)

The following Lemma generalizes equation (1) to conditional quantiles.
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Figure 4

Lemma A.2. Let g ∶ Θ ×Z → R be non-decreasing and left-continuous in Z. Then,

Qτ[g(θ, ⋅)∣z] = g (θ, Qτ[w∣z]) . (42)

It is useful to illustrate the above result with an example. Let us define the function gab ∶ [1, 5]→ R
by:

gab(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

7, if x < a
b, if x = a
10, if x > a

The function gab thus defined is non-decreasing if b ∈ [7, 10] and it is left-continuous if b = 7.

Consider the r.v. X whose c.d.f. F and quantile function Q are shown in Figure 3 above. Let Fab

and Qab denote respectively the c.d.f. and quantile functions associated to gab(Z). Figure 4 shows

Qτ[gab(w)∣z] and gab (Qτ[w∣z]) for a ∈ [1, 5] and b ∈ [7, 10]. The point of discontinuity is a function

of a (h(a) ∈ [0, 1]).

Proof of Lemma A.2: For a contradiction, let us first assume that

Qτ[g(θ, ⋅)∣z] > g (θ, Qτ[w∣z]) ≡ α̂.

This means that α̂ ∉ {α ∈ R ∶ Pr ({w ∶ g(θ,w) ⩽ α}∣z) ⩾ τ}, that is,

Pr ({w ∶ g(θ,w) ⩽ α̂}∣z) < τ.

Since α̂ = g (θ, Qτ[w∣z]) and g is non-decreasing in w, {w ∶ w ⩽ Qτ[w∣z]} ⊂ {w ∶ g(θ,w) ⩽ α̂}. Thus,

Pr ({w ∶ w ⩽ Qτ[w∣z]}∣z) < τ, but this contradicts Lemma A.1(iv).
Conversely, assume that

Qτ[g(θ, ⋅)∣z] < g (θ, Qτ[w∣z]) .

This means that there exists α̃ < g (θ, Qτ[w∣z]) such that

Pr ({w ∶ g(θ,w) ⩽ α̃}∣z) ⩾ τ.

Let w̃ be the supremum of the set {w ∶ g(θ,w) ⩽ α̃}. Since g is non-decreasing and left-continuous,
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g(θ, w̃) ⩽ α̃. Moreover,

Pr ({w ∶ w ⩽ w̃}∣z) = Pr ({w ∶ g(θ,w) ⩽ α̃}∣z) ⩾ τ.

Thus, w̃ ∈ {α ∈ R ∶ Pr ({w ∶ w ⩽ α}∣z) ⩾ τ}, which implies that w̃ ⩾ Qτ[w∣z]. Thus, α̃ ⩾ g (θ, w̃) ⩾
g (θ, Qτ[w∣z]) > α̃, which is a contradiction.

The following Corollary to the above Lemma will be useful.

Corollary A.3. Let T ∈ N ∪ {∞}, h ∶ Θ × ZT × Z → R, g ∶ Λ × ZT × Z → R be non-decreasing and

left-continuous in Z. Then,

Qτ [h(θ, zT , Qτ[g(λ, zT , zt+1)∣zt])∣z1] = Qτ [h (θ, zT ,g(λ, zT , Qτ[zt+1∣zt])) ∣z1] .

Proof. Let X denote the random variable Qτ[g(λ, zt, zt+1)∣zt]) and similarly, let Y denote g(λ, zt, Qτ[zt+1∣zt]).
Then, by Lemma A.2, X = Y. Therefore, h(θ, zt,X) = h(θ, zt,Y) and the result follows.

The following result will be useful below.

Proposition A.4. Given the random variables X and Y, assume that there exists random variable Z

and continuous and increasing functions h and g such that X = h(Z) and Y = g(Z). Then Qτ[X + Y] =
Qτ[X] +Qτ[Y].

Proof. Let Z, h and g be as in the definition. Define h̃(Z) ≡ h(Z) + g(Z). This function is clearly

continuous and increasing. Therefore,

Qτ[X + Y] = Qτ[h̃(Z)] = h̃(Qτ[Z]) = h(Qτ[Z]) + g(Qτ[Z])
= Qτ[h(Z)] +Qτ[g(Z)] = Qτ[X] +Qτ[Y].

by applying Lemma A.2 twice.

A.2 Proofs of Section 2

The proof of Proposition 2.1 follows closely that of Chambers (2007). We need to introduce some

notation. If x ∼ y for all x,y ∈ X, then Proposition 2.1 holds trivially. Indeed, we can define u(x) = 1

for all x ∈ X and choose any τ ∈ (0, 1). We obtain U(f) = 1 for all f ∈ F , which represents the preference

from monotonicity. Therefore, from now on, we assume that there exists x and x ∈ X, such that x ≻ x.
For the rest of the proof, let this x and x be fixed. We begin with the following auxiliary result:

Lemma A.5. For any x,y ∈ X and any E ⊂ S, we have xEy ∼ x or xEy ∼ y.

Proof. If x ∼ y, there is nothing to prove, as this would imply by monotonicity, xEy ∼ x ∼ y. Thus, let

us assume, without loss of generality, that x ≻ y. By monotonicity, xEy ≽ y. Assume that xEy ≻ y. Let

z ∈ X be such that z ∼ xEy, which exists by continuity. Define ϕ ∶ X→ X by:

ϕ(w) =
⎧⎪⎪⎨⎪⎪⎩

x, if w ≻ y
y, if w ≼ y
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Clearly, ϕ is increasing. Since z ∼ xEy ≻ y, ϕ(z) = x. Since xEy ∼ z, by ordinality we have xEy =
ϕ(xEy) ∼ ϕ(z) = x. This concludes the proof.

A collection of sets E ⊂ Σ is a downset if A ∈ E and B ⊂ A and B ∈ Σ implies that B ∈ E .

Proposition A.6. If ≽ satisfies axioms Q1-Q4, there exists u ∶ X → R and a unique downset E ⊂ Σ
such that ∅ ∈ E and S ∉ E for which

U(f) = inf{α ∶ {s ∈ S ∶ u(f(s)) ⩾ α} ∈ E}.

Proof. From continuity, there exists a continuous function U ∶ F → R that represents ≽. Since we see X

as a subset of F , we can define u ∶ X → R by u(x) = U(x). Without loss of generality, we may assume

that u(x) = 1 and u(x) = 0. For notation simplicity, in this proof only we denote by 1E the act that is

equal to x if s ∈ E and is equal to x if s ∉ E. By Lemma A.5, we have U(1E) ∈ {0, 1}.

Let us define E as the set of those E ∈ Σ such that U(1E) = 0. It is easy to see that this defines a

downset: if B ⊂ E, B ∈ Σ, E ∈ E then 1E ≽ 1B by monotonicity. Therefore, by Lemma A.5, 0 = U(1E) ⩾
U(1B) ∈ {0, 1}, which implies U(1B) = 0⇒ B ∈ E . Moreover, S ∉ E .

We will show that for all E ∈ Σ, U(1E) = inf{α ∈ [0, 1] ∶ {s ∈ S ∶ u(1E(s)) ⩾ α} ∈ E}. Consider first the

case E ∈ E . For all α ∈ (0, 1), {s ∈ S ∶ u(1E(s)) ⩾ α} = E, so that {s ∈ S ∶ u(1E(s)) ⩾ α} ∈ E . Therefore,

inf{α ∶ {s ∈ S ∶ u(1E(s)) ⩾ α} ∈ E} ⩽ 0. However, for all α < 0, {s ∈ S ∶ 1E(s) ⩾ α} = S ∉ E . Hence, we may

conclude that inf{α ∶ {s ∈ S ∶ u(1E(s)) ⩾ α} ∈ E} = 0, so that U(1E) = inf{α ∶ {s ∈ S ∶ u(1E(s)) ⩾ α} ∈ E}.

Suppose now that E ∉ E . Then for all α > 1, {s ∈ S ∶ u(1E(s)) ⩾ α} = ∅, so that inf{α ∶ {s ∈ S ∶
u(1E(s)) ⩾ α} ∈ E} ⩽ 1. But for α ∈ (0, 1), {s ∈ S ∶ u(1E(s)) ⩾ α} = E, so that {s ∈ S ∶ u(1E(s)) ⩾ α} ∉ E .

Hence, inf{α ∶ {s ∈ S ∶ u(1E(s)) ⩾ α} ∈ E} = 1. Therefore, U(1E) = inf{α ∶ {s ∈ S ∶ u(1E(s)) ⩾ α} ∈ E}.

This also shows that E is the unique downset that can satisfy (3) for acts 1E. Moreover, for any act

xEy, with x ≻ y, we have xEy = ϕ(1E) for some increasing ϕ. Thus, Lemma A.5 and ordinality imply

that

U(xEy) = u(x), if E ∉ E and U(xEy) = u(y) if E ∈ E . (43)

Next, we extend the result to all functions in F . Let f ∈ F be arbitrary, and set α∗(f) = inf{α ∶ {s ∈ S ∶
u(f(s)) ⩾ α} ∈ E}. We want to conclude thatU(f) ⩽ α∗(f). Let ε > 0. Then {s ∈ S ∶ u(f(s)) ⩾ α∗(f)+ε} ∈
E by definition of α∗(f). Let gε ∈ F be defined by xEy, where E = {s ∈ S ∶ u(f(s)) ⩾ α∗(f) + ε}, and

x,y ∈ X are any consequences such that x ≽ f(s),∀s ∈ E and y ≽ f(s),∀s ∉ E, so that u(y) ⩽ α∗(f) + ε.

These x and y exist since S is finite. Thus, gε(s) ≽ f(s),∀s ∈ S, which implies, by monotonicity,

U(f) ⩽ U(gε). By Lemma A.5 and (43), U(gε) = u(y) ⩽ α∗(f) + ε. Since ε is arbitrary, U(f) ⩽ α∗(f).
Now we wish to conclude that U(f) ⩾ α∗(f). Let ε > 0. Then {s ∈ S ∶ u(f(s)) ⩾ α∗(f) − ε} ∉ E

by definition of α∗(f). Let hε ∈ F be the act xEy where E = {s ∈ S ∶ u(f(s)) ⩾ α∗(f) − ε}, and

x,y ∈ X are any consequences such that f(s) ≽ x,∀s ∈ E, f(s) ≽ y,∀s ∉ E and u(x) ⩾ α∗(f) − ε. This

implies that f(s) ≽ hε(s),∀s ∈ S and U(f) ⩾ U(hε). Moreover, {s ∈ S ∶ u(f(s)) ⩾ α∗(f) − ε} ∉ E . By

(43), U(hε) = u(x) ⩾ α∗(f) − ε. Thus, U(f) ⩾ α∗(f) − ε. As ε is arbitrary, U(f) ⩾ α∗(f). Therefore

U(f) = inf{α ∶ {s ∈ S ∶ u(f(s)) ⩾ α} ∈ E}.

Proof of Sufficiency in Proposition 2.1: This proof adapts the argument of Chambers (2007,

Theorem 2) to exclude the case τ = 0. We reproduce the whole argument here for completeness and

readers’ convenience. Let U ∶ F → R and E be respectively the utility function and the downset shown
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to exist by Proposition A.6. Let S = {s1, ..., s∣S∣} and for any E ⊂ S, let ūE denote the vector in {0, 1}∣S∣

such that ūEi = 1 if and only if si ∈ E.

We want to show that there exists a probability measure p, represented by a vector in [0, 1]∣S∣, and

a number τ ∈ (0, 1) such that E = {E ∈ Σ ∶ p(E) ⩽ τ} = {E ∈ Σ ∶ ūE ⋅p ⩽ τ}. For this, let us argue first that

there exists (τ,p) solution of the following system of linear inequalities:

• for all E ∈ E , (1,−ūE) ⋅ (τ,p) ⩾ 0;

• for all E ∉ E , (−1, ūE) ⋅ (τ,p) > 0;

• for all s ∈ S, (0, 1{s}) ⋅ (τ,p) ⩾ 0,

• (0, 1S) ⋅ (τ,p) > 0, and

For a contradiction, assume that this system of linear inequalities does not have a solution. Then

there must exist (see, for example, Rockafellar (1970, Theorem 22.2)), nonnegative integers for each of

the preceding constraints, so that

∑
E∈E
nE(1,−ūE) + ∑

E∉E
nE(−1, ūE) +∑

s∈S
ns(0, 1{s}) +m(0, 1S) = 0.

Furthermore, one of the integers associated with one of the strict inequalities must be positive. There-

fore, we may also conclude that at least one of the nE corresponding to an E ∈ E must be positive.

Moreover, in order to equal zero, ∑E∈E nE = ∑E∉E nE. Define n ≡ ∑E∈E nE, and list out all of the

sets E ∈ E a total of nE times each to form a sequence {A1, . . . ,An} ⊂ E . List out all of the sets

E ∉ E a total of nE times each to form a sequence {B1, . . . ,Bn} ⊂ Σ/E . By definition of E , for all

i = 1, . . . ,n, U(1Ai) < U(1Bi). As the constraints sum to zero, and the weights ns and m are nonnega-

tive, ∑ni=1 1Ai ⩾ ∑ni=1 1Bi . This contradicts betting consistency.

Therefore, there exists (τ,p) ∈ R∣S∣+1
+ the above system of linear inequalities. By dividing τ,p) by

ūS ⋅ p > 0, we may assume that ūS ⋅ p = 1, that is, p is a probability measure, satisfying E = {E ∈ Σ ∶
p(E) ⩽ τ}.

Since S ∉ E, p(S) = 1 > τ. If τ = 0, let S0 ≡ {s ∈ S ∶ p({s}) = 0} and fix ŝ ∈ S ∖ S0 such that

p({ŝ}) = min{p({s}) ∶ s ∈ S ∖ S0}. Let n ≡ ∣S0∣ and ε ≡ p({ŝ}). Define τ̂ = ε
2

and for each s ∈ S,

p̂({s}) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

p({s}), if s ∉ S0 ∪ {ŝ}
2ε
3

, if s = ŝ
ε
3n

, if s ∈ S0

Then, p̂ is a probability, τ̂ ∈ (0, 1) and E = {E ∈ Σ ∶ p(E) ⩽ τ} = {E ∈ Σ ∶ p̂(E) ⩽ τ̂}.

Proof of Necessity in Proposition 2.1: Assume that U(f) = Qpτ[u(f)] represents ≽, for some

utility u ∶ X→ R, probability p ∶ Σ→ [0, 1] and τ ∈ (0, 1), where

Qpτ[u(f)] ≡ inf{α ∶ p({s ∈ S ∶ u(f(s)) ⩾ α}) ⩽ τ}.

Axioms Q1, Q2 and Q3 are easily seen to be satisfied. To see that the probabilistic quantiles

satisfy betting consistency (Q5), let U represent ≽ be given by (3), for some u ∶ X → R, probability

p ∶ Σ→ [0, 1] and τ ∈ (0, 1). Let {A1, . . . ,An} ⊂ 2S and {B1, . . . ,Bn} ⊂ 2S for which ∑ni=1 1Ai ⩾ ∑ni=1 1Bi .

Suppose, by means of contradiction, that for all i ∈ {1, . . . ,n}, U(xBix) > U(xAix). This is only

45



possible if for all i ∈ {1, . . . ,n}, U(xBix) = 1 and U(xAix) = 0. Hence, for all i ∈ {1, . . . ,n}, p(Bi) > τ
and p(Ai) ⩽ τ. Let Ep[⋅] denote the expectation with respect to p. As ∑ni=1 1Ai(s) ⩾ ∑ni=1 1Bi(s),
for all s ∈ S, Ep[∑ni=1 1Ai] = ∑ni=1 p(Ai) ⩾ Ep[∑ni=1 1Bi] = ∑ni=1 p(Bi). However, ∑ni=1 p(Bi) > nτ and

nτ ⩾ ∑ni=1 p(Ai), a contradiction.

To see that Q4 (ordinality) is satisfied, fix f,g ∈ F and an increasing ϕ ∶ X → X. Let f(S) = Xf =
{xf1, ...,xfn} and g(S) = Xg = {xg1 , ...,xgm}. Without loss of generality, we may assume u(xf1) < . . . < u(xfn)
and similarly for Xg.

It is easy to see that Qpτ[u(f)] ∈ {u(xf1), ...,u(xfi), ...,u(xfn)}. Let i be such that u(xfi) = Qpτ[u(f)].
Similarly, u(xgj ) = Qpτ[u(g)]. We assume that f ≽ g, that is, u(xgj ) ⩽ u(xfi).

Of course Qpτ[u(ϕ(f))] ∈ {u(ϕ(xf1)), ...,u(ϕ(xfi)), ...,u(ϕ(xfn))} and u(ϕ(xf1)) ⩽ . . . ⩽ u(ϕ(xfn)).
In fact,

Qpτ[u(ϕ(f))] = u(ϕ(xfk)) Ô⇒ u(ϕ(xfk)) = ⋯ = u(ϕ(xfi))

and

Qpτ[u(ϕ(g))] = u(ϕ(xg` )) Ô⇒ u(ϕ(xg` )) = ⋯ = u(ϕ(xgj )).

Note that u (xgj ) ⩽ u (xfi) ⇒ u (ϕ (xgj )) ⩽ u (ϕ (xfi)). This implies that u(ϕ(xg` )) ⩽ u(ϕ(xfk)).
Thus, ϕ(f) ≽ ϕ(g), that is, Q4 holds.

Proof of Proposition 2.3: As usual, it is easy to verify that the axioms are satisfied if the preference

has the representation, that is, satisfies the recursive equation (5). Conversely, from Proposition 2.2, we

know that if ≽ satisfies D1-D7, then ≽ admits a recursive representation (V,W, I) such that W(c,x) =
u(c) + b(c)x, with b(c) ∈ (0, 1). From Koopmans (1972) and A1, b(c) is constant, that is, b(c) = β ∈
(0, 1).

Let F denote, as before, the set of functions f ∶ S → C. Fix some c∞ = (c0, c1, c2, ...) ∈ C∞, define

≽∗ on F by:

f ≽∗ g ⇐⇒ (c0, f(⋅), c2, ...) ≽ (c0,g(⋅), c2, ...). (44)

This preference is well defined and does not depend on c∞ ∈ C∞. It is clear that ≽∗ satisfies Q1-Q5.

Therefore, by Proposition 2.1, there exists p ∶ Σ→ [0, 1] and τ ∈ (0, 1) such that

f ≽∗ g ⇐⇒ Qpτ[u(f)] ⩾ Qpτ[u(g)] (45)

where

Qpτ[u(f)] ≡ inf{α ∶ p({s ∈ S ∶ u(f(s)) ⩾ α}) ⩽ τ}.

Note that in (45), we can use the same u ∶ X → R provided by Proposition 2.2. By the definition of ≽∗

and the recursive representation (V,W, I), (45) is equivalent to

f ≽∗ g ⇐⇒ I[u(f)] ⩾ I[u(g)].

Since I(x) = x = Qpτ[x] for any x ∈ R, we can take I[⋅] = Qpτ[⋅] to represent the same preference.

Proof of Lemma 2.6: Assume that there exists f ∶ S → C such that I1[u(f)] > I2[u(f)]. Define
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h = (h0, f, f, ...). Pick c ∈ C such that I1[u(f)] > u(c) > I2[u(f)]. Let c∞ = (c, c, ...). Then,

V1(h) = u(h0) +βI1[V1(h1)] > V1(c∞) =
∞
∑
t=0
βtu(ct) = V2(c∞) ⩾ V2(h) = u(h0) +βI1[V2(h1)],

that is, V2(c∞) ⩾ V2(h) but V1(h) > V1(c∞), thus contradicting (9). Conversely, I1[⋅] ⩽ I2[⋅] implies

V1(h) ⩽ V2(h) for any h ∈ H. Thus, it cannot happen the negation of (9), that is, V1(h) > V1(c∞) =
V2(c∞) ⩾ V2(h).

A.3 Proofs of Section 3

Proof of Theorem 3.4: This is essentially the same proof of Theorem 3.9, presented in detail below.

Thus, we omit it.

Proof of Proposition 3.5: Let L be a bound for Vh. Using repeated times the recursive property

(13), we can write

Vh(x, z) = u(xh1 ,xh2 , z1) +Qτ

⎡⎢⎢⎢⎢⎣
βu(xh2 ,xh3 , z2) +Qτ[β2u(xh3 ,xh4 , z3) + . . .

. . . +Qτ[βnu(xhn+1,xhn+2, zn) +βn+1Vh(xhn,Zn)]∣Zn = zn] . . . ∣Z1 = z
⎤⎥⎥⎥⎥⎦

⩽ u(xh1 ,xh2 , z1) +Qτ

⎡⎢⎢⎢⎢⎣
βu(xh2 ,xh3 , z2) +Qτ[β2u(xh3 ,xh4 , z3) + . . .

. . . +Qτ[βnu(xhn+1,xhn+2, zn) +βn+1L]∣Zn = zn] . . . ∣Z1 = z
⎤⎥⎥⎥⎥⎦

= Vh,n(x, z) +βn+1L,

where in the last line we have used the property of quantiles that Qτ[X +α] = α +Qτ[X] for α ∈ R; see

Lemma A.2. Repeating the same argument with the lower bound −L, we can write:

Vn(x, z) −βn+1L ⩽ Vh(x, z) ⩽ Vh,n(x, z) +βn+1L.

This concludes the proof.

Proof of Proposition 3.7: Let Ω = {1, 2, 3, 4} and P({ω}) = 1/4 for all ω ∈ Ω. Define Σ0 = {∅,Ω}
and Σ1 = {∅,E1,E2,Ω}, where E1 = {1, 2} and E2 = {3, 4}. Let X(ω) =ω. Then for τ ∈ (0.5, 0.75),

Qτ[X∣Σ1]ω =
⎧⎪⎪⎨⎪⎪⎩

2, if ω ∈ E1
4, if ω ∈ E2

Therefore, Qτ[Qτ[X∣Σ1]∣Σ0] = 4 but Qτ[X∣Σ0] =Qτ[X] = 3, which establishes (20).

To see (21), considerΩ = [0, 4], Σ0 = {∅,Ω} and let Σ1 be generated by the partition {E1,E2}, where

E1 = [1, 2) and E2 = [2, 4]. Consider P as the uniform distribution on Ω. Let X and Y be two random

variables with c.d.f. given respectively by FX(x) = 1
4
[x − 1

4
sin (hx)] and FY(x) = 1

4
[x + 1

4
sin (hx)]. The

graphs of these two c.d.f.s are shown in Figure 5 below. Let τ ∈ (0.5, 0.75).
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ω

FX, FY

1

5
16

5
8

13
16

Qτ[Y∣E1] <Qτ[X∣E1]

< Qτ[Y]Qτ[X]

Qτ[Y∣E2] <Qτ[X∣E2]

Figure 5: Graph of X and Y, with respective quantiles.

In the graph above, we plot the quantiles for τ = 5
8
∈ (0.5, 0.75). We can easily see that Qτ[X∣Σ1](ω) ⩾

Qτ[Y∣Σ1](ω),∀ω ∈Ω, but Qτ[X] = Qτ[X∣Σ0] < Qτ[Y∣Σ0] = Qτ[Y], that is, (21) holds.

Proof of Theorem 3.8: Assume that plans h and h ′ are such that ht ′(⋅) = h ′t ′(⋅) for all t ′ ⩽ t
and h ′ ≽t+1,Ω ′

t+1,x
h for all Ω ′

t+1,x. From (10), this means that

Vt+1(h ′,x, zt+1) ⩾ Vt+1(h,x, zt+1),∀(x, zt) ∈ X ×Zt+1. (46)

Therefore,

Vt(h ′,x, zt) = u(xh
′

t ,xh
′

t+1, zt) +βQτ [Vt+1(h ′,x, (Zt, zt+1))∣Zt = zt]
⩾ u(xh

′

t ,xh
′

t+1, zt) +βQτ [Vt+1(h,x, (Zt, zt+1))∣Zt = zt]
= u(xht ,xht+1, zt) +βQτ [Vt+1(h,x, (Zt, zt+1))∣Zt = zt]
= Vt(h,x, zt),

where the first and last equalities come from the recursive equation (13), the first inequality comes from

(46) and Lemma A.1(vi), while the equality in the third line comes from the fact that the plans aggree

on all times up to t, that is, xh
′

t = xht and xh
′

t+1 = h ′t(xht , zt) = ht(xht , zt) = xht+1. This establishes the

claim.

Proof of Theorem 3.9: We organize the proof in a series of Lemmas.

Lemma A.7. If v ∈ C, the map (y, z)↦ Qτ[v(y,w)∣z] is continuous.

Proof. Consider a sequence (yn, zn)→ (y∗, z∗). Since v and f are continuous, v(yn,w)→ v(y∗,w) and

mn(α) ≡ Pr ({w ∶ v(yn,w) ⩽ α}∣zn)→ Pr ({w ∶ v(y∗,w) ⩽ α}∣z∗) ≡m∗(α). (47)
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Let αn ≡ inf{α ∈ R ∶ mn(α) ⩾ τ} = Qτ[v(yn, ⋅)∣zn] and α∗ ≡ inf{α ∈ R ∶ m∗(α) ⩾ τ} = Qτ[v(y∗, ⋅)∣z∗].
We want to show that αn → α∗.

In general, mn(⋅) and m∗(⋅) may fail to be continuous, but they are right-continuous and (weakly)

increasing by Lemma A.1. Moreover,m∗ andmn are strictly increasing in the range of v. More precisely,

for each y, define R(y) ≡ {α ∈ R ∶ ∃w such that v(y,w) = α}. We claim that if α < α ′,α,α ′ ∈ R(y), then

m∗(α ′) >m∗(α), and similarly for mn.27

Indeed, assume that ∃w,w ′ such that v(y,w) = α and v(y,w ′) = α ′. The set P = {αw+ (1−α)w ′ ∶
α ∈ [0, 1]} is contained in Z because this is convex. Thus, {v(y,p) ∶ p ∈ P} is connected, that is, a

nonempty interval. We conclude that, since v is continuous, the set {w ∈ Z ∶ α < v(y,w) < α ′} is

a nonempty and open interval. (This implies, in particular, that R(y) is an interval.) Since f(⋅∣z) is

strictly positive in Z, we conclude that

m∗(α ′) −m∗(α) ⩾ Pr ({w ∈ Z ∶ α < v(y,w) < α ′}∣z) > 0,

which establishes the claim. By Lemma A.1(iv), we have

mn(αn) ⩾ τ and m∗(α∗) ⩾ τ. (48)

We will show that αn → α∗ by first establishing lim infn α
n ⩾ α∗ and then α∗ ⩾ lim supn α

n.

Suppose that α ≡ lim infn α
n < α∗. This means that there exists ε > 0 and for each j, nj > j such that

αnj < α + ε < α∗. By the definition of α∗, α < α∗ implies m∗(α) < τ. However, by (48), mnj(αnj) ⩾ τ,
which implies mnj(α) ⩾ τ and m∗(α) ⩾ τ, by (47). This contradiction establishes that lim infn α

n ⩾ α∗.

If ᾱ ≡ lim supn α
n > α∗, there exists ε > 0 and for each j, nj > j such that

ᾱ + ε > αnj > ᾱ − ε > ᾱ − 2ε > α∗ + ε. (49)

Recall that αn = inf{α ∈ R ∶ mn(α) ⩾ τ}. Therefore, αnj > ᾱ − ε implies mnj(ᾱ − ε) < τ. Thus,

mnj(α∗ + ε) <mnj(ᾱ − ε) < τ. This implies that

m∗(α∗) ⩽m∗(ᾱ − 2ε) ⩽m∗(ᾱ − ε) = lim
n
mnj(ᾱ − ε) ⩽ τ ⩽m∗(α∗).

Therefore, m∗ is constant between α∗ and ᾱ−2ε. This will be a contradiction if we show that α∗, ᾱ−2ε ∈
R(y∗).

Since m∗(α∗) = Pr ({w ∶ v(y∗,w) ⩽ α∗}∣z∗) ⩾ τ > 0, {w ∶ v(y∗,w) ⩽ α∗} /= ∅ and there exists some

α ∈ R(y∗) ∩ (−∞,α∗]. On the other hand, if {w ∶ ᾱ − 2ε ⩽ v(y∗,w) ⩽ ᾱ + 2ε} = ∅, then for sufficiently

high j, {w ∶ ᾱ − ε ⩽ v(ynj ,w) ⩽ ᾱ + ε} = ∅. In this case, mnj(ᾱ − ε) = mnj(ᾱ + ε) ≡ τnj . But

this would imply either αnj ⩽ ᾱ − ε, if τnj ⩾ τ or αnj ⩾ ᾱ + ε, if τnj < τ. In either case, we have a

contradiction with αnj ∈ (ᾱ − ε, ᾱ + ε) as required in (49). This contradiction shows that there exists

α ′ ∈ R(y∗)∩ [ᾱ− 2ε, ᾱ+ 2ε]. Since α,α ′ ∈ R(y∗), we have [α∗, ᾱ− 2ε] ⊂ [α,α ′] ⊂ R(y∗). This concludes

the proof.

27Note that mn and m∗ are the corresponding c.d.f. functions for v. Thus, proving that those functions are
strictly increasing in the range of v leads to continuity of the quantile with respect to τ, by (an adaptation of)
Lemma A.1(viii). But this is not what we need: we want continuity in (y, z). We prefer to offer here a direct
and detailed argument, although long.
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Lemma A.8. For each v ∈ C the supremum in (22) is attained and Mτ(v) ∈ C. Moreover, the optimal

correspondence Υ ∶ X ×Z ⇉ X defined by

Υ(x, z) ≡ arg max
y∈Γ(x,z)

Qτ[u (x,y, z) +βvτ(y,w)∣z] (50)

is nonempty and upper semi-continuous.

Proof. Let

g(x,y, z,w) = u (x,y, z) +βv(y,w). (51)

By Lemma A.2, Qτ[g(x,y, z, ⋅)∣z] = u (x,y, z) + βQτ[v(y, ⋅)∣z]. By Lemma A.7, Qτ[g(x,y, z, ⋅)∣z] is

continuous in (x,y, z). From Berge’s Maximum Theorem, the maximum is attained, the value function

Mτ(v) is continuous and Υ is nonempty and upper semi-continuous. Mτ(v) is bounded because u and

v, hence g, are bounded. Therefore, Mτ(v) ∈ C.

We conclude the proof of Theorem 3.9 by showing that Mτ satisfies Blackwell’s sufficient conditions

for a contraction.

Lemma A.9. Mτ satisfies the following conditions:

(a) For any v,v ′ ∈ C, v ⩽ v ′ implies Mτ(v) ⩽Mτ(v ′).

(b) For any a ⩾ 0 and x ∈ X, M(v + a)(x) ⩽M(v)(x) +βa, with β ∈ (0, 1).

Then, ∥M(v) −M(v ′)∥ ⩽ β∥v − v ′∥, that is, M is a contraction with modulus β. Therefore, Mτ has a

unique fixed-point vτ ∈ C.

Proof. To see (a), let v,v ′ ∈ C, v ⩽ v ′ and define g as in (51) and analogously for g ′, that is, g ′(x,y, z,w) =
u (x,y, z)+βv ′(y,w). It is clear that g ⩽ g ′. Then, by Lemma A.1(vi), Qτ[g(⋅)∣z] ⩽ Qτ[g ′(⋅)∣z], which

implies (a).

To verify (b), we use the monotonicity property (Lemma A.2):

Qτ[u(x,y, z) +β(v(x, z) + a)∣z] = Qτ[u(x,y, z) +βv(x, z)∣z] +βa.

Thus, Mτ(v + a) =Mτ(v) +βa, that is, (b) is satisfied with equality.

Proof of Theorem 3.10: Let Assumption 2 hold. It is convenient to introduce the following

notation. Let C ′ ⊂ C be the set of the functions v ∶ X ×Z → R which are concave in its first argument.

It is easy to see that C ′ is a closed subset of C. Let C ′′ ⊂ C ′ be the set of strictly concave functions. If

we show that Mτ(C ′) ⊂ C ′′, then the fixed-point of Mτ will be strictly concave in x. (See, for instance,

Stokey, Lucas, and Prescott (1989, Corollary 1, p. 52).)

Lemma A.10. Let Assumption 2 hold. Mτ(C ′) ⊆ C ′′. Therefore, vτ ∈ C ′′. Moreover, the optimal

correspondence Υ ∶ X × Z ⇉ X defined by (50) is single-valued. Therefore, we can denote it by a

function y∗(x, z).
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Proof. Let α ∈ (0, 1), and consider x0,x1 ∈ X , x0 /= x1. For i = 0, 1, let yi ∈ Γ(xi, z) attain the maximum,

that is,

Mτ(v) (xi, z) = u(xi,yi, z) +βQτ[v(yi,w)∣z] = Qτ[g(xi,yi, z,w)∣z].

Let xα ≡ αx0 + (1 −α)x1 and yα ≡ αy0 + (1 −α)y1. First, let us observe that

g (xα,yα, z,w) = u (xα,yα, z) +βv(yα,w)
> αu (x0,y0, z) + (1 −α)u (x1,y1, z)

+βv(yα,w)
⩾ αu (x0,y0, z) + (1 −α)u (x1,y1, z)

+β [αv(y0,w) + (1 −α)v(y1,w)]
= αg(x0,y0, z,w) + (1 −α)g(x1,y1, z,w),

where the first inequality comes from the strict concavity of u and the second, from the concavity of v.

That is, g is strictly quasiconcave, which establishes that Υ(x, z) is single-valued. Therefore,

Qτ[g (xα,yα, z,w) ∣z] > Qτ [αg(x0,y0, z,w) + (1 −α)g(x1,y1, z,w)∣z] .

Note that the variables X = g(x0,y0, z,w) and Y = g(x1,y1, z,w) satisfy the assumption of Proposition

A.4 since v is nondecreasing in w (holding z fixed). Therefore,

Qτ[g (xα,yα, z,w) ∣z] > αQτ [g(x0,y0, z,w)∣z] + (1 −α)Qτ [g(x1,y1, z,w)∣z]
= αMτ(v)(x0, z) + (1 −α)Mτ(v)(x1, z). (52)

Therefore,

Mτ(v) (xα, z) ⩾ Qτ[g (xα,yα, z,w) ∣z]
> αMτ(v) (x0, z) + (1 −α)Mτ(v) (x1, z) ,

This establishes strict concavity, concluding the proof.

Lemma A.11. Let Assumption 2 hold. If h ∶ Z → R is weakly increasing and z ⩽ z ′, then Qτ[h(w)∣z] ⩽
Qτ[h(w)∣z ′].

Proof. From Assumption 2(ii), if h ∶ Z → R is weakly increasing and z ⩽ z ′:

∫
Z
h(α) [−1{α∈Z ∶α⩽w}] f(α∣z)dα ⩽ ∫

Z
h(α) [−1{α∈Z ∶α⩽w}] f(α∣z ′)dα.

Thus,

∫
{α∈Z ∶α⩽w}

h(α)f(α∣z)dα ⩾ ∫
{α∈Z ∶α⩽w}

h(α)f(α∣z ′)dα. (53)

If we define H(w∣z) = Pr ([h(W) ⩽ h(w)] ∣Z = z), then (53) can be written as:

H(w∣z) ⩾ H(w∣z ′).

Observe that Qτ[h(w)∣z] = inf{α ∈ R ∶ H(α∣z) ⩾ τ} and, whenever z ⩽ z ′, H(w∣z ′) ⩽ H(w∣z), for all
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w. Therefore, if z ⩽ z ′, then

{α ∈ R ∶ H(α∣z) ⩾ τ} ⊃ {α ∈ R ∶ H(α∣z ′) ⩾ τ},

which implies that

Qτ[h(w)∣z] = inf{α ∈ R ∶ H(α∣z) ⩾ τ} ⩽ inf{α ∈ R ∶ H(α∣z ′) ⩾ τ} = Qτ[h(w)∣z ′],

as we wanted to show.

Lemma A.12. Let Assumption 2 hold. If v ∈ C is increasing in z then Mτ(v) is strictly increasing in

z.

Proof. Let z1, z2 ∈ Z, with z1 < z2. For i = 1, 2, let yi ∈ Γ (x, zi) realize the maximum, that is,

Mτ(v) (xi, z) = u(x,yi, zi) +βQτ[v(yi,w)∣zi].

Since u is strictly increasing in z, we have:

Mτ(v) (x, z1) = u(x,y1, z1) +βQτ[v(y1,w)∣z1] < u(x,y1, z2) +βQτ[v(y1,w)∣z1].

From Lemma A.11, we have Qτ[v(y1,w)∣z1] ⩽ Qτ[v(y1,w)∣z2], which gives:

Mτ(v) (x, z1) < u(x,y1, z2) +βQτ[v(y1,w)∣z2].

From Assumption 2, Γ(x, z) ⊆ Γ(x, z ′), that is, y1 ∈ Γ(x, z2). Optimality thus implies that:

u(x,y1, z2) +βQτ[v(y1,w)∣z2] ⩽ u(x,y2, z2) +βQτ[v(y2,w)∣z2] =Mτ(v) (x, z2) .

Therefore, Mτ(v) (x, z1) <Mτ(v) (x, z2), which shows strict increasingness in z.

We conclude the proof of Theorem 3.10 by showing differentiability of v, which follows from an

easy adaptation of Benveniste and Scheinkman (1979)’s argument. For completeness and reader’s

convenience, we reproduce it here. Given (x, z), let y∗(x, z) ∈ Γ(x, z) be unique maximum as established

in Lemma A.10. Thus, for all (x, z), we have:

v(x, z) = u(x,y∗(x, z), z) +βQτ[v(y∗(x, z),w)∣z].

Fix x0 in the interior of X and define:

w̄(x, z) = u(x,y∗(x0, z), z) +βQτ[v(y∗(x0, z),w)∣z].

From the optimality, for a neighborhood of x0, we have w̄(x, z) ⩽ v(x, z), with equality at x = x0, which

implies w̄(x, z) − w̄(x0, z) ⩽ v(x, z) − v(x0, z). Note that w̄ is concave and differentiable in x because u

is. Thus, any subgradient p of v at x0 must satisfy

p ⋅ (x − x0) ⩾ v(x, z) − v(x0, z) ⩾ w̄(x, z) − w̄(x0, z).
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Thus, p is also a subgradient of w̄. But since w̄ is differentiable, p is unique. Therefore, v is a concave

function with a unique subgradient. Therefore, it is differentiable in x (cf. Rockafellar (1970, Theorem

25.1, p. 242)) and its derivative with respect to x is the same as that of w̄, that is,

∂vτ

∂xi
(x, z) = ∂w̄

∂xi
(x, z) = ∂u

∂xi
(x,y∗(x, z), z),

as we wanted to show.

Proof of Lemma 3.12: By Stokey, Lucas, and Prescott (1989, Theorem 7.6), Γ has a measurable

selection. Therefore, the argument in Stokey, Lucas, and Prescott (1989, Lemma 9.1) establishes the

result.

We need the following notation in the next proof. Let T ∈ N ∪ {∞} and S ∶ ZT → ZT−1 be the

shift operator, that is, given z = (z1, z2, ..., zT ) ∈ ZT , S(z) = (z2, ..., zT ) ∈ ZT−1. Abusing notation, let

S ∶ H → H also denote the shift operator for plans, that is, given h ∈ H, hs = S(h) ∈ H is defined as

follows: for each given z∞ ∈ Z∞, hst(x,S(zt+1)) = ht+1(x, zt+1). Let St ∶ H→ H be the composition of S

with itself t times.

Proof of Lemma 3.13: Let t ⩾ 2 (otherwise there is nothing to prove). Since Ht(x, z) ⊂ H1(x, z) =
H(x, z) by definition, we have v∗t(x, z) ⩽ v1(x, z). Suppose, for an absurd, that there exists h ∈ H(x, z)
such that

V1(h,x, z) > v∗t(x, z). (54)

Let h̃ and (x̃, z̃t) be such that St−1(h̃) = h, xh̃t (x̃, z̃t) = x and z̃t = z. Then, Vt(z̃, x̃, z̃t) = V1(h,x, z).
Since v∗t(x, z) ⩾ Vt(z̃, x̃, z̃t), this establishes a contradiction with (54).

Proof of Lemma 3.14: If v is bounded and satisfies (24), then it is the unique fixed-point of the

contraction Mτ. Thus, the proof of Theorem 3.9 establishes, via the Maximum Theorem, the claims.

Proof of Theorem 3.15: Assume that v satisfies (24). It is sufficient to show that (i) v(x, z) ⩾
V1(h,x, z) for any h ∈ H(x, z) and (x, z) ∈ X × Z; and (ii) v(x, z) = V1(hψ,x, z). Let h ∈ H(x, z). We

have:

v(x, z) = sup
y∈Γ(xh1 ,z1)

u (xh1 ,y, z1) +βQτ[v(y, z2)∣z1]

⩾ u (xh1 ,xh2 , z1) +βQτ [v(xh2 , z2)∣z1]

= u (xh1 ,xh2 , z1) +βQτ

⎡⎢⎢⎢⎢⎣
sup

y∈Γ(xh2 ,z2)
{u (xh2 ,y, z2) +βQτ [v(y, z3)∣z2]} ∣z1

⎤⎥⎥⎥⎥⎦

⩾ u (xh1 ,xh2 , z1) +Qτ [βu (xh2 ,xh3 , z2) +Qτ [β2v(xh3 , z3)∣z2] ∣z1] ,

where the two inequalities come from the definition of sup, and the equalities from (24) and Corollary
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A.3. Repeating the same arguments, we obtain:

v(x, z) ⩾ u(xh1 ,xh2 , z1) +Qτ

⎡⎢⎢⎢⎢⎣
βu(xh2 ,xh3 , z2) +Qτ[β2u(xh3 ,xh4 , z3) + . . .

. . . +Qτ[βnu(xhn+1,xhn+2, zn) +βn+1v(xhn,Zn)]∣Zn = zn] . . . ∣Z1 = z
⎤⎥⎥⎥⎥⎦
.

Repeating the arguments in the proof of Proposition 3.5, we can conclude that the limit of the right

hand size when n → ∞ is Vh(x, z) = V1(h,x, z). Thus, we have established that v(x, z) ⩾ V1(h,x, z).
Since h was arbitrary, then v(x, z) ⩾ v∗(x, z). On the other hand, for hψ the inequalities above hold

with equality and we obtain v(x, z) = v∗(x, z).

Proof of Theorem 3.16: Let g(x,y, z,w) ≡ u(x,y, z)+βQτ[vτ(y,w)∣z] and y∗(x, z) be an interior

solution of the problem (24). Observe that vτ is increasing in w, differentiable in its first variable and

for 0 < x ′i − xi < ε, for some small ε > 0,

vτ(x ′i,x−i, z) − vτ(xi,x−i, z) = ∫
x ′

x

∂vτ

∂xi
(α,x−i, z)dα = ∫

x ′

x

∂u

∂xi
(α,x−i, z)dα

is increasing in z because ∂u
∂xi

is. Therefore, the assumptions of Proposition 3.17 are satisfied and we

conclude that
∂Qτ
∂xi

[vτ(x, z)] = Qτ [∂v
τ

∂xi
(x, z)] . Since u is differentiable in y, so is g. Since y∗(x, z) is

interior, the following first order condition holds:

∂g

∂yi
(x,y∗(x, z), z, Qτ[w∣z]) = ∂u

∂yi
(x,y∗(x, z), z) +βQτ [

∂vτ

∂xi
(y∗(x, z),w)∣z] = 0.

Now we apply Theorem 3.10 and its expression: ∂v
τ

∂xi
(x, z) = ∂u

∂xi
(x,y∗(x, z), z), to conclude that

∂u

∂yi
(x,y∗(x, z), z) +βQτ [

∂u

∂xi
(y∗(x, z),y∗(y∗(x, z),w),w)∣z] = 0. (55)

Now, we have just to put the notation of a sequence. For this, let h = (xt) denote an optimal path

beginning at (x0, z0), (55) can be rewritten, substituting x for xht , y∗(x, z) for xht+1, y∗(y∗(x, z),w) for

xht+2, z for zt and w for zt+1, as:

∂u

∂yi
(xht ,xht+1, zt) +βQτ [

∂u

∂xi
(xht+1,xht+2, zt+1)∣zt] = 0. (56)

which we wanted to establish.

Proof of Proposition 3.17: Fix a sufficiently small δ > 0 and x = (xi,x−i), with the usual meaning.28

Define X = d(z) ≡ h(xi + δ,x−i, z) − h(xi,x−i, z) and Y = g̃(z) = h(xi,x−i, z). Since h and d(z) ≡
h(xi + δ,x−i, z) − h(xi,x−i, z) are increasing in z by assumption, the random variables X and Y satisfy

28“Sufficiently small” here means that δ > 0 is taken so that d(z) ≡ h(xi + δ,x−i, z)−h(xi,x−i, z) is increasing,
as required by the assumption of the proposition. This “smallness” condition will be left implicit below.
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the assumptions of Proposition A.4, which allows us to conclude that

Qτ[h(xi + δ,x−i, z)] = Qτ[X + Y] = Qτ[X] +Qτ[Y]
= Qτ[h(xi + δ,x−i, z) − h(xi,x−i, z)] +Qτ[h(xi,x−i, z)].

Therefore, for all sufficiently small δ > 0,

Qτ[h(xi + δ,x−i, z)] −Qτ[h(xi,x−i, z)]
δ

= Qτ [
h(xi + δ,x−i, z) − h(xi,x−i, z)]

δ
] .

Since δ↦ h(xi+δ,x−i,z)−h(xi,x−i,z)]
δ

is continuous, Lemma A.7 implies that

lim
δ↓0

Qτ[h(xi + δ,x−i, z)] −Qτ[h(xi,x−i, z)]
δ

= lim
δ↓0

Qτ [
h(xi + δ,x−i, z) − h(xi,x−i, z)]

δ
]

= Qτ [lim
δ↓0

h(xi + δ,x−i, z) − h(xi,x−i, z)]
δ

]

= Qτ [
∂h

∂xi
(x, z)] .

We can adapt the above arguments for δ > 0 and X = d(z) = h(xi,x−i, z)−h(xi−δ,x−i, z) and Y = g̃(z) =
h(xi,x−i, z) to conclude that:

lim
δ↓0

Qτ[h(xi,x−i, z)] −Qτ[h(xi − δ,x−i, z)]
δ

= lim
δ↓0

Qτ [
h(xi,x−i, z) − h(xi − δ,x−i, z)]

δ
]

= Qτ [lim
δ↓0

h(xi,x−i, z) − h(xi − δ,x−i, z)]
δ

]

= Qτ [
∂h

∂xi
(x, z)] .

By changing δ > 0 above by δ̃ = −δ < 0, we obtain

lim
δ̃↑0

Qτ[h(xi + δ̃,x−i, z)] −Qτ[h(xi,x−i, z)]
δ̃

= Qτ [
∂h

∂xi
(x, z)] .

This shows that the right and left derivative of xi ↦ Qτ[h(xi,x−i, z)] exist and are equal. Therefore,

xi ↦ Qτ[h(xi,x−i, z)] is differentiable and its derivative is Qτ [ ∂h∂xi (x, z)], as we wanted to show.

A.4 Proofs of Section 4

Proof of Lemma 4.1: Assumption 1 (i)−(iii) and (v) are immediate. Since Z and X are bounded, and

U and z↦ z+p(z) are C1, u is C1 and bounded. Thus, Assumption 1 is satisfied. Similarly, Assumptions

2 are easily seen to be satisfied. It remains to verify the assumption of Theorem 3.16, namely that
∂u
∂xi

(xht ,xht+1, zt) is strictly increasing in zt, which happens if and only if log ∂u
∂xi

(xht ,xht+1, zt) is strictly

increasing in zt. Since

log
∂u

∂x
(x,y, z) = −γ log [z ⋅ x + p(z) ⋅ (x − y)] + log (z + p(z)) ,
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and xht = xht+1 = 1, we need to verify only that −γ [log(z)] ′ + [log (z + p(z))] ′ > 0. This is equivalent to

γ < z [log (z + p(z))] ′, which is contained in Assumption 3(iv).
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