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Shallow men believe in luck, believe in circumstances: It was somebody’s name,
or he happened to be there at the time, or, it was so then, and another day it would
have been otherwise. Strong men believe in cause and effect.

– Ralph Waldo Emerson, The Conduct of Life (1860)

1 Introduction

How much should we read into our successes and failures? Can we reduce our exposure
to luck by trying harder? Many people, like Emerson’s “strong men”, believe that their
efforts will have predictable consequences, but many others, like Emerson’s “shallow men”,
are quick to attribute the outcomes of their efforts to chance. People in the first group
learn a lot about themselves by observing the fruits of their efforts, whereas people in the
second group do not infer as much from these outcomes. We will here see a surprising result:
rational Bayesian agents systematically misjudge their own ability, and whether they end
up overconfident or underconfident depends on their beliefs about the predictability of their
efforts’ consequences.

Overconfidence is now generally recognized as an important factor in many markets.
For instance, overconfidence among traders can explain financial market anomalies (Daniel
and Hirshleifer, 2015), overconfidence can explain why some people persist as entrepreneurs
(Astebro et al., 2014), and overconfidence among business executives can affect corporate
investment decisions (Malmendier and Taylor, 2015). Economists have therefore sought to
model the psychological biases and motivations that can enable overconfidence to persist
even in the face of contrary data. However, recent experimental evidence suggests that
underconfidence is more prevalent than overconfidence (e.g., Kirchler and Maciejovsky, 2002;
Blavatskyy, 2009; Clark and Friesen, 2009; Urbig et al., 2009; Murad et al., 2016). And
underconfidence may be more important for wellbeing. The welfare cost of depression, often
considered a product of underconfidence, is enormous. Depression afflicts around one in six
adults in developed countries and contributes more to developed countries’ disease burden
than does any single class of physical illness (Layard and Clark, 2015). In the U.S. alone,
major depressive disorders affect 15.4 million adults and cost $210 billion per year (Greenberg
et al., 2015). Given the pervasiveness and costs of underconfidence, it is important that we
also understand its origins and the prospects for treatment.

I here propose a unified model in which persistent overconfidence and persistent under-
confidence both emerge from Bayesian updating by rational agents who have neoclassical
utility functions, do not exhibit behavioral biases, and initially hold correct expectations
of their own ability.1 An agent chooses his effort level in each period to maximize his ex-
pected reward. The reward depends on both his effort level and his unknown ability and

1As we will see, previous literature deviates in one or more of these three dimensions.
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is subject to unobserved shocks. Because ability and effort are complementary, the agent
applies more effort when he thinks he is of high ability. Upon observing the reward, the
agent updates his beliefs about his ability. The agent’s effort choices affect the strength of
the signal provided by the observed reward. I show that whether the agent ends up over-
confident or underconfident on average depends on his understanding about how his effort
level affects the variance of his reward. He ends up overconfident on average if he thinks
that the variance increases sufficiently strongly in his effort, and he ends up underconfident
on average otherwise. Only in a knife-edge case will we expect an agent to display neither
overconfidence nor underconfidence.

Begin by considering an agent who believes that the variance of his rewards is completely
due to temporary shocks to his ability.2 Greater effort amplifies the marginal effect of his
durable ability but also amplifies the marginal effect of temporary shocks to his ability.
Greater effort therefore does not affect the signal of his true ability provided by the observed
reward. We are interested in the distribution of the agent’s posterior beliefs at some future
time t. I show that if the agent initially estimates his own ability correctly (i.e., if his prior
is centered around the true value), then his posterior at any future time t is, on average,
centered around his true ability as well. For the agent to be underconfident or overconfident
on average, he would have to start with an incorrect estimate of his own ability. This special
case is consistent with standard intuition.

Now consider an agent who believes that the variance of his rewards is completely due
to external shocks that are independent of his effort choices. Like Emerson’s “strong man”,
he believes that his efforts have a consistent effect on outcomes. For instance, he believes
that running harder should improve his time by a consistent amount. The signal contained
in his observed reward now depends on his chosen effort level. When he chooses high effort,
he believes that he increases the marginal effect of his true ability on the observed reward
without changing the variance of the reward. As a result, the observed reward contains a
stronger signal of his true ability and he strongly adjusts his posterior beliefs upon observing
the reward.

Imagine that the agent has a prior centered around his true ability at time 0. Also
imagine that the unobserved shock happens to take on a high value at time 0, so that the
agent perceives a surprisingly high reward at time 0. As a result, he raises his central estimate
of his ability and chooses greater effort at time 1. Because he is now overconfident, his time
1 reward will, on average, be surprisingly small and will lead him to reduce his time 2 ability
estimate towards the true value. Following the average time 1 reward, the agent will still be
overconfident at time 2 but less so than at time 1. Indeed, because his high time 1 effort
made his beliefs especially sensitive to the observed time 1 reward, he will tend to be only
slightly overconfident by time 2.

Now imagine that the unobserved shock happens to take on a low value at time 0. In

2We will see that what matters is not the actual variance of the rewards but the agent’s beliefs about
this variance. The results do not depend on whether the agent has correct beliefs about the variance.
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this case, the agent reduces his central estimate of his ability and chooses lower effort at
time 1. Because he is now underconfident, his time 1 reward will, on average, be surprisingly
large and will lead him to raise his time 2 ability estimate towards the true value. Following
the average time 1 reward, the agent will still be underconfident at time 2 but less so than
at time 1. But because his low time 1 effort made his beliefs especially insensitive to the
observed time 1 reward, his underconfidence may still be nearly as bad at time 2 as it was
at time 1.

If we average across these two possibilities, the agent does not display any bias at time
1 because he adjusts his beliefs symmetrically in response to high or low time 0 shocks.
However, the agent is underconfident on average at time 2: his average central estimate
is below his true ability. The critical mechanism is that the agent’s posterior beliefs are
more sensitive to the observed reward when his effort is high. The agent learns away time
0 shocks especially quickly when they lead him to raise his central estimate of his own
ability, and he learns away time 0 shocks especially slowly when they lead him to lower
his central estimate of his own ability. The Bayesian agent becomes underconfident on
average despite his initially correct beliefs about his own ability. In fact, I show that he
will remain underconfident on average in any future period, approaching correct beliefs only
asymptotically as he accumulates infinite data.3

Rational updating can also endogenously generate overconfidence. Now let the agent be-
lieve that greater effort increases the variance of his reward. Like Emerson’s “shallow man”,
he believes that his efforts are largely modulated by circumstance. For example, he believes
that running harder reduces the consistency of his time by increasing the consequences of
each day’s minor variations in weather, fitness, or diet. This agent’s beliefs will be especially
sensitive to news following low effort choices. Because he chooses low effort when he lacks
confidence in his own ability, he learns away overly low ability estimates especially rapidly.
And he learns away overly high ability estimates only slowly because he believes that his
high efforts lead to especially noisy outcomes. When this agent has an overly high ability
estimate, he will tend to receive bad news, but he attributes his failures more to chance than
to his own ability. This agent becomes overconfident on average and will remain so in all
future periods.

The proposed mechanism for generating underconfidence is consistent with modern the-
ories of depression. As described in Section 6, many psychologists have concluded that
depression is about processing information in a way that promotes a negative self-image. As
a result, the agent withdraws from the world and becomes trapped in a state of inactivity.

3The agent does not expect to become biased. The bias arises in the eyes of an outside observer who
knows the agent’s true ability. The outside observer could be a manager, a teacher, an experimenter, or a
social planner, depending on the setting. The agent himself forms expectations by accounting not only for
the possible sequences of unobserved shocks but also for the possible values of his true ability. As a good
Bayesian, the agent does not expect his central estimate to drift over time. We will formally demonstrate
this difference between the agent’s expectations and the outside observer’s expectations in Section 3.
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We here see precisely such a mechanism leading to persistent underconfidence. When agents
interact with the world (i.e., apply high effort) and believe that this interaction has regular
consequences, they are quick to ascribe negative outcomes to their own inadequate ability
rather than to chance. As their ability estimates fall, they choose lower effort levels and thus
have a hard time learning away these incorrect beliefs. Being trapped in a state of persistent
self-doubt and low effort is due not merely to having received bad news but to how the agent
processes such news.

Cognitive behavioral therapy approaches to treating depression aim to help agents to re-
engage with the world (change their behavior) and learn to process information differently
(change cognition). These approaches have been shown to not only treat an instance of
depression but to prevent a relapse into depression.4 We here see the benefit of cognitive
behavioral therapy’s twin goals. An agent can be trapped in an overly pessimistic state when
extreme negative shocks reduce the agent’s estimate of his own ability and thereby reduce his
effort. If the agent believes that he receives a worse signal of his own ability when he chooses
low effort, then this reduction in effort will delay him from learning that his ability is greater
than he thinks it is. Making the agent re-engage with the world through higher effort choices
will tend to produce payoffs that raise his estimate of his own ability. However, in order
to prevent the agent’s confidence from trending down again, it is critical to also change the
agent’s information processing: he needs to stop believing that greater effort should increase
his control over outcomes. Interventions that help an agent to re-engage with the world can
alleviate a case of depression, but only techniques that also change his style of information
processing can make a relapse less likely.

The proposed mechanism is, to my knowledge, novel in the literature on overconfidence.5

4This is not to suggest that there is no neurological component to depression. The recommended ap-
proaches combine cognitive behavioral therapy with pharmacological treatments; however, randomized con-
trolled trials have found cognitive behavioral therapy to be more effective than pharmacological treatments
at preventing relapse (e.g., Seligman, 1991; Scott, 1996; Hollon et al., 2005; Butler et al., 2006; Dobson et al.,
2008; Layard and Clark, 2015). Further, there is evidence that cognitive behavioral therapy reduces the
hyperactivity in depressives’ amygdala while also stimulating their underactive prefrontal cortexes, whereas
pharmacological treatments primarily help only the amygdala (DeRubeis et al., 2008; Layard and Clark,
2015).

5We here focus on overconfidence in the sense of what Moore and Healy (2008) call “overestimation.”
A literature in finance has focused on what Moore and Healy (2008) call “overprecision”, in which agents
underestimate the variance of outcomes (e.g., Daniel et al., 1998; Burnside et al., 2011). Much other literature
studies overconfidence in the sense of what Moore and Healy (2008) call “overplacement” and the psychology
literature calls the “better-than-average effect”, which refers to the tendency for a majority of the population
to judge their own abilities as being better than a majority of the population. Many authors have described
selection mechanisms that can make a population of Bayesian updaters demonstrate overplacement (van den
Steen, 2004; Zábojńık, 2004; Köszegi, 2006; Jehiel, 2016): the common ingredient is that actors choose to
stop collecting information once they receive a sufficiently positive signal about themselves or about the
payoffs to some activity, so that high confidence is an absorbing state that attracts an ever greater share of
the population. Benôıt and Dubra (2011) show how Bayesian updating can lead too many agents to think
that they are above average when likely events reinforce beliefs in one’s own quality, and Santos-Pinto and
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A first set of papers describes agents’ motivations to choose to become overconfident, whether
because optimism increases utility (Brunnermeier and Parker, 2005), because confidence
directly improves outcomes (Compte and Postlewaite, 2004), or because confidence helps
to overcome the tendency to procrastinate (Bénabou and Tirole, 2002). In contrast, the
present setting is neoclassical: the agent’s payoffs are maximized when the agent has a
correct estimate of his own ability. A second set of papers generates overconfidence by
assuming that individuals use a biased updating process (called “biased self-attribution”)
that overly attributes successes to their own ability and failures to chance (e.g., Daniel et al.,
1998; Gervais and Odean, 2001).6 Many believe (e.g., Hirshleifer, 2001, 2015) that such biases
are necessary for a neoclassical model to generate persistent overconfidence, but the present
setting generates persistent overconfidence (and also persistent underconfidence) as a result
of rational Bayesian learning.

The proposed mechanism is more closely related to two recent papers. First, Silva (2017)
also demonstrates how the asymmetric speed at which agents learn following good and bad
shocks can generate systematic overconfidence. However, there the critical asymmetry is
exogenously imposed: the agent is assumed to receive outside help following an early signal
that he is of high quality but not after an early signal that he is of low quality, and this
unobserved outside help subsequently prevents him from learning about his own ability. In
contrast, the present paper’s asymmetric speeds of learning emerge endogenously from the
interaction between agents’ effort choices and their statistical models of the world. Second,
Hestermann and Yaouanq (2016) study an agent who is uncertain about his own fixed ability
and also about some feature of the environment. If the agent is initially overconfident, then
he rationally believes that good outcomes reflect his own ability whereas bad outcomes
reflect a harsh environment. In this manner, overconfidence can persist for quite a while.
We here see how persistent overconfidence and underconfidence can emerge even when the
agent’s initial beliefs are well-calibrated and even when the agent correctly understands his
environment.7

The proposed model is also consistent with recent research in both psychology and man-

Sobel (2005) model heterogeneity in the mapping from a set of skills to an ability index.
6Though not explicitly about overconfidence, the model of confirmatory bias in Rabin and Schrag (1999)

has a similar flavor.
7The present setting allows for the possibility of a misspecified statistical model in order to clarify that

overconfidence and underconfidence depend not on the actual data generating process but on the agent’s
beliefs about that process. Misspecification does not drive the results. Heidhues et al. (2017) assume both
that an agent is overconfident and that he does not realize that he might be overconfident. They study when
the actions chosen under this permanently misspecified model of his own ability can generate signals that
would not lead the agent to question his incorrect beliefs about his own ability. The present work is similar
in allowing for both overconfidence and misspecification, but here overconfidence emerges endogenously,
the misspecification affects only beliefs about the source of variance rather than ruling out correct beliefs
about ability, and misspecification is not necessary for the results. Fudenberg et al. (2017) also consider the
interaction between learning and a form of misspecification that places probability zero on the truth. We
here study a less extreme form of misspecification that is not critical to the setting.
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agement that has emphasized the role of beliefs about one’s own self-efficacy in determining
performance. Stronger beliefs about self-efficacy have been shown to increase an agent’s cho-
sen level of effort and the persistence of an agent’s effort in the face of bad shocks (Bandura,
1982; Wood and Bandura, 1989; Stajkovic and Luthans, 1998; Bandura, 2001; Tenney et al.,
2015).8 We will see both effects here. Further, this same literature’s discussion of learning
also matches our setting: beliefs about one’s own ability are thought to adjust not to ab-
solute outcomes but to outcomes as filtered through previous beliefs about ability. We will
formally model this updating process and highlight the previously overlooked importance of
beliefs about how effort choices interact with randomness in the world.

The next section describes the setting. Section 3 analyzes a two-period example. Section 4
shows that the agent’s posterior estimates drift away from the correct estimate on average.
Section 5 provides a numerical example. Section 6 connects the analysis to the modern
understanding of depression. Section 7 extends the analysis to the case of forward-looking
agents. The final section concludes. The appendix contains proofs.

2 Setting

In every period t, an agent chooses how much effort et to apply to an activity. His cost of
applying effort is c(et), with c(·) ∈ C2, c′(·) > 0, and c′′(·) > 0. The activity provides reward
πt, which depends on the chosen level of effort, on the agent’s ability z, and on a random
shock εt:

πt = etz +
√
f(et) εt. (1)

Effort and ability are complementary.9 The shock is mean-zero, normally distributed, and
serially uncorrelated, with variance σ2. f(·) > 0 determines the degree to which the noise
depends on the agent’s effort. Conditional on z, the variance of the agent’s time t payoff is
f(et)σ

2.
The agent does not know his own ability z. His beliefs about his ability are summarized

by a normal distribution with mean µt and variance Σt. The agent believes that rewards πt
are generated as

πt = etz +
√
g(et) εt, (2)

with g(·) ∈ C1. The function g(·) > 0 determines the degree to which the agent believes
that the variance of his rewards is driven by shocks to his ability. When g(·) = f(·), the
agent correctly understands the data generating process, but when g(·) 6= f(·), the agent’s
statistical model is misspecified. When g′(·) > 0, the agent believes that trying harder
amplifies risk. For example, running harder can increase the chance of an especially fast

8Tenney et al. (2015) find that beliefs about self-efficacy do not improve performance directly but instead
improve performance through an increase in effort. This mechanism is consistent with the present setting
but not with models such as Compte and Postlewaite (2004).

9See Bénabou and Tirole (2002) for extensive motivation of complementarity between effort and ability.
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time and also, via premature exhaustion, the chance of an especially slow time; studying
for a test through the night can increase the variance of one’s score through the chance of
decreased alertness; and not trying on a test may generate a low grade regardless of ability
whereas trying hard exposes one to the variance of the test’s quality. In contrast, when
g′(·) < 0, the agent believes that trying harder gives him more control over outcomes. For
example, running harder may produce a more even pace; studying longer for a test may
reduce the chance of mistakes; and trying harder on a multiple-choice test may ensure a
grade that faithfully reflects ability whereas not trying may produce pure randomness.

The agent chooses et to maximize his expected per-period payoffs:10

max
et

Êt [πt − c(et)] ,

where Êt indicates the agent’s expectations at his time t information set. The agent’s optimal
choice of effort e∗t satisfies the first-order necessary condition:

c′(e∗t ) = Êt

[
z +

1

2

g′(e∗t )√
g(e∗t )

εt

]
,

which implies that
c′(e∗t ) = µt. (3)

Optimal effort e∗t is an increasing function of µt. Throughout, we assume that z and µ0 are
much greater than zero, so that we need only consider strictly positive effort choices, and we
omit the asterisk on et when clear.

Upon observing the payoffs πt, the agent updates his beliefs about his ability z. The
agent is a Bayesian learner,11 so that the mean and variance of his beliefs evolve as

µt+1 =

(
Σ−1
t µt +

et
g(et)

σ−2πt

)(
Σ−1
t +

e2
t

g(et)
σ−2

)−1

, (4)

Σt+1 =

(
Σ−1
t +

e2
t

g(et)
σ−2

)−1

. (5)

10In Section 7, I analyze a forward-looking agent who accounts for the informational value of his effort
choices.

11The assumption that the agent chooses effort myopically but learns optimally is consistent with two
prominent frameworks. First, “planner-doer” models of the self posit an internal conflict between a far-
sighted planner and a myopic doer who actually makes day-to-day decisions (e.g., Thaler and Shefrin, 1981;
Fudenberg and Levine, 2006). Second, much work in macroeconomics has used “anticipated utility” frame-
works, in which the decision-maker updates beliefs from period to period as a Bayesian but formulates
policies as if current beliefs will never change (see Kreps, 1998). The decision-maker learns only passively,
without considering the informational value of his potential actions. In Section 7, we extend the analysis to
an agent who learns actively.
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Define

w(et,Σt) ,

e2t
g(et)

σ−2

Σ−1
t +

e2t
g(et)

σ−2
∈ [0, 1] (6)

as the weight that the time t agent places on the signal extracted from the observed reward
πt when updating his beliefs, with 1 − w(et,Σt) the weight placed on the prior µt. Writing
wt for short, equation (4) becomes:

µt+1 = (1− wt)µt + wt
πt
et
. (7)

The signal is πt/et, not πt: the agent knows his choice of et and adjusts the observed reward
πt for this choice when constructing the signal of z.

We will be interested in the evolution of the agent’s estimate of his own ability under the
true data generating process (1) when the agent has unbiased beliefs at time 0. Formally,
we assume that

µ0 = z,

and we study E0[µt], where E0 indicates expectations under the true data generating process
at the time 0 information set. E0[µt] averages over the possible sequences {εs}t−1

s=0 with z
given.12

As a brief example, consider a student taking a test. The student chooses how much to
focus on each question. Greater focus matters more for students with high ability than for
students with low ability. Upon seeing the results of the test, students update their beliefs
about their own ability, adjusting for how hard they tried on the test. This story is consistent
with evidence from a recent field experiment: Gneezy et al. (2017) show that incentivizing
students to exert more effort on a standardized test does improve test scores (effort matters
for outcomes and responds to incentives) and improves test scores most strongly for higher-
ability students (effort is complementary to ability).13 The authors highlight that cross-
sectional comparisons of test scores across countries can mislead policymakers when students’
(unobserved) effort differs across cultures. Here, we recognize that the students themselves
are likely to account for their own effort choices when interpreting their own test scores, and
we consider whether their beliefs will, on average, accurately reflect their abilities.

3 Two-Period Analysis

We begin with an analysis of the evolution of beliefs over the first two periods before turning
to the full analysis.

12The agent’s expectation operator Ê averages over both the sequences of ε and the possible values of z.
Therefore E0[µt] = Ê0[µt|z = µ0].

13Levitt et al. (2016) also show that incentivizing effort improves scores on standardized tests.
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From equation (7), we have:

E0[µ1] =[1− w(e0,Σ0)]µ0 + w(e0,Σ0)z + w(e0,Σ0)E0

[√
f(e0)

e0

ε0

]
=[1− w(e0,Σ0)]µ0 + w(e0,Σ0)z.

Using µ0 = z, we have:

E0[µ1] =z.

On average, the agent’s beliefs remain properly calibrated at time 1. Further, µ1 is normally
distributed, with variance σ2w2

0 g(e0)/e2
0.

Now consider the agent’s central estimate at time 2:

E0[µ2] =E0

[
[1− w(e1,Σ1)]µ1 + w(e1,Σ1)z + w(e1,Σ1)

√
f(e1)

e1

ε1

]
.

e1 is a random variable because it depends on µ1.14 Using E0[µ1] = z, we have:

E0[µ2] =E0 [1− w(e1,Σ1)]E0[µ1] + E0[w(e1,Σ1)]z − Cov0 [w(e1,Σ1), µ1]

=z − Cov0 [w(e1,Σ1), µ1] .

The agent’s central estimate tends to drift away from z unless the covariance is zero. From
Stein’s Lemma,

Cov0 [w(e1,Σ1), µ1] =σ2w2
0

g(e0)

e2
0

E0

[
∂w(e1,Σ1)

∂e1

de1

dµ1

]
.

Recall that de1/dµ1 > 0. Therefore, the agent’s beliefs tend to drift away from z unless
∂w(e1,Σ1)/∂e1 = 0, so that additional effort does not affect the agent’s ability to learn from
the observed reward π1. If ∂w(e1,Σ1)/∂e1 > 0, then the covariance is strictly positive and
the period 2 agent will, on average, underestimate his own ability. If the agent happens to
receive a positive shock in period 0, then he becomes overconfident and chooses greater effort
in period 1. At that time, he will tends to receive shocks that correct his overconfidence
(pushing his beliefs back towards z). If ∂w(e1,Σ1)/∂e1 > 0, then he learns especially rapidly
from these period 1 shocks and so on average enters period 2 only mildly overconfident,
with an estimate close to z. However, if the agent happens to receive a negative shock in
period 0, then the agent becomes underconfident and chooses a low effort level in period 1.
If ∂w(e1,Σ1)/∂e1 > 0, then the agent does not learn much from the period 1 reward π1.

14Σ1 is not random because, from equation (5), it depends only on Σ0 and e0. The analysis in Section 4
will account for Σt being random for t > 1.
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That reward will tend to correct his underconfidence (pushing his estimate back towards z),
but the agent’s beliefs are not sensitive to this reward. The agent will tend to enter period 2
with an estimate that is only a bit improved from his period 1 estimate, remaining nearly as
underconfident as he was in period 1. Averaging across these two cases, the period 2 agent
is underconfident on average because the link between effort and information processing led
him to learn away overconfident period 1 beliefs faster than he learned away underconfident
period 1 beliefs.

But does the possibility that E0[µ2] 6= µ0 violate the Bayesian precept that the agent
cannot expect to revise his beliefs in a particular direction? The analysis thus far has been
from the perspective of an outside observer who knows the agent’s true ability z. We therefore
took expectations only over sequences of εt. However, the agent does not know z. The agent
therefore takes expectations over both z and εt. Using Ê0[z] = µ0, we have:

Ê0[µ1] =[1− w(e0,Σ0)]µ0 + w(e0,Σ0)Ê0[z] + w(e0,Σ0)Ê0

[√
g(e0)

e0

ε0

]
=µ0.

The agent does not expect his central estimate µ to change from period 0 to period 1. Now
consider the agent’s expectation of his central estimate at time 2:

Ê0[µ2] =Ê0

[
[1− w(e1,Σ1)]µ1 + w(e1,Σ1)z + w(e1,Σ1)

√
g(e1)

e1

ε1

]
.

Using Ê0[ε1] = 0 and substituting for µ1, we have:

Ê0[µ2] =Ê0 [1− w(e1,Σ1)] Ê0 [µ1]− Ĉov0 [w(e1,Σ1), w(e0,Σ0)z]− Ĉov0

[
w(e1,Σ1), w(e0,Σ0)

√
g(e0)

e0

ε0

]
+ Ê0 [w(e1,Σ1)] Ê0[z] + Ĉov0 [w(e1,Σ1), z] .

Using Ê0[µ1] = Ê0[z] = µ0, this becomes:

Ê0[µ2] =µ0 + [1− w(e0,Σ0)]Ĉov0 [w(e1,Σ1), z]− w(e0,Σ0)

√
g(e0)

e0

Ĉov0 [w(e1,Σ1), ε0] .

Using Stein’s Lemma, we find:

Ĉov0 [w(e1,Σ1), z] =Σ0Ê0

[
∂w(e1,Σ1)

∂e1

de1

dµ1

dµ1

dz

]
,

Ĉov0 [w(e1,Σ1), ε0] =σ2Ê0

[
∂w(e1,Σ1)

∂e1

de1

dµ1

dµ1

dε0

]
.
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Substituting yields:

Ê0[µ2] =µ0 + w(e0,Σ0)[1− w(e0,Σ0)]Σ0Ê0

[
∂w(e1,Σ1)

∂e1

de1

dµ1

]
− w(e0,Σ0)2 g(e0)

e2
0

σ2Ê0

[
∂w(e1,Σ1)

∂e1

de1

dµ1

]
=µ0,

where the second equality uses, from equation (6), w(e0,Σ0)g(e0)

e20
σ2 = [1−w(e0,Σ0)]Σ0. The

agent does not expect his central estimate to drift over time.
Why the difference between E0[µt] and Ê0[µt]? Assume that ∂w(e1,Σ1)/∂e1 > 0. We

previously saw that Cov0[w1, µ1] > 0 implies that E0[µ2] < z, despite µ0 = z. From the
agent’s perspective, however, there are conflicting effects that cancel. First, uncertainty
about ε0 generates Ĉov0[w1, ε0] > 0 and tends to push Ê[µ2] below µ0. High (low) values of
ε0 tend to generate high (low) values of π0, which lead the agent to become overconfident
(underconfident) in period 1. As in our previous story, the agent learns away mistaken beliefs
especially rapidly when overconfident and especially slowly when underconfident, leading him
to become underconfident on average. Second, uncertainty about the true value z generates
Ĉov0[w1, z] > 0 and tends to push Ê[µ2] above µ0. High (low) values of z mean that the
agent is underconfident (overconfident) in time 0. The resulting high (low) values of π0

tend to correct the agent’s initially mistaken beliefs, leading him to increase (decrease) his
period 1 effort. In period 1, the agent learns the true z especially rapidly when effort is high
(because z is high) and especially slowly when effort is low (because z is low). The agent’s
uncertainty about z drags the agent’s average central estimate upwards over time because
he approaches the truth faster when z is high. For the Bayesian agent, the tendency of ε0 to
generate underconfidence exactly cancels the tendency of z to generate overconfidence. The
agent does not expect his beliefs to drift one way or the other, even though on average they
will.

4 General Analysis

We now establish that the drift in the agent’s beliefs persists beyond period 2 and connect
this drift to the agent’s beliefs about the variance of πt.

The elasticity of g(e) with respect to e will play a critical role. Define this elasticity
as χ(e) , e g′(e)/g(e). The following lemma shows that χ(e) determines how effort choices
affect posterior beliefs:

Lemma 1. For given Σt, wt increases in et if χ(et) < 2, decreases in et if χ(et) > 2, and is
independent of et if χ(et) = 2. Σt+1 decreases in et if and only if wt increases in et.

Proof. Differentiating, we have:

∂w(Σt, et)

∂et
= wt(1− wt)

[
2

et
− g′(et)

g(et)

]
.
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This is strictly positive if g′(et)
g(et)

et < 2, is strictly negative if g′(et)
g(et)

et > 2, and is zero if
g′(et)
g(et)

et = 2. The result for Σt+1 follows straightforwardly.

To gain intuition for this result, observe that greater effort leads the agent to place more
weight on the time t signal if and only if this effort reduces the perceived variance of the time
t signal. The agent believes that the variance of his time t signal πt/et is σ2g(et)/e

2
t . The

g(et) reflects the agent’s beliefs about the relationship between effort and the variance of the
observed outcomes πt. When g′(·) > 0, the agent believes that additional effort increases
the variance of the reward πt. The e2

t captures a second effect of effort. Because effort and
ability are complementary, additional effort increases the marginal effect of ability on the
reward. This effect helps the agent to learn faster: it works to reduce the perceived variance
of the signal πt/et. If χ(et) > 2, then the two effects conflict and the first effect dominates;
if χ(et) ∈ [0, 2), then the second effect dominates; and if χ(et) < 0, then the two effects go
in the same direction. The two effects cancel when χ(et) = 2: we then have g(et) = Ae2

t for
A > 0 and the variance of the perceived signal becomes Aσ2, which is independent of effort.

We assumed that the agent is unbiased at time 0. We are interested in whether the agent
remains unbiased in expectation. We have the following lemma and proposition, which rely
on approximations that are good as long as σ2 and Σ0 are not too large.

Lemma 2.

1. If χ(e∗(z)) < 2, then Cov0[wt, µt] ≥ 0 for all t ≥ 1.

2. If χ(e∗(z)) > 2, then Cov0[wt, µt] ≤ 0 for all t ≥ 1.

3. If χ(e∗(z)) = 2, then Cov0[wt, µt] ≈ 0 for all t ≥ 1.

4. If effort is fixed exogenously, then Cov0[wt, µt] = 0 for all t ≥ 1.

Proof. See appendix.

Proposition 1.

1. E0[µ1] = z.

2. If χ(e∗(z)) < 2, then E0[µt] < z for all t > 1.

3. If χ(e∗(z)) > 2, then E0[µt] > z for all t > 1.

4. If χ(e∗(z)) = 2, then E0[µt] ≈ z for all t > 1.

5. If the agent commits to future effort levels at time 0, then E0[µt] = z for all t ≥ 1.

Proof. See appendix.
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The proposition says that all agents continue to have unbiased beliefs (in expectation) at
time 1, but whether their later beliefs become biased depends on χ(e∗(z)). From the tower
property, we have

E0[µt+1] =E0[wt]z + (1− E0[wt])E0[µt]− Cov0[wt, µt]. (8)

When χ(e∗(z)) = 2, the variance of the perceived signal is independent of effort choices
around e∗(z). From Lemma 2, we have Cov0[wt, µt] = 0. In this case, the amount the agent
learns from a period’s observation does not depend on the effort level he chooses. From
equation (8), we always expect new data to move the agent’s beliefs towards z. Because the
agent’s central estimates tend to move towards z at a rate that is independent of the agent’s
bias, the agent’s beliefs will tend to remain centered around the truth if they begin at the
truth. This result is consistent with intuition from standard models of unbiased learning.

Matters are different when χ(e∗(z)) 6= 2. Now, from Lemma 2, Cov0[wt, µt] 6= 0. The
informativeness of the reward πt now varies with mean beliefs µt and thus affects the expected
drift in beliefs. Consider the case with χ(e∗(z)) < 2. Here, additional effort enhances the
signal-to-noise ratio in the reward πt. As a result, the agent’s posterior becomes especially
sensitive to the observed πt when effort is high: Cov0[wt, µt] > 0. High effort levels correspond
to cases in which the agent’s central estimate has drifted above z. The next shock is likely
to pull the agent’s mean back towards z, and it will do so especially rapidly because of how
the agent updates beliefs under high effort levels. In contrast, when negative shocks happen
to push the agent’s central estimate below z, the agent will be slower to revise his beliefs
back towards z because his chosen effort will be low. The agent will thus tend to get stuck
with overly pessimistic self-evaluations for longer than he is stuck with overly optimistic
self-evaluations. From the perspective of time 0, the agent’s future central estimate will, on
average, be too pessimistic. In the opposite case of χ(e∗(z)) > 2, high effort levels hinder
updating. The foregoing logic then implies that the agent’s future central estimates will, on
average, be too optimistic.15

A special case is of particular interest for its intuitive interpretation of g(et). Let the
agent have two possible models for the variance of the random shocks: a first model in which
shocks are to his ability z, and a second model in which shocks are purely external. In the
first model, the marginal payoff from greater effort is stochastic, but in the second model,

15As infinite data accumulates, the agent’s beliefs are consistent in the sense that they converge, in
expectation, to z. To see this, note that the sequence of data to be explained can be written as
(π1/e1, π2/e2, ..., πn/en). Each observation is drawn from a normal distribution, with a variance that changes
with et and a mean that is constant over time. The observations are independently distributed. Choi and
Ramamoorthi (2008) review consistency when observations are independently, non-identically distributed.
We have a further wrinkle in that we allow the agent’s model to be potentially misspecified. However, it is
known that posteriors converge to the value that minimizes the Kullback-Leibler divergence from the agent’s
model to the true data generating model (e.g., Gelman et al., 2004), and it is easy to show that µt = z is
the minimizer in our setting.
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the marginal payoff from greater effort is deterministic. The agent places weight γ ∈ [0, 1]
on the first model and weight 1− γ on the second model. Formally, we have:

Assumption 1. g(et) = γe2
t + (1− γ)

When γ = 1, the agent believes that πt = et(z+ εt), and when γ = 0, the agent believes that
πt = etz + εt. The following corollary describes how the drift in the agent’s beliefs depends
on γ:

Corollary 2. Let Assumption 1 hold. Then E0[µt] < z for all t > 1 if γ < 1 and E0[µt] ≈ z
for all t ≥ 1 if γ = 1.

Proof. Follows from Proposition 1 once we recognize that γ < 1 implies χ(·) < 2 and that
γ = 1 implies χ(·) = 2.

Return to the example from Section 2 of students taking tests and learning about their
ability from their scores. Consider two groups of students, both satisfying Assumption 1.
The first group of students believes that applying greater effort has stochastic consequences
(γ = 1), and the second group believes that applying greater effort increases their reward
deterministically (γ = 0). When a student in the first group tries hard on a test and gets
a bad score, he does not adjust his beliefs about his own ability very strongly because
the student writes off the result to bad luck. The student’s self-assessments remain, in
expectation, centered around his true ability. However, we expect students in the second
group to have a different fate. These students believe that trying hard should allow their
talent to shine through. When these students see a bad test score after trying especially
hard, they infer a lack of ability. This more negative assessment of their own ability leads
them to apply less effort on the next test. On average, this next test will tell them that
they are more talented than they believe themselves to be, but because they know that their
effort level was low, they do not pay as much attention to this score. They therefore tend to
retain an overly negative self-assessment. The key determinant of students’ average beliefs
and effort choices is not the actual data generating process but rather their beliefs about
whether additional effort provides a better or worse signal of their ability.

5 A Numerical Example

In order to make these ideas concrete, we now consider a numerical example. Impose c(et) =
1
2
e2
t . Let z = µ0 = 20, σ2 = Σ0 = 16, f(et) = e2

t , and g(et) = 1. We therefore have χ(·) = 0.
The top panels of Figure 1 plot the distribution of µt (left) and wt (right) for t ∈

{1, 2, 3, 4, 5, 10}. µ1 is normally distributed but the other distributions are skewed.16 The

16This skew arises because, first, µt+1 depends on wt (which is a nonlinear function of µt) and, sec-
ond, because the realized signal πt/et is a nonlinear function of et. Both sources of skewness vanish when
Assumption 1 holds with γ = 1 and f(·) = g(·).
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distribution of µt becomes progressively narrower as data accumulates. The negative skew
in µt translates into a skew in wt in the first few periods, before the lower bound of 0 starts
to affect the distribution of wt. The skew in wt becomes less pronounced as Σt falls, for the
agent does not pay much attention to πt (regardless of et) as he becomes certain of his true
ability.

The lower left panel of Figure 1 confirms the results of Proposition 1: E0[µt] equals z at
t = 1, but E0[µt] drops below z at t = 2 and remains below z for all greater t. E0[µt] does
approach z again as t goes to infinity, but this approach is slow. The maximum average bias
arises in period 2. The average bias is still 40% of this maximum in period 10, 4% of this
maximum in period 100, and 0.8% of this maximum in period 500. The circles show that
the agent’s uncertainty about his ability does decline quickly as he observes additional data,
but his beliefs nonetheless remain biased on average.

The lower right panel plots Cov0[µt, wt] (crosses) as well as the correlation (circles) be-
tween µt and wt. The covariance and correlation are positive because states of the world
with large µt are states in which the agent chooses high effort et and because wt increases
in et. We see that the covariance is especially positive in early periods when the agent is
most uncertain about his own ability. This strongly positive covariance explains why E0[µt]
declines over those early periods. The covariance approaches zero after the first few peri-
ods not because µt and wt become uncorrelated over long horizons (the correlation in fact
remains clearly positive even at long horizons) but because the variance of each variable
declines strongly as the agent becomes more certain of his ability.

6 Application to Cognitive Behavioral Therapy

The foregoing analysis sheds new light on the nature of depression and on possible reasons
why current treatments are successful. In the early and middle decades of the twentieth
century, psychologists sought the reasons for the negative thoughts that characterize depres-
sion. In the 1960s and 1970s, a revolution in psychology viewed negative thinking as the
content of depression (Seligman, 1991). Aaron Beck, one of the forefathers of modern clinical
psychology, writes,

The cognitive theory of depression is based essentially on an information-
processing model. A pronounced and prolonged negative biasing of this process
is manifest in the characteristic thinking disorder in depression (selective abstrac-
tion, overgeneralization, negative self-attributions). (Beck, 2002, 29)

Beck refers to the negative filter as a form of “automatic thinking”. Seligman (1991) refers to
it as a “pessimistic explanatory style” and emphasizes how agents with this explanatory style
attribute bad events to their own pervasive self rather than to transient, chance outcomes.
This negative filter causes the agent to doubt his own ability and leaves the agent especially
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(a) Evolution of the estimate µt (b) Evolution of the news weight wt

(c) E0(µt) and E0(Σt) (d) Cov0(µt, wt) and Correl0(µt, wt)

Figure 1: Top: The distribution of µt (left) and wt (right) for t ∈ {1, 2, 3, 4, 5, 10}. The
dashed vertical line in the top left panel indicates the true ability z, which is also µ0. Bottom:
The evolution of E0[µt] and E0[Σt] (left), and of Cov0[µt, wt] and the correlation coefficient
between µt and wt (right). All plots sample one million trajectories for εt.
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vulnerable to negative shocks. The agent withdraws from the world, displaying the passivity
and inertia that characterize depressives’ behavior. The agent’s self-doubt reinforces his
inactivity, and his inactivity closes off the possibility of receiving new signals that could
ameliorate his self-doubt.17

Cognitive behavioral therapy emerged from this theory of depression. Cognitive behav-
ioral therapy emphasizes two goals in treating depression: first, the therapist aims to change
behavior by convincing the agent to re-engage with the world, and second, the therapist aims
to change the agent’s negative thinking by teaching new information processing techniques
(Layard and Clark, 2015). In empirical tests, cognitive behavioral therapy has been found
to effectively mitigate depression. Further, patients relapse at a lower rate than after other
treatments, including pharmacological treatments (Seligman, 1991; Scott, 1996; Hollon et al.,
2005; Butler et al., 2006; Dobson et al., 2008; Layard and Clark, 2015). Cognitive behavioral
therapy seems to not just treat an instance of depression but also to “inoculate” patients
against future depression (Seligman, 1991).

The present setting captures both the modern understanding of depression and the short-
and long-run benefits of cognitive behavioral therapy. We see that when χ(·) < 2, an
agent tends to end up underconfident because he learns away positive shocks quickly but
does not learn away negative shocks quickly. When positive shocks lead him to a high
estimate of his own ability, he increases his effort level and attributes future shocks to his
own ability. But when his self-estimate is overly inflated, any news is likely to be negative.
He therefore revises his self-estimate sharply downward and reduces his effort accordingly.
This agent demonstrates the “pessimistic explanatory style” described by Seligman (1991),
attributing this negative news to his own shortcomings rather than to chance. If the agent’s
ability estimate falls far enough, then the news is now, on average, going to be positive,
but this overly pessimistic agent discounts that news because he knows that he did not
apply much effort. The agent becomes underconfident on average because he discounts these
positive shocks as largely due to chance even though he treated the initial negative shocks
as especially reflective of his own ability. In contrast, agents with χ(·) > 2 do not believe
that they should learn more from applying high effort levels. These agents tend to maintain
an overly optimistic self-assessment because they write off the negative shocks that tend to
accompany high effort choices as largely due to chance while emphasizing their own role in
the positive shocks that tend to accompany low effort levels.

Especially acute negative shocks are known to trigger depression (Seligman, 1991; Beck,
2002). Following such a shock, an agent’s estimate of his own ability may fall to an especially
low level. His effort will also fall, so that he displays the passivity and inertia characteristic of
depression. This low effort will allow only very slow learning. The agent thus persists in his
negative beliefs despite receiving signals that his ability is not actually so low. Treatments

17Beck (2002, 59) writes, “Finally, the attribution to the self of deficiency removes any expectation of
succor and reinforces the sense of futility. Thus, the cognitive content would tend to promote prolonged
inactivity.”
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that lead the agent to re-engage with the world (either directly or by raising his estimate
of his own ability) can be successful at curing his depression: the agent can return to a
state with better self-confidence and greater effort once he starts receiving more informative
signals as a result of applying more effort. However, as long as χ(·) < 2, his average estimates
will once again tend to fall below his true ability. Only a treatment that changes his form of
information processing can have longer-run effects in preventing a relapse of depression. If a
treatment can teach the agent to stop expecting high effort to provide more control over the
world, then the agent will be able to maintain higher confidence on average and will recover
faster from negative shocks. This analysis is consistent with the goals of cognitive behavioral
therapy.

We have developed a theory of rational depression that comports with leading expla-
nations from psychology. Importantly, we do not need to postulate an ex ante behavioral
bias in information processing, such as in Gervais and Odean (2001). Instead, we merely
postulate that some agents believe (correctly or not) that greater effort provides a better
signal of their own ability. Agents who believe that increasing effort should make the world
respond in a more regular way quickly learn away high confidence states but learn away low
confidence states only slowly. As a result, the “pessimistic explanatory style” described by
Seligman (1991) emerges endogenously from rational updating: an agent with χ(·) < 2 tends
to attribute bad events to his own pervasive ability, and such agents end up underconfident
on average. Rather than being a behavioral bias that causes depression, a pessimistic ex-
planatory style may simply reflect the combination of rational effort choices and the stories
that Bayesian updaters tell themselves about the origin of chance events. A treatment for
depression can have long-term success only if it changes the style of information processing,
which may explain why cognitive behavioral therapy has proven more successful than other
treatments.

7 Forward-Looking Effort Choices

We have thus far made only a single departure from full rationality: we assumed that agents
choose effort myopically, even though they learn optimally.18 However, forward-looking
agents should account for the informational value of their effort choices. We now extend
the analysis to the case of forward-looking agents. We will see that foresight does not break
the link between effort choices and ability estimates that drives our results, we will establish
that all previous results hold in a set of cases of particular interest, and we will see that
forward-looking behavior only minimally affects the numerical example from Section 5.

The agent now chooses his effort to maximize his expected present value over an infinite
planning horizon. Let the agent’s per-period discount factor be β ∈ (0, 1), and let V (µt,Σt)

18Of course, this assumption is actually consistent with full rationality if agents’ preferences do not place
much weight on the future.
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denote the present value of the agent’s optimal policy program from any time t with estimate
µt and variance Σt. The agent’s effort choices and value function solve the following Bellman
equation:

V (µt,Σt) = max
et

Êt [πt − c(et) + βV (µt+1,Σt+1)] ,

subject to the transition equations (7) and (5). Effort will now be a function of the central
estimate µt and also of the agent’s uncertainty Σt about that estimate. Optimal effort
e∗(µt,Σt) satisfies the following first-order condition:

c′(et) =µt + βÊt

[
∂V (µt+1,Σt+1)

∂µt+1

∂wt
∂et

(
z +

√
g(et)

et
εt − µt

)]

+ βÊt

[
∂V (µt+1,Σt+1)

∂µt+1

wt
d[
√
g(et)/et]

det
εt

]
+ βÊt

[
∂V (µt+1,Σt+1)

∂Σt+1

∂Σt+1

∂et

]
.

Note that

Êt

[
z +

√
g(et)

et
εt − µt

]
= 0 and Êt

[
wt

d[
√
g(et)/et]

det
εt

]
= 0.

Also note that ∂Σt+1/∂et is not random from the perspective of time t. The first-order
condition becomes:

c′(et) =µt + β ˆCovt

[
∂V (µt+1,Σt+1)

∂µt+1

, z +

√
g(et)

et
εt

]
∂wt
∂et

+ β ˆCovt

[
∂V (µt+1,Σt+1)

∂µt+1

, εt

]
wt

d[
√
g(et)/et]

det
+ βÊt

[
∂V (µt+1,Σt+1)

∂Σt+1

]
∂Σt+1

∂et
. (9)

We see three new terms relative to the myopic agent’s first-order condition (3). The new term
on the first line accounts for the riskiness of the new information to be received following
time t. The agent knows that his beliefs are likely to change, but he does not know in
advance how they will change. The second argument of the covariance operator is the
random component of the agent’s time t signal πt/et. When the covariance is positive,
uncertainty about the rewards πt increases the agent’s expected payoff, so the agent moves
his effort choice in a direction that increases the sensitivity of his posterior beliefs µt+1 to πt
(i.e., if ∂wt/∂et > 0, the agent chooses greater effort). The first term on the second line is
similar, except accounting for how the agent’s effort choice affects the variance of the agent’s
posterior beliefs by affecting the variance of πt. The final term on the second line accounts
for the effect of effort choices on the agent’s uncertainty about his own ability. This channel
increases the agent’s optimal effort choice when the agent prefers to be certain of his own
ability (∂V (µt+1,Σt+1)/∂Σt+1 < 0) and additional effort reduces his uncertainty about his
ability (∂Σt+1/∂et < 0).
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The results in the myopic setting were driven by the sensitivity of effort choices et to
estimated ability µt. If these new terms break the link between effort choices and estimated
ability, then we would expect that the main results would vanish and the agent’s beliefs
would remain unbiased on average. However, the next proposition shows that making agents
forward-looking does not break the link between effort and estimated ability:

Proposition 3. e∗t cannot be independent of µt at all times t.

Proof. Repeatedly applying the envelope theorem, we have:

∂V (µt+1,Σt+1)

∂µt+1

=e∗t+1 + βÊt+1

[
∂V (µt+2,Σt+2)

∂µt+2

(1− wt+1)

]
=e∗t+1 + β(1− wt+1)

∞∑
i=1

Êt+1

[
βi−1e∗t+1+i

i−1∏
j=1

(1− wt+1+j)

]
.

If e∗t is independent of µt at all t, then so is Σt, and if both Σt and e∗t are independent of
µt, then so is wt. And being independent of µt implies being independent of z and εt−1.

Therefore if e∗t is independent of µt at all t, then ˆCovt

[
∂V (µt+1,Σt+1)

∂µt+1
, z +

√
g(e∗t )

e∗t
εt

]
= 0 for all

t.
The envelope theorem also yields:

∂V (µt+1,Σt+1)

∂Σt+1

=βÊt+1

[
∂V (µt+2,Σt+2)

∂µt+2

∂µt+2

∂wt+1

∂wt+1

∂Σt+1

+
∂V (µt+2,Σt+2)

∂Σt+2

∂Σt+2

∂Σt+1

]
=β ˆCovt+1

[
∂V (µt+2,Σt+2)

∂µt+2

, z +

√
g(e∗t+1)

e∗t+1

εt+1

]
∂wt+1

∂Σt+1

+ βÊt+1

[
∂V (µt+2,Σt+2)

∂Σt+2

]
∂Σt+2

∂Σt+1

.

Continuing in this fashion, we see that if ˆCovt+1

[
∂V (µs,Σs)

∂µs
, z +

√
g(e∗s−1)

e∗s−1
εs−1

]
= 0 for all

s ≥ t+ 2, then ∂V (µt+1,Σt+1)/Σt+1 = 0. And we previously saw that if e∗t is independent of

µt at all t, then ˆCovt

[
∂V (µt+1,Σt+1)

∂µt+1
, z +

√
g(e∗t )

e∗t
εt

]
= 0 for all t. Therefore, if e∗t is independent

of µt at all t, then ∂V (µt+1,Σt+1)/Σt+1 = 0.
Assume that e∗t is independent of µt at all t. Then using the preceding results in equa-

tion (9), we find that optimal effort must satisfy c′(e∗t ) = µt. But this contradicts the
assumption that e∗t is independent of µt. Therefore e∗t must depend on µt at some t.

Because at least some effort choices must depend on estimated ability, endogenous effort
choices may still create the asymmetrical rates of learning that generated the drift in the
myopic agent’s ability estimate.

We now establish a sufficient condition for the average drift in the forward-looking agent’s
ability estimate to be qualitatively similar to the myopic setting.

20 of 34



Lemoine Rationally Misplaced Confidence March 2018

Proposition 4. The results from Section 4 apply if χ(·) is close to 2.

Proof. Note that

d

det

√
g(et)

et
=

1

2

√
g(et)

e2
t

[χ(et)− 2] and
∂Σt+1

∂et
= Σ2

t+1σ
−2 et
g(et)

[χ(et)− 2] .

Lemma 1 established that ∂wt/∂et → 0 as χ(et)→ 2. We now see that the above terms also
go to 0 as χ(et)→ 2. Substituting into equation (9), we have that c′(et)→ µt as χ(et)→ 2.
Therefore, as χ(·) → 2, forward-looking agents’ optimal effort choices approach the effort
choices made by myopic agents. Because forward-looking agents’ updating rules differ from
myopic agents’ updating rules only through their realized effort choices, the evolution of
forward-looking agents’ beliefs will be similar to the evolution of myopic agents’ beliefs when
their effort choices are similar. Therefore, the results from the myopic setting hold for χ(·)
near 2.

Corollary 5. Let Assumption 1 hold. Then there exists δ ∈ (0, 1] such that E0[µt] < z for
all t > 1 if γ ∈ [1− δ, 1) and such that E0[µt] ≈ z for all t ≥ 1 if γ = 1.

Proof. Follows from Corollary 2 and Proposition 4.

In our analysis of equation (9), we saw that the forward-looking agent’s effort choices differ
from the myopic agent’s effort choices because the forward-looking agent accounts for how
additional effort affects his rate of learning. When χ(·) is close to 2, effort has only a small
effect on the agent’s rate of learning, so the forward-looking agent’s effort choices are similar
to the myopic agent’s effort choices. Because the two settings differ only via the agents’
effort choices, all of the results from the myopic setting apply to the forward-looking setting
when χ(·) is sufficiently close to 2.

We now return to the numerical example from Section 5. Recall that this example
used χ(·) = 0. Figure 2 plots the percentage difference in the average ability estimate
(crosses), the average effort (circles), and the average variance of the agent’s beliefs (squares)
between a myopic agent and a forward-looking agent.19 We study a rather patient agent,
with β = 0.99. The forward-looking agent chooses slightly less effort on average and as a
result maintains slightly greater uncertainty. The forward-looking agent’s effort choices do
slightly increase most periods’ correlation (not shown) between µt and wt. However, these
differences do not affect the drift in the agent’s ability estimate to any appreciable degree:
E0[µt] differs by less than 0.01% between the two settings. On average, the forward-looking
agent becomes persistently underconfident to about the same degree as the myopic agent
becomes persistently underconfident.

19I solve the forward-looking model via value function iteration. I use the collocation method, with 52

Chebyshev nodes and a 52 Chebyshev basis. I integrate via Gauss-Legendre quadrature. The domain of
approximation for µ covers z ± 3

√
Σ0, and the domain of approximation for Σ ranges from 0 to 3

2Σ0.
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Figure 2: The difference in average effort, estimates, and uncertainty between a myopic agent
and a forward-looking agent with β = 0.99. All paths use 10,000 draws.

8 Conclusion

We have seen that rational agents become, on average, persistently underconfident when
they believe that additional effort makes outcomes more predictable and become persistently
overconfident when they believe that additional effort makes outcomes less predictable. The
critical element is that returns to effort vary with agents’ beliefs about their own ability. As
a result, agents’ effort choices vary with their beliefs about their own ability. When agents
believe that high effort provides a particularly informative signal of ability, agents will learn
away mistaken overconfidence quickly (due to high effort) but will learn away mistaken
underconfidence only slowly (due to low effort). Such agents end up underconfident on
average. But if agents believe that high effort provides a particulaly poor signal of their
ability, they end up overconfident on average. Only in a knife-edge case do they tend to end
up with correctly calibrated beliefs.

These results call for three further types of investigations. First, psychologists have
successfully connected “explanatory styles” to a range of outcomes. The present model
provides a structural interpretation of explanatory styles, identifying the types of beliefs that
can generate observed patterns. Future research in psychology should assess agents’ views
on the informativeness of effort for ability. Second, the results call for experiments that test
the implications for confidence of manipulating the data generating process and also the
implications for confidence of manipulating effort. In particular, recent work (e.g., Gneezy
et al., 2017) has experimentally manipulated effort in order to show the importance of effort
for outcomes. The present model suggests also exploring the importance of effort for agents’
willingness to extract information from outcomes. Third, managers who do not internalize
employees’ cost of effort have an incentive to increase employees’ effort, and employees may
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learn about their own ability from feedback such as compensation or evaluations. Future work
should investigate how managers may design compensation or other feedback mechanisms so
as to lead employees to become systematically overconfident and thereby choose high effort
levels.

Appendix

Proof of Lemma 2

Part 1

Assume that χ(e∗(z)) < 2. We proceed by induction.

Induction step:
The induction hypothesis is that Cov0[wt−1, µt−1] ≥ 0 for some t ≥ 2. Fix Σ̄ ∈ (0,Σ0]. Use
a first-order approximation to w(e∗(µt),Σt) around µt = z and Σt = Σ̄ to obtain

Cov0[wt, µt] ≈Cov0

[
µt,

∂wt
∂et

∣∣∣∣
(e∗(z),Σ̄)

de∗(µ)

dµ

∣∣∣∣
z

µt +
∂wt
∂Σt

∣∣∣∣
(e∗(z),Σ̄)

Σt

]

=
∂wt
∂et

∣∣∣∣
(e∗(z),Σ̄)

de∗(µ)

dµ

∣∣∣∣
z

V ar0[µt] +
∂wt
∂Σt

∣∣∣∣
(e∗(z),Σ̄)

Cov0[µt,Σt].

This approximation is good as long as σ2 and Σ0 are not too large. Note that:

∂wt
∂et

=(1− wt)wt [2− χ(e(µt))]
1

e(µt)
,

∂wt
∂Σt

=
wt(1− wt)

Σt

.

Substituting, we have:

Cov0[wt, µt] ≈(1− w(e∗(z), Σ̄))w(e∗(z), Σ̄)

{
[2− χ(e∗(z))]

1

e∗(z)

de∗(µ)

dµ

∣∣∣∣
z

V ar0[µt] +
1

Σ̄
Cov0[µt,Σt]

}
.

(10)
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Approximate V ar0[µt] around µt−1 = z, εt−1 = 0, and Σt−1 = Σ̄:20

V ar0[µt] ≈V ar0[(1− w(e∗(z), Σ̄))µt−1 + w(e∗(z), Σ̄)
√
f(e∗(z))εt−1/e

∗(z)]

=(1− w(e∗(z), Σ̄))2V ar0[µt−1] + w(e∗(z), Σ̄)2f(e∗(z))σ2/e∗(z)2.

Approximate Cov0[µt,Σt] around µt−1 = z and Σt−1 = Σ̄:

Cov0[µt,Σt] ≈Cov0

[
(1− w(e∗(z), Σ̄))µt−1,

∂Σt

∂et−1

∣∣∣∣
(e∗(z),Σ̄)

de∗(µ)

dµ

∣∣∣∣
z

µt−1 +
∂Σt

∂Σt−1

∣∣∣∣
(e∗(z),Σ̄)

Σt−1

]
=Cov0

[
(1− w(e∗(z), Σ̄))µt−1,

− Σ(e∗(z), Σ̄)2 e∗(z)

σ2g(e∗(z))
[2− χ(e∗(z))]

de∗(µ)

dµ

∣∣∣∣
z

µt−1 +

(
Σ(e∗(z), Σ̄)

Σ̄

)2

Σt−1

]
=Cov0

[
(1− w(e∗(z), Σ̄))µt−1,

− Σ(e∗(z), Σ̄)
w(e∗(z), Σ̄)

e∗(z)
[2− χ(e∗(z))]

de∗(µ)

dµ

∣∣∣∣
z

µt−1 +

(
Σ(e∗(z), Σ̄)

Σ̄

)2

Σt−1

]
=− (1− w(e∗(z), Σ̄))Σ(e∗(z), Σ̄)w(e∗(z), Σ̄) [2− χ(e∗(z))]

1

e∗(z)

de∗(µ)

dµ

∣∣∣∣
z

V ar0[µt−1]

+ (1− w(e∗(z), Σ̄))

(
Σ(e∗(z), Σ̄)

Σ̄

)2

Cov0[µt−1,Σt−1],

where the second-to-last equality uses Σ(e∗(z), Σ̄) e∗(z)2

σ2g(e∗(z))
= w(e∗(z), Σ̄). These last two

approximations are good as long as σ2 and Σ0 are not too large. Substitute all back into

20A first-order Taylor expansion of µt around some µ̄, Σ̄, and ε̄ yields:

V ar0[µt] ≈V ar0

[
(1− w̄)µ̄+ w̄z + w̄

√
f(ē)

ē
ε̄+ (1− w̄)[µt−1 − µ̄] + w̄

√
f(ē)

ē
[εt−1 − ε̄]

+
∂wt−1

∂et−1

∣∣∣∣
(e∗(µ̄),Σ̄)

de∗(µ)

dµ

∣∣∣∣
µ̄

[µ̄− z][µt−1 − µ̄] +

∂

[
wt−1

√
f(et−1)

et−1

]
∂et−1

∣∣∣∣∣∣∣∣
(e∗(µ̄),Σ̄)

de∗(µ)

dµ

∣∣∣∣
µ̄

ε̄ [µt−1 − µ̄]

+
∂wt−1

∂Σt−1

∣∣∣∣
(e∗(µ̄),Σ̄)

de∗(µ)

dµ

∣∣∣∣
µ̄

[µ̄− z][Σt−1 − Σ̄] +

√
f(et−1)

et−1

∂wt−1

∂Σt−1

∣∣∣∣
(e∗(µ̄),Σ̄)

de∗(µ)

dµ

∣∣∣∣
µ̄

ε̄ [Σt−1 − Σ̄]

]
,

where w̄ is short for w(e∗(µ̄), Σ̄) and ē is short for e∗(µ̄). Substituting for µ̄ = z and ε̄ = 0 yields the
expression used in the proof.
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Cov0[µt, wt] and use 1− w(e∗(z), Σ̄) = Σ(e∗(z), Σ̄)/Σ̄:

Cov0[wt, µt] =(1− w(e∗(z), Σ̄))w(e∗(z), Σ̄){
[2− χ(e∗(z))]

1

e∗(z)

de∗(µ)

dµ

∣∣∣∣
z[

(1− w(e∗(z), Σ̄))2V ar0[µt−1] + w(e∗(z), Σ̄)2f(e∗(z))σ2/e∗(z)2

]
− (1− w(e∗(z), Σ̄))2w(e∗(z), Σ̄) [2− χ(e∗(z))]

1

e∗(z)

de∗(µ)

dµ

∣∣∣∣
z

V ar0[µt−1]

+ (1− w(e∗(z), Σ̄))4 1

Σ̄
Cov0[µt−1,Σt−1]

}
. (11)

The induction hypothesis that Cov0[µt−1, wt−1] ≥ 0 implies, from the time t− 1 analogue of
equation (10), that

1

Σ̄
Cov0[µt−1,Σt−1] ≥ − [2− χ(e∗(z))]

1

e∗(z)

de∗(µ)

dµ

∣∣∣∣
z

V ar0[µt−1].

We therefore have:

Cov0[wt, µt]

(1− w(e∗(z), Σ̄))w(e∗(z), Σ̄)
≥ [2− χ(e∗(z))]

1

e∗(z)

de∗(µ)

dµ

∣∣∣∣
z[

(1− w(e∗(z), Σ̄))2V ar0[µt−1] + w(e∗(z), Σ̄)2f(e(e∗(z), Σ̄))σ2/e∗(z)2

]
− (1− w(e∗(z), Σ̄))2w(e∗(z), Σ̄) [2− χ(e∗(z))]

1

e∗(z)

de∗(µ)

dµ

∣∣∣∣
z

V ar0[µt−1]

− (1− w(e∗(z), Σ̄))4 [2− χ(e∗(z))]
1

e∗(z)

de∗(µ)

dµ

∣∣∣∣
z

V ar0[µt−1].

(12)

Using χ(e∗(z)) < 2, we have that Cov0[wt, µt] ≥ 0 if

0 ≤(1− w(e∗(z), Σ̄))2V ar0[µt−1] + w(e∗(z), Σ̄)2f(e∗(z))σ2/e∗(z)2

− (1− w(e∗(z), Σ̄))2w(e∗(z), Σ̄)V ar0[µt−1]

− (1− w(e∗(z), Σ̄))4V ar0[µt−1]

⇔ 0 ≤w(e∗(z), Σ̄)f(e∗(z))σ2/e∗(z)2 − (1− w(e∗(z), Σ̄))3V ar0[µt−1]. (13)

Repeatedly approximating around µs = z, εs = 0, and ws evaluated at es = e∗(z) and
Σs = Σ̄, we have:

V ar0[µt−1] ≈f(e∗(z))σ2

e∗(z)2

t−2∑
i=1

w(e∗(z), Σ̄)2

t−2∏
i+1

(1− w(e∗(z), Σ̄))2.
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Substituting into inequality (13), we have that Cov0[wt, µt] ≥ 0 if:

0 ≤w(e∗(z), Σ̄)
f(e∗(z))σ2

e∗(z)2
− (1− w(e∗(z), Σ̄))3f(e∗(Z))σ2

e∗(z)2

t−2∑
i=1

[
w(e∗(z), Σ̄)2

t−2∏
i+1

(1− w(e∗(z), Σ̄))2

]

⇔ 0 ≤w(e∗(z), Σ̄)− (1− w(e∗(z), Σ̄))3

t−2∑
i=1

[
w(e∗(z), Σ̄)2

t−2∏
i+1

(1− w(e∗(z), Σ̄))2

]
.

The final term is a geometric series with common ratio (1 − w(e∗(z), Σ̄))2 < 1. Using the
fact that the value to which this series converges is maximized as t→∞, we have:

(1− w(e∗(z), Σ̄))3

t−2∑
i=1

[
w(e∗(z), Σ̄)2

t−2∏
i+1

(1− w(e∗(z), Σ̄))2

]
≤ (1− w(e∗(z), Σ̄))3

1− (1− w(e∗(z), Σ̄))2
w(e∗(z), Σ̄)2

=
(1− w(e∗(z), Σ̄))3

2− w(e∗(z), Σ̄)
w(e∗(z), Σ̄).

Therefore,

w(e∗(z), Σ̄)− (1− w(e∗(z), Σ̄))3

t−2∑
i=1

[
w(e∗(z), Σ̄)2

t−2∏
i+1

(1− w(e∗(z), Σ̄))2

]

≥w(e∗(z), Σ̄)

(
1− (1− w(e∗(z), Σ̄))3

2− w(e∗(z), Σ̄)

)
≥0.

Inequality (13) therefore holds. Therefore, Cov0[wt, µt] ≥ 0 under the induction hypothesis
that Cov0[wt−1, µt−1] ≥ 0.

Basis step:

We have

µ1 =(1− w0)µ0 + w0

[
z +

√
f(e0)

e0

ε0

]
, with w0 =

e20
g(e0)σ2

Σ−1
0 +

e20
g(e0)σ2

.

Note that w0 is not random. µ1 depends on only one random variable (ε0), which is itself
normal and enters linearly. Therefore µ1 is normally distributed. By Stein’s Lemma, we
have:

Cov0[w1, µ1] =V ar0(µ1)E0

[
∂w1

∂e1

de1

dµ1

]
. (14)
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Differentiating w1, we have:

∂w1

∂e1

=(1− w1)w1 [2− χ(e1)]
1

e1

, (15)

which is strictly positive if and only if χ(e1) < 2. For σ2 not too large,

E0

[
∂w1

∂e1

de1

dµ1

]
≈ ∂w1

∂e1

∣∣∣∣
(e∗(z),Σ1)

de∗(µ)

dµ

∣∣∣∣
z

.

The assumption that χ(e∗(z)) < 2 then implies Cov0[w1, µ1] ≥ 0.

Part 2

Assume that χ(e∗(z)) > 2. We again proceed by induction.

Induction step:
The induction hypothesis is that Cov0[wt−1, µt−1] ≤ 0 for some t ≥ 2. Following the proof
of the first part of the lemma and using the induction hypothesis that Cov0[wt−1, µt−1] ≤ 0,
we find that inequality (12) becomes

Cov0[wt, µt]

(1− w(e∗(z), Σ̄))w(e∗(z), Σ̄)
≤ [2− χ(e∗(z))]

1

e∗(z)

de∗(µ)

dµ

∣∣∣∣
z[

(1− w(e∗(z), Σ̄))2V ar0[µt−1] + w(e∗(z), Σ̄)2f(e(e∗(z), Σ̄))σ2/e∗(z)2

]
− (1− w(e∗(z), Σ̄))2w(e∗(z), Σ̄) [2− χ(e∗(z))]

1

e∗(z)

de∗(µ)

dµ

∣∣∣∣
z

V ar0[µt−1]

− (1− w(e∗(z), Σ̄))4 [2− χ(e∗(z))]
1

e∗(z)

de∗(µ)

dµ

∣∣∣∣
z

V ar0[µt−1].

Using χ(e∗(z)) > 2, we have that Cov0[wt, µt] ≤ 0 if

0 ≤w(e∗(z), Σ̄)f(e∗(z))σ2/e∗(z)2 − (1− w(e∗(z), Σ̄))3V ar0[µt−1].

The proof that this inequality holds is the same as the proof that inequality (13) holds in
the first part of the lemma. Therefore Cov0[wt, µt] ≤ 0 under the induction hypothesis that
Cov0[wt−1, µt−1] ≤ 0.

Basis step:
Following the basis step in the proof of the first part of the lemma, it is easy to show that
Cov0[w1, µ1] ≤ 0 for σ2 not too large.
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Part 3

Assume that χ(e∗(z)) = 2. We again proceed by induction.

Induction step:
The induction hypothesis is that Cov0[wt−1, µt−1] ≈ 0 for some t ≥ 2. Following the proof
of the first part of the lemma, equation (11) becomes:

Cov0[wt, µt] =(1− w(e∗(z), Σ̄))w(e∗(z), Σ̄)(1− w(e∗(z), Σ̄))4 1

Σ̄
Cov0[µt−1,Σt−1].

The induction hypothesis that Cov0[µt−1, wt−1] ≈ 0 implies, from the time t− 1 analogue of
equation (10), that

1

Σ̄
Cov0[µt−1,Σt−1] ≈ − [2− χ(e∗(z))]

1

e∗(z)

de∗(µ)

dµ

∣∣∣∣
z

V ar0[µt−1],

which equals zero under the assumption that χ(e∗(z)) = 2. Therefore Cov0[wt, µt] ≈ 0 under
the induction hypothesis that Cov0[wt−1, µt−1] ≈ 0.

Basis step:
Following the basis step in the proof of the first part of the lemma, it is easy to show that
Cov0[w1, µ1] ≈ 0 for σ2 not too large.

Part 4

Let time t effort be fixed exogenously at ēt. From equation (5), Σ evolves deterministically.
Then, from equation (6), wt−1 is independent of random variables. Thus Cov0[wt, µt] = 0.

Proof of Proposition 1

Part 1

Note that
E0[µ1] = (1− w0)µ0 + w0z = µ0 + w0(z − µ0) = µ0 = z, (16)

where we recognize that µ0 = z by assumption. This establishes the first part of the propo-
sition.

Part 2

Assume that χ(e∗(z)) < 2.
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Induction step:
The induction hypothesis is that E0[µt] < z for some t > 1. We have the following by the
tower property:

E0[µt+1] =E0[E0[µt+1|µt]]
=E0[µt + wt(z − µt)]
=E0[wt]z + (1− E0[wt])E0[µt]− Cov0[wt, µt]. (17)

From the induction hypothesis and the definition of wt, we have E0[µt+1] < z if Cov0[wt, µt] ≥
0. The first part of Lemma 2 established that, in fact, Cov0[wt, µt] ≥ 0 for t ≥ 1. Therefore
E0[µt+1] < z under the induction hypothesis that E0[µt] < z.

Basis step:
From equation (16), we have E0[µ1] = z. From equations (14) and (15), we have Cov0[w1, µ1] >
0. Therefore, from equation (17), E0[µ2] < z.

Part 3

Assume that χ(e∗(z)) > 2.

Induction step:
The induction hypothesis is that E0[µt] > z for some t > 1. From equation (17), the in-
duction hypothesis, and the definition of wt, we have E0[µt+1] > z if Cov0[wt, µt] ≤ 0. The
second part of Lemma 2 established that, in fact, Cov0[wt, µt] ≤ 0 for t ≥ 1. Therefore
E0[µt+1] > z under the induction hypothesis that E0[µt] > z.

Basis step:
From equation (16), we have E0[µ1] = z. From equations (14) and (15), we have Cov0[w1, µ1] <
0. Therefore, from equation (17), E0[µ2] > z.

Part 4

Assume that χ(e∗(z)) = 2.

Induction step:
The induction hypothesis is that E0[µt] ≈ z for some t > 1. From equation (17), the induc-
tion hypothesis, and the definition of wt, we have E0[µt+1] ≈ z if Cov0[wt, µt] ≈ 0. The third
part of Lemma 2 established that, in fact, Cov0[wt, µt] ≈ 0 for t ≥ 1. Therefore E0[µt+1] ≈ z
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under the induction hypothesis that E0[µt] ≈ z.

Basis step:
From equation (16), we have E0[µ1] = z. From equations (14) and (15), we have Cov0[w1, µ1] ≈
0. Therefore, from equation (17), E0[µ2] ≈ z.

Part 5

Let time t effort be fixed exogenously at ēt.

Induction step:
The induction hypothesis is that E0[µt] = z for some t > 1. From equation (17), the in-
duction hypothesis, and the definition of wt, we have E0[µt+1] = z if Cov0[wt, µt] = 0. The
fourth part of Lemma 2 established that, in fact, Cov0[wt, µt] = 0 for t ≥ 1. Therefore
E0[µt+1] = z under the induction hypothesis that E0[µt] = z.

Basis step:
From equation (16), we have E0[µ1] = z. From equation (14), we have Cov0[w1, µ1] = 0.
Therefore, from equation (17), E0[µ2] = z.
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