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Shallow men believe in luck, believe in circumstances: It was somebody’s name,

or he happened to be there at the time, or, it was so then, and another day it would

have been otherwise. Strong men believe in cause and effect.

– Ralph Waldo Emerson, The Conduct of Life (1860)

1 Introduction

How much should we read into our successes and failures? Can we reduce our exposure to luck

by trying harder? Emerson’s “strong men” believe that their efforts have predictable conse-

quences, but Emerson’s “shallow men” attribute the outcomes of their efforts to chance. The

former learn a lot about themselves by observing the fruits of their efforts, whereas the latter

do not infer as much from these outcomes. I here show a surprising result: rational Bayesian

agents on average misjudge their own ability, and whether they become overconfident or

underconfident on average depends on the predictability of their efforts’ consequences.

Overconfidence is now generally recognized as an important factor in many markets.

For instance, overconfidence can explain financial market anomalies (Daniel and Hirshleifer,

2015), the persistence of entrepreneurs (Astebro et al., 2014), and corporate investment and

merger decisions (Malmendier and Tate, 2005, 2008, 2015). Experimental evidence suggests

that underconfidence is also prevalent (e.g., Kirchler and Maciejovsky, 2002; Blavatskyy,

2009; Clark and Friesen, 2009; Urbig et al., 2009; Larkin and Leider, 2012; Murad et al.,

2016), and through its link to depression, underconfidence may be especially important for

wellbeing (Beck, 2002; Layard and Clark, 2015). Economists have sought to understand how

over- and underconfidence can persist in the face of contrary data.

I propose a unified model in which persistent overconfidence and persistent underconfi-

dence endogenously emerge from Bayesian updating by rational agents who have neoclassical

utility functions, do not exhibit behavioral biases, never stop learning, and might even ini-

tially hold well-calibrated beliefs about their own ability.1 Agents’ rewards depend on effort

choices, unknown ability, and unobserved shocks. Effort and ability are complementary, so

1Previous literature deviates in one or more of these dimensions, as described in Section 7. I focus on
overconfidence in the sense of what Moore and Healy (2008) call “overestimation”, reflecting a misjudgment
of absolute ability. A distinct literature considers what Moore and Healy (2008) call “overprecision”, in
which agents underestimate the variance of outcomes (e.g., Daniel et al., 1998; Burnside et al., 2011). And
yet another distinct literature studies overconfidence in the sense of what Moore and Healy (2008) call
“overplacement” and the psychology literature calls the “better-than-average effect”, which refers to the
tendency for a majority of the population to judge their own abilities as being better than a majority of the
population. I connect the results to overplacement in Appendix C.
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agents apply more effort when they think they are of higher ability. Agents learn about their

ability from the rewards they observe. Their rewards provide signals of their ability that are

drawn from a member of an exponential family of distributions, which encompasses several

important named families of distributions (Barndorff-Nielsen, 2006).2 Agents’ effort choices

affect how much they learn from each reward because (i) effort and ability are complementary

and (ii) effort potentially affects the variance of the unobserved shock.

I show that agents become underconfident on average if effort improves the signal of

ability contained in each reward and become overconfident on average if effort confuses the

signal of ability contained in each reward. The signal of ability is reward per unit effort,

and the variance of the signal is equal to the variance of the unobserved shocks divided

by effort squared. Additional effort improves the signal of ability if the shocks’ variance

decreases in effort or is independent of effort,3 and it confuses that signal if the shocks’

variance increases sufficiently strongly in effort. Agents therefore become underconfident on

average if the shocks’ variance decreases in effort or is independent of effort, and they become

overconfident on average if it increases sufficiently rapidly in effort. We should expect agents

to display neither average overconfidence nor average underconfidence only in the knife-edge

case where the shocks’ variance increases in effort at just the right rate. Empirical and

experimental researchers should not be too quick to attribute detected overconfidence or

underconfidence to behavioral biases.

As an example, let the variance of rewards be due purely to mean-zero external shocks

whose distribution is independent of agents’ effort choices. Like Emerson’s “strong man”,

agents understand that their efforts have a consistent effect on outcomes, with luck playing

only a supporting role that is independent of effort. For instance, running harder improves

their times by a consistent amount that depends on their ability. When agents choose high

effort, the observed reward contains a stronger signal of their true ability: because effort

and ability are complementary, high effort increases the contribution of ability to outcomes.

Imagine that agents’ priors are well-calibrated at time 0 (i.e., centered around their true

abilities). For some agents, the unobserved shock happens to take on a high value at time

2The critical feature of exponential families is that the posterior mean is a weighted average of the prior
mean and the signal. For example, this is a well-known feature in normal-normal updating models, and
normal distributions are members of an exponential family. The analysis will require that the variance
function be quadratic (Morris, 1982; Morris and Lock, 2009), which permits the most prominent exponential
families such as the normal, Poisson, binomial, negative binomial, and gamma distributions, with the latter
nesting the exponential and chi-square distributions as special cases.

3When the variance of rewards is independent of effort, complementarity between effort and ability means
that an agent obtains a completely uninformative signal as effort approaches zero and a perfectly informative
signal as effort approach infinity.
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0, so that they perceive a surprisingly high reward at time 0. As a result, they raise their

central estimates of their ability and choose greater effort at time 1. Because they are now

overconfident, their time 1 rewards will, on average, be surprisingly small, leading them to

reduce their time 2 ability estimates towards the true values. Following the average time 1

reward, these agents will still be overconfident at time 2 but less so than at time 1. Indeed,

because their high time 1 effort made their beliefs especially sensitive to the observed time

1 reward, they will tend to be only slightly overconfident by time 2.

In contrast, some agents receive an unobserved shock that happens to take on a low value

at time 0. These agents reduce their central estimates of their ability and choose lower effort

at time 1. Because they are now underconfident, their time 1 rewards will, on average, be

surprisingly large, leading them to raise their time 2 ability estimates towards the true value.

Following the average time 1 reward, these agents will still be underconfident at time 2 but

less so than at time 1. Because their low time 1 effort made their beliefs especially insensitive

to the observed time 1 reward, their underconfidence may still be nearly as severe at time 2

as it was at time 1.

On average, agents still have well-calibrated beliefs at time 1 because they adjust their

beliefs symmetrically in response to high or low time 0 shocks. However, agents tend to be

underconfident at time 2: on average, their central estimates are below their true abilities

because their posterior beliefs are more sensitive to the observed reward when their effort is

high. Agents learn away time 0 shocks especially quickly when these shocks lead them to

raise their central estimates of their own ability, and they learn away time 0 shocks especially

slowly when these shocks lead them to lower their central estimates of their own ability. I

show that this average underconfidence persists arbitrarily far into the future, vanishing only

in the limit as infinite data accumulate.

In many contexts, the role of luck will diminish as agents apply more effort. For instance,

perhaps running harder smooths out variations in tempo that arise due to distractions or

topography. When effort reduces the variance of rewards, agents extract even more informa-

tion from observed outcomes under high effort. The asymmetry in learning speeds described

above becomes even more pronounced. By the foregoing logic, average underconfidence will

again endogenously emerge and persist.

Rational updating can also endogenously generate overconfidence. Now let greater effort

increase exposure to luck by enough to increase the variance of the signal that agents extract

from observed outcomes. Like Emerson’s “shallow man”, agents understand that their ef-

forts are largely modulated by circumstance. For example, running harder here reduces the
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consistency of their times by increasing the consequences of each day’s minor variations in

weather, fitness, or diet. Agents’ beliefs are especially sensitive to news following low effort

choices. Because they choose low effort when they lack confidence in their own ability, they

learn away overly low ability estimates especially rapidly. And they learn away overly high

ability estimates only slowly because their high efforts lead to especially noisy outcomes.

When these agents hold overly high ability estimates, they will tend to receive bad news but

attribute any news more to chance than to their own ability. These agents become overcon-

fident on average, an effect that persists into future periods and vanishes only in the limit

as infinite data accumulate.

The predicted dynamics are consistent with evidence in Hoffman and Burks (2020). They

document that long-haul truckers demonstrate both overconfidence and underconfidence

when predicting the miles they will drive in the coming week. On average, the truckers are

overconfident, and that average overconfidence declines only slowly as truckers gain more

experience on the job. The present model may also explain an apparent irrationality in

their structural model of truckers’ beliefs: Hoffman and Burks (2020) estimate that truckers

perceive the variance of their productivity shocks to be greater than the true variance,

leading them to update beliefs about their own productivity only slowly. For truckers to

have ended up overconfident on average, the present analysis requires that the variance of

their productivity shocks be high when their effort and confidence are high. Effort is an

omitted variable in Hoffman and Burks (2020), as they recognize. Because the perceived

variance in Hoffman and Burks (2020) is identified by the observed speed of learning, most

of the identifying variation is likely to come from truckers who are especially overconfident

and thus have more to learn. If unobserved effort choices endogenously increase variance for

those truckers, then a one-size-fits-all estimate of perceived variance will primarily reflect

their high variance and may be greater than the observed variance of productivity shocks

across all truckers. Truckers’ belief updating may yet be rational once we account for effort.4

The next section presents an analytically transparent two-period model with normal dis-

tributions. Section 3 generalizes the distributional assumptions and extends the horizon

to infinitely many periods. Section 4 considers normally distributed signals with infinitely

many periods. Section 5 describes how management can design feedback to induce overcon-

4The present analysis is consistent with Hoffman and Burks (2020) even if truckers truly do misperceive
shocks’ variance: an earlier working paper version showed that the critical determinant of under- or overcon-
fidence is the perception of the relationship between variance and effort, not the true relationship between
variance and effort. When truckers are overconfident on average, an empirical analysis should detect truckers
as perceiving high variance on average, whether or not the variance is in fact high for any of them.
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fidence in employees. Section 6 relates the theoretical setting to prominent empirical work

on overconfidence. Section 7 reviews related literature. Section 8 proposes opportunities for

further work. The final section contains proofs. The appendix provides additional results

and numerical examples.

2 Closed-Form Derivation with Normal Distributions

Begin by considering an example that allows for closed-form solutions and accessible exposi-

tion.5 There is a continuum of agents, indexed by i and of measure 1. In every period t ≥ 0,

agent i chooses how much effort eit to apply to an activity. The agent’s cost of applying

effort is ci(eit), with ci(·) ∈ C2, c′i(·) > 0, and c′′i (·) > 0. The activity provides reward πit,

which depends on the chosen level of effort, on the agent’s fixed ability zi, and on a random

shock εit:

πit = eitzi +
√
f(eit) εit, (1)

with f(·) ∈ C1 and strictly positive. Effort and ability are complementary.6 The shock

is independent over agents and time, observed only via its effect on payoffs, and, in this

section, normally distributed with mean zero and variance normalized to 1.7 Throughout,

bars denote population-average variables.

Agents’ true abilities zi > 0 are unknown to them. In this section, agent i’s beliefs about

her ability zi are summarized by a normal distribution with mean µit and variance Σit <∞.

I describe agent i as overconfident at time t if µit > zi and as underconfident if µit < zi. In

order to avoid stacking the desk for misplaced confidence, assume for now that each agent’s

beliefs are initially well-calibrated: µi0 = zi.
8 Finally, to allow for simpler exposition, assume

in this section that zi and Σi0 are constant over agents.

5See Appendix B for a numerical implementation.
6Bénabou and Tirole (2002) extensively motivate complementarity between effort and ability. In lab-

oratory experiments, Chen and Schildberg-Hörisch (2019) show that higher estimates of one’s own ability
induce additional effort, as implied by the present setting. Effort and ability are also typically presented
as complementary in psychology literature that describes how agents choose effort and infer ability (e.g.,
Nicholls and Miller, 1984).

7Altering the shock’s variance is equivalent to rescaling f(eit).
8I will relax this assumption in Section 3. One might argue that fully rational agents would understand

that initial beliefs are correct and thus immediately infer their true ability from these initial beliefs. However,
we will soon see that agents’ mean beliefs can depart from true ability, so this argument is not robust to
agents having already experienced histories of nonzero length. More fundamentally, rationality requires
Bayesian updating but does not pin down agents’ priors, which are always model primitives. We can always,
if we wish, constrain these primitives by a further assumption of rational expectations. As discussed below,
the assumption that µi0 = zi can be interpreted as a form of rational expectations assumption.
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The function f(·) determines the role of luck (i.e., the variance of rewards), and its

derivative determines how effort choices affect the the role of luck. When f ′(·) = 0, the role

of luck is independent of effort. When f ′(·) > 0, trying harder amplifies the role of luck. But

when f ′(·) < 0, trying harder gives an agent more control over outcomes.9

Each agent chooses eit to maximize expected period payoffs:10

max
eit

Eit [πit − ci(eit)] ,

where Eit[·] denotes expectations conditioned on µit and Σit, without knowledge of zi or the

realizations of εit. Each agent’s optimal choice of effort e∗it satisfies the first-order necessary

condition:

c′i(e
∗
it) = Eit

[
zi +

1

2

f ′(e∗it)√
f(e∗it)

εit

]
,

which implies that c′i(e
∗
it) = µit. Optimal effort e∗it is an increasing function of µit. In order to

focus on the issue at hand, we want to rule out zero-effort traps, where agents stop receiving

new signals of ability.11 Therefore assume in this section that f(·) is sufficiently small relative

to zi and µi0 that the probability that µit ≤ 0 is vanishingly small. (Sections 3 and 4 use

more elegant approaches to rendering zero-effort traps irrelevant.)

Each agent updates their beliefs about their ability zi upon observing realized payoffs

πit, with sit , πit/eit constituting the signal of ability. Agents are Bayesian learners. The

combination of normally distributed beliefs and normally distributed shocks generates a

conjugate Bayesian updating rule:

µi(t+1) =

(
Σ−1it µit +

e2it
f(eit)

sit

)(
Σ−1it +

e2it
f(eit)

)−1
, (2)

Σi(t+1) =

(
Σ−1it +

e2it
f(eit)

)−1
. (3)

9The case with f ′(·) < 0 can be interpreted as an “internal locus of control”, with f ′(·) ≥ 0 being an
“external locus of control” (see Lybbert and Wydick, 2018). See Hestermann and Yaouanq (2021) for an
alternate formulation of locus of control.

10Appendix A shows that the results survive when agents are not myopic.
11Although interesting for its connection to depression (de Quidt and Haushofer, 2017) and to poverty

traps (Lybbert and Wydick, 2018), allowing for this possibility would serve to obscure the relationships of
interest here.
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Define

w(eit,Σit) ,

e2it
f(eit)

Σ−1it +
e2it

f(eit)

∈ [0, 1] (4)

as the weight that time t agents place on the time t signal. Writing wit for short, equation (2)

becomes:

µi(t+1) = (1− wit)µit + witsit. (5)

Consider the population-average central estimate, µ̄1. From equation (5),

µ̄1 =

∫ 1

0

[(1− wi0)µi0 + wi0zi] di = z̄.

On average, agents’ beliefs remain well-calibrated at time 1. The population-average central

estimate at time 2 is:

µ̄2 =

∫ 1

0

[
[1− w(ei1,Σi1)]µi1 + w(ei1,Σi1)zi + w(ei1,Σi1)

√
f(ei1)

ei1
εi1

]
di.

ei1 differs across agents because it depends on µi1 and thus on εi0. Using µ̄1 = z̄, we have:

µ̄2 =z̄ −
∫ 1

0

w(ei1,Σi1) [µi1 − µ̄1] di.

As a good Bayesian, each individual agent does not expect her beliefs to change over time

(see Appendix C): an agent does not know her true zi, so she takes expectations over both zi

and the ε. Nonetheless, average beliefs do change in a predictable fashion once we condition

on the true zi, as might a researcher with an objective measure of agents’ abilities. In

particular, the average central estimate tends to drift away from z̄ unless wi1 and µi1 are

uncorrelated over agents. Recognizing that the µi1 are normally distributed and using that

zi and Σi1 are constant over agents,12 apply Stein’s Lemma:∫ 1

0

w(ei1,Σi1) [µi1 − µ̄1] di =w2
i0

f(ei0)

e2i0

∫ 1

0

∂w(ei1,Σi1)

∂ei1

dei1
dµi1

di. (6)

Recall that dei1/dµi1 > 0. Therefore, the average belief drifts away from z̄ unless ∂w(ei1,Σi1)/∂ei1 =

0. Agents become underconfident on average if ∂w(ei1,Σi1)/∂ei1 > 0, and agents become

overconfident on average if ∂w(ei1,Σi1)/∂ei1 < 0. From equation (4), only in a knife-edge

12From equation (3), Σi1 depends only on Σi0 and ei0.
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case does ∂w(ei1,Σi1)/∂ei1 = 0.

Observe from (4) that ei1 affects wi1 through

V ar[sit|eit, zi] =
f(eit)

e2it
, (7)

which is the variance of the likelihood. It is easy to see that ∂w(ei1,Σi1)/∂ei1 > 0 if and

only if that variance decreases in ei1.
13 Therefore agents become underconfident on average

if effort decreases the variance of the likelihood and become overconfident on average if effort

increases the variance of the likelihood. In the special case that f(·) is independent of eit,

agents become underconfident on average because larger ei1 then unambiguously increases

the precision of agent i’s time t signal si1 = πi1/ei1 and thus decreases the variance of the

likelihood.

Consider a population of agents for whom additional effort decreases the variance of the

likelihood and thus makes ∂w(ei1,Σi1)/∂ei1 > 0. Some agents happen to receive a positive

shock in period 0. They become overconfident and choose greater effort in period 1. At

that time, they tend to receive shocks that correct their overconfidence (pushing their beliefs

back towards zi). Because ∂w(ei1,Σi1)/∂ei1 > 0, they learn especially rapidly from these

period 1 shocks and so on average enter period 2 only mildly overconfident, with an estimate

close to zi. In contrast, some agents happen to receive negative shocks in period 0. These

agents become underconfident and choose a low effort level in period 1. The period 1 rewards

tend to correct their underconfidence (pushing their estimates back towards zi), but because

∂w(ei1,Σi1)/∂ei1 > 0, they do not learn much from those rewards. These agents therefore

tend to remain nearly as underconfident entering period 2 as they were entering period 1.

On average, period 2 agents are underconfident, as the link between effort and information

processing leads them to learn away overconfident period 1 beliefs faster than they learn

away underconfident period 1 beliefs.

If, instead, ∂w(ei1,Σi1)/∂ei1 < 0, then period 2 agents are overconfident on average, as

the link between effort and information processing leads them to learn away underconfident

period 1 beliefs faster than they learn away overconfident period 1 beliefs. An experimentalist

who observed agents in period 2 and compared their self-estimates to measured true ability

would conclude that they tend to be overconfident, but this overconfidence is in fact justified

by the combination of the data that the agents generated and how their choices generated

the data.

13Section 4 relates the sign of ∂w(ei1,Σi1)/∂ei1 to the elasticity of f(eit).
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Section 6 relates the setting to prominent empirical work on overconfidence. As a brief

example, consider a student taking a test. The student chooses how much to focus on each

question. Greater focus matters more for students with high ability than for students with

low ability. Upon seeing the results of the test, students update their beliefs about their own

ability, adjusting for how hard they tried on the test. This story is consistent with evidence

from a recent field experiment: Gneezy et al. (2019) show that incentivizing students to exert

more effort on a standardized test does improve test scores (effort matters for outcomes and

responds to incentives) and improves test scores most strongly for higher-ability students

(effort is complementary to ability). The authors highlight that cross-sectional comparisons

of test scores across countries can mislead policymakers when students’ unobserved effort

differs across cultures. Here, we recognize that the students themselves are likely to account

for their own effort choices when interpreting their own test scores. We see that their average

beliefs will not accurately reflect their own abilities. And the type of inaccuracy depends

on empirically testable phenomena. They underestimate ability on average if trying harder

makes tests better signals of ability (as when effort reduces random mistakes arising from

inattention), and they overestimate ability on average if trying harder increases the chance

of random mistakes (as when effort means forsaking sleep to study longer).

Rationality dictates how agents update beliefs in response to new information but not

what prior beliefs agents should hold.14 Rational expectations is an additional assumption

sometimes imposed to pin down prior beliefs. In order to raise the hurdle for obtaining

misplaced confidence, I have modeled each agent as initially holding well-calibrated beliefs

(which I will relax in Section 3). This can be considered a form of rational expectations.

When zi is heterogeneous (as it will be in Section 3), agents’ observable initial effort choices

track their abilities. It is as if each agent had observed signals of their own ability prior to time

0. An alternate form of rational expectations would fix each agent’s µi0 and Σi0 to match the

population distribution of the zi, as if agents had observed signals of other agents’ abilities

prior to time 0.15 In that case, µ̄0 = z̄ but agents’ observable effort choices are initially

independent of their true abilities. The evolution of the average belief (µ̄t) is now the same as

each agent’s expectation of her mean posterior belief (Ei0[µit]). Unsurprisingly, Appendix C

shows that Bayesian agents’ expectations of their own posterior beliefs are martingales, so

µ̄t = z̄ at all t ≥ 0 and we no longer find average misplaced confidence emerging. However,

in many contexts it is more plausible that agents have some imperfect idea of their own

14See footnote 1 in van den Steen (2004) and citations therein.
15Of course, agents’ beliefs no longer match the population distribution after time 0 because the distribu-

tion of the zi is fixed yet, from (3), Σit < Σi0 for t > 0.

9



ability (with µi0 ≈ zi and Σi0 > 0) than that agents perfectly understand the population-

wide distribution of ability but know nothing about their own standing within it. We should

expect average over- or underconfidence to emerge in environments consistent with the former

assumption but not in environments consistent with the latter assumption. Further, as we

shall verify formally in subsequent sections, the appearance of average misplaced confidence

is not a knife-edge result, so we should expect average misplaced confidence in environments

even roughly consistent with the former assumption. In contrast, there is no reason to predict

a lack of average misplaced confidence in environments that are only roughly consistent with

the latter assumption.16

3 Infinitely Many Periods and Non-Normal Shocks

The model in Section 2 allows for a simple transparent derivation driven merely by first-

order conditions, Bayes’ Rule, and Stein’s Lemma, but one may wonder whether misplaced

confidence persists beyond two periods, whether it arises under non-normal distributions,

and whether it arises for priors that are not initially well-calibrated. Here I expand the

analysis to infinitely many periods, broaden the distributional assumptions, and relax the

restriction on the prior at the cost of rendering closed-form solutions such as (6) impossible.

Let rewards be πit = eitzi+νit, with the νit indicating random shocks that are not directly

observed by agents. In contrast to Section 2, zi is here potentially heterogeneous and the

νit are potentially non-normal. Conditional on eit, the νit are identically and independently

distributed over time and agents, with mean zero.17 The rest of the setting is familiar from

Section 2. In particular, each zi is strictly positive and fixed over time, I define µit , Eit[zi],

optimal effort satisfies c′i(e
∗
it) = µit for µit > 0, and agent i’s time t signal of her ability is

sit , πit/eit.
18

16The lack of average misplaced confidence when agents’ prior beliefs match the population distribution of
the zi is in fact likely to be a knife-edge case for the following reason. As time passes, each µit converges to
zi, in which case we approach a setting with well-calibrated beliefs. The reason we would not predict average
misplaced confidence in some sufficiently late period is that different agents approach their true abilities
from different directions, and this heterogeneity is such that it exactly offsets the tendency towards average
over- or underconfidence that manifests as agents’ beliefs become well-calibrated. Failing to find average
misplaced confidence is therefore unlikely to be robust to small perturbations in agents’ priors around the
population distribution of the zi.

17We could permit the νit to have nonzero means by subtracting E[νit] from πit in the definition of sit
below.

18Following others (e.g., Heidhues et al., 2018), I model agents choosing effort myopically because the
exposition is clearer. The restriction is inessential: forward-looking agents’ effort choices depend on µit and
also on higher moments of the prior, but these effort choices converge to the myopic effort choices as time
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Letting px be the density function of random variable x, I assumed in Section 2 that the

likelihood psit(sit|eit, zi) was a normal density. Here I instead assume that each zi can be

mapped to a θit such that psit(sit|eit, θit) is a member of a regular natural exponential family

(NEF) of distributions (Morris, 2006).19 (Note that this mapping can depend on eit, which

is the source of the t subscript on θit.) Formally,

psit(sit|eit, θit) = exp[θitsit −Mi(θit; eit)], (8)

where Mi is continuous in eit and the θit for which exp[Mi(θit; eit)] < ∞ constitute a

nonempty open set in R for all eit > 0. The families of distributions that satisfy (8) (and

hence are NEFs) include the normal, Poisson, binomial, negative binomial, and gamma dis-

tributions, with the latter nesting the exponential and chi-square distributions as special

cases. Mi is known as the “cumulant function” (distinct from the cumulant-generating func-

tion) because its kth derivative is the kth cumulant. Its form identifies a specific exponential

family of distributions (such as the family of normal distributions). And within that specific

family, the “natural parameter” θit indexes a specific distribution (as the mean does for a

normal distribution with known variance).

Because Eit[sit|θit] = M ′
i(θit; eit) and zi = Eit[sit|θit], we have zi = M ′

i(θit; eit).
20 There-

fore µit = Eit[M
′
i(θit; eit)]. As is well known (e.g., Barndorff-Nielsen, 1978; Consonni and

Veronese, 1992), there is a bijection between θit and zi.
21 Plugging θ(zi; eit) into (8) would

yield the likelihood in terms of zi (i.e., psit(sit|eit, zi)), which is known as the mean parame-

terization.

Following Morris (1982) and subsequent literature (e.g., Consonni and Veronese, 1992;

Morris and Lock, 2009), the “variance function” for the time t likelihood is

Vi(zi; eit) ,
∂2Mi(θ(zi; eit); eit)

∂θ2
.

The variance function gives the variance of the signal as a function of its conditional ex-

pectation, zi. I restrict attention to distributions with variance functions in an especially

passes and also under the conditions of Proposition 2 below. Also see Appendices A and B.1.
19Any exponential family can be reparameterized as a natural exponential family (e.g., Gutiérrez-Peña

and Smith, 1997). The νit might not come from the same family as sit.
20The effect of effort on the mapping from zi to θi follows from the implicit function theorem.
21M ′′i > 0 because it is the variance (i.e., the second cumulant), which implies that zi increases monoton-

ically in θit.
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prominent and well-studied class:

Vi(zi; eit) = ζi2(eit) z
2
i + ζi1(eit) zi + ζi0(eit), (9)

with Vi finite and with the coefficients ζi2(eit), ζi1(eit), and ζi0(eit) each a differentiable func-

tion of eit. By satisfying (8) and (9), the signal is conditionally distributed according to

a regular natural exponential family with quadratic variance function (NEF-QVF). Morris

(1982) shows that there are six types of NEF-QVFs. These include the five most important

NEFs: the normal, Poisson, gamma, binomial, and negative binomial families of distribu-

tions. As an example, equation (9) was satisfied in Section 2, where the variance of sit

conditional on eit and zi had, from equation (7), ζi0(eit) = f(eit)

e2it
, ζi1(·) = 0, and ζi2(·) = 0

(the latter two relationships are always true for normal distributions).

The agent’s time 0 prior over θi0 is the standard conjugate prior, which is also a member

of an exponential family (Diaconis and Ylvisaker, 1979):

pθi0(θi0|Ii0) = Ki0 exp [ni0xi0θi0 − ni0Mi(θi0; ei0)] , (10)

with ni0 > ζi2(ei0), xi0 in the convex hull of the support of psi0(·|ei0, θi0), Ki0 > 0 a normal-

izing constant, and Ii0 indicating agent i’s time 0 information set. Theorem 1 of Diaconis

and Ylvisaker (1979) implies Ki0 <∞. Below Assumption 2, I will relate the parameter xi0

to the mean of the prior and will interpret the parameter ni0. Plugging θ(zi; eit) into (10)

would generate what Consonni and Veronese (1992) label the D-Y conjugate family of priors

over the mean parameter (i.e., the D-Y conjugate prior over zi).
22

Because the variance function satisfies (9), the prior over zi in (10) is a member of one of

the Pearson families of distributions (Morris, 1983). Further, the variance function for the

time 0 prior is (Morris, 1983; Morris and Lock, 2009):

Ṽi0(µi0) =
Vi(µi0; ei0)

ni0 − ζi2(ei0)
. (11)

Requiring ni0 > ζi2(ei0) ensures that the variance of the prior exists and is finite.23 If one

were to exogenously increase the variance of the signal, then the endogenous parameter ni0

must increase in order to hold the variance of the prior fixed. We will soon see that an

22Consonni and Veronese (1992) show that the D-Y conjugate prior over zi is conjugate to (8) expressed
in terms of zi when the variance function is quadratic as in (9) but not necessarily otherwise.

23In Section 2, Σi0 <∞ implied ni0 > 0. Because ζi2(·) = 0 for normal distributions, ni0 > ζi2(ei0).
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increase in ni0 means that the prior is weighted more heavily in the posterior mean, so

increasing the variance of the signal has the intuitive effect of reducing the posterior mean’s

sensitivity to the signal.

I have thus far presented a fairly general framework with conventional groupings of dis-

tributional families. I now impose two more particular assumptions. The first assumption

restricts the distribution of signals (which is determined by the distribution of the νit). If the

prior and the set of possible signals permit agents to believe they have no ability, then all

agents eventually fall into a low-confidence trap in which they choose zero effort and never

revise their beliefs further. These traps would obscure the mechanism of interest here. The

next assumption will ensure that agents avoid low-confidence, zero-effort traps:24

Assumption 1. psit has support only in the weakly positive numbers.

Most families of distributions that are NEF-QVF satisfy this restriction. The prominent

exception is the family of normal distributions, which I analyze separately in Section 4.

The second assumption restricts agents’ mean beliefs to initially have error no larger than

δ:

Assumption 2. For all i and for given δ ≥ 0, µi0 > 0 and µi0 ∈ [zi − δ, zi + δ].

Importantly, this assumption permits the possibility that priors are well-calibrated, as in

Section 2.

From Theorem 2 of Diaconis and Ylvisaker (1979), xi0 = Ei0[M
′
i(θi0; ei0)]. Therefore

xi0 = µi0. And from equation (2.10) in Diaconis and Ylvisaker (1979), Bayesian updating

implies

µi1 =
ni0

ni0 + 1
µi0 +

1

ni0 + 1
si0

=(1− wi0)µi0 + wi0si0. (12)

The weight wi0 ∈ (0, 1) that agent i places on the time 0 signal decreases in ni0, and the

weight 1− wi0 that agent i places on time 0 prior beliefs increases in ni0. This is why ni0 is

commonly thought of as the sample size of the prior (Diaconis and Ylvisaker, 1979). Using

conjugacy of the prior and repeating the steps, we find that the prior at any time t has the

24More precisely, Assumption 1 ensures that agents avoid these traps once combined with Assumption 2
below, which ensures that agents do not begin in a trap.
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form of (10) with Kit <∞, that its variance function has the form of (11), and that

µi(t+1) = (1− wit)µit + witsit (13)

at any time t > 0, with wit ∈ (0, 1). Assumptions 1 and 2 imply µi(t+1) > 0. The linearity of

the posterior mean in the prior mean and the signal seen in both (12) and (13) is the critical

feature of exponential families for the present analysis. In Section 2, this same linearity

appeared in equation (5) because normal distributions are members of an exponential family.

Working backwards through time,

µit − zi =
wi(t−1)
ei(t−1)

νi(t−1) + (1− wi(t−1))(µi(t−1) − zi)

=
t∑

j=1

(
j−1∏
k=1

(1− wi(t−k))

)
wi(t−j)
ei(t−j)

νi(t−j) +

(
t−1∏
k=1

(1− wi(t−k))

)
(1− wi0)[µi0 − zi]

(14)

when effort choices are nonzero. From the law of iterated expectations,

∫ 1

0

[µit − zi] di =
t∑

j=2

∫ 1

0

wi(t−j)
ei(t−j)

Covi(t−j)|zi

[
j−1∏
k=1

(1− wi(t−k)), νi(t−j)

]
di

+

∫ 1

0

(
t−1∏
k=1

(1− wi(t−k))

)
(1− wi0)[µi0 − zi] di, (15)

where Covi(t−j)|zi is the covariance conditional on zi and on νi(t−j−h), for h ∈ {1, ..., t − j}.
Consider a case in which agents’ beliefs are initially well-calibrated, meaning that µi0 = zi.

If the covariance is negative (positive) for all i and j, then µ̄t < (>) z̄, indicating average

underconfidence (overconfidence). A negative covariance means that observing large values

of πit/eit induces agent i to place additional weight on later periods’ news shocks and less

weight on later periods’ priors. Thus, observing a signal of high ability undercuts itself: by

altering later effort choices, it induces agent i to downweight this same signal when forming

later posteriors. Agents’ posteriors end up driven by the more pessimistic signals of ability.

Conversely, a positive covariance means that observing a large value of πit/eit makes agent

i’s posterior less sensitive to later signals. Agents’ posteriors end up driven by the more

optimistic signals of ability.

It is again true that agents’ beliefs are not biased on average in period 1 if agents’ beliefs
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are initially well-calibrated:

µ̄1 =

∫ 1

0

[(1− wi0)µi0 + wi0zi] di

∈
[
z̄ − δ

∫ 1

0

(1− wi0) di, z̄ + δ

∫ 1

0

(1− wi0) di

]
,

so that µ̄1 = z̄ if µi0 = zi for all i (i.e., if Assumption 2 holds with δ = 0). Now consider

subsequent periods. The following lemma relates effort to the weight placed on the signal in

agents’ updating equations:

Lemma 1. Let Assumptions 1 and 2 hold. Then:

i

dwi0/dei0 > 0 if
∂Vi(µi0; ei0)

∂ei0
< 0 and

dζi2
dei0

≤ 0,

ii

dwi0/dei0 < 0 if
∂Vi(µi0; ei0)

∂ei0
> 0 and

dζi2
dei0

≥ 0

Proof. Agents set their priors independently of ei0, so the variance of the prior must be

independent of ei0. Differentiating Ṽi0 with respect to ei0, setting the derivative to zero, and

rearranging, we have, for all ei0 > 0,

dni0
dei0

=
∂Vi(µi0; ei0)

∂ei0

ni0 − ζi2(ei0)
Vi(µi0; ei0)

+
dζi2
dei0

.

Under the conditions of part (i), this implies that dni0/dei0 < 0 and, because wi0 , 1/(ni0+1)

from (12), that dwi0/dei0 > 0. Under the conditions of part (ii), this implies that dni0/dei0 >

0 and that dwi0/dei0 < 0.

As is intuitive, agents’ sensitivity to new information increases in effort (and thus in confi-

dence) if additional effort reduces the variance of the signal and decreases in effort if addi-

tional effort increases the variance of the signal. We should expect the covariance in (15)

to be negative (and underconfidence to emerge) if effort reduces the variance of the signal,

and we should expect the covariance in (15) to be positive (and overconfidence to emerge)

if effort increases the variance of the signal.

The following proposition shows that average bias indeed can again emerge after period

1, with the direction of average misplaced confidence depending on how effort affects the
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variance of the signal:

Proposition 1. Let Assumptions 1 and 2 hold. For all t > 1, there exists δ̂ > 0 such that

if δ < δ̂ and the moments of the distribution over each νit are sufficiently small, then

i

µ̄t < z̄ if
∂Vi(µi0; ei0)

∂ei0
< 0 and

dζi2
dei0

≤ 0,

ii

µ̄t > z̄ if
∂Vi(µi0; ei0)

∂ei0
> 0 and

dζi2
dei0

≥ 0

Proof. The proof is by induction. See Section 9.

Average misplaced confidence emerges after period 1 and persists in later periods, vanishing

only in the limit as agents accumulate infinite data. Importantly, average misplaced confi-

dence emerges even when the deck is most stacked against it, with agents’ priors all initially

well-calibrated (so δ = 0). As in Section 2, the direction of average misplaced confidence

depends on the effects of effort on the variance of the likelihood. From Lemma 1, additional

effort increases (decreases) the weight that agents place on the signal when it decreases (in-

creases) the variance of the likelihood. Because effort increases in mean beliefs and new

signals tend to correct mistaken beliefs, agents learn away mistaken beliefs faster when they

are overconfident (underconfident), as already described following equation (6). We therefore

predict average underconfidence (overconfidence) when additional effort decreases (increases)

the variance of the likelihood.25

The variance of the time 0 likelihood is

V ari0[si0|ei0, θit] =
1

e2i0
V ari0[νi0].

The variance of the likelihood decreases in effort if either the variance of νi0 is independent

of effort or the variance of νi0 decreases in effort. The variance of the likelihood increases

in effort only if the variance of νi0 increases sufficiently strongly in effort. The variance of

the likelihood is independent of effort only in a knife-edge case in which effort increases the

25The requirement that the moments of νit be small ensures that second-order terms do not dominate the
effect on average confidence.
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variance of νi0 at just the right rate.26 Proposition 1 therefore formalizes the intuition from

the introduction about how the effect of effort on the variance of the unobserved shocks

generates average misplaced confidence by inducing asymmetric learning speeds.

4 Infinitely Many Periods and Normally Distributed

Shocks

Assumption 1 ruled out normal distributions in order to avoid a zero-effort trap ever being

optimal, but the most closely related empirical work assumes normally distributed shocks

(Hoffman and Burks, 2020). I here examine normally distributed shocks and therefore di-

rectly generalize Section 2 to infinitely many periods.

Let the reward πit be as in equation (1), with normally distributed εit having mean

zero and variance σ2 > 0. Now let agent i’s time 0 prior for zi be truncated-normal with

support in [ai, bi], for ai ∈ [0, zi) and bi ∈ (zi,∞]. The lower truncation point rules out

the possibility of beliefs justifying the choice of zero effort. A Bayesian’s posterior is also

truncated-normal, with ai and bi still the truncation points. Use µit and Σit to denote the

mean and variance of the corresponding untruncated normal distribution. The updating

rules are as in equations (2) and (3) from Section 2.27 The rest of the setting is familiar from

previous sections.

Define the elasticity of f(eit) as χ(eit) , eit f
′(eit)/f(eit).

Lemma 2. V ar[sit|eit, zi] decreases in eit if and only if χ(eit) < 2, and wit increases in eit

if and only if χ(eit) < 2.

Proof. The first part follows from (7). The second part follows from the first part and (4).

Additional effort increases the marginal effect of ability on the reward (i.e., the variance of

εit/eit declines in eit), but when f ′(·) > 0, additional effort also increases the variance of the

reward. The second effect dominates if and only if χ(eit) > 2.

Define agent i’s maximum likelihood estimate of zi as φit , max{ai,min{bi, µit}}. This

maximum likelihood estimate is the mean of the corresponding untruncated distribution and

converges to the mean of the truncated distribution as the mass beyond the truncation points

26In addition, if we eliminated complementarity between effort and ability (making effort choices indepen-
dent of ability) or eliminated agents’ freedom to choose effort (making effort exogenous), then deit/dµit = 0
and the proof shows that we would predict neither underconfidence nor overconfidence.

27Truncation changes the posterior within its support only through the normalization factor.
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vanishes. The following corollary describes the evolution of overconfidence, here measured

as φit − zi:28

Proposition 2. Let Assumption 2 hold. For all t > 1, there exists δ̂ > 0 such that if δ < δ̂

and σ2 and each Σi0 are sufficiently small, then

i

φ̄t < z̄ if χ(ei0) < 2,

ii

φ̄t > z̄ if χ(ei0) > 2.

Proof. Equation (3) and the nonoptimality of zero effort choices imply Σi0 > Σit for t > 0.

As Σit becomes small, the time t posterior and prior both become approximately normal,

with µit and φit converging to Eit[zi]. The proposition then follows from Lemma 2 and the

proof of Proposition 1 since the family of normal distributions is NEF-QVF.

In Section 2, average misplaced confidence emerged in period 2. We now learn that this av-

erage misplaced confidence persists in all later periods, vanishing only as agents accumulate

infinite data. Researchers studying this population would detect average under- or overcon-

fidence almost regardless of which period they happen to sample from. Proposition 2 relates

average overconfidence and underconfidence to model primitives in a transparent fashion: the

sign of χ(ei0)−2 determines whether average overconfidence or underconfidence emerges, and

that sign depends on observable characteristics of the decision-making environment captured

by f(ei0).

Lemma 2 establishes that the variance of the likelihood decreases in effort if and only if

χ(ei0) < 2, so Proposition 2 provides results analogous to those in Proposition 1. As before,

average underconfidence emerges if additional effort reduces the variance of the likelihood

and average overconfidence emerges if additional effort increases the variance of the like-

lihood. Therefore we have again formalized the intuition about effort-dependent variance,

asymmetric learning speeds, and average misplaced confidence given in the introduction.

28φit approaches Eit[zi] under the conditions of the corollary, so the present measure of overconfidence is
in practice similar to the measure used in previous sections.
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5 Application: Conditionally Vague Feedback from Man-

agement

Organizations may want to induce overconfidence in their employees (Gibbs, 1991; Gervais

and Goldstein, 2007; Hoffman and Burks, 2020). The present analysis suggests a novel way

that a principal can manage an agent’s confidence without deceit. The principal need only

commit to giving the agent more information after bad performances than after good per-

formances. This conditionally vague feedback rule helps the agent to learn away mistakenly

low beliefs about her own ability faster than she learns away mistakenly high beliefs.

For example, an employer could require one-on-one performance reviews with under-

performing employees but not with overperforming employees. In these reviews, employees

would gain insight into other factors that could have affected performance, such as broader

market conditions. Underperforming employees would quickly learn away shocks due to bad

luck, but overperforming employees would only slowly learn away shocks due to good luck.

As a second example, managers who rate their employees’ performance could finely divide

ratings among underperforming employees—highlighting the degree to which their perfor-

mance was merely bad luck—while compressing ratings for highly performing employees.

Indeed, Cappelli and Conyon (2018), among others, find evidence of just such a skew in the

distribution of employee ratings.29

These types of interventions require the employer to abide only by simple rules governing

the detail of feedback given. Because that feedback is honest, employees have no incentive

to alter their behavior based on knowledge of this feedback rule. Employees who understand

the feedback rule may understand that it tends to make employees overconfident on average,

but any individual employee can do no better than to update as a Bayesian based on the

information received and the effort choices made.

6 Relation to Empirical Work on Overconfidence

The critical ingredients for rational overconfidence are that ability and effort be complemen-

tary and that additional effort complicates learning about ability from observed payoffs. I

now consider how these conditions fit prominent empirical work on overconfidence.

First, some of the most prominent field evidence for the importance of overconfidence

29Cappelli and Conyon (2018) also report that ratings vary over time for a given employee, apparently
responding to performance (as required to match the present setting).
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comes from chief executive officers’ (CEOs’) investment decisions. Malmendier and Tate

(2005, 2015) measure overconfidence from how CEOs exercise the stock options granted to

them. They show that CEOs who are overconfident by this measure tend to invest more when

cash flow is abundant, in accord with predictions. The primary theoretical explanation for

compensating executives (or other employees) through stock options is that firm owners seek

to resolve a principal-agent problem by aligning owners’ and executives’ incentives but may

be constrained from providing such incentives through salary adjustments or bonuses (Hall

and Liebman, 1998). In the benchmark principal-agent framework, the executive’s action

space is effort (Murphy, 1999). Stock options are more commonly granted to executives than

to salaried workers and least commonly granted to hourly workers (Hall and Murphy, 2002).

If compensation tracks ability, then we can conclude that firm owners perceive effort and

ability to be complementary. Further, increasing investment may increase the marginal effect

of ability on firm value even as it increases exposure to diverse stochastic factors. If the latter

effect is sufficiently strong, executives may have a hard time learning away overconfidence.

The critical ingredients of the present model are in place, making CEOs’ overconfidence

plausibly rational. Future work should examine how overconfidence evolves following the

types of high cash flow events that encourage high investment.

Second, much work considers overconfidence in investors (Daniel and Hirshleifer, 2015).

In particular, overconfidence is linked to the volume of trade (e.g., Barber and Odean, 2001).

Barber and Odean (2002) show that investors begin trading online just after they experience

large returns, which the authors interpret as increasing investors’ estimates of their own

ability. Online trading enables greater effort by reducing frictions and providing more data

to analyze. Deciding to move online following high returns suggests that investors view effort

and ability as complementary. Graham et al. (2009) show that investors with higher regard

for their own ability tend to invest in more asset classes (in particular, foreign markets).

Investors will perceive unconventional asset classes to be especially noisy if they do not

understand them as well. The critical ingredients of the present model are again in place.

Rational investors might learn away overconfidence relatively slowly, leading researchers to

detect average overconfidence among the population of investors.

Finally, consider a setting whose fit to the present model is less clear. Niederle and

Vesterlund (2007) explore overconfidence in a laboratory environment. They show that sub-

jects’ performance on an addition task tends to improve when participating in a tournament

instead of being paid piece-rate. This result suggests that effort matters. To learn whether

effort and ability are complementary, we would like to know whether applying more effort
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improves higher-ability subjects’ performance by more. Unfortunately, this is difficult to as-

sess from the reported results. Future laboratory experiments should explore whether their

subjects and schemes are consistent with the present paper’s mechanism.

7 Related Literature

The proposed mechanism for generating persistent over- or underconfidence appears to be

novel. A first set of papers describes agents’ motivations to become overconfident, whether

because optimism increases utility (Brunnermeier and Parker, 2005) or because confidence

helps to overcome the tendency to procrastinate (Bénabou and Tirole, 2002). In contrast, the

present setting is neoclassical: agents’ expected payoffs are maximized when they correctly

estimate their own ability.

A second set of papers generates overconfidence by assuming that individuals use a bi-

ased updating process (see Hirshleifer, 2001, 2015). For instance, individuals overly attribute

successes to their own ability and failures to chance (e.g., Daniel et al., 1998; Gervais and

Odean, 2001), or individuals forget failures more often than successes (Compte and Postle-

waite, 2004). The present setting generates persistent overconfidence as a result of rational

Bayesian learning.30

A third set of papers studies selection mechanisms that can make the majority of a

population of Bayesian updaters believe that each of their abilities are better than average

(e.g., Zábojńık, 2004; Köszegi, 2006; Krähmer, 2007; Jehiel, 2018). When agents choose to

stop collecting information once they receive a sufficiently positive signal about themselves or

about the payoffs to some activity, high confidence is an absorbing state that attracts an ever

greater share of the population. These settings have the flavor of bandit models, as there are

actions that do not generate information about the outcomes of other actions.31 In contrast,

agents here never stop updating beliefs about the payoffs from all possible actions. van den

Steen (2004) also considers a selection mechanism, with “overoptimism” emerging as a type

of winner’s curse when agents choose among a set of actions. Here average overconfidence

emerges only over time, as agents’ updated beliefs lead them to choose actions that have the

side effect of making the speed of learning asymmetric around their true ability.

30Moore and Healy (2008) show how Bayesian updating can generate overestimation if agents’ beliefs are
not initially well-calibrated. I show overestimation emerging even when prior beliefs do not already demon-
strate overestimation. Benôıt and Dubra (2011) show how Bayesian updating can generate the appearance
of overplacement. Here the overconfidence is not apparent: it affects observable effort choices.

31A similar mechanism underpins the model of self-control in Ali (2011).
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The proposed mechanism is more closely related to two recent papers.32 First, Silva

(2017) demonstrates how the asymmetric speed at which agents learn following good and

bad shocks can generate systematic overconfidence in a two-period model with normal dis-

tributions. The agent receives outside help following an early signal that he is of high quality

but not after an early signal that he is of low quality. Because he is aware that he begins

receiving help but does not know how good that help is, an agent who saw a good outcome

in the first period will weight that outcome especially strongly when forming a posterior in

period 2. The present paper is similar in generating overconfidence when asymmetric rates

of learning make the time t posterior more sensitive to high rewards. However, here the

mechanism is that agents themselves affect their ability to learn from signals as a byproduct

of their optimal effort choices. I avoid postulating an additional source of noise that arises

only after certain types of rewards.33

Second, Hestermann and Yaouanq (2021) study an agent who is uncertain about his own

fixed ability and also about some feature of the environment. The agent learns about both

from a sequence of binary outcomes. If the agent is initially overconfident, then he rationally

believes that good outcomes reflect his own ability whereas bad outcomes reflect a harsh

environment. In this manner, overconfidence can persist for some time. We here see how

overconfidence and underconfidence can emerge and persist even when agents’ initial beliefs

are well-calibrated and even when agents correctly understand their environments.34

Finally, some recent work considers how learning may confirm an agent’s overconfidence.

Heidhues et al. (2018) study when the actions chosen under an agent’s permanently mis-

specified model of his own ability generate signals that do not lead the agent to question

his incorrect beliefs about his own ability.35 Fudenberg et al. (2017) consider the interaction

between learning and a form of misspecification that places probability zero on the truth.

In contrast, here agents have correctly specified models of the world, long-run limit beliefs

32The proposed mechanism also shares features with a macro model of uncertainty over the business
cycle (Van Nieuwerburgh and Veldkamp, 2006). There, asymmetric learning speeds arise because aggregate
production and the (uncertain) level of technology are complementary and chosen production levels increase
in beliefs about technology.

33On a technical level, the current paper generalizes beyond two periods and beyond normally distributed
shocks. Either generalization prevents closed-form solutions.

34Hestermann and Yaouanq (2021) also analyze asymptotic beliefs when agents can experiment. As in the
third set of papers discussed above, overconfidence can persist due to decisions to stop collecting information.
That overconfidence does not impose costs on agents. In contrast, agents here never stop experimenting and
misplaced confidence is costly.

35Heidhues et al. (2018) allow for learning about one’s own ability in an extension to their primary setting.
There, learning generates overconfidence because they assume that the agent sees a biased signal of his
ability. This extension is closely related to the papers discussed in the second paragraph of this section.
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converge to the truth, and misplaced confidence emerges endogenously rather than being

imposed ex ante.36

8 Further Work

We have seen that rational Bayesian agents become, on average, persistently overconfident

when additional effort makes it harder to learn from observed payoffs and become, on aver-

age, persistently underconfident otherwise. The critical element is that agents who believe

themselves to be of high ability choose to exert more effort. These results call for three fur-

ther types of investigations. First, empirical research has detected average overconfidence in

several settings (see Sections 1 and 6). Future work should test how average misplaced con-

fidence varies across environments based on the relationships between effort and variance.

Second, psychologists have connected “explanatory styles” to a range of outcomes (Selig-

man, 1991). Future work should test the connection between explanatory styles and beliefs

about how effort affects the variance of rewards. Third, job search models with learning

about ability (e.g., Papageorgiou, 2014; Groes et al., 2015) should consider the consequences

of endogenously misplaced confidence, especially when the relationship between effort and

variance differs by occupation. Finally, future theoretical work should investigate the dy-

namics of actual and estimated ability when ability is itself improved by the accumulation of

effort over time. Overconfidence may then be self-fulfilling: environments that lead agents

to become overconfident on average may also lead agents to attain higher ability on average.

9 Proof of Proposition 1

Because an NEF is characterized by its variance function (e.g., Morris, 1982),37 we can write

wit , w(µit, Ṽit(µit)). Fix eit and consider signals received at times t− 1 and t. Label them

sH and sL, with sH 6= sL. From equation (2.10) of Diaconis and Ylvisaker (1979), µi(t+1)

36An earlier working paper version generalized the setting to allow agents to have misspecified models of
the relationship between variance and effort. It showed that what determines whether underconfidence or
overconfidence emerges is not the true data generating process but agents’ beliefs about that process (i.e.,
the stories agents tell themselves about the relationship between effort and variance). The reason is that
beliefs drive agents’ asymmetric rates of learning from good and bad shocks.

37Technically, an NEF is characterized by the combination of its variance function and the domain of its
variance function, but we will not be varying the latter.
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does not depend on the order in which the signals were received. Therefore

(1− wLit)(1− wi(t−1))µi(t−1) + (1− wLit)wi(t−1)sL + wLits
H

=(1− wHit )(1− wi(t−1))µi(t−1) + (1− wHit )wi(t−1)s
H + wHit s

L, (16)

with wkit indicating wit following si(t−1) = sk. This equation defines wLit as a function of wHit ,

sH , and sL. But wLit cannot depend on the value of sH because wLit is determined before

knowing that sit = sH . Therefore wLit = (1−wHit )wi(t−1). Substituting in, wHit is independent

of sL if and only if

wHit =
wi(t−1) − (wi(t−1))

2

1− (wi(t−1))2
.

In that case, wHit = wLit and (16) holds. Therefore wit does not depend on µit if eit is fixed.

Taylor-expanding wit around µi0 and using the foregoing result, we have

wit =wi0 +
dwi0
dei0

dei0
dµi0

(µit − µi0) +Rit, (17)

where Rit is a polynomial in terms of order (µit−µi0)2 and higher. Using (14), Assumption 2,

and (µit− µi0)2 = [µit− zi− (µi0− zi)]2, observe that terms of order (µit− µi0)2 are of order

δ and νi(t−j), for j ∈ {1, ..., t}.
I now prove (i) by induction. The proof of (ii) is directly analogous.

Induction step for part (i):

The induction hypothesis is that
∫ 1

0
[µiN − zi] di < 0 for some N > 1. Assumptions 1

and 2 ensure that µiN > 0 and eiN > 0. From equation (15),

∫ 1

0

[µi(N+1) − zi] di =
N+1∑
j=2

∫ 1

0

[
wi(N+1−j)

ei(N+1−j)
Covi(N+1−j)|zi

[
j−1∏
k=1

(1− wi(N+1−k)), νi(N+1−j)

]]
di

+

∫ 1

0

(
N∏
k=1

(1− wi(N+1−k))

)
(1− wi0)[µi0 − zi] di.

Pull 1 − wiN out of the product inside the covariance operator and linearly distribute the
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operator:

∫ 1

0

[µi(N+1) − zi] di =
N+1∑
j=2

∫ 1

0

[
wi(N+1−j)

ei(N+1−j)
Covi(N+1−j)|zi

[
j−1∏
k=2

(1− wi(N+1−k)), νi(N+1−j)

]]
di

−
N+1∑
j=2

∫ 1

0

[
wi(N+1−j)

ei(N+1−j)
Covi(N+1−j)|zi

[
wiN

j−1∏
k=2

(1− wi(N+1−k)), νi(N+1−j)

]]
di

+

∫ 1

0

(
N∏
k=1

(1− wi(N+1−k))

)
(1− wi0)[µi0 − zi] di.

The summand in the top line is zero for j = 2. Relabel the indices in the top line to obtain

∫ 1

0

[µi(N+1) − zi] di =
N∑
j=2

∫ 1

0

[
wi(N−j)
ei(N−j)

Covi(N−j)|zi

[
j−1∏
k=1

(1− wi(N−k)), νi(N−j)

]]
di

−
N+1∑
j=2

∫ 1

0

[
wi(N+1−j)

ei(N+1−j)
Covi(N+1−j)|zi

[
wiN

j−1∏
k=2

(1− wi(N+1−k)), νi(N+1−j)

]]
di

+

∫ 1

0

(
N∏
k=1

(1− wi(N+1−k))

)
(1− wi0)[µi0 − zi] di.

Substitute for the top line from (15):∫ 1

0

[µi(N+1) − zi] di =

∫ 1

0

[µiN − zi] di

−
N+1∑
j=2

∫ 1

0

wi(N+1−j)

ei(N+1−j)
Covi(N+1−j)|zi

[
wiN

j−1∏
k=2

(1− wi(N+1−k)), νi(N+1−j)

]
di

+

∫ 1

0

(
N∏
k=1

(1− wi(N+1−k))

)
(1− wi0)[µi0 − zi] di.

The induction hypothesis then implies

∫ 1

0

[µi(N+1) − zi] di <−
N+1∑
j=2

∫ 1

0

wi(N+1−j)

ei(N+1−j)
Covi(N+1−j)|zi

[
wiN

j−1∏
k=2

(1− wi(N+1−k)), νi(N+1−j)

]
di

+

∫ 1

0

(
N∏
k=1

(1− wi(N+1−k))

)
(1− wi0)[µi0 − zi] di.
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Substitute for wiN from (17) to obtain:

∫ 1

0

[µi(N+1) − zi] di <−
N∑
j=1

∫ 1

0

dwi0
dei0

dei0
dµi0

wi(N−j)
ei(N−j)

Covi(N−j)|zi

[
(µiN − zi)

j−1∏
k=1

(1− wi(N−k)), νi(N−j)

]
di

+

∫ 1

0

(
N∏
k=1

(1− wi(N+1−k))

)
(1− wi0)[µi0 − zi] di

−
N∑
j=1

∫ 1

0

wi(N−j)
ei(N−j)

Covi(N−j)|zi

[
RiN

j−1∏
k=1

(1− wi(N−k)), νi(N−j)

]
di.

The final line becomes arbitrarily small as δ and the moments of the νit become small. Thus,

under the conditions of the proposition,

∫ 1

0

[µi(N+1) − zi] di <−
N∑
j=1

∫ 1

0

dwi0
dei0

dei0
dµi0

wi(N−j)
ei(N−j)

Covi(N−j)|zi

[
(µiN − zi)

j−1∏
k=1

(1− wi(N−k)), νi(N−j)

]
di

+

∫ 1

0

(
N∏
k=1

(1− wi(N+1−k))

)
(1− wi0)[µi0 − zi] di+

∫ 1

0

Xi(N+1) di,

where Xi(N+1) is arbitrarily small. Use the relationship between covariances and expecta-

tions, the fact that the νit are mean-zero, and the law of iterated expectations:

∫ 1

0

[µi(N+1) − zi] di <−
∫ 1

0

dwi0
dei0

dei0
dµi0

(µiN − zi)
N∑
j=1

wi(N−j)
ei(N−j)

νi(N−j)

j−1∏
k=1

(1− wi(N−k)) di

+

∫ 1

0

(
N∏
k=1

(1− wi(N+1−k))

)
(1− wi0)[µi0 − zi] di+

∫ 1

0

Xi(N+1) di.

Substitute for the summation on the top line from (14):∫ 1

0

[µi(N+1) − zi] di

<−
∫ 1

0

dwi0
dei0

dei0
dµi0

(µiN − zi)2 di+

∫ 1

0

(
N∏
k=1

(1− wi(N+1−k))

)
(1− wi0)[µi0 − zi] di

+

∫ 1

0

dwi0
dei0

dei0
dµi0

(µiN − zi)

(
N−1∏
k=1

(1− wi(N−k))

)
(1− wi0)[µi0 − zi] di+

∫ 1

0

Xi(N+1) di.
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If dwi0/dei0 > 0, then Assumption 2 implies that∫ 1

0

[µi(N+1) − zi] di−
∫ 1

0

Xi(N+1) di

<−
∫ 1

0

dwi0
dei0

dei0
dµi0

(µiN − zi)2 di

+ δ

∫ 1

0

(
N−1∏
k=1

(1− wi(N−k))

)
(1− wi0)

[
(1− wiN) +

dwi0
dei0

dei0
dµi0
|µiN − zi|

]
di.

The right-hand side is strictly negative for all δ < δ̂ when δ̂ is defined as

δ̂ ,

∫ 1

0
dwi0

dei0

dei0
dµi0

(µiN − zi)2 di∫ 1

0

(∏N−1
k=1 (1− wi(N−k))

)
(1− wi0)

[
(1− wiN) + dwi0

dei0

dei0
dµi0
|µiN − zi|

]
di
.

dwi0/dei0 > 0 implies that δ̂ > 0, and Lemma 1 shows that the conditions of part (i) imply

that dwi0/dei0 > 0. Because Xi(N+1) becomes arbitrarily small as δ and the moments of the

νit become small, there exists
ˆ̂
δ ∈ (0, δ̂) such that, when the conditions of the proposition

and δ ≤ ˆ̂
δ hold, ∫ 1

0

[µi(N+1) − zi] di < 0.

We have proved the induction step.

Basis step for part (i):

From (13) and properties of νi1,∫ 1

0

[µi2 − zi] di =

∫ 1

0

[
(1− wi1)(µi1 − zi) +

wi1
ei1

νi1

]
di

=

∫ 1

0

[
(1− wi1)(1− wi0)(µi0 − zi) + (1− wi1)

wi0
ei0

νi0 +
wi1
ei1

νi1

]
di

=

∫ 1

0

[
(1− wi1)(1− wi0)(µi0 − zi) + (1− wi1)

wi0
ei0

νi0

]
di.
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Substitute for wi1 from (17) and use properties of νi0:∫ 1

0

[µi2 − zi] di =

∫ 1

0

(1− wi1)(1− wi0)(µi0 − zi) di−
∫ 1

0

dwi0
dei0

dei0
dµi0

(µi1 − zi)
wi0
ei0

νi0 di

−
∫ 1

0

Ri1
wi0
ei0

νi0 di.

Use (12) and properties of νi0:∫ 1

0

[µi2 − zi] di+

∫ 1

0

Ri1
wi0
ei0

νi0 di =−
∫ 1

0

dwi0
dei0

dei0
dµi0

(
wi0
ei0

)2

ν2i0 di+

∫ 1

0

(1− wi1)(1− wi0)(µi0 − zi) di.

Assumption 2 implies∫ 1

0

[µi2 − zi] di+

∫ 1

0

Ri1
wi0
ei0

νi0 di <−
∫ 1

0

dwi0
dei0

dei0
dµi0

(
wi0
ei0

)2

ν2i0 di+ δ

∫ 1

0

(1− wi1)(1− wi0) di.

The right-hand side is strictly negative for all δ < δ̂ when δ̂ is defined as

δ̂ ,

∫ 1

0
dwi0

dei0

dei0
dµi0

(
wi0

ei0

)2
ν2i0 di∫ 1

0
(1− wi1)(1− wi0) di

.

dwi0/dei0 > 0 implies that δ̂ > 0, and Lemma 1 shows that the conditions in part (i) imply

that dwi0/dei0 > 0. The term with Ri1 becomes arbitrarily small as δ and the moments

of the νit become small. So there exists
ˆ̂
δ ∈ (0, δ̂) such that, when the conditions of the

proposition and δ ≤ ˆ̂
δ hold, ∫ 1

0

[µi2 − zi] di < 0.

We have proved the basis step.
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Appendix

Appendix A extends the analysis of Section 2 to the case of forward-looking agents. Ap-
pendix B provides numerical examples. Appendix C formally demonstrates why an individual
agent does not expect to become overconfident.

A Forward-Looking Effort Choices

In Section 2, I assumed that agents choose effort myopically. I now extend the analysis of
Section 2 to the case of forward-looking agents, who account for the informational value of
their effort choices.38

Agents know the world will end after period 2. Agents now choose effort to maximize
expected present value with per-period discount factor β ∈ (0, 1). For exposition, follow
Section 2 in assuming that zi and Σi0 are the same across agents and also assume that ci(·)
is the same for all agents. Following the previous derivation,

µ̄2 =z̄ −
∫ 1

0

w(ei1,Σi1) [µi1 − µ̄1] di, (A-1)

with ∫ 1

0

w(ei1,Σi1) [µi1 − µ̄1] di =w2
i0

f(ei0)

e2i0

∫ 1

0

∂w(ei1,Σi1)

∂ei1

dei1
dµi1

di. (A-2)

In the final period, agents choose effort such that

c′i(e
∗
i2) = µi2.

Because e∗i2 is independent of Σi2, agent i’s period 2 value function is also independent of
Σi2. We have

Vi2(µi2) = max
ei2

Ei2 [ei2zi − c(ei2)]

and, by the envelope theorem,
V ′i2(µi2) = e∗i2(µi2).

In period 1, agent i solves:

Vi1(µi1,Σi1) = max
ei1

Ei1

[
ei1zi − ci(ei1) + βVi2(µi2)

]
.

The first-order condition is:

c′i(ei1) = µi1 + βEi1

[
e∗i2(µi2)

dµi2
dei2

]
.

38Heidhues et al. (2018) also extend their primary analysis to forward-looking agents. I cannot use their
proof technique because they are interested in the long-run limit distribution of beliefs. Here beliefs always
do eventually converge to the true value of ability. I am instead interested in average beliefs after a finite
number of observations. The main text describes further differences between the two papers.
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The new term on the right-hand side captures agents’ recognition of the informational value
of effort. Observe that:

Ei1

[
dµi2
dei1

]
=Ei1

[
∂w(ei1,Σi1)

∂ei1

[
zi − µi1 +

√
f(ei1)

ei1
εi1

]
+

1

2
w(ei1,Σi1)

f ′(ei1)

ei1
√
f(ei1)

εi1

− w(ei1,Σi1)

√
f(ei1)

e2i1
εi1

]
=0.

A Bayesian agent does not expect his actions to change his central estimate in one direction
or the other. The first-order condition becomes

0 =µi1 − c′i(e∗i1) + βCovi1

(
e∗i2(µi2),

dµi2
dei1

)
,

which defines e∗i1 as a function of µi1 and Σi1. For given e∗i1, µi1 does not affect the covariance
in the second line. The right-hand side therefore depends directly on µi1 only through the
first term, so e∗i1 increases in µi1 if the second-order condition holds at time 1.39 In that
case, the right-hand side of equation (A-2) is strictly positive if ∂wi1/∂ei1 > 0 and is strictly
negative if ∂wi1/∂ei1 < 0. From equation (A-1), forward-looking agents with ∂wi1/∂ei1 > 0
become underconfident on average by period 2 and forward-looking agents with ∂wi1/∂ei1 < 0
become overconfident on average by period 2. This is the same result as in the analysis of
myopic agents, even though the chosen levels of effort will be different.

B Numerical Examples

I now consider numerical examples, using an infinite-horizon version of the setting from
Section 2. Under the parameterization, the results are nearly identical to instead using the
truncated-normal prior from Section 4 with ai = 0 and bi =∞. Let zi = µi0 = 20, Σi0 = 16,
f(eit) = 16 [eit]

α, and ci(eit) = 10 e2it. Note that z̄ = zi and, defining χ as in Section 4,
χ(eit) = α. From (4), observe that ∂wi0/∂ei0 > 0 if and only if χ(ei0) < 2. I simulate 1
million agents.

The top left panel of Figure A-1 shows that, as demonstrated analytically, agents become
overconfident on average for α > 2 and become underconfident on average for α < 2. The
degree of over- or underconfidence is larger when α is farther from 2. As time passes, agents’
average beliefs converge towards their true ability, but average biases remain even after 100
periods.

39It is well-known that the second-order condition may not hold in models with active learning because the
value function is convex in the priors (Nyarko, 1994). Following Easley and Kiefer (1988), the second-order
condition holds if c′′i (·) is sufficiently large or β is sufficiently small. Failure of the second-order condition
can lead to very different types of policy programs, beyond the scope of the present analysis (see Balvers
and Cosimano, 1993).
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The remaining panels of Figure A-1 fix α = 0, so that the variance of rewards is inde-
pendent of effort in these three panels. The top right panel plots the distribution of µit for
t ∈ {1, 2, 3, 4, 5, 10}. µi1 is normally distributed but the other distributions are skewed.40

The distribution of µit becomes progressively narrower as data accumulate.
The lower left panel of Figure A-1 confirms the results of Proposition 1: µ̄1 equals z̄ but

µ̄t drops below z̄ for t > 1. µ̄t does approach z̄ again as t goes to infinity, but this approach
is slow. The maximum average bias arises in period 4. The average bias is still 78% of
this maximum in period 10 and 12% of this maximum in period 100. The circles show that
agents’ uncertainty about their ability does decline quickly as they observe additional data,
but their beliefs nonetheless remain biased on average.

The lower right panel plots Cov[µit, wit] (crosses) as well as the correlation (circles) be-
tween µit and wit. The covariance and correlation are positive because agents with large µit
choose high effort eit and because wit increases in eit. The covariance is especially positive
in early periods when agents are most uncertain about their own ability. The covariance
approaches zero after the first few periods not because µit and wit become uncorrelated over
long horizons (the correlation in fact remains clearly positive even at long horizons) but be-
cause the variance of each variable declines strongly as agents become more certain of their
ability.

B.1 Forward-Looking Agents

Now consider the implications of dynamically optimizing effort. Let Ji(µit,Σit) denote the
present value of agent i’s optimal policy program from any time t with estimate µit and
variance Σit. The agent’s effort choices and value function solve the following Bellman
equation:

Ji(µit,Σit) = max
eit

Eit
[
πit − ci(eit) + βJi(µi(t+1),Σi(t+1))

]
,

where the agent’s per-period discount factor is β ∈ (0, 1). I solve the Bellman equation via
value function iteration.41 The left panel of Figure A-2 considers the role of α, again for
a population of 1 million agents. The solid lines give µ̄t for myopic agents and the dotted
lines give µ̄t for forward-looking agents with β = 0.5.42 We see that mean beliefs follow
remarkably similar paths in the two populations, even though the forward-looking agents on
average choose greater effort for all α. The right panel sets α = 0 and plots the percentage
difference between myopic agents and forward-looking agents with β = 0.9. Active learning

40This skew arises because, first, µi(t+1) depends on wit (which is a nonlinear function of µit) and, second,
because the realized signal πit/eit is a nonlinear function of eit. Both sources of skewness vanish when
f(eit) = Ae2it for some A > 0.

41I use the collocation method, with 102 Chebyshev nodes and 102 Chebyshev basis functions. I integrate
via Gauss-Legendre quadrature. The domain of approximation for µit extends from 1 to 50, and the domain
of approximation for Σit ranges from 0 to (11/10)Σi0. To simulate, I parallelize over 1 million agents using
the University of Arizona High Performance Computing facility.

42I use β = 0.5 in this first analysis because the model becomes more difficult to solve with β = 0.9 and
α large.
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(a) µ̄t against α (b) Distribution of µit

(c) µ̄t and Σ̄t (d) Cov(µit, wit) and Correl(µit, wit)

Figure A-1: The top left panel varies χ(·) = α. In the other panels, χ(·) = α = 0. The dashed
horizontal (vertical) line in the top left (right) panel indicates the true ability zi = z̄ = 20.
All plots sample one million trajectories for εit.
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(a) µ̄t against α (b) µ̄t, ēt, and Σ̄t

Figure A-2: Left: Average estimates for myopic (solid) and forward-looking agents (β = 0.5,
dotted) against χ(·) = α. Right: The difference in average effort, estimates, and uncertainty
between a myopic agent and a forward-looking agent (β = 0.9), with χ(·) = α = 0. All plots
sample 1 million trajectories for εit.

(i.e., experimentation) motivations matter: forward-looking agents choose higher effort on
average (circles) in order to learn their own ability faster (squares). Remarkably, however,
µ̄t (crosses) differs by less than 0.015% between the forward-looking and myopic agents.
Forward-looking agents become underconfident almost exactly as shown in the lower left
panel of Figure A-1, despite reducing their uncertainty faster.

C Agent i’s beliefs are martingales

How can a rational, Bayesian agent expect to become either overconfident or underconfident?
It is important to recognize that I have described the evolution of average beliefs under the
true data generating process: I measure over- and underconfidence with respect to agents’
true abilities. An individual agent does not know her true ability. In the setting of Section 2,
let µ̃it denote agent i’s time 0 expectation of her own time t ability estimate µit:

µ̃i1 =

∫ ∫ [
[1− w(ei0,Σi0)]µi0 + w(ei0,Σi0)zi + w(ei0,Σi0)

√
f(ei0)

ei0
εi0

]
hi0(zi, εi0) dεi0 dzi

=µ0,

where hi0(·, ·) is the joint density under agent i’s time 0 prior. We earlier saw that period 1
own-ability estimates are µ0 on average, and we now see that each agent indeed expects this
outcome. Now consider agent i’s expectations of her own period 2 beliefs:

µ̃i2 =

∫ ∫ ∫ [
[1− w(ei1,Σi1)]µi1 + w(ei1,Σi1)zi + w(ei1,Σi1)

√
f(ei1)

ei1
εi1

]
hi0(zi, εi0, εi1) dεi0 dεi1 dzi,
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where µi1 and ei1 depend on εi0 and zi. We have:

µ̃i2 =µi0 − w(ei0,Σi0)

√
f(ei0)

ei0
Covi0 [w(ei1,Σi1), εi0] + [1− w(ei0,Σi0)]Covi0 [w(ei1,Σi1), zi] ,

where Covi0 indicates a covariance based on the time 0 information set of agent i. Applying
Stein’s Lemma to each covariance yields:

µ̃i2 =µ0 − w2
i0

f(ei0)

e2i0
Ei0

[
∂w(ei1,Σi1)

∂ei1

dei1
dµi1

]
+ wi0[1− wi0]Σi0Ei0

[
∂w(ei1,Σi1)

∂ei1

dei1
dµi1

]
=µi0,

where the middle term on the right-hand side of the first line is the right-hand side of
equation (6) and the second equality uses, from equation (4), wi0f(ei0)/e

2
i0 = [1 − wi0]Σi0.

Agents anticipate the covariance between wi1 and εi0 captured in equation (6). Because
agents do not know zi, they also account for the covariance between wi1 and zi. These two
covariances exactly cancel, leaving only the µi0.

43 As is true in general, the Bayesian agent’s
posterior belief is a martingale. She does not expect her central estimate of her own ability
to move in any particular way from her initial best estimate.44 Each agent knows that the
population of agents will tend to develop misplaced confidence on average, but each agent
can do no better than to update as a Bayesian using whatever particular signals she happens
to receive.
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