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Appendices to “Innovation-Led Transitions in Energy

Supply”

Appendix A details the calibration and solution method. Appendix B reports further ro-
bustness checks. Appendix C contains a numerical example of the main analytic results.
Appendix D considers the stability of each period’s equilibrium. Appendix E contains proofs
and derivations.

A Calibration, Climate Change Modeling, and Solu-

tion Method

Let resources 1, 2, and 3 represent coal, natural gas, and renewables, respectively. I use a
10-year timestep and a policy horizon of 400 years.

Begin by considering the supply of each type of resource. Marten et al. (2019) follow,
among others, Haggerty et al. (2015) in using a long-run supply elasticity of 2.4 for coal.
Marten et al. (2019) follow Arora (2014) in using a long-run supply elasticity of 0.5 for natural
gas. Based on these, I use ψ1 = 2.4 and ψ2 = 0.5. Drawing in part on the work of others,
Johnson et al. (2017) describe the supply of power from solar photovoltaics, concentrating
solar power, onshore wind, and offshore wind available by region of the world and by resource
quality. Costs are reported in dollars per unit power and resource potential is reported
in units of energy. The desired parameter is the elasticity of the resource and not of its
electricity. So I must convert dollars per units of delivered electric power to dollars per unit
of energy in the resource (with my calibrated technology parameters including the conversion
of energy to power). I convert costs to dollars per unit electrical energy by using the capacity
factor reported for each resource quality bin in each region. This capacity factor adjusts for
the fact that the power producible from renewable resources is not available throughout the
day or throughout the year. In my setting, capacity factors are reflected in the technology
and share parameters, and the elasticity of substitution σ can be interpreted as imposing a
larger capacity factor penalty at higher penetrations. Finally, I convert dollars per unit of
electrical energy to dollars per units of energy in the resource by using the efficiency of each
type of generator. From the Energy Information Administration’s Annual Energy Review
2011, the efficiencies are 12% for solar photovoltaics, 21% for solar thermal, and 26% for
wind. Aggregating across resource types and regions, I estimate ψ3 = 3.00.

Next consider the elasticities of substitution in the final-good and intermediate-good pro-
duction functions. Papageorgiou et al. (2017) estimate an elasticity of substitution between
clean and dirty energy capacity of around 1.8, and Stern (2012) estimates an elasticity of
substitution between coal and gas of 1.426, with a standard error of 0.387. Version 6 of the
EPPA model uses an elasticity of substitution of 1.5 (Chen et al., 2016), and the ADAGE
model uses an elasticity of substitution of 1.25 (Ross, 2009). In line with these, I fix ε = 1.8.
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Much literature has estimated the elasticity of substitution between energy and other
inputs, but there is not much literature on the elasticity of substitution between resources and
other inputs in the production of energy. I fix σ = 0.4 based on several lines of evidence. The
most directly relevant calibration is the calibration of the energy supply sector’s production
function in Lemoine (2020). This calibration assigns an elasticity of substitution of 0.42 to
the energy supply sector, based on estimates in Koesler and Schymura (2015) implemented
by Marten and Garbaccio (2018). Two other lines of evidence provide support from other
industries. Okagawa and Ban (2008) estimate the elasticity of substitution between capital-
labor and energy inputs as being around 0.5, and Atalay (2017, Appendix B) estimates an
elasticity of substitution between a capital-labor composite and intermediates (potentially
including energy) of 0.4–0.8. Some computable general equilibrium models of energy use
assign an elasticity of substitution of 0.3 to nearly all sectors (see Turner, 2009), version 6
of the EPPA model uses an elasticity of substitution of 0.1 between resources and a capital-
labor composite in electricity production (Chen et al., 2016), and ADAGE uses an elasticity
of substitution of 0.6 between resources and a materials-value-added composite (Ross, 2009).

I fix two less important parameters, κ and α, at 0.5. The theory showed that the critical
share parameters were the νj, not κ, and sensitivity tests support this conclusion.35

The remaining parameters are each Aj0, each Ψj, each νj, η, γ, and AY . I describe η and
γ below. For given values of these two parameters, I calibrate the other ten parameters so
that the first period’s equilibrium Y1, Rj1, sj1, and pj1 match data (see Table A-2). World
Bank data for global output from 2011–2015 imply that the value of the final good produced
over the first ten-year timestep is 765 trillion year 2014 dollars. Initial resource consumption
comes from summing consumption from 2011–2015, as reported in the BP Statistical Review
of World Energy.36 The International Energy Agency’s World Energy Investment 2017 gives
R&D spending on clean energy, on thermal generation, on coal production, and on oil and
gas production. I divide thermal expenditures equally between coal and gas and attribute all
oil and gas spending to gas. The first period must therefore have 12% of scientists working
on coal, 65% of them working on gas, and 23% of them working on renewables. I calibrate
each pj1 to be consistent with levelized costs from IEA (2015). Using the market discount
rate of 7%, the median cost for coal is around 80 $/MWh, for natural gas combined cycle
plants is around 100 $/MWh, and for solar photovoltaics is around 150 $/MWh.37

These initial conditions and guesses for the Aj0 and Ψj combine to yield the Yj1. I then

35One might consider fixing κ = 0.04 based on Golosov et al. (2014). However, their parameter corresponds
to the factor share of energy in Cobb-Douglas final good production, whereas here the relevant production
function is for energy and is not Cobb-Douglas.

36Natural gas and coal are used for electricity generation, heating, and industrial processes. I here ab-
stract from these differences. To obtain the energetic content of renewables from the reported tonnes of oil
equivalent, use BP’s assumed thermal efficiency of 38% to obtain the equivalent electrical energy and then
use a 20% generator efficiency to convert electrical energy to energy in the renewable resource.

37These costs have changed over time and can be affected by pollution regulations. Experiments suggest
that results are not highly sensitive to these choices.
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use the ratio of the final-good firms’ first-order conditions and the adding-up constraint on
the share parameters to solve for the νj:

ν3 =
1

1 + p2,1
p3,1

(
Y2,1
Y3,1

)1/ε
(

1 + p1,1
p2,1

(
Y1,1
Y2,1

)1/ε
) ,

ν2 =
(1− ν3)

1 + p1,1
p2,1

(
Y1,1
Y2,1

)1/ε
,

ν1 =1− ν2 − ν3.

Now consider AY . The climate-economy integrated assessment literature typically models
climate change as reducing total production. Letting Tt be surface temperature relative to
1900, we have, following Nordhaus (2017),

AY t =
[
1− d T 2

t

]
ÃY t

with d = 0.00236. The robustness check with higher damages increases d to 0.0228, from
the mean of the calibration to Pindyck (2019) in Appendix C.1 of Lemoine (2021), and
caps damages at 85%. In a change of notation, AY t evolves over time in the numerical
application. ÃY t is total factor productivity, which follows DICE-2016R (Nordhaus, 2017) in
growing initially at 1.48% annually, with the growth rate declining at a rate of 0.5% annually:

ÃY (t+1) = ÃY t

9∏
s=0

[
1 + (0.0148)e−0.005∗(10∗(t−1)+s)

]
.

For the initial conditions and any given guesses for the Aj0 and Ψj, I set ÃY 1 to ensure that
initial final good production matches Y0.

We now have the νj, ÃY 1 (and thus AY 1), the initial conditions, and the guesses for the
Aj0 and the Ψj. The levels of the intermediate goods’ prices then follow from the final-good
firms’ first-order conditions. We now require six conditions to pin down the Aj0 and the Ψj.
The zero-profit conditions for intermediate-good firms provide three conditions. The condi-
tions on the initial research allocation provide two more conditions, as Π1,1/Π2,1 = 1 and
Π1,1/Π3,1 = 1. These two conditions can be thought of as defining A2,0 and A3,0 as functions
of A1,0 and the Ψj. Final-good firms’ zero-profit condition provides the remaining condi-
tion, which can be thought of as pinning down the level of the final-good firms’ first-order
conditions. I begin solving any given system by minimizing the sum of squared percentage
deviations under constraints on the share parameters (as with Matlab fmincon) and then
using that result to obtain a more precise solution by solving the system of equations exactly
(as with Matlab fsolve).
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Now consider the innovation function. Only the product of η and γ is important for
improvements in technology over time. I therefore fix η at 1 and explore several values for γ,
as described in the main text. Changes in γ do not affect the realized first-period technology
as the calibration of the Aj0 adjusts to offset γ. Instead, changes in γ affect how rapidly
technology evolves after the first period. Different values of γ can be interpreted as different
step sizes for research advances, as different probabilities of research successes, and/or as
different sizes for the population of researchers.

Resource use generates carbon dioxide emissions that eventually cause warming. Time t
emissions are

Et = ē+
3∑
j=1

ejRjt.

I calculate the emission intensities of coal and gas by dividing emissions for each resource from
2010–2014 (from the Carbon Dioxide Information Analysis Center) by resource consumption
over the initial timestep. Other emissions ē come from summing emissions from all other
reported categories, which includes emissions from oil.38 The renewable resource does not
generate emissions (e3 = 0). The evolution of carbon and temperature over time follow
DICE-2016R (Nordhaus, 2017). Stacking the time t atmospheric, upper ocean, and deep
ocean stocks of carbon in a column vector Mt, the dynamics of the carbon stocks are

Mt+1 = Λ2Mt +

Et0
0

 ,
where Λ is a 3×3 matrix with positive entries that sum to 1 within each column and squaring
it adjusts for using a 10-year timestep. Surface temperature evolves as:

Tt+1 = Tt + C1

[
f ln(Matm

t+1 /Mpre)/ ln(2)− f

s
Tt + C3(T ot − Tt)

]
,

where Matm
t+1 is the atmospheric stock of carbon (i.e., the first entry of Mt+1), Mpre is the

pre-industrial stock of atmospheric carbon, and T ot is time t ocean temperature. That ocean
temperature in turn evolves as:

T ot+1 = C4Tt + (1− C4)T ot .

I adjust C4 and C1 for a 10-year timestep.
In contrast to the DICE climate-economy model, abatement cost emerges endogenously

within a period from the tradeoffs between fuels and evolves endogenously as technologies

38If there were no emissions from coal or gas, the (mostly oil) emissions ē would raise global temperature
by 1.4◦C in 100 years and by 3.5◦C in 400 years. Future analysis could allow ē to vary over time. This
extension is unlikely to affect the qualitative conclusions.
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and resource depletion change over time. Using γ = 1 (γ = 6) and the initial period, a tax
of 1 $/tCO2 reduces emissions by 13% (10%), a tax of 10 $/tCO2 reduces emissions by 17%
(15%), a tax of 50 $/tCO2 reduces emissions by 18% (18%), and a tax of 100 $/tCO2 reduces
emissions by 20% (19%). There is no one agreed-upon estimate for emission reductions from
current taxes. The emission reductions from the smaller taxes are a bit larger than for
industrial emissions in DICE-2016R, and the emission reductions from the larger taxes are a
bit smaller than in DICE-2016R. The tax required to obtain a 5% reduction in emissions is
very close to the estimate for the U.S. in Morris et al. (2012), which is encouraging because
these emission reductions are close to the region of interest for optimal policy.

The base specification’s preferences follow DICE-2016R. Per-period utility takes the fa-
miliar power form in per-capita consumption, with elasticity of intertemporal substitution
EIS. The annual utility discount rate is ρ, set to 1.5%. Population Lt evolves as in DICE-
2016R:

Lt = L∞

(
L1

L∞

)e−gL(t−1)

,

where I convert the DICE-2016R equation into a differential equation (with time in decades)
and solve it. The policymaker seeks to maximize utilitarian welfare W :

W =
40∑
t=1

Lt
(1 + ρ)10(t−1)

(ct/Lt)
1−1/EIS

1− 1/EIS
.

Table A-1 reports parameter values that are fixed across all specifications. Table A-2
reports market data used to calculate remaining parameters.

In the no-policy simulations, I solve each period’s equilibrium by solving for the research
allocation that maximizes scientists’ expected profits within a search for the extraction allo-
cation that clears the market for resources. For any given extraction allocation, I first check
whether a case with all scientists in the renewable sector generates greater expected profits
in that sector than in any other. If it does, the corner allocation is an equilibrium, but if it
does not, I solve for the research allocation between the coal and gas sectors conditional on
no scientists working in the renewable sector. If this allocation is also not an equilibrium,
I solve for the equilibrium allocation between coal and gas conditional on any number of
scientists in renewables and search for the number of scientists in working in renewables that
equalizes that sector’s expected profit to the expected profit from the other sectors that have
nonzero scientists.

To optimize policy, I search for the policy and extraction trajectories that maximize
welfare while clearing the market. This is a mathematical program with equilibrium con-
straints, which can be quite difficult to solve. I solve it by allowing the policymaker to control
not only each period’s tax and/or research subsidy but also each period’s three extraction
variables, three technology variables, and five climate variables, subject to the transition
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equations holding at every period and to the resource markets clearing in every period.39

For each guess of controls, I solve for each period’s equilibrium allocation of scientists using
the rootfinding method described above. This problem is still a difficult bilevel programming
problem, with the lower level programming problem often finding corner solutions (i.e., it
is often true that some sector has no scientists). The key is that this form of the problem
allows for the provision of analytic gradients for the objective and constraints.40 Within
those analytic gradients, I obtain the derivatives of equilibrium scientists by applying the
implicit function theorem to the system of equations defined by equalized expected profits
(for those sectors for which scientists are interior) and by the constraint on total scientists. I
solve the model using the Knitro solver for Matlab (Byrd et al., 2006), trying several different
algorithms and retaining the best of the solutions.

39In the cases with the research control, I model the policymaker as choosing the number of clean scientists
directly, with the other two types of scientists clearing their markets conditional on this choice and with
the level of the subsidy implied by the resulting research allocation. This works better than having the
policymaker choose the subsidy directly.

40We essentially have a series of static problems once we condition on the expanded set of controls.
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Table A-1: Parameters fixed across specifications.

Parameter Value Description

Market parameters
ε 1.8 Elasticity of substitution in final-good production
σ 0.4 Elasticity of substitution in intermediate-good production
κ 0.5 Share parameter in intermediate-good production
α 0.5 Share parameter in machine service production

ψ1, ψ2, ψ3 2.4, 0.5, 3 Resource supply elasticities
η 1 Probability of research success

Welfare parameters
ρ 0.015 Annual utility discount rate

EIS 1/1.45 Elasticity of intertemporal substitution
L1 7403 Year 2015 population (millions)
L∞ 11500 Asymptotic population (millions)
δ 0.7 Rate of approach to asymptotic population level

Climate parameters
d 0.00236 Damage parameter

e1, e2, e3 0.0250, 0.0139, 0 Emission intensity of resources (Gt C per EJ)
ē 37.7 Exogenous emissions per timestep (Gt C per decade)

Mpre 588 Pre-industrial atmospheric CO2 (Gt C)
Λ11 0.88 Carbon transfer coefficient for atmosphere to atmosphere
Λ12 0.196 Carbon transfer coefficient for upper ocean to atmosphere
Λ13 0 Carbon transfer coefficient for deep ocean to atmosphere
Λ21 0.12 Carbon transfer coefficient for atmosphere to upper ocean
Λ22 0.797 Carbon transfer coefficient for upper ocean to upper ocean
Λ23 0.0015 Carbon transfer coefficient for lower ocean to upper ocean
Λ31 0 Carbon transfer coefficient for atmosphere to lower ocean
Λ32 0.007 Carbon transfer coefficient for upper ocean to lower ocean
Λ33 0.9985 Carbon transfer coefficient for lower ocean to lower ocean
C1 0.2010 Warming delay parameter
C3 0.088 Parameter governing transfer of heat from ocean to surface
C4 0.05 Parameter governing transfer of heat from surface to ocean
f 3.6813 Forcing from doubling of CO2 (W/m2)
s 3.1 Equilibrium temperature change from doubling CO2 (◦Celsius)

Matm
1 861 Year 2015 atmospheric CO2 (Gt C)

Mup
1 460 Year 2015 biosphere and upper ocean CO2 (Gt C)

M lo
1 1740 Year 2015 lower ocean CO2 (Gt C)
T1 0.85 Year 2015 atmospheric temperature (◦Celsius from 1900)
T o
1 0.0068 Year 2015 ocean temperature (◦Celsius from 1900)
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Table A-2: Market data matched by the first period’s equilibrium (2011–2020). Resources
are ordered as coal, gas, renewable.

Endogenous Outcome Target Description

Y1 765 Global output in trillion year 2014 dollars
{R1,1, R2,1, R3,1} {1617, 1278, 224} Resource consumption in EJ
{p1,1, p2,1, p3,1} {80, 100, 150} Energy prices in $/MWh
{s1,1, s2,1, s3,1} {0.12, 0.65, 0.23} Shares of research
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B Additional Robustness Results

Tables A-3 and A-4 provide the analogues to the top four panels of Table 1 for the robustness
checks presented in Section 5.3 of the main text. Table A-5 reports robustness of the relative
value of policy to alternate calibrations. In all cases, the model is calibrated to match market
equilibrium as described in Appendix A.41

The first rows in each panel of Table A-5 repeat results familiar from the main text.
The second rows increase σ from 0.4 to 0.7, near the upper end of values consistent with

the literature (see Appendix A).42 Bringing σ this close to 1 generates qualitatively different
laissez-faire dynamics. In particular, coal now increases its share of resource use and research
over time. In the case of small advances, this greater role for coal is largely at the expense of
gas. Renewables actually do slowly increase their share of research over the next century but
never claim much more than 60% of research before declining again. Their share of supply
never exceeds 24%. In the case of large advances, renewables never surpass a 47% share of
research or a 24% share of supply within 400 years. These dynamics are quite different from
the main text’s base case. As in that calibration, coal’s initial technology is of higher quality
than the technology used with either gas or renewables. With this larger value for σ, the
supply expansion effect is too weak to drive a stark transition to either resource within the
400 year horizon. This case does not demonstrate the corner solutions typical of prior work
on climate and directed technical change that implicitly fix σ = 1, but its high-coal, low-gas
laissez-faire trajectories seem less realistic than the base specification.

Even though emission-intensive coal dominates the resource mix, the smaller scale of
fossil resource use leads to slightly lower temperatures than in the base case. As a result of
coal’s greater entrenched advantage and of these lower temperatures, the policymaker now
declines to use much policy, declining to shift all researchers to the clean sector when using a
clean research subsidy and waiting at least 50 years to implement a nonnegligible standalone
emission tax. In previous work with a slightly larger elasticity of substitution (e.g., the
implementation of Acemoglu et al. (2012) in Greaker et al. (2018)), the extreme nature of
lock-in allowed the policymaker to phase out an emission tax over time once technology
advanced to the point where lock-in worked in favor of renewables. However, here the
emission tax increases to high levels even after an early research subsidy helps renewables
to dominate supply.

The third row in the top panel increases ε from 1.8 to 3.43 Laissez-faire dynamics are
qualitatively similar to the base case, except with a transition to renewables now not begin-

41I experimented with a value for σ of 0.1, but trajectories explode to over 35◦C, well past the point at
which losses from warming reach 100%.

42This value for σ is around the upper edge of values that can be successfully calibrated to market data.
Even here the fit to market data is not perfect for the case of large advances. Coal starts out with a slightly
greater share of research and resource supply than targeted, largely at the expense of renewables.

43Still-larger values lead to negative consumption per capita in laissez-faire in the case of small advances,
and even a value of 3 does so in the case of large advances (which is why this case is omitted from the table).
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Table A-3: Additional results for robustness to policymaking environment, for small advances
(γ = 1).

Policy Scenario

Model Version No policy Emission tax Research subsidy Both instruments

Emission Tax in 2015 ($ per tCO2)

Base - 2.5 - 7.3
50-Year Delay - 0.0 - 0.0
Less Discounting∗ - 863.3 - 20.5
Higher Damages∗∗ - 463.6 - 83.1

Renewables’ Share of Resources in 2015 (%)

Base 7.2 10.7 9.2 13.7
50-Year Delay 7.2 7.2 7.2 7.2
Less Discounting∗ 7.2 16.6 9.2 14.1
Higher Damages∗∗ 7.2 14.4 9.2 13.3

Renewables’ Share of Scientists in 2015 (%)

Base 23.3 24.1 100 100
50-Year Delay 23.3 23.3 23.3 23.3
Less Discounting∗ 23.3 64.6 100 100
Higher Damages∗∗ 23.3 49.0 100 60.7

Temperature in 2115 (◦C, relative to 1900)

Base 5.5 4.8 5.0 4.7
50-Year Delay 5.5 5.0 5.2 4.9
Less Discounting∗ 5.5 4.4 5.0 4.6
Higher Damages∗∗ 4.8 3.6 4.4 3.7
∗ Pure rate of time preference reduced from 1.5% to 0.01% per year, as in Stern (2007).
∗∗ Damages increased to calibration of Lemoine (2021), from survey evidence in Pindyck (2019).
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Table A-4: Additional results for robustness to policymaking environment, for large advances
(γ = 6).

Policy Scenario

Model Version No policy Emission tax Research subsidy Both instruments

Emission Tax in 2015 ($ per tCO2)

Base - 4.8 - 5.1
50-Year Delay - 0.0 - 0.0
Less Discounting∗ - 751.3 - 10.5
Higher Damages∗∗ - 477.2 - 106.1

Renewables’ Share of Resources in 2015 (%)

Base 7.2 10.5 12.5 16.7
50-Year Delay 7.2 7.2 7.2 7.2
Less Discounting∗ 7.2 16.1 12.8 17.4
Higher Damages∗∗ 7.2 14.5 12.8 17.6

Renewables’ Share of Scientists in 2015 (%)

Base 23.3 23.8 96.7 95.7
50-Year Delay 23.3 23.3 23.3 23.3
Less Discounting∗ 23.3 37.3 100 100
Higher Damages∗∗ 23.3 33.3 100 89.8

Temperature in 2115 (◦C, relative to 1900)

Base 7.7 7.0 5.7 5.5
50-Year Delay 7.7 7.0 7.2 7.2
Less Discounting∗ 7.7 5.0 5.7 5.4
Higher Damages∗∗ 6.5 4.1 4.9 4.1
∗ Pure rate of time preference reduced from 1.5% to 0.01% per year, as in Stern (2007).
∗∗ Damages increased to calibration of Lemoine (2021), from survey evidence in Pindyck (2019).
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Table A-5: Balanced growth equivalent gain under alternate specifications.

Policy Scenario

Specification Emission tax Research subsidy Both instruments

Small Advances
Base 1.6 2.6 3.1
Larger σ∗ 0.1 0.1 0.2
Larger ε∗∗ 1.5 0.2 5.2
Optimal Machine Subsidy 2.0 2.9 3.6

Large Advances
Base 4.8 12.3 14.4
Larger σ∗ 0.3 0.1 0.4
Optimal Machine Subsidy 7.1 12.9 15.2
∗ σ increased from 0.4 to 0.7.
∗∗ ε increased from 1.8 to 3.

ning within 400 years. The main policy difference is that the policymaker declines to shift
most scientists to the clean sector for around 200 years when using a standalone research
subsidy. The standalone research subsidy therefore creates little value. The reason for the
weak research subsidy is that a larger subsidy eventually drives consumption to extremely
low (and even negative) levels by exacerbating long-run warming. In contrast, the policy-
maker does choose to immediately shift all scientists to the clean sector when using both a
tax and a research subsidy. The emission tax controls long-run warming and the research
subsidy quickly ignites a transition, as in the main text. The combined policy again generates
substantially more value than does either standalone policy.

The final rows in each panel subsidize machine production to overcome distortions in-
duced by monopolists’ pricing. This subsidy reduces the consumer price pjxit of machines
from α to α2. This subsidy is present in “laissez-faire” as well as in the models with climate
policy. In order to preserve comparability with other specifications, the model is recali-
brated to match market equilibrium even with this subsidy. Results are similar to the base
specification.

C Numerical Example

A numerical example will make the analytic results more concrete. Let there be three types
of energy (N = 3), which differ only in their quality ν and in their initial technology. Let
the first type of energy represent coal, the second represent oil, and the third represent gas.
Looking back two hundred years, technologies for using coal were far more advanced than
technologies for using oil, which in turn were more developed than technologies for using

A-12



Lemoine Energy Transitions September 2020

(a) Research Shares with σ = 0.5 (b) Extraction Shares with σ = 0.5

(c) Research and Extraction Shares with σ = 1.5 (d) Historical Extraction Shares

Figure A-1: Top: An example of an innovation-led transition, with σ = 0.5. Bottom left:
An example of lock-in, with σ = 1.5. Resources 2 and 3 have nearly identical extraction
shares. Bottom right: Shares of global fossil energy supply, from Smil (2010).
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gas. I therefore fix the initial average quality of technology at 0.05 for coal, at 1% of this
value for oil, and at 0.1% of this value for gas. We can think of the quality of fossil fuel
resources as largely determined by the ratio of carbon to hydrogen bonds.44 Energy derives
from breaking hydrogen bonds. Fuels with a lot of carbon and little hydrogen are considered
to be of lower quality because they are bulkier and more polluting. Coal is mostly carbon,
oil has more hydrogen bonds per unit carbon, and natural gas has the most hydrogen bonds
per unit carbon. I therefore set ν1 = 0.27 (for coal), ν2 = 0.34 (for oil), and ν3 = 0.40 (for
gas).45

The top panels of Figure A-1 plot a case with σ = 0.5, and the lower left panel plots a case
with σ = 1.5. The “coal” sector 1 begins with the majority of extraction and research activity.
In the case of resource-saving technologies (bottom left), research activity and extraction are
locked-in to the “coal” sector 1, which attracts all research effort in all periods and increases
its share of resource extraction over time. In the case of resource-using technologies, we
see innovation-led transitions. Research begins transitioning immediately towards the “oil”
sector 2 (top left panel), and extraction eventually follows (top right panel). The “gas”
sector 3 does not attract any research effort for a while and maintains a very small share of
extraction even as oil displaces coal. However, after 20 periods, research effort shifts strongly
towards the gas sector, and extraction shifts towards the gas sector after 60 periods. In the
long run, all sectors attract identical shares of research effort and maintain stable shares of
extraction, with their ordering determined by the quality ν of each resource.

The endogenous dynamics of our setting with resource-using machines are qualitatively
similar to historical patterns. The bottom right panel of Figure A-1 plots resource shares
since 1800. The historical patterns in these shares are similar to the patterns that emerge
from our numerical simulations with resource-using machines: resource shares change rapidly
as a transition occurs, and transitions do not drive formerly dominant resources out of the
market. In fact, resource shares have been fairly stable since 1970. The historical patterns are
nothing like the patterns that emerge from our simulations with resource-saving machines.

D Tâtonnement Stability

One may be concerned that interior equilibria are not “natural” equilibria in the presence of
positive feedbacks from resource extraction to innovation and of potential complementarities.
Indeed, Acemoglu (2002) and Hart (2012) have emphasized the role of knowledge spillovers

44Smil (2017, 245) describes how oil is of higher quality than coal because it has higher energy density, is
cleaner, and is more transportable and storable. On page 270, he writes: “There has been a clear secular
shift toward higher-quality fuels, that is, from coals to crude oil and natural gas, a process that has resulted
in relative decarbonization (a rising H:C ratio) of global fossil fuel extraction. . . ”

45The remaining parameters are AY = 1, ε = 3, α = 0.5, κ = 0.5, ψ = 3, Ψ1 = Ψ2 = Ψ3 = 1, η = 1, and
γ = 0.5. The qualitative results are not sensitive to the choice of these parameters.
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in allowing interior research allocations to be stable in the long run. This appendix shows
that interior equilibria are in fact “natural” equilibria in the present setting.

Assume N = 2 and label the two sectors j and k. Rearranging equation (10) and using
sjt + skt = 1, we obtain sjt as an explicit function of Aj(t−1)/Ak(t−1) and of Rjt/Rkt at an
interior allocation.46 Substituting into equations (12) and (13) then gives us two equations
in two unknowns. This system defines the equilibrium Rjt and Rkt that clear the markets
for each resource.

Define the tâtonnement adjustment process and stability as follows:

Definition A-1. A tâtonnement adjustment process increases Rjt if equation (12) is not
satisfied and its right-hand side is greater, decreases Rjt if equation (12) is not satisfied and
its left-hand side is greater, and obeys analogous rules for Rkt using equation (13). I say that
an equilibrium (R∗jt, R

∗
kt) is tâtonnement-stable if and only if the tâtonnement adjustment

process leads to (R∗jt, R
∗
kt) from (Rjt, Rkt) sufficiently close to (R∗jt, R

∗
kt).

The tâtonnement process changes Rjt and Rkt so as to eliminate excess supply or demand,
and tâtonnement stability requires that this adjustment process converge to an equilibrium
point from values close to the equilibrium. This process is the same as that in Samuelson
(1941) and Arrow and Hurwicz (1958), except expressed in quantities rather than prices.
The following proposition shows that our equilibrium is tâtonnement-stable:

Proposition A-1. The equilibrium is tâtonnement-stable.

Proof. See Appendix E.2.

Now use equations (12) and (13) to define Rjt and Rkt as functions of sjt,
47 and then

restate equation (10) as a function only of sjt:

Πjt

Πkt

=
Aj(t−1)

Ak(t−1)

(
Aj(t−1) + ηγsjtAj(t−1)

Ak(t−1) + ηγ(1− sjt)Ak(t−1)

) −1
σ+α(1−σ)

(
Rjt(sjt)

Rkt(sjt)

) 1+σ/ψ
σ+α(1−σ)

[
Ψj

Ψk

] −σ/ψ
σ+α(1−σ)

.

(A-1)

The following corollary gives us the total derivative of Πjt/Πkt with respect to sjt:

Corollary A-2. The right-hand side of equation (A-1) strictly decreases in sjt.

Proof. See Appendix E.3

46Technically, this function should be written to allow for corner solutions in the research allocation. The
proof of stability will account for corner solutions.

47Rearrange equations (12) and (13) to put all terms on the right-hand side. For given sjt, the Jacobian
of this system in Rjt and Rkt is negative definite.
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The supply expansion effect makes the relative incentive to research in sector j decline in
the number of scientists working in sector j. However, when sector j’s share of resource
extraction increases in the relative quality of its technology, a positive feedback between
research and extraction maintains sector j’s research incentives even as more scientists move
to sector j. The proof shows, as is intuitive, that whether the relative incentive to research
in sector j declines in the number of scientists working in sector j is identical to whether
the equilibrium is tâtonnement-stable: tâtonnement-stability is not consistent with positive
feedbacks that are strong enough to overwhelm the supply expansion effect. And we have
already seen that interior equilibria are in fact tâtonnement-stable.

E Proofs and Derivations

This appendix derives useful intermediate results before providing proofs and derivations
omitted from the main text.

E.1 Useful Lemmas

First, note that equations (8) and (9) imply

Xjt =

[
1− κ
κ

pjRt

] ασ
σ(1−α)+α

[
Rjt

Ajt

] α
σ(1−α)+α

Ajt. (A-2)

Rearranging equation (10) and using sjt + skt = 1, we obtain sjt as an explicit function
of Aj(t−1)/Ak(t−1) and of Rjt/Rkt at an interior allocation:

sjt

(
Rjt

Rkt

,
Aj(t−1)

Ak(t−1)

)
=

(1 + ηγ)
(
Aj(t−1)

Ak(t−1)

)−(1−σ)(1−α)
Rjt
Rkt

[
[Rjt/Ψj ]

1/ψ

[Rkt/Ψk]1/ψ

]σ
− 1

ηγ + ηγ
(
Aj(t−1)

Ak(t−1)

)−(1−σ)(1−α)
Rjt
Rkt

[
[Rjt/Ψj ]1/ψ

[Rkt/Ψk]1/ψ

]σ . (A-3)

Let Σx,y represent the elasticity of x with respect to y, and let Σx,y|z represent the
elasticity of x with respect to y holding z constant. The following lemma establishes signs
and bounds for elasticities that will prove useful:

Lemma A-3. The following hold, with analogous results for sector k:

1. ΣYt,Yjt ,ΣYt,Ykt ∈ [0, 1] and ΣYt,Yjt + ΣYt,Ykt = 1.

2. ΣYjt,Rjt|Xjt ,ΣYjt,Xjt ∈ [0, 1] and ΣYjt,Rjt|Xjt + ΣYjt,Xjt = 1.

3. If σ < 1, then ΣYjt,Xjt → 0 as Aj(t−1) →∞ and ΣYkt,Xkt → 0 as Ak(t−1) →∞.

4. ΣXjt,Ajt = σ(1−α)
σ(1−α)+α

∈ (0, 1)
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5. ΣXjt,Rjt = ασ/ψ+α
σ(1−α)+α

∈ (0, 1]

6. ΣAjt,sjt =
ηγsjt

1+ηγsjt
∈ [0, 1)

7. Σsjt,Rjt = ψ+σ
ψ

2+ηγ
ηγsjt

Zt > 0, where Zt ∈
[

1+ηγ
(2+ηγ)2

, 1
4

]
. Σsjt,Rkt = −Σsjt,Rjt.

8. Σsjt,Aj(t−1)
= − (1−σ)(1−α)

Aj(t−1)

(2+ηγ)
ηγ

Zt, which is < 0 if and only if σ < 1. Zt is as above.

Σsjt,Ak(t−1)
= −Σsjt,Aj(t−1)

.

9. Σsjt,skt = −skt/sjt ≤ 0

Proof. Most of the results follow by differentiation and the definition of an elasticity. #1
follows from differentiating the final-good production function Yt(Yjt, Ykt); #2 follows from
differentiating the intermediate-good production function Yjt(Rjt, Xjt); #4 follows from dif-
ferentiating equation (A-2); #5 follows from differentiating equation (A-2) after using equa-
tion (2) to substitute for pjRt and using ψ ≥ α/(1 − α); #6 follows from differentiating
equation (5); #7 and #8 follow from differentiating equation (A-3); and #9 follows from the
research constraint.

To derive #3, note that

ΣYjt,Xjt =
(1− κ)X

σ−1
σ

jt

κR
σ−1
σ

jt + (1− κ)X
σ−1
σ

jt

.

From (7), (8), and (2), we have:

Xjt =Ajt

(
1− κ
κ

[
Rjt

Xjt

]1/σ

Ψ
−1/ψ
j R

1/ψ
jt

) α
1−α

=Ajt

(
1− κ
κ

Ψ
−1/ψ
j R

1
ψ

+ 1
σ

jt

) σα
σ(1−α)+α

.

Xjt → ∞ as Aj(t−1) → ∞, which implies with σ < 1 that ΣYjt,Xjt → 0 as Aj(t−1) → ∞.
Analogous results hold for sector k.

To derive #7 and #8, define

Zt ,

(
Aj(t−1)

Ak(t−1)

)−(1−σ)(1−α)
Rjt
Rkt

[
[Rjt/Ψj ]

1/ψ

[Rkt/Ψk]1/ψ

]σ
[
1 +

(
Aj(t−1)

Ak(t−1)

)−(1−σ)(1−α)
Rjt
Rkt

[
[Rjt/Ψj ]1/ψ

[Rkt/Ψk]1/ψ

]σ ]2

and recognize that sjt ∈ (0, 1) implies(
Aj(t−1)

Ak(t−1)

)−(1−σ)(1−α)
Rjt

Rkt

[
[Rjt/Ψj]

1/ψ

[Rkt/Ψk]1/ψ

]σ
∈
(

1

1 + ηγ
, 1 + ηγ

)
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from equation (10).

Note that ΣX,A and ΣX,R are the same in each sector. I therefore often omit the sector
subscripts on these terms.

Using sjt

(
Rjt
Rkt
,
Aj(t−1)

Ak(t−1)

)
, the equilibrium is defined by equations (12) and (13), which are

functions only of Rjt and Rkt. Rewrite these equations as (suppressing the predetermined
technology arguments in sjt):

1 = κ νjA
ε−1
ε

Y

[
Yt (Rjt, Rkt, sjt (Rjt/Rkt))

Yjt (Rjt, sjt (Rjt/Rkt))

]1/ε [
Yjt (Rjt, sjt (Rjt/Rkt))

Rjt

]1/σ [
Rjt

Ψj

]−1/ψ

,Gj(Rjt, Rkt),

1 = κ (1− νj)A
ε−1
ε

Y

[
Yt (Rjt, Rkt, sjt (Rjt/Rkt))

Ykt (Rkt, sjt (Rjt/Rkt))

]1/ε [
Ykt (Rkt, sjt (Rjt/Rkt))

Rkt

]1/σ [
Rkt

Ψk

]−1/ψ

,Gk(Rjt, Rkt).

We have:

Lemma A-4. ∂Gj(Rjt, Rkt)/∂Rjt < 0 and ∂Gk(Rjt, Rkt)/∂Rkt < 0.

Proof. Differentiating yields:

∂Gj(Rjt, Rkt)

∂Rjt

=Gj

{
−
(

1

ψ
+

1

σ

)
1

Rjt

+

(
1

σ
− 1

ε

)
1

Yjt

[
∂Yjt
∂Rjt

+
∂Yjt
∂sjt

∂sjt
∂Rjt

]
+

1

ε

1

Yt

[
∂Yt
∂Yjt

∂Yjt
∂Rjt

+
∂Yt
∂Yjt

∂Yjt
∂sjt

∂sjt
∂Rjt

+
∂Yt
∂Ykt

∂Ykt
∂skt

∂skt
∂sjt

∂sjt
∂Rjt

]}
=
Gj

Rjt

{
− 1

ψ
− 1

σ

[
1− ΣYjt,Rjt|Xjt − ΣYjt,Xjt

(
ΣXjt,Rjt + ΣXjt,AjtΣAjt,sjtΣsjt,Rjt

)]
− 1

ε

[(
1− ΣYt,Yjt

)(
ΣYjt,Rjt|Xjt + ΣYjt,XjtΣXjt,Rjt + ΣYjt,XjtΣXjt,AjtΣAjt,sjtΣsjt,Rjt

)
− ΣYt,YktΣYkt,XktΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rjt

]}
.

If the economy is at a corner in sjt, then Σsjt,Rjt = 0 and, using Lemma A-3, the above
expression is clearly negative. So consider a case with interior sjt. The final two lines are
negative. So the overall expression is negative if the third-to-last line is negative, which is
the case if and only if

0 ≥− 1

ψ
+

1

σ

[
− 1 + ΣYjt,Rjt|Xjt + ΣYjt,Xjt

(
ΣXjt,Rjt + ΣXjt,AjtΣAjt,sjtΣsjt,Rjt

)]
=− 1

ψ
+

1

σ

[
− 1 + ΣYjt,Rjt|Xjt + ΣYjt,Xjt

(
σ + ψ

ψ

α + σ(1− α) 2+ηγ
1+ηγsjt

Zt

σ(1− α) + α

)]
=− 1

ψ
+

1

σ
ΣYjt,Xjt

[
− 1 +

σ + ψ

ψ

α + σ(1− α) 2+ηγ
1+ηγsjt

Zt

σ(1− α) + α

]
, (A-4)
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where I use results from Lemma A-3. Note that 2+ηγ
1+ηγsjt

Zt ≤ 3/4, which implies that

ΣYjt,Xjt

α+σ(1−α) 2+ηγ
1+ηγsjt

Zt

σ(1−α)+α
< 1. Using this, inequality (A-4) holds if and only if

σ

ψ
≥ΣYjt,Xjt

−1 +
α+σ(1−α) 2+ηγ

1+ηγsjt
Zt

α+σ(1−α)

1− ΣYjt,Xjt

α+σ(1−α) 2+ηγ
1+ηγsjt

Zt

α+σ(1−α)

. (A-5)

2+ηγ
1+ηγsjt

Zt ≤ 3/4 implies that
α+σ(1−α) 2+ηγ

1+ηγsjt
Zt

α+σ(1−α)
< 1, which implies that the right-hand side of

inequality (A-5) is negative. Thus, inequality (A-5) always holds and ∂Gj(Rjt, Rkt)/∂Rjt <
0.

The analysis of ∂Gk(Rjt, Rkt)/∂Rkt is virtually identical.

Now define the matrix G:

G ,

[
∂Gj(Rjt,Rkt)

∂Rjt

∂Gj(Rjt,Rkt)

∂Rkt
∂Gk(Rjt,Rkt)

∂Rjt

∂Gk(Rjt,Rkt)

∂Rkt

]
.

We have:

Lemma A-5. The determinant of G is positive.
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Proof. Analyze det(G):

det(G) ∝
{
− 1

ψ
− 1

σ
+

(
1

σ
− 1

ε

)[
ΣYjt,Rjt|Xjt + ΣYjt,Xjt

(
ΣXjt,Rjt + ΣXjt,AjtΣAjt,sjtΣsjt,Rjt

)]}
{
− 1

ψ
− 1

σ
+

(
1

σ
− 1

ε

)[
ΣYkt,Rkt|Xkt + ΣYkt,Xkt

(
ΣXkt,Rkt + ΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rkt

)]}
+

{
− 1

ψ
− 1

σ
+

(
1

σ
− 1

ε

)[
ΣYjt,Rjt|Xjt + ΣYjt,Xjt

(
ΣXjt,Rjt + ΣXjt,AjtΣAjt,sjtΣsjt,Rjt

)
− ΣYkt,XktΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rjt

]}
{

1

ε

[
ΣYt,Ykt

(
ΣYkt,Rkt|Xkt + ΣYkt,XktΣXkt,Rkt + ΣYkt,XktΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rkt

)
+ ΣYt,YjtΣYjt,XjtΣXjt,AjtΣAjt,sjtΣsjt,Rkt

]}
+

{
− 1

ψ
− 1

σ
+

(
1

σ
− 1

ε

)[
ΣYkt,Rkt|Xkt + ΣYkt,Xkt

(
ΣXkt,Rkt + ΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rkt

)
− ΣYjt,XjtΣXjt,AjtΣAjt,sjtΣsjt,Rkt

]}
{

1

ε

[
ΣYt,Yjt

(
ΣYjt,Rjt|Xjt + ΣYjt,XjtΣXjt,Rjt + ΣYjt,XjtΣXjt,AjtΣAjt,sjtΣsjt,Rjt

)
+ ΣYt,YktΣYkt,XktΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rjt

]}
−
(

1

σ
− 1

ε

)2

ΣYjt,XjtΣXjt,AjtΣAjt,sjtΣsjt,RktΣYkt,XktΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rjt ,

where I factored GjGk/RjtRkt. Use ΣYt,Y jt + ΣYt,Ykt = 1 from Lemma A-3 and cancel terms
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with 1/ε2 to obtain:

det(G) ∝
{
− 1

ψ
− 1

σ

[
1− ΣYjt,Rjt|Xjt − ΣYjt,Xjt

(
ΣXjt,Rjt + ΣXjt,AjtΣAjt,sjtΣsjt,Rjt

)]}
{
− 1

ψ
− 1

σ

[
1− ΣYkt,Rkt|Xkt − ΣYkt,Xkt

(
ΣXkt,Rkt + ΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rkt

)]}
− 1

σ

(
1

σ
− 1

ε

)(
ΣYjt,XjtΣXjt,AjtΣAjt,sjtΣsjt,Rkt

) (
ΣYkt,XktΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rjt

)
+

{
− 1

ψ
− 1

σ

}
1

ε
ΣYt,Yjt[

−
(

ΣYkt,Rkt|Xkt + ΣYkt,XktΣXkt,Rkt + ΣYkt,XktΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rkt

)
+ ΣYjt,XjtΣXjt,AjtΣAjt,sjtΣsjt,Rkt

]
+

{
− 1

ψ
− 1

σ

}
1

ε
ΣYt,Ykt[

−
(

ΣYjt,Rjt|Xjt + ΣYjt,XjtΣXjt,Rjt + ΣYjt,XjtΣXjt,AjtΣAjt,sjtΣsjt,Rjt

)
+ ΣYkt,XktΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rjt

]
+

1

ε

1

σ

[
ΣYjt,Rjt|Xjt + ΣYjt,Xjt

(
ΣXjt,Rjt + ΣXjt,AjtΣAjt,sjtΣsjt,Rjt

)]
[
ΣYkt,Rkt|Xkt + ΣYkt,Xkt

(
ΣXkt,Rkt + ΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rkt

)]
. (A-6)

All lines after the first three are positive by results from Lemma A-3. Expanding the products
in those first three lines and rearranging, those first three lines become:

1

ψ2

+
1

σ2

[
1− ΣX,R

]
ΣYjt,XjtΣYkt,Xkt

(
1− ΣX,R − ΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rkt − ΣXjt,AjtΣAjt,sjtΣsjt,Rjt

)
+

1

ψ

1

σ
ΣYkt,Xkt

[
1− ΣX,R − ΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rkt

]
+

1

ψ

1

σ
ΣYjt,Xjt

[
1− ΣX,R − ΣXjt,AjtΣAjt,sjtΣsjt,Rjt

]
+

1

σ

1

ε

(
ΣYjt,XjtΣXjt,AjtΣAjt,sjtΣsjt,Rkt

) (
ΣYkt,XktΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rjt

)
, (A-7)
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where I write ΣX,R because this elasticity is the same in each sector. At corner allocations
of research, Σsjt,Rjt = Σsjt,Rkt = 0. In this case, (A-7) is clearly positive. Now assume an
interior allocation of research, so that Πjt = Πkt. Note that

1− ΣX,R − ΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rkt − ΣXjt,AjtΣAjt,sjtΣsjt,Rjt

=
1

ψ

σ

σ(1− α) + α

{
ψ[1− α]− α− (1− α)[σ + ψ]

(2 + ηγ)2

(1 + ηγsjt)(1 + ηγskt)
Zt

}
. (A-8)

Substituting for Zt and using equation (10) at Πjt/Πkt = 1, we have

Zt
(1 + ηγsjt)(1 + ηγskt)

=
1

[2 + ηγ]2
.

Equation (A-8) then becomes

1− ΣX,R − ΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rkt − ΣXjt,AjtΣAjt,sjtΣsjt,Rjt =− σ

ψ
.

Substituting into (A-7), the first three lines of (A-6) are equal to

1

ψ2

− 1

ψ

1

σ

[
1− ΣX,R

]
ΣYjt,XjtΣYkt,Xkt

+
1

ψ

1

σ
ΣYkt,Xkt

[
1− ΣX,R − ΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rkt

]
+

1

ψ

1

σ
ΣYjt,Xjt

[
1− ΣX,R − ΣXjt,AjtΣAjt,sjtΣsjt,Rjt

]
+

1

σ

1

ε

(
ΣYjt,XjtΣXjt,AjtΣAjt,sjtΣsjt,Rkt

) (
ΣYkt,XktΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rjt

)
. (A-9)

The final line is positive. Factoring 1/ψ, the first four lines are jointly positive if and only if:

0 ≤ 1

ψ
+

1

σ

[
(1− ΣX,R)

(
ΣYjt,Xjt + ΣYkt,Xkt − ΣYjt,XjtΣYkt,Xkt

)
− ΣYjt,XjtΣXjt,AjtΣAjt,sjtΣsjt,Rjt − ΣYkt,XktΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rkt

]
=

1

ψ
+

1

σ

(
ΣYjt,Xjt + ΣYkt,Xkt − ΣYjt,XjtΣYkt,Xkt

)
− 1

σ

σ + ψ

ψ

1

σ(1− α) + α

[
α
(
ΣYjt,Xjt + ΣYkt,Xkt − ΣYjt,XjtΣYkt,Xkt

)
+ σ(1− α)

(
ΣYjt,Xjt(1 + ηγskt) + ΣYkt,Xkt(1 + ηγsjt)

)
1

2 + ηγ

]
,

(A-10)
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where we use Zt
(1+ηγsjt)(1+ηγskt)

= 1
[2+ηγ]2

. Note that ΣYjt,Xjt+ΣYkt,Xkt−ΣYjt,XjtΣYkt,Xkt increases

in ΣYjt,Xjt and thus reaches a maximum at ΣYjt,Xjt = 1. Therefore,

ΣYjt,Xjt + ΣYkt,Xkt − ΣYjt,XjtΣYkt,Xkt ≤ 1 + ΣYkt,Xkt − ΣYkt,Xkt = 1.

Also note that ΣYjt,Xjt(1 + ηγskt) + ΣYkt,Xkt(1 + ηγsjt) increases in each elasticity, and each
elasticity is ≤ 1. Thus,

ΣYjt,Xjt(1 + ηγskt) + ΣYkt,Xkt(1 + ηγsjt) ≤ (1 + ηγskt) + (1 + ηγsjt) = 2 + ηγ,

which implies (
ΣYjt,Xjt(1 + ηγskt) + ΣYkt,Xkt(1 + ηγsjt)

)
1

2 + ηγ
≤ 1.

These results together imply that

α + σ(1− α)

≥α
(
ΣYjt,Xjt + ΣYkt,Xkt − ΣYjt,XjtΣYkt,Xkt

)
+ σ(1− α)

(
ΣYjt,Xjt(1 + ηγskt) + ΣYkt,Xkt(1 + ηγsjt)

)
1

2 + ηγ
.

(A-11)

Using this, we have that inequality (A-10) holds if and only if

σ

ψ
≥
{
−
(
ΣYjt,Xjt + ΣYkt,Xkt − ΣYjt,XjtΣYkt,Xkt

)
+

1

σ(1− α) + α

[
α
(
ΣYjt,Xjt + ΣYkt,Xkt − ΣYjt,XjtΣYkt,Xkt

)
+ σ(1− α)

(
ΣYjt,Xjt(1 + ηγskt) + ΣYkt,Xkt(1 + ηγsjt)

)
1

2 + ηγ

]}
{

1− 1

σ(1− α) + α

[
α
(
ΣYjt,Xjt + ΣYkt,Xkt − ΣYjt,XjtΣYkt,Xkt

)
+ σ(1− α)

(
ΣYjt,Xjt(1 + ηγskt) + ΣYkt,Xkt(1 + ηγsjt)

)
1

2 + ηγ

]}−1

.

(A-12)

The denominator on the right-hand side is positive via inequality (A-11). The numerator on
the right-hand side is equal to:(

ΣYjt,Xjt + ΣYkt,Xkt − ΣYjt,XjtΣYkt,Xkt

)−1 +
1

σ(1− α) + α

α + σ(1− α)

(
ΣYjt,Xjt(1 + ηγskt) + ΣYkt,Xkt(1 + ηγsjt)

)
(2 + ηγ)

(
ΣYjt,Xjt + ΣYkt,Xkt − ΣYjt,XjtΣYkt,Xkt

)

 .

(A-13)
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Consider the fraction in brackets. If that fraction is ≤ 1, then the whole expression is
negative and we are done. I will now prove that the fraction cannot be > 1. Assume that
the fraction is > 1. Then:(

ΣYjt,Xjt(1 + ηγskt) + ΣYkt,Xkt(1 + ηγsjt)

)
> (2 + ηγ)

(
ΣYjt,Xjt + ΣYkt,Xkt − ΣYjt,XjtΣYkt,Xkt

)
⇔ηγsktΣYjt,Xjt + ηγsjtΣYkt,Xkt ≥ (1 + ηγ)

(
ΣYjt,Xjt + ΣYkt,Xkt

)
− (2 + ηγ)ΣYjt,XjtΣYkt,Xkt .

Assume without loss of generality that ΣYjt,Xjt > ΣYkt,Xkt . Then the left-hand side of the
last line attains its largest possible value when skt = 1. The inequality on the last line is
then satisfied only if

0 > ΣYjt,Xjt + (1 + ηγ)ΣYkt,Xkt − (2 + ηγ)ΣYjt,XjtΣYkt,Xkt . (A-14)

The right-hand side is monotonic in ΣYjt,Xjt . At ΣYjt,Xjt = 1, the right-hand side is

1 + (1 + ηγ)ΣYkt,Xkt − (2 + ηγ)ΣYkt,Xkt = 1− ΣYkt,Xkt ≥ 0.

But this contradicts inequality (A-14). Now consider the other extremum: ΣYjt,Xjt = 0. The
right-hand side of inequality (A-14) becomes:

(1 + ηγ)ΣYkt,Xkt ≥ 0,

which again contradicts inequality (A-14). Because the right-hand side of inequality (A-14)
was monotonic in ΣYjt,Xjt and was not satisfied for either the greatest or smallest possible
values for ΣYjt,Xjt , the inequality is not satisfied for any values of ΣYjt,Xjt . Thus, the fraction
in brackets in (A-13) is ≤ 1, which means that the right-hand side of inequality (A-12) is
≤ 0 and inequality (A-12) is satisfied. As a result, the first three lines of (A-6) are positive,
which means that det(G) > 0.

The next two lemmas establish how relative extraction and relative profit change with
the average quality of technology in sector j:

Lemma A-6. Define R(Ajt, Akt) , [Rjt(Ajt, Akt)/Rkt(Ajt, Akt)]. Then (i) ∂R/∂Ajt > 0
and (ii) ∂R/∂Ajt → 0 as Ajt →∞.

Proof. I begin by using the implicit function theorem on the two-dimensional system ob-
tained from equations (12) and (13). Rewriting previous expressions for Gj and Gk to hold
sjt fixed at some value s, the two-dimensional system becomes:

1 = κ νjA
ε−1
ε

Y

[
Yt (Rjt, Rkt, sjt = s)

Yjt (Rjt, sjt = s)

]1/ε [
Yjt (Rjt, sjt = s)

Rjt

]1/σ [
Rjt

Ψj

]−1/ψ

,Hj(Rjt, Rkt; sjt = s),

1 = κ (1− νj)A
ε−1
ε

Y

[
Yt (Rjt, Rkt, sjt = s)

Ykt (Rkt, sjt = s)

]1/ε [
Ykt (Rkt, sjt = s)

Rkt

]1/σ [
Rkt

Ψk

]−1/ψ

,Hk(Rjt, Rkt; sjt = s).
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Fixing sjt = s makes Ajt a parameter. I analyze the following:

∂R(Ajt, Akt)

∂Ajt
=
Rjt

Rkt

{
∂Rjt

∂Ajt

1

Rjt

− ∂Rkt

∂Ajt

1

Rkt

}
=
Rjt

Rkt

{
1

Rjt

− ∂Hj
∂Ajt

∂Hk
∂Rkt

+
∂Hj
∂Rkt

∂Hk
∂Ajt

det(H)
− 1

Rkt

− ∂Hk
∂Ajt

∂Hj
∂Rjt

+ ∂Hk
∂Rjt

∂Hj
∂Ajt

det(H)

}
=
Rjt

Rkt

1

det(H)

{
− ∂Hj

∂Ajt

[
1

Rjt

∂Hk

∂Rkt

+
1

Rkt

∂Hk

∂Rjt

]
+
∂Hk

∂Ajt

[
1

Rjt

∂Hj

∂Rkt

+
1

Rkt

∂Hj

∂Rjt

]}
.

(A-15)

Differentiation and algebraic manipulations (including applying relationships from Lemma A-
3) yield:

− ∂Hj

∂Ajt
=−Hj

{
1

σ
− 1

ε
ΣYt,Ykt

}
ΣYjt,XjtΣXjt,Ajt

1

Ajt
,

∂Hk

∂Ajt
=Hk

1

ε
ΣYt,YjtΣYjt,XjtΣXjt,Ajt

1

Ajt
,

1

Rjt

∂Hk

∂Rkt

+
1

Rkt

∂Hk

∂Rjt

=
Hk

RjtRkt

{
− 1

ψ
− 1

σ
ΣYkt,Xkt

[
1− ΣX,R

]
+

1

ε
ΣYt,Yjt

[
ΣX,R − 1

][
ΣYjt,Xjt − ΣYkt,Xkt

]}
,

1

Rjt

∂Hj

∂Rkt

+
1

Rkt

∂Hj

∂Rjt

=
Hj

RjtRkt

{
− 1

ψ
− 1

σ
ΣYjt,Xjt

[
1− ΣX,R

]
+

1

ε
ΣYt,Ykt

[
ΣX,R − 1

][
ΣYkt,Xkt − ΣYjt,Xjt

]}
.

Using these in equation (A-15), we obtain:

∂R(Ajt, Akt)

∂Ajt
=

1

Ajt

1

det(H)

Rjt

Rkt

HjHk

RjtRkt

ΣX,A

(
1

σ
− 1

ε

)
ΣYjt,Xjt

(
1

ψ
+

1

σ
ΣYkt,Xkt [1− ΣX,R]

)
.

(A-16)

Now consider det(H). It follows from our analysis of det(G) with Σs,R = 0. Make this
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change in equation (A-6):

det(H) =
HjHk

RjtRkt

({
− 1

ψ
− 1

σ

[
1− ΣYjt,Rjt|Xjt − ΣYjt,XjtΣXjt,Rjt

]}
{
− 1

ψ
− 1

σ

[
1− ΣYkt,Rkt|Xkt − ΣYkt,XktΣXkt,Rkt

]}
+

{
− 1

ψ
− 1

σ

}
1

ε
ΣYt,Yjt

[
−
(

ΣYkt,Rkt|Xkt + ΣYkt,XktΣXkt,Rkt

)]
+

{
− 1

ψ
− 1

σ

}
1

ε
ΣYt,Ykt

[
−
(

ΣYjt,Rjt|Xjt + ΣYjt,XjtΣXjt,Rjt

)]
+

1

ε

1

σ

[
ΣYjt,Rjt|Xjt + ΣYjt,XjtΣXjt,Rjt

][
ΣYkt,Rkt|Xkt + ΣYkt,XktΣXkt,Rkt

])
.

Now analyze, using relations in Lemma A-3:

det(H) =
HjHk

RjtRkt

({
1

ψ
+

1

σ
ΣYjt,Xjt

[
1− ΣX,R

]}{
1

ψ
+

1

σ
ΣYkt,Xkt

[
1− ΣX,R

]}
+

{
1

ψ
+

1

σ

}
1

ε
ΣYt,Yjt

(
ΣYkt,Rkt|Xkt + ΣYkt,XktΣX,R

)
+

{
1

ψ
+

1

σ

}
1

ε
ΣYt,Ykt

(
ΣYjt,Rjt|Xjt + ΣYjt,XjtΣX,R

)
+

1

ε

1

σ

[
ΣYjt,Rjt|Xjt + ΣYjt,XjtΣX,R

][
ΣYkt,Rkt|Xkt + ΣYkt,XktΣX,R

])

=
HjHk

RjtRkt

({
1

ψ
+

1

σ
ΣYjt,Xjt

[
1− ΣX,R

]}{
1

ψ
+

1

σ
ΣYkt,Xkt

[
1− ΣX,R

]}
+

{
1

ψ
+

1

σ

}
1

ε
ΣYt,Yjt

[
1− ΣYkt,Xkt(1− ΣX,R)

]
+

{
1

ψ
+

1

σ

}
1

ε
ΣYt,Ykt

[
1− ΣYjt,Xjt(1− ΣX,R)

]
+

1

ε

1

σ

[
1− ΣYjt,Xjt(1− ΣX,R)

][
1− ΣYkt,Xkt(1− ΣX,R)

])
.

From Lemma A-3, 1 − ΣX,R = σ
ψ
ψ[1−α]−α
σ(1−α)+α

. Substituting det(H) into equation (A-16), we
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have:

∂R(Ajt, Akt)

∂Ajt
=

1

Ajt

Rjt

Rkt

ΣX,A

(
1

σ
− 1

ε

)
ΣYjt,Xjt

(
1

ψ
+

1

σ
ΣYkt,Xkt [1− ΣX,R]

)
({

1

ψ
+

1

σ
ΣYjt,Xjt

[
1− ΣX,R

]}{
1

ψ
+

1

σ
ΣYkt,Xkt

[
1− ΣX,R

]}
+

{
1

ψ
+

1

σ

}
1

ε
ΣYt,Yjt

[
1− ΣYkt,Xkt(1− ΣX,R)

]
+

{
1

ψ
+

1

σ

}
1

ε
ΣYt,Ykt

[
1− ΣYjt,Xjt(1− ΣX,R)

]
+

1

ε

1

σ

[
1− ΣYjt,Xjt(1− ΣX,R)

][
1− ΣYkt,Xkt(1− ΣX,R)

])−1

(A-17)

>0.

We have established the first part of the lemma. To establish the second part, use Lemma A-3
in equation (A-17).

Lemma A-7. Fix sjt = s. If σ > 1 or σ is not too much smaller than 1, then Πjt/Πkt

increases in Aj(t−1). As Aj(t−1) →∞, Πjt/Πkt decreases in Aj(t−1) for all σ < 1.

Proof. To a first-order approximation, we have, with sjt fixed at s,

d ln[Πjt/Πkt]

dAj(t−1)

≈ 1

Aj(t−1)

[
1− 1

σ + α(1− σ)

]
+

1 + σ/ψ

σ + α(1− σ)

∂Ajt
∂Aj(t−1)

∂[Rjt/Rkt]

∂Ajt

Rkt

Rjt

=
1

Aj(t−1)

[
1− 1

σ + α(1− σ)

]
+

1

ψ

ψ + σ

σ + α(1− σ)
(1 + ηγs)

∂[Rjt/Rkt]

∂Ajt

Rkt

Rjt

=
1

Aj(t−1)

(1− α)(σ − 1)

σ + α(1− σ)
+

1

ψ

ψ + σ

σ + α(1− σ)
(1 + ηγs)

∂[Rjt/Rkt]

∂Ajt

Rkt

Rjt

.

The first term is positive if and only if σ > 1 and, using Lemma A-6, the second term is
positive. Therefore the whole expression is positive if σ > 1. The first term becomes small
for σ close to 1. Therefore the second term dominates (and the whole expression is positive)
for σ not too much smaller than 1. Finally, Lemma A-6 shows that the second term goes
to 0 as Aj(t−1) → ∞ if σ < 1. Therefore the whole expression is negative if σ < 1 and
Aj(t−1) →∞.
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Finally, consider the evolution of relative extraction and thus of market size effects. From
equation (14), Rjt/Rkt increases in sjt. Define ŝt+1 as the unique value of sj(t+1) such that
sector j’s share of resource extraction increases from time t to t+1 if and only if sj(t+1) ≥ ŝt+1.
Lemma A-6 implies that ŝt+1 ∈ (0, 1).

Lemma A-8. If σ < 1, then ŝt+1 ≥ 0.5 if and only if Aj(t−1)/Ak(t−1) ≥ [Ψj/Ψk]
1/[(1−α)(1+ψ)].

If σ > 1, then ŝt+1 ≥ 0.5 if and only if Aj(t−1)/Ak(t−1) ≤ [Ψj/Ψk]
1/[(1−α)(1+ψ)].

Proof. The change in Rjt/Rkt from time t to t+ 1 is

Rj(t+1)

Rk(t+1)

− Rjt

Rkt

=
(Rj(t+1) −Rjt)Rkt − (Rk(t+1) −Rkt)Rjt

Rk(t+1)Rkt

∝
Rj(t+1) −Rjt

Rjt

−
Rk(t+1) −Rkt

Rkt

,

where the first equality adds and subtracts RjtRkt in the numerator and the second line
factors Rjt/Rk(t+1). To a first-order approximation, this is proportional to

1

Rjt

(
dRjt

dAjt

[
Aj(t+1) − Ajt

]
+

dRjt

dAkt

[
Ak(t+1) − Akt

])
− 1

Rkt

(
dRkt

dAjt

[
Aj(t+1) − Ajt

]
+

dRkt

dAkt

[
Ak(t+1) − Akt

])
,

with the derivatives evaluated at the time t allocation. Note that sjt is included in Ajt when
differentiating with respect to Ajt, which reflects that we will seek the allocation of scientists
that holds Rjt/Rkt constant. Defining Hj(Rjt, Rkt; sjt = s) and Hk(Rjt, Rkt; sjt = s) as in
the proof of Lemma A-6 and using the implicit function theorem, the previous expression
becomes:

1

Rjt

(
− ∂Hj
∂Ajt

∂Hk
∂Rkt

+
∂Hj
∂Rkt

∂Hk
∂Ajt

det(H)

[
Aj(t+1) − Ajt

]
+
− ∂Hj
∂Akt

∂Hk
∂Rkt

+
∂Hj
∂Rkt

∂Hk
∂Akt

det(H)

[
Ak(t+1) − Akt

])

− 1

Rkt

(
− ∂Hk
∂Ajt

∂Hj
∂Rjt

+ ∂Hk
∂Rjt

∂Hj
∂Ajt

det(H)

[
Aj(t+1) − Ajt

]
+
− ∂Hk
∂Akt

∂Hj
∂Rjt

+ ∂Hk
∂Rjt

∂Hj
∂Akt

det(H)

[
Ak(t+1) − Akt

])

∝
[
− ∂Hj

∂Ajt
sj(t+1)Ajt −

∂Hj

∂Akt
sk(t+1)Akt

] [
1

Rjt

∂Hk

∂Rkt

+
1

Rkt

∂Hk

∂Rjt

]
+

[
∂Hk

∂Ajt
sj(t+1)Ajt +

∂Hk

∂Akt
sk(t+1)Akt

] [
1

Rjt

∂Hj

∂Rkt

+
1

Rkt

∂Hj

∂Rjt

]
, (A-18)

where the second expression factors ηγ/det(H), which is readily seen to be positive by
altering the proof of Lemma A-5 to set the Σs,R terms to zero. Differentiation and algebraic
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manipulations (including applying relationships from Lemma A-3) yield:

− ∂Hj

∂Ajt
sj(t+1)Ajt −

∂Hj

∂Akt
sk(t+1)Akt =−Hj

{
1

σ
− 1

ε
ΣYt,Ykt

}
ΣYjt,XjtΣXjt,Ajtsj(t+1)

−Hj
1

ε
ΣYt,YktΣYkt,XktΣXkt,Akt(1− sj(t+1)),

∂Hk

∂Ajt
sj(t+1)Ajt +

∂Hk

∂Akt
sk(t+1)Akt =Hk

{
1

σ
− 1

ε
ΣYt,Yjt

}
ΣYkt,XktΣXkt,Akt(1− sj(t+1))

+Hk
1

ε
ΣYt,YjtΣYjt,XjtΣXjt,Ajtsj(t+1).

Substitute these and expressions derived in the proof of Lemma A-6 into (A-18) and factor
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ΣX,AHjHk/[RjtRkt]:{
− sj(t+1)

{
1

σ
− 1

ε
ΣYt,Ykt

}
ΣYjt,Xjt − (1− sj(t+1))

1

ε
ΣYt,YktΣYkt,Xkt

}
{
− 1

ψ
− 1

σ
ΣYkt,Xkt

[
1− ΣX,R

]}
+

{
(1− sj(t+1))

{
1

σ
− 1

ε
ΣYt,Yjt

}
ΣYkt,Xkt + sj(t+1)

1

ε
ΣYt,YjtΣYjt,Xjt

}
{
− 1

ψ
− 1

σ
ΣYjt,Xjt

(
1− ΣX,R

)}
+

1

ε

[
1− ΣX,R

][
ΣYkt,Xkt − ΣYjt,Xjt

]
{
− sj(t+1)

[
1

σ
− 1

ε
ΣYt,Ykt

]
ΣYt,YjtΣYjt,Xjt − (1− sj(t+1))

{
1

σ
− 1

ε
ΣYt,Yjt

}
ΣYt,YktΣYkt,Xkt

}
− 1

ε2
ΣYt,YjtΣYt,Ykt

[
1− ΣX,R

][
ΣYkt,Xkt − ΣYjt,Xjt

]{
(1− sj(t+1))ΣYkt,Xkt + sj(t+1)ΣYjt,Xjt

}
=sj(t+1)ΣYjt,Xjt

{
1

ψ

[
1

σ
− 1

ε
ΣYt,Ykt −

1

ε
ΣYt,Yjt

]
+

1

σ

(
1− ΣX,R

)[
1

σ
ΣYkt,Xkt −

1

ε
ΣYt,YktΣYkt,Xkt −

1

ε
ΣYt,YjtΣYjt,Xjt

]}
− (1− sj(t+1))ΣYkt,Xkt

{
1

ψ

[
1

σ
− 1

ε
ΣYt,Yjt −

1

ε
ΣYt,Ykt

]
+

1

σ

(
1− ΣX,R

)[
1

σ
ΣYjt,Xjt −

1

ε
ΣYt,YjtΣYjt,Xjt −

1

ε
ΣYt,YktΣYkt,Xkt

]}
+

1

ε

[
1− ΣX,R

][
ΣYkt,Xkt − ΣYjt,Xjt

]
{
− sj(t+1)

[
1

σ
− 1

ε
ΣYt,Ykt

]
ΣYt,YjtΣYjt,Xjt − (1− sj(t+1))

{
1

σ
− 1

ε
ΣYt,Yjt

}
ΣYt,YktΣYkt,Xkt

− 1

ε
ΣYt,YjtΣYt,Ykt

[
(1− sj(t+1))ΣYkt,Xkt + sj(t+1)ΣYjt,Xjt

]}
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=sj(t+1)ΣYjt,Xjt

{
1

ψ

[
1

σ
− 1

ε

]
+

1

σ

(
1− ΣX,R

)[
1

σ
− 1

ε
ΣYt,Ykt

]
ΣYkt,Xkt

}
− (1− sj(t+1))ΣYkt,Xkt

{
1

ψ

[
1

σ
− 1

ε

]
+

1

σ

(
1− ΣX,R

)[
1

σ
− 1

ε
ΣYt,Yjt

]
ΣYjt,Xjt

}
− sj(t+1)

1

σ

1

ε

[
1− ΣX,R

]
ΣYt,YjtΣYjt,XjtΣYkt,Xkt + (1− sj(t+1))

1

σ

1

ε

[
1− ΣX,R

]
ΣYt,YktΣYkt,XktΣYjt,Xjt

=
1

ψ

[
1

σ
− 1

ε

][
sj(t+1)ΣYjt,Xjt − (1− sj(t+1))ΣYkt,Xkt

]
+

1

σ2

(
1− ΣX,R

)
ΣYkt,XktΣYjt,Xjt

(
2sj(t+1) − 1

)
− 1

σ

1

ε

(
1− ΣX,R

)
ΣYjt,XjtΣYkt,Xkt

(
2sj(t+1) − 1

)
=

1

ψ

[
1

σ
− 1

ε

][
sj(t+1)ΣYjt,Xjt − (1− sj(t+1))ΣYkt,Xkt

]
+

1

σ

(
1

σ
− 1

ε

)(
1− ΣX,R

)
ΣYkt,XktΣYjt,Xjt

(
2sj(t+1) − 1

)
.

Substituting for ΣX,R and rearranging, we obtain

1

ψ

(
1

σ
− 1

ε

)[
sj(t+1)ΣYjt,Xjt

(
1 +

ψ[1− α]− α
σ(1− α) + α

ΣYkt,Xkt

)
− (1− sj(t+1))ΣYkt,Xkt

(
1 +

ψ[1− α]− α
σ(1− α) + α

ΣYjt,Xjt

)]
. (A-19)

This expression is positive if and only if the term in brackets is positive. Define ŝt+1 as the
sj(t+1) such that Rjt/Rkt = Rj(t+1)/Rk(t+1). Then ŝt+1 is the root of the term in brackets.
Solving for that root, we have:

ŝt+1 =
ΣYkt,XktCjt

ΣYjt,XjtCkt + ΣYkt,XktCjt
, (A-20)

where Σw,z is the elasticity of w with respect to z and where

Cjt ,1 +
1− α

σ(1− α) + α

[
ψ − α

1− α

]
ΣYjt,Xjt > 0,

Ckt ,1 +
1− α

σ(1− α) + α

[
ψ − α

1− α

]
ΣYkt,Xkt > 0.

Thus, {
ŝt+1 ≥

1

2

}
⇔
{

ΣYkt,Xkt ≥ ΣYjt,Xjt

}
,
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where the right-hand side is evaluated at ŝt+1. Using the explicit expressions for the elas-
ticities, for intermediate-good production, and for Xjt and Xkt (see equation (A-2)), we
have:

ΣYkt,Xkt ≥ΣYjt,Xjt

⇔ 0 ≤
(1− κ)X

σ−1
σ

kt Y
σ−1
σ

jt − (1− κ)X
σ−1
σ

jt Y
σ−1
σ

kt

Y
σ−1
σ

kt Y
σ−1
σ

jt

(A-21)

⇔ 0 ≤X
σ−1
σ

kt Y
σ−1
σ

jt −X
σ−1
σ

jt Y
σ−1
σ

kt

⇔ 0 ≤κR
σ−1
σ

jt X
σ−1
σ

kt + (1− κ)X
σ−1
σ

jt X
σ−1
σ

kt − κR
σ−1
σ

kt X
σ−1
σ

jt − (1− κ)X
σ−1
σ

kt X
σ−1
σ

jt

⇔ 1 ≤


Rjt

[
1−κ
κ

(
Rkt
Ψk

)1/ψ
] ασ
σ(1−α)+α [

Rkt
Akt

] α
σ(1−α)+α

Akt

Rkt

[
1−κ
κ

(
Rjt
Ψj

)1/ψ
] ασ
σ(1−α)+α [

Rjt
Ajt

] α
σ(1−α)+α

Ajt


σ−1
σ

⇔ 1 ≤

[(
Ψj

Ψk

) ασ/ψ
σ(1−α)+α

(
Rjt

Rkt

)σ(1−α−α/ψ)
σ(1−α)+α

(
Akt
Ajt

) σ(1−α)
σ(1−α)+α

]σ−1
σ

⇔ 1 ≤
(

Ψj

Ψk

)χ 1
ψ

[α+σ(1−α)](
1 + ηγsjt
1 + ηγskt

)−χ 1
ψ

[α+σ(1−α)](Aj(t−1)

Ak(t−1)

)χ(1−α)[(1−σ)(1−α−α/ψ)−(1+σ/ψ)]

,

(A-22)

where the final line substitutes for Rjt/Rkt from equation (10) (which must hold for ŝt+1

interior) and where

χ ,
σ − 1

[σ(1− α) + α][1 + σ/ψ]
< 0 iff σ < 1.

The right-hand side of inequality (A-22) is increasing in sjt if and only if σ < 1. Therefore,
if σ < 1, then ŝt+1 ≥ 0.5 if and only if the strict version of the inequality does not hold at
sjt = 0.5, and if σ > 1, then ŝt+1 ≥ 0.5 if and only if the inequality holds at sjt = 0.5. If
σ < 1, then ŝt+1 ≥ 0.5 if and only if

Aj(t−1)

Ak(t−1)

≥
[

Ψj

Ψk

]θ
,

and if σ > 1, then ŝt+1 ≥ 0.5 if and only if

Aj(t−1)

Ak(t−1)

≤
[

Ψj

Ψk

]θ
,
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where

θ ,
− 1
ψ

[α + σ(1− α)]

(1− α)[(1− σ)(1− α− α/ψ)− (1 + σ/ψ)]
=

1

(1− α)(1 + ψ)
> 0.

E.2 Proof of Proposition A-1

The tâtonnement adjustment process generates, to constants of proportionality, the following
system for finding the equilibrium within period t:

Ṙjt =h

(
Gj(Rjt, Rkt)− 1

)
,

Ṙkt =h

(
Gk(Rjt, Rkt)− 1

)
,

where dots indicate time derivatives (with the fictional time for finding an equilibrium here
flowing within a period t), h(0) = 0, and h′(·) > 0. The system’s steady state occurs at the
equilibrium values, which I denote with stars. Linearizing around the steady state, we have[

Ṙjt

Ṙkt

]
≈h′(0)

[
∂Gj(Rjt,Rkt)

∂Rjt

∂Gj(Rjt,Rkt)

∂Rkt
∂Gk(Rjt,Rkt)

∂Rjt

∂Gk(Rjt,Rkt)

∂Rkt

][
Rjt −R∗jt
Rkt −R∗kt

]
= h′(0)G

[
Rjt −R∗jt
Rkt −R∗kt

]
,

where G is the 2×2 matrix of derivatives, each evaluated at (R∗jt, R
∗
kt). Lemma A-4 implies

that the trace of G is strictly negative, in which case at least one of the two eigenvalues
must be strictly negative. Lemma A-5 shows that det(G) > 0, which means that both
eigenvalues must have the same sign. Therefore both eigenvalues are strictly negative. The
linearized system is therefore globally asymptotically stable, and, by Lyapunov’s Theorem
of the First Approximation, the full nonlinear system is locally asymptotically stable around
the equilibrium.

E.3 Proof of Corollary A-2

Now treat equations (12) and (13) as functions of Rjt, Rkt, and sjt (recognizing that skt =
1− sjt):

1 = κ νjA
ε−1
ε

Y

[
Yt(Rjt, Rkt, sjt)

Yjt(Rjt, sjt)

]1/ε [
Yjt(Rjt, sjt)

Rjt

]1/σ [
Rjt

Ψj

]−1/ψ

,Ĝj(Rjt, Rkt; sjt),

1 = κ (1− νj)A
ε−1
ε

Y

[
Yt(Rjt, Rkt, sjt)

Ykt(Rkt, sjt)

]1/ε [
Ykt(Rkt, sjt)

Rkt

]1/σ [
Rkt

Ψk

]−1/ψ

,Ĝk(Rjt, Rkt; sjt).
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This system of equations implicitly defines Rjt and Rkt as functions of the parameter sjt.

Define the matrix Ĝ analogously to the matrix G. Using the implicit function theorem, we
have

∂Rjt

∂sjt
=
−∂Ĝj
∂sjt

∂Ĝk
∂Rkt

+
∂Ĝj
∂Rkt

∂Ĝk
∂sjt

det(Ĝ)
and

∂Rkt

∂sjt
=
−∂Ĝk
∂sjt

∂Ĝj
∂Rjt

+ ∂Ĝk
∂Rjt

∂Ĝj
∂sjt

det(Ĝ)
.

Interpreting equation (10) as implicitly defining sjt as a function of Rjt and Rkt, we have:

∂sjt
∂Rjt

= −
∂[Πjt/Πkt]

∂Rjt

∂[Πjt/Πkt]

∂sjt

and
∂sjt
∂Rkt

= −
∂[Πjt/Πkt]

∂Rkt
∂[Πjt/Πkt]

∂sjt

,

and thus

∂[Πjt/Πkt]

∂Rjt

= −∂[Πjt/Πkt]

∂sjt

∂sjt
∂Rjt

and
∂[Πjt/Πkt]

∂Rkt

= −∂[Πjt/Πkt]

∂sjt

∂sjt
∂Rkt

.

Using these expressions, consider how the right-hand side of equation (A-1) changes in sjt:

d[Πjt/Πkt]

dsjt
=
∂[Πjt/Πkt]

∂sjt
+
∂[Πjt/Πkt]

∂Rjt

∂Rjt

∂sjt
+
∂[Πjt/Πkt]

∂Rkt

∂Rkt

∂sjt

=
∂[Πjt/Πkt]

∂sjt

− ∂[Πjt/Πkt]

∂sjt

∂sjt
∂Rjt

−∂Ĝj
∂sjt

∂Ĝk
∂Rkt

+
∂Ĝj
∂Rkt

∂Ĝk
∂sjt

det(Ĝ)
− ∂[Πjt/Πkt]

∂sjt

∂sjt
∂Rkt

−∂Ĝk
∂sjt

∂Ĝj
∂Rjt

+ ∂Ĝk
∂Rjt

∂Ĝj
∂sjt

det(Ĝ)

∝− ∂Ĝj

∂Rjt

∂Ĝk

∂Rkt

+
∂Ĝj

∂Rkt

∂Ĝk

∂Rjt

− ∂sjt
∂Rjt

∂Ĝj

∂sjt

∂Ĝk

∂Rkt

+
∂sjt
∂Rjt

∂Ĝj

∂Rkt

∂Ĝk

∂sjt
− ∂sjt
∂Rkt

∂Ĝk

∂sjt

∂Ĝj

∂Rjt

+
∂sjt
∂Rkt

∂Ĝk

∂Rjt

∂Ĝj

∂sjt

=−
(
∂Ĝj

∂Rjt

∂Ĝk

∂Rkt

+
∂Ĝj

∂sjt

∂sjt
∂Rjt

∂Ĝk

∂Rkt

+
∂Ĝj

∂Rjt

∂Ĝk

∂sjt

∂sjt
∂Rkt

)
+
∂Ĝj

∂Rkt

∂Ĝk

∂Rjt

+
∂Ĝj

∂sjt

∂sjt
∂Rkt

∂Ĝk

∂Rjt

+
∂Ĝj

∂Rkt

∂Ĝk

∂sjt

∂sjt
∂Rjt

=− det(G).

The third expression factored det(Ĝ), which is positive by the proof of Proposition A-1
for a corner solution in sjt, and it also factored ∂[Πjt/Πkt]/∂sjt, which is negative. The
final equality recognizes that the only difference between the equations with a hat and the
equations without a hat are that the equations without a hat allow sjt to vary with Rjt

and Rkt. Lemma A-5 showed that det(G) > 0. Thus the right-hand side of equation (A-1)
strictly decreases in sjt.
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E.4 Proof of Lemma 1

Under the given assumption that ν = 0.5 and Ψj = Ψk, we have Rjt = Rkt when Aj(t−1) =
Ak(t−1) and sjt = 0.5. Therefore, it is easy to see that Πjt/Πkt = 1 at sjt = 0.5 when
Aj(t−1) = Ak(t−1). By Lemma A-7, increasing Aj(t−1) increases Πjt/Πkt if either σ > 1 or σ
is not too much smaller than 1. In those cases, Corollary A-2 gives us that Aj(t−1) > Ak(t−1)

implies s∗jt > 0.5. The lemma follows from observing that Aj(t−1) > Ak(t−1) and Ψj = Ψk

imply that Aj(t−1)/Ak(t−1) > (Ψj/Ψk)
1/[(1−α)(1+ψ)].

E.5 Proof of Proposition 2

To start, let Assumption 1 hold. From Lemma A-8, ŝt+1 < 0.5. Therefore sjt0 > ŝt+1.
Assume that sj(t0+1) < sjt0 . From equation (10), Πj(t0+1)/Πk(t0+1) increases in Ajt0/Akt0 for
any given sj(t0+1) if σ > 1. Therefore, for the equilibrium to have sj(t0+1) < sjt0 , it must be
true that Rjt0/Rkt0 > Rj(t0+1)/Rk(t0+1) and thus sj(t0+1) < ŝt0+1. From Corollary A-2 and
sjt0 > ŝt0+1, it must be true that Πjt0/Πkt0 > 1 when evaluated at ŝt0+1. Because Rjt0/Rkt0 =
Rj(t0+1)/Rk(t0+1) if sj(t0+1) = ŝt0+1 and Ajt0/Akt0 > Aj(t0−1)/Ak(t0−1) by sjt0 > 0.5, it therefore
must be true that Πj(t0+1)/Πk(t0+1) > 1 when evaluated at ŝt0+1. By Corollary A-2, it
then must be true that sj(t0+1) > ŝt0+1. We have a contradiction. It must be true that
sj(t0+1) ≥ sjt0 .

Because sj(t0+1) ≥ sjt0 > 0.5 > ŝt+1, it follows that Rjt0/Rkt0 ≤ Rj(t0+1)/Rk(t0+1) and
Ajt0/Akt0 > Aj(t0−1)/Ak(t0−1). Therefore Assumption 1 still holds at time t0 + 1. Proceeding
by induction, sector j’s shares of research and extraction increase forever: resource j is
locked-in from time t0 if σ > 1 and Assumption 1 holds at time t0. We have established the
first part of the proposition.

Now consider the remaining parts of the proposition, no longer imposing Assumption 1.
We know that Π∗jt/Π

∗
kt = 1 when s∗jt ∈ (0, 1). Assume that s∗jt ∈ (0.5, 1). By Lemma A-

7, Πj(t+1)/Πk(t+1) > 1 when evaluated at s∗jt. Therefore, by Corollary A-2, s∗j(t+1) > s∗jt.

Analogous arguments apply when s∗jt ∈ (0, 0.5). We have established the second part of the
proposition.

By the foregoing, the only possible steady states are at s∗jt = 0.5, s∗jt = 0, and s∗jt = 1.
We just saw that a steady state at s∗jt = 0.5 cannot be stable (should it even exist). When
s∗jt = 1, only Aj(t−1) changes over time, increasing by ηγAj(t−1) at each time t. By Lemma A-
7, Πj(t0+1)/Πk(t0+1) > Πjt0/Πkt0 if sj(t0+1) ≥ sjt0 . If sjt0 = 1, then Πjt0 > Πkt0 , in which case
Πj(t0+1) > Πk(t0+1) if sj(t0+1) = sjt0 . It is then an equilibrium for s∗jt to equal 1 for all t ≥ t0.
An analogous proof covers the case where s∗jt = 0.
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E.6 Proof of Proposition 3

First consider whether a corner allocation can persist indefinitely. If s∗jt = 1 for all t ≥ t0,
then Aj(t−1) →∞ as t→∞ and, by Lemma A-6, Rjt/Rkt goes to a constant. In that case,
from equation (10), Πjt/Πkt goes to zero for all sjt. But Πjt/Πkt cannot be zero if s∗jt = 1
because s∗jt = 1 implies that Πjt/Πkt ≥ 1. We have contradicted the assumption that s∗jt = 1
for all t ≥ t0. Analogous arguments show that it cannot be true that s∗kt = 1 for all t ≥ t0.
It therefore must be true that, for all t0, there exists some t > t0 such that s∗jt ∈ (0, 1).

Because a corner research allocation cannot persist indefinitely, Ajt and Akt both become
arbitrarily large as t becomes large. From equations (8), (9), and (2), we have

Xjt =


[(

Rjt

Ψj

)1/ψ
1− κ
κ

] σ(1−α)
σ(1−α)+α [

Rjt

Ajt

] 1−α
σ(1−α)+α


α

1−α

Ajt

=

[
Ψ
−1/ψ
j

1− κ
κ

] σα
σ(1−α)+α

A
σ(1−α)

σ(1−α)+α
jt R

α(1+σ/ψ)
σ(1−α)+α
jt .

Xjt and Xkt thus also become arbitrarily large as t becomes large. This in turn implies that
Yjt → κ

σ
σ−1Rjt and Ykt → κ

σ
σ−1Rkt as t becomes large. From equation (14), we have:[
Rjt

Rkt

] 1
σ

+ 1
ψ

→ ν

1− ν

[
Ψj

Ψk

]1/ψ [
Rjt

Rkt

] 1
σ
− 1
ε

as t becomes large. Therefore, as t→∞,

Rjt

Rkt

→

{
ν

1− ν

[
Ψj

Ψk

]1/ψ
} εψ

ε+ψ

. (A-23)

Define Ωt , Ajt/Akt, so that

Ωt =
1 + ηγsjt

1 + ηγ(1− sjt)
Ωt−1. (A-24)

Because a corner allocation cannot persist indefinitely, Π∗jt/Π
∗
kt = 1 for some t sufficiently

large. Using this and equation (A-23) in equation (10), we have:

1 + ηγs∗jt
1 + ηγ(1− s∗jt)

=Ω
−(1−σ)(1−α)
t−1

{ ν

1− ν

[
Ψj

Ψk

]1/ψ
} εψ

ε+ψ

1+σ/ψ [
Ψj

Ψk

]−σ/ψ
.
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Therefore, from equation (A-24),

Ωt = Ω
1−(1−σ)(1−α)
t−1

{ ν

1− ν

[
Ψj

Ψk

]1/ψ
} εψ

ε+ψ

1+σ/ψ [
Ψj

Ψk

]−σ/ψ
.

Define Ω̃t , ln[Ωt]. We then have:

Ω̃t = [1− (1− σ)(1− α)]Ω̃t−1 + ln


{ ν

1− ν

[
Ψj

Ψk

]1/ψ
} εψ

ε+ψ

1+σ/ψ [
Ψj

Ψk

]−σ/ψ .
This is a linear difference equation. For σ < 1, the coefficient on Ω̃t−1 is strictly between 0
and 1. The linear difference equation is therefore stable. The system approaches a steady
state in Ω̃t and therefore in Ωt. From equation (A-24), any steady state in Ωt must have
s∗jt = 0.5. Therefore as t→∞, s∗jt → 0.5. We have established the first result.

Equation (A-23) implies that if νj = 0.5 and Ψj = Ψk then R∗jt = R∗kt. Further, if νj ≥ 0.5
and Ψj ≥ Ψk with at least one inequality being strict, then R∗jt > R∗kt. Now substitute into
equation (10) and use sjt = 0.5:

Πjt

Πkt

→
(
Aj(t−1)

Ak(t−1)

)−(1−σ)(1−α)
σ+α(1−σ)

{ ν

1− ν

[
Ψj

Ψk

]1/ψ
} εψ

ε+ψ


1+σ/ψ

σ+α(1−σ) [
Ψj

Ψk

] −σ/ψ
σ+α(1−σ)

=

(
Aj(t−1)

Ak(t−1)

)−(1−σ)(1−α)
σ+α(1−σ)

(
νj

1− νj

) σ+ψ
σ+α(1−σ)

ε
ε+ψ
(

Ψj

Ψk

) ε−σ
σ+α(1−σ)

1
ε+ψ

,

and this must equal 1 because s∗jt = 0.5. Therefore, if νj = 0.5 and Ψj = Ψk then Ajt = Akt,
and if νj ≥ 0.5 and Ψj ≥ Ψk with at least one inequality being strict, then Ajt > Akt. We
have established the second and third results.

Finally, as t becomes large along a path with s∗jt = 0.5, using previous results in equa-
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tion (12) yields:[
Rjt

Ψj

]1/ψ

→κ νjA
ε−1
ε

Y

[
Yjt
Yt

]−1/ε [
Rjt

Yjt

]−1/σ

=κ νjA
ε−1
ε

Y

[
κ

σ
σ−1Rjt

Yt

]−1/ε [
κ

σ
σ−1

]1/σ

=κ νjA
ε−1
ε

Y

 κ
σ
σ−1Rjt

AY Yjt

(
νj + (1− νj)

(
Ykt
Yjt

) ε−1
ε

) ε
ε−1


−1/ε [

κ
σ
σ−1

]1/σ

=κ νjA
ε−1
ε

Y

 1

AY

(
νj + (1− νj)

(
Rkt
Rjt

) ε−1
ε

) ε
ε−1


−1/ε [

κ
σ
σ−1

]1/σ

=νjκ
σ
σ−1AY

[
νj + (1− νj)

(
Rkt

Rjt

) ε−1
ε

] 1
ε−1

. (A-25)

From equation (A-23), R∗jt/R
∗
kt becomes constant as t becomes large. Then from (A-25), R∗jt

approaches a constant. An analogous derivation establishes that R∗kt approaches a constant.
We have established the final result.

E.7 Proof of Proposition 4

Let time w ≥ t0 be the first time after t0 at which sector j’s share of extraction begins decreas-
ing, so that Rjx/Rkx ≤ Rj(x+1)/Rk(x+1) for all x ∈ [t0, w−1] and Rjw/Rkw > Rj(w+1)/Rk(w+1),
which in turn requires sjx ≥ ŝx for all x ∈ [t0 +1, w] and sj(w+1) < ŝw+1. Note that sjt0 > 0.5
implies that Ajt0/Akt0 > Aj(t0−1)/Ak(t0−1). Assume that sector j’s share of research begins
declining sometime after its share of extraction does, so that sjx ≤ sj(x+1) for all x ∈ [t0, w].
Then we have Ajx/Akx > Aj(x−1)/Ak(x−1) for all x ∈ [t0, w+1], and thus Ajx/Akx > [Ψj/Ψk]

θ

for all x ∈ [t0, w + 1]. Using this with Lemma A-8 and σ < 1 then implies ŝx+1 ≥ 0.5 for all
x ∈ [t0, w+2]. Combining this with the requirement that sjw ≥ ŝw, we have sjw ≥ 0.5. From
equation (10) and σ < 1, we then have sj(w+1) ≥ sjw only if Rjw/Rkw ≤ Rj(w+1)/Rk(w+1).
But that contradicts the definition of w, which required Rjw/Rkw > Rj(w+1)/Rk(w+1). Sector
j’s share of research must have begun declining no later than time w. We have shown that
a transition in extraction occurs only after a transition in research.

We now have two possibilities. We will see that the first one implies that sjx ≥ 0.5 at all
times x ∈ [t+ 1, w] and the second one generates a contradiction.
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First, we could have Aj(x−2)/Ak(x−2) ≥ [Ψj/Ψk]
θ at all times x ∈ [t0 + 1, w]. Then by

Lemma A-8, ŝx ≥ 0.5 at all times x ∈ [t0 + 1, w]. The definition of time w then requires
sjx ≥ 0.5 at all times x ∈ [t0 + 1, w].

Second, we could have Aj(x−2)/Ak(x−2) < [Ψj/Ψk]
θ at some time x ∈ [t0 + 1, w]. In order

for this to happen, it must be true that sjx < 0.5 at some times x ∈ [t0 + 2, w].48 Let
z be the first time at which sjx < 0.5. Aj(t0−1)/Ak(t0−1) > [Ψj/Ψk]

θ and sjx ≥ 0.5 for all
x ∈ [t0, z−1] imply that Aj(z−2)/Ak(z−2) > [Ψj/Ψk]

θ, which implies by Lemma A-8 and σ < 1
that ŝz ≥ 0.5. So we have sjz < ŝz, which means that Rj(z−1)/Rk(z−1) > Rjz/Rkz. But this
contradicts the definition of time w as the first time at which sector j’s share of extraction
begins decreasing.

Therefore, we must have Aj(x−2)/Ak(x−2) ≥ [Ψj/Ψk]
θ and sjx ≥ 0.5 at all times x ∈

[t0 + 1, w]. Observe that sjx ≥ 0.5 at all times x ∈ [t0, w] implies Ajx/Akx ≥ Aj(x−1)/Ak(x−1)

at all times x ∈ [t0, w]. We have shown that a transition in technology happens only after a
transition in extraction. We have established the first part of the proposition.

Now consider the first time z > t0 at which Rjz < Rkz. Assume that Ψj ≥ Ψk and
that sjx ≥ 0.5 for x ∈ [t0, z]. Assumption 1, Ψj ≥ Ψk, and sjx ≥ 0.5 imply Ajx ≥ Akx
for x ∈ [t0, z]. Using σ < 1, we see that Aj(z−1) ≥ Ak(z−1), Ψj ≥ Ψk, and Rjz < Rkz

imply that the right-hand side of equation (A-1) is < 1 when evaluated at sjz = 0.5. So by
Corollary A-2, time z equilibrium scientists must be less than 0.5. But sjz < 0.5 contradicts
sjx ≥ 0.5 for x ∈ [t0, z]. Therefore, if Ψj ≥ Ψk, then there must be some time x ∈ [t0, z]
at which sjx < 0.5. We have shown that if Ψj ≥ Ψk, then sector k must begin dominating
research before it begins dominating extraction. We have established the second part of the
proposition.

Finally, let νj = νk and Ψj = Ψk. By Proposition 3, Ajt = Akt in the steady-state
research allocation. But Assumption 1 ensures that Ajt0 > Akt0 . Thus there exists t1 > t0
such that sjt1 < 0.5. By the foregoing parts of this proposition, a transition in research, a
transition in extraction, and a transition in technology must happen between t0 and t1. We
have established the third part of the proposition.

E.8 Intermediate steps for Leontief special case

From equation (8),

pjXtXjt = X
1/α
jt A

− 1−α
α

jt .

And from equation (2),

pjRtRjt = Ψ
−1/ψ
j R

1+ψ
ψ

jt .

48Recall that sjt ≥ 0.5 and sj(t+1) ≥ sjt imply sj(t+1) ≥ 0.5.
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Intermediate good producers’ zero-profit condition is

pjtYjt =Ψ
−1/ψ
j R

1+ψ
ψ

jt +X
1/α
jt A

− 1−α
α

jt .

Substituting for pjt from the final good producers’ first-order condition and then setting
Xjt = Rjt and Yjt = Rjt, we have:

νjY
1/ε
t = A

1−ε
ε

Y R
1−ε
ε

jt

[
Ψ
−1/ψ
j R

1+ψ
ψ

jt +R
1/α
jt A

− 1−α
α

jt

]
.

Using ψ = α/(1− α), we have:

νjY
1/ε
t =A

1−ε
ε

Y R
1−ε
ε

+ 1
α

jt

[
Ψ
− 1−α

α
j + A

− 1−α
α

jt

]
.

An analogous result holds for sector k. Equation (18) follows.
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