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1 Introduction

A pressing empirical agenda seeks to estimate the economic costs of climate change. Ig-
norance of these costs has severely hampered economists’ ability to give concrete policy
recommendations (Pindyck, 2013). The challenge is that although variation in climate has
been primarily cross-sectional, cross-sectional regressions cannot clearly identify the effects of
climate.1 Seeking credible identification, an explosively growing empirical literature has re-
cently explored panel variation in weather.2 The hope is that variation in transient weather
identifies—or at worst bounds—the effects of a change in climate, which manifests itself
through weather but differs from a transient weather shock in being repeated period after
period and in affecting expectations of weather far out into the future.

I here undertake the first formal analysis that precisely delineates what and how we can
learn about the climate from the weather. Linking weather to climate requires analyzing a
dynamic model that can capture the distinction between transient and permanent changes
in weather. I study an agent (equivalently, firm) who is exposed to stochastic weather
outcomes. The agent chooses actions (equivalently, investments) that suit the weather, but
adjusting actions from period to period is costly. When choosing actions, the agent knows the
current weather, has access to specialized forecasts of the weather some arbitrary number of
periods into the future, and relies on knowledge of the climate to generate forecasts at longer
horizons. A change in the climate shifts the distribution of potential weather outcomes and
alters the agent’s expectations about future weather.

I show several novel results. First, I show that estimating the effects of weather on actions
understates the long-run effect of climate on actions. Much empirical research has sought to
estimate the consequences of climate change for decision variables or functions of decision
variables, including productivity (Heal and Park, 2013; Zhang et al., 2018), health (Desch-
enes, 2014), crime (Ranson, 2014), and energy use (Auffhammer and Aroonruengsawat, 2011;
Deschênes and Greenstone, 2011). Many economists have intuited that short-run adaptation
responses to weather are likely to be smaller than long-run adaptation responses to climate
(e.g., Deschênes and Greenstone, 2007). I show that the critical ingredient for this result is
adjustment costs, not expectations of future weather. The actions an agent takes in response
to a transient weather shock are constrained by the agent’s desire to not change actions too
much from period to period, but when the same weather shock is repeated period after pe-
riod, even a myopic agent eventually achieves a larger change in activity through a sequence
of incremental adjustments. I demonstrate that combining short-run adaptation responses
to weather realizations with short-run adaptation responses to weather forecasts can better

1For many years, empirical analyses did rely on cross-sectional variation in climate to identify the economic
consequences of climate change (e.g., Mendelsohn et al., 1994; Schlenker et al., 2005; Nordhaus, 2006).
However, cross-sectional analyses fell out of favor due to concerns about omitted variables bias. See Dell
et al. (2014) and Auffhammer (2018b) for expositions and Massetti and Mendelsohn (2018) for a review.

2For recent reviews, see Dell et al. (2014), Carleton and Hsiang (2016), and Heal and Park (2016). Blanc
and Schlenker (2017) discuss the strengths and weaknesses of relying on panel variation in weather.
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approximate long-run adaptation to climate. Further, I show that agents respond to fore-
casts only because they face adjustment costs. Estimating responses to forecasts therefore
allows for a nice test: if actions are much less sensitive to forecasts than to weather and
agents are patient over the forecasts’ timescales, then adjustment costs may be small and
responses to weather may approximate responses to climate.

Second, I show that the marginal effect of climate on steady-state expected payoffs is
equal to the average treatment effect of weather in the current climate. Much empirical
research has sought to estimate the consequences of climate change for flow payoffs such
as profits (e.g., Deschênes and Greenstone, 2007) and for variables such as gross output or
income that are potentially related to aggregate payoffs (e.g., Dell et al., 2012; Burke et al.,
2015; Deryugina and Hsiang, 2017). I show that an easily estimated function of weather
is a sufficient statistic for the impact of limited climate change on such variables.3 This is
a surprising and powerful result. Changing the climate is equivalent to changing expected
weather in all future periods, yet transient weather shocks identify the marginal consequences
of climate. The analysis implies that empirical work should bin locations by climate (e.g.,
by long-run average temperature) and estimate a single coefficient on weather (e.g., realized
temperature) within each bin. The estimated coefficients describe the effect of marginally
changing a location’s climate on steady-state payoffs, and summing coefficients across bins
describes the effect of nonmarginal climate change on steady-state payoffs. Time series
variation therefore identifies the consequences of marginal changes in climate and cross-
sectional variation identifies the consequences of nonmarginal changes in climate.4 Care
should be taken, however, in extrapolating to very large changes in climate. Estimating
the consequences of such large changes will require pushing the available cross-sectional
variation beyond the limits of credible identification and may simply be beyond the reach of
reduced-form methods.

Figure 1 depicts the intuition underlying the average treatment effect result. Consider
estimating the effect of temperature on agricultural profits, as in Deschênes and Greenstone
(2007). Each solid curve in the left panel plots profits as a function of current inputs (such
as labor and irrigation), conditional on growing season temperature being either typical or
hot. Agents maximize profits by choosing inputs at the points labeled a and b. The dotted

3I describe the average treatment effect of weather as a sufficient statistic because multiple combinations
of structural parameters can yield the same welfare consequences. Estimating the average treatment effect
of weather does not recover all deep primitives but does provide a credibly identified estimate of marginal
climate impacts (compare Chetty, 2009).

4The combination of panel and cross-sectional variation is similar in spirit to, for example, Auffhammer
(2018a), except that the suggested approach estimates a coefficient on weather that can vary with the climate
rather than estimating a coefficient on weather that varies with both the weather and the climate. (Deryugina
and Hsiang (2017) estimate nonmarginal impacts in a different fashion, by allowing the effect of a weather
realization to be nonlinear in its frequency.) The use of cross-sectional variation raises the usual concerns
about identification. Results in the appendix suggest a sanity test: moving between climates should not
have a stronger effect than do extreme weather events within the current climate.
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line connecting points a and b then gives the effect on time t profits of time t temperature.
Because profits are flat in inputs around point a, small changes in temperature do not
have first-order effects on profits through input choices. This is the content of the envelope
theorem, as applied by Deschênes and Greenstone (2007) and subsequent literature. If
climate differs from weather only through beliefs that affect input choices, then the effects
of climate are identified by the effects of transient weather shocks (Hsiang, 2016; Deryugina
and Hsiang, 2017).

However, envelope theorem arguments miss the dynamics that distinguish climate from
weather. Now imagine that changing inputs imposes adjustment costs, so that time t profits
also depend on time t − 1 inputs. A change in climate means that previous years were hot
and subsequent years are also expected to be hot. If last year was hot, then last year’s
input choices reflect that outcome and it becomes less costly to choose high inputs this
year. The dashed curve in the left panel of Figure 1 plots profits in a current hot year
conditional on having already adjusted last year’s input choices in response to last year’s
being hot. The inputs that maximize this year’s profits increase to point c because they are
less constrained by last year’s choices. Now consider the implications of agents expecting
the subsequent year t + 1 to once again be hot. Applying more inputs at time t carries the
dynamic benefit of reducing time t+1 adjustment costs. As a result, the dynamically optimal
input choice is point d, where the marginal effect on this year’s profit is negative but the
marginal effect on expected intertemporal profits is zero (equation (2) below). The dotted
line connecting points a and d then gives the change in profit corresponding to permanently
increasing temperature. In line with intuition in Deschênes and Greenstone (2007), long-run
adjustments potentially make the effects of a permanent change in weather less severe than
the effects of a transient change in weather.

But how can we estimate the dotted line connecting points a and d? The right panel of
Figure 1 again plots profits as a function of current inputs, but it holds current weather fixed
between curves and instead varies only the previous year’s input choices. The curve labeled
“ss” depicts profits when the typical temperature has occurred many years in a row, so that
previous inputs reached a steady state. The other two curves depict this year’s profits under
the typical temperature outcome but with higher (“H”) and lower (“L”) choices of inputs in
the previous year. The adjustment costs imposed by these past choices constrain this year’s
choice of inputs and thereby reduce profits.

The dotted curve gives the effect on myopically optimized profits of changing last year’s
input choices. This curve has a peak at the myopically optimal labor input implied by curve
“ss”. Around this point (labeled 1), a permanent change in weather does not have first-order
effects through past input choices. So the left panel’s point c converges to point b. Now
imagine that the agent expects the typical temperature to also occur next year. Because
this year’s input choices do not have first-order effects on next year’s profits around point 1,
the myopically optimal input choice is also dynamically optimal. So the left panel’s point d
converges to point c. Combining these results, line a-b converges to line a-d around point
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Figure 1: Left: Profits against inputs, conditional on temperature. Line a-b gives the effect
on profits of increasing temperature from “typical” to “hot” in the absence of long-run
adaptation. Line a-d accounts for adaptation to previous hot years and for expecting next
year to again be hot. Right: Profits against inputs, conditional on past input choices. The
curve labeled “ss” sets previous inputs to the steady state that would result if the current
temperature were maintained forever.

1, so that the treatment effect of a transient weather shock indeed recovers the effect of
permanently changing the weather. However, an econometrician may not know which obser-
vations in a data set are near a steady state. I show that averaging over potential previous
input decisions and potential temperatures can center the estimated marginal effect of tem-
perature around the steady-state inputs corresponding to a location’s average temperature.
Estimating the average treatment effect of temperature then recovers the effect of a marginal
change in that location’s climate.

Despite the importance of empirically estimating the costs of climate change and the
sharpness of informal debates around the relevance of the recent empirical literature to cli-
mate change, there has been remarkably little formal analysis of the link between weather
and climate. Previous formal analysis has consisted in appeals to the envelope theorem in
static environments (Deschênes and Greenstone, 2007; Hsiang, 2016; Deryugina and Hsiang,
2017), but as described above, a static environment misses the distinction between transient
and permanent weather shocks.5 Envelope theorem intuition has led the literature (i) to of-

5A few other papers are also related. First, in an initial expositional analysis, I showed how envelope
theorem arguments can fail in a three-period model (Lemoine, 2017). The present work precisely analyzes the
consequences of climate change in an infinite-horizon model and constructively shows which types of empirical
estimates can be informative about the climate. Second, Kelly et al. (2005) study the cost of having to learn
about a change in the climate from an altered sequence of weather as opposed to knowing outright how the
climate has changed. I here abstract from learning in order to focus on mechanisms more relevant to the
growing empirical literature. Third, calibrated simulations have shown that dynamic responses are critical
to the effects of climate on timber markets (Sohngen and Mendelsohn, 1998; Guo and Costello, 2013) and
to the cost of increased cyclone risk (Bakkensen and Barrage, 2018). Finally, a few empirical papers have
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ten ignore how the effects of transient weather shocks depend on a location’s climate and (ii)
to often treat the marginal effects of common and uncommon weather events as equally in-
formative about climate change. Because of (i), most empirical literature pools the marginal
effects of weather across units that reside in different climate zones, which conflates units for
which a weather shock is rare with units for which a weather shock is common.6 Because
of (ii), some empirical literature (e.g., Deryugina and Hsiang, 2017) estimates how payoffs
respond to additional days with each type of weather and then combines these estimates
with scientific models’ projections of how climate change will alter the frequency of each
type of weather.7 In the appendix, I show that this estimator overstates the cost of marginal
climate change by capturing the nonlinear consequences of transient weather shocks, which
I also show have little bearing on the effects of climate change.

The next section describes the setting. Section 3 solves the dynamic programming prob-
lem. Sections 4 and 5 analyze the effects of climate on agents’ chosen actions and payoffs,
respectively. The final section discusses limitations of the present analysis. The appendix
contains additional results, generalizes the analysis, and provides proofs.

2 Setting

An agent is repeatedly exposed to stochastic weather outcomes. The realized weather in
period t is wt. This weather realization imposes two types of costs. A first type of cost arises
independently of any actions the agent might take. These unavoidable costs are 1

2
ψ(wt−w̄)2,

where the parameter w̄ defines the weather outcome that minimizes unavoidable costs and
the parameter ψ ≥ 0 determines the costliness of any other weather outcome. A second
type of cost depends on the agent’s actions At. These avoidable costs are 1

2
γ(At − wt)

2,
where γ ≥ 0. They vanish when the agent’s actions are well-matched to the weather and
potentially become large when the agent’s actions are poorly matched to the weather.

In each period, the agent chooses her action At. This action may be interpreted as a
level of activity (e.g., time spent outdoors, energy used for heating or cooling, irrigation
applied to a field) or as a stock of capital (e.g., outdoor gear, size or efficiency of furnace,
number or efficiency of irrigation lines). The agent’s actions impose two types of costs. First,
maintaining At imposes costs of 1

2
φ(At − Ā)2, where φ ≥ 0. When At represents a capital

stock, these maintenance costs reflect depreciation. The parameter Ā defines the level of

demonstrated that actions respond to forecasts of future weather (e.g., Neidell, 2009; Rosenzweig and Udry,
2013, 2014; Wood et al., 2014; Shrader, 2017).

6Some empirical literature has begun estimating how the effects of weather shocks vary with a location’s
climate, as summarized in Auffhammer (2018b). The appendix discusses which estimates in Deschênes and
Greenstone (2007) come closest to the theoretically recommended approach.

7This two-step strategy has also become the dominant approach to estimating the effects of climate on
actions (see Carleton and Hsiang, 2016). In the appendix, I show that these estimates do indirectly use some
of the information available from responses to forecasts.
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activity or capital that is cheapest to sustain. Second, the agent faces a cost of adjusting
actions from one period to the next. This cost is 1

2
α(At − At−1)

2, where α ≥ 0. When
At represents a capital stock, these adjustment costs are investment costs. Relating to the
literature on climate adaptation (e.g., Fankhauser et al., 1999; Mendelsohn, 2000), small
adjustment costs allow adaptation investments to occur after weather is realized (“reactive”
or “ex-post” adaptation), but large adjustment costs require adaptation to occur before
weather is realized (“anticipatory” or “ex-ante” adaptation). Maintenance costs make the
agent want to choose actions close to Ā, and adjustment costs make the agent want to keep
actions constant over time.8

The agent observes time t weather before selecting her time t action. The agent has
access to specialized forecasts of future weather and knows her region’s climate, indexed by
C and which I will often interpret as temperature. Specialized forecasts extend up to N ≥ 0
periods ahead. Each period’s forecast is an unbiased predictor of later weather. Beyond
horizon N , the agent formulates generic forecasts that rely only on knowledge of the climate,
not on information germane to that particular time period. For instance, the agent may rely
on the local news to predict weather one week out and on forecasts of El Niño conditions to
predict weather six months out but relies on knowledge of typical weather to predict weather
one year out. Horizon N is therefore the shortest forecast horizon at which the agent receives
information beyond knowledge of the climate.

Formally, let fit be the i-period-ahead forecast available in period t. The time t weather
realization is a random deviation from the one-period-ahead forecast: wt = f1(t−1)+εt, where
εt has mean zero and variance σ2. Because forecasts are unbiased predictors, any changes in
forecasts must be unanticipated: for i ∈ {1, ..., N}, fit = f(i+1)(t−1) + νit, where νit has mean
zero and variance τ 2i . Forecasts at horizons i > N are fit = C.9 The νit and εt are serially
uncorrelated, the covariance between νit and νjt is δij, and the covariance between εt and νit
is ρi.

10 Note that Et[wt+j] = fjt. For notational convenience, collect all specialized forecasts
available at time t in a vector Ft of length N .11

8The general analysis in the appendix does not require allocating either costs or weather impacts in this
fashion and allows, among much else, Ā to vary with wt and At−1 to affect time t payoffs directly.

9One might be concerned about a sharp discontinuity in information at horizon N . However, I have left
the variances τ2i general. Defining them to decrease in i and to approach zero as i approaches N would allow
for the informativeness of the signal about time t weather to increase smoothly from long horizons to short
horizons.

10Assuming that each shock is serially uncorrelated does not imply that weather and forecasts are serially
uncorrelated. For instance, for t > N , Cov0(wt, wt+1) = ρ1 +

∑N−1
i=1 δi(i+1).

11Climate here controls average weather. One might wonder about the dependence of higher moments of
the weather distribution on climate. In fact, the effects of climate change on the variance of the weather are
poorly understood and spatially heterogeneous (e.g., Huntingford et al., 2013; Lemoine and Kapnick, 2016).
Further, we need to know not just how climate change affects the variance of realized weather but how it
affects the forecastability of weather at each horizon: the variance of the weather more than N periods ahead
is σ2 +

∑N
i=1 τ

2
i , so we need to apportion any change in variance between σ2 and each τ2i . The appendix

analyzes the consequences of a change in variance and connects these consequences to empirical strategies.
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The agent maximizes the present value of payoffs over an infinite horizon. Time t payoffs
are:

π(At, At−1, wt) = −1

2
γ(At − wt)2 −

1

2
α(At − At−1)2 −

1

2
φ(At − Ā)2 − 1

2
ψ(wt − w̄)2.

She chooses time t actions as a function of past actions, current weather, and current fore-
casts. In order to study an interesting problem, assume that γ + φ > 0. The agent solves:

max
{At}∞t=0

∞∑
t=0

βtE0 [π(At, At−1, wt)] ,

where β ∈ [0, 1) is the per-period discount factor, A−1 is given, and E0 denotes expectations
at the time 0 information set. The solution satisfies the following Bellman equation:

V (Zt, wt, Ft) = max
At

{
π(At, Zt, wt) + βEt [V (Zt+1, wt+1, Ft+1)]

}
(1)

s.t. Zt+1 =At

wt+1 =f1t + εt+1

fi(t+1) =f(i+1)t + νi(t+1) for i ∈ {1, ..., N}
fN(t+1) =C + νN(t+1) if N > 0.

The state variable Zt captures the previous period’s actions. Optimal actions satisfy the
first-order condition:

∂π(At, Zt, wt)

∂At
= −βEt

[
∂V (Zt+1, wt+1, Ft+1)

∂Zt+1

]
. (2)

When the right-hand side is nonzero, the myopically optimal point c differs from the dynam-
ically optimal point d in Figure 1.

The setting is sufficiently general to describe many applications of interest. For instance,
much empirical literature has studied the effects of weather on energy use. The agent could
then be choosing indoor temperature in each period, where maintenance costs reflect energy
use and avoidable weather costs reflect thermal comfort. Empirical literature has also studied
the effect of weather on agricultural profits. The decision variable could then be irrigation,
labor, fertilizer, or crop varieties, maintenance costs reflect the cost of purchasing these in
each year, adjustment costs reflect the cost of changing equipment and plans from year to
year, and weather costs reflect the deviation in crop yields from their maximum possible
value.

The primary specialization in the setting is the assumption of quadratic payoffs. Linear-
quadratic models have long been workhorses in economic research because they allow for
explicit analytic solutions to the Bellman equation (1). In the appendix, I instead use
perturbation methods (Judd, 1996) to generalize the analysis to an arbitrary functional
form for π(At, At−1, wt), to vector-valued actions, and to multi-dimensional weather indices.
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3 Solution

The following proposition describes the value function that solves equation (1):

Proposition 1. The value function V (Zt, wt, Ft) has the form:

a1Z
2
t +a2w

2
t+

N∑
i=1

ai3f
2
it+b1Ztwt+

N∑
i=1

bi2Ztfit+
N∑
i=1

bi3wtfit+
N−1∑
i=1

N∑
j=i+1

bij4 fitfjt+c1Zt+c2wt+
N∑
i=1

ci3fit+d.

Optimal actions are:

A∗t =
αAt−1 + γwt + βb1f1t + β

∑N−1
i=1 bi2f(i+1)t + βbN2 C + βc1 + φĀ

γ + α + φ− 2βa1
. (3)

The coefficients are as follows:

1. a1 ≤ 0, with a1 < 0 if and only if α > 0.

2. a2 ≤ 0, with a2 < 0 if and only if ψ + γ(φ+ α) > 0.

3. ai3 ∈ [βia2, 0], with ai3 < 0 if and only if both a2 < 0 and αβ > 0 and with ai3 > βia2 if
and only if βαγ > 0.

4. Each of the b coefficients is positive, with b1 > 0 if and only if αγ > 0 and bi2, b
i
3, b

ij
4 > 0

if and only if βαγ > 0.

5. c1 ≥ (≤) 0 if C is sufficiently large (small), and c2, c
i
3 ≥ (≤) 0 if, in addition, w̄ ≥

(≤) 0.

6. Each a and b coefficient is independent of C.

7. Each c coefficient weakly increases in C, and each c coefficient strictly increases in C
if and only if βαγ > 0.

Proof. See appendix.

The value function is concave in previous actions (a1 ≤ 0), in weather outcomes (a2 ≤ 0),
and in forecasts (ai3 ≤ 0). If βαγ > 0, then each a and b coefficient is nonzero. Several
coefficients depend on C, reflecting how climate controls the agent’s beliefs about long-run
weather. I henceforth omit the asterisk on A∗t when clear.
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4 Effect of Climate on Actions

Now consider how climate change affects the agent’s actions, which is of direct relevance to
much empirical work and produces results that we will use to analyze the effect of climate
on payoffs. Define Ât , E0[At]. From equation (3),

Ât =
αÂt−1 + γC + βb1C + β

∑
i<N b

i
2C + βbN2 C + βc1 + φĀ

γ + α + φ− 2βa1

for t > N . The following proposition describes long-run behavior:

Proposition 2. As t→∞, Ât → γ
γ+φ

C + φ
γ+φ

Ā , Ass.

Proof. See appendix.

Expected actions converge to a steady state, denoted Ass. This steady-state expected action
is a weighted average of the action that minimizes expected weather impacts and the action
that minimizes maintenance costs. Steady-state policy fully offsets the avoidable portion of
expected weather impacts (determined by the climate C) when there are no maintenance
costs (φ = 0), but steady-state policy becomes unresponsive to the climate as marginal
maintenance costs become large relative to marginal avoidable weather costs (as φ becomes
large relative to γ). Adjustment costs slow the approach to the steady-state expected action,
but they do not affect its level.

From Proposition 2, an increase in the climate index affects steady-state expected actions
as

dAss

dC
=

γ

γ + φ
∈ [0, 1].

As γ → 0, there are no avoidable weather impacts, and as φ→∞, maintenance costs are too
large to justify changing actions on the basis of the climate. In either case, dAss/ dC → 0.
Steady-state actions otherwise strictly increase with the climate index. But this increase is
less than one-for-one when φ > 0: adaptation is less than perfect when maintenance costs
deter the agent from fully offsetting the change in climate.

Now consider how we might estimate dAss/ dC from data. Reduced-form empirical
models can estimate the derivatives ∂At/∂wt and ∂At/∂fit by regressing observed At on
weather and forecasts.12 Imagine that empirical researchers were to then approximate the
effect of climate change as

dAss

dC
≈ ∂At
∂wt

+

j∑
i=1

∂At
∂fit

, (4)

12Note that the estimation equation should include either At−1 or time t− 1 forecasts: time t− 1 actions
can directly affect time t actions (see equation (3)), and the dependence of time t− 1 actions on time t− 1
forecasts makes them correlated with time t weather and forecasts. The appendix derives a related omitted
variables bias from ignoring time t forecasts.
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for j ∈ {0, ..., N}. For dAss/ dC > 0 (i.e., for γ > 0), the bias from this approximation as a
fraction of the true effect is

Bias(j) =

∂At

∂wt
+
∑j

i=1
∂At

∂fit
dAss

dC

− 1.

Bias(0) is the bias from using only ∂At/∂wt, and Bias(N) is the bias when also using all
available forecasts. The approximation underestimates dAss/ dC if and only if Bias(j) < 0
and correctly estimates dAss/ dC if and only if Bias(j) = 0. The following proposition
establishes several results about this bias:

Proposition 3. Assume γ > 0. Then:

1. Bias(j) ∈ (−1, 0], with Bias(j) < 0 if and only if α > 0.

2. dBias(j)
dj

≥ 0, dBias(j)
dN

= 0.

3. dBias(j)
dj

→ 0 as β → 0.

4. Bias(j)→ −α
γ+α+φ−2βa1 as j,N →∞.

5. ∂At/∂wt → 0, ∂At/∂fit → 0, and Bias(j)→ −1 as α→∞.

6. dAss/ dC → 1 and Bias(j)→ 0 as γ →∞.

7. ∂At/∂wt, ∂At/∂fit, dAss/ dC → 0 as either γ → 0 or φ→∞.

Proof. See appendix.

The approximation in (4) never overestimates dAss/ dC (Bias(j) ≤ 0, result 1), and it un-
derestimates dAss/ dC whenever there are nonzero adjustment costs (α > 0). The quality of
the approximation improves when we include the effects of forecasts in addition to the effects
of weather shocks ( dBias(j)/ dj ≥ 0, result 2), because a weather shock that also affects
forecasts is less transient. However, nonzero bias remains even when estimating responses
to forecasts at arbitrarily long horizons (i.e., even as j,N → ∞, result 4): the response
to current weather and to information about future weather cannot capture how incremen-
tal adjustments accumulate over time. The accumulation of incremental adjustments also
generates nonzero bias even when agents are myopic.

The bias vanishes in a few special cases. First, as adjustment costs vanish (α→ 0, result
1), actions adjust instantaneously to realized weather, so neither expectations nor the slow
accrual of incremental adjustments matters for steady-state actions. Second, as avoidable
weather impacts become infinitely costly (γ →∞, result 6), the agent tries to exactly match
At to wt in every period, regardless of adjustment costs or maintenance costs. Third, when
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there are no avoidable weather impacts (γ → 0, result 7) or maintenance costs are prohibitive
(φ→∞, result 7), actions become completely insensitive to the climate and also to realized
weather and forecasts. In all other cases, the bias is nonzero and becomes large as adjustment
costs become large.

Finally, we also see two cases in which Bias(j) < 0 but including the effects of forecasts
does not improve the quality of the approximation in (4): dBias(j)/ dj → 0 as either β → 0
(result 3) or α→∞ (result 5).13 The reason is that actions are not sensitive to forecasts in
these cases.14 First, forecasts enable the agent to take actions that improve future payoffs,
but when agents are myopic, they act for the present only. Second, as adjustment costs
become very large, agents barely adjust actions on the basis of forecasts. The steady state
will change due to the accumulation of tiny changes over a long time horizon, but these
effects will not be detectable from responses to forecasts.

5 Effect of Climate on Value

Now consider the expected effect of climate change on intertemporal value and per-period
payoffs. From Proposition 1, we have:

V (Zt, wt, Ft) =V (Ass, C,C)

+ [Zt − Ass]VZ(Ass, C,C) + [wt − C]Vw(Ass, C,C) +
N∑
i=1

[fit − C]Vfi(A
ss, C,C)

+ [Zt − Ass]2a1 + [wt − C]2a2 +
N∑
i=1

[fit − C]2ai3 + [Zt − Ass][wt − C]b1

+
N∑
i=1

[Zt − Ass][fit − C]bi2 +
N∑
i=1

[wt − C][fit − C]bi3 +
N−1∑
i=1

N∑
j=i+1

[wt − C][fit − C]bij4 ,

where C is an N × 1 vector with all entries equal to C. The envelope theorem and the
fact that ∂π(At, At−1, wt)/∂At−1 = 0 around a steady state imply VZ(Ass, C,C) = 0. The

13In addition, dBias(j)/ dj = 0 if α = 0 because, from result 1 in Proposition 3, α = 0 implies that
Bias(j) = 0 for all j.

14From Proposition 1, ∂At/∂fit → 0 as β → 0 and, using the solutions for a1 and b1 given in the proof,
also as α→∞.
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expectation at time 0 of V (Zt, wt, Ft) at some future time t > N is:

E0[V (Zt, wt, Ft)] =V (Ass, C,C) + E0[(At − Ass)2]a1 + σ2a2 +
N∑
i=1

τ 2i a
i
3 + Cov0[Zt, wt]b1

+
N∑
i=1

Cov0[Zt, fit]b
i
2 +

N∑
i=1

Cov0[wt, fit]b
i
3 +

N−1∑
i=1

N∑
j=i+1

Cov0[wt, fit]b
ij
4 .

(5)

Recalling from Proposition 1 that each a and b coefficient is independent of C, and recognizing
that each covariance is independent of C,15 we have:

dE0[V (Zt, wt, Ft)]

dC
=

dV (Ass, C,C)

dC︸ ︷︷ ︸
change in ss value

+ 2a1E0

[
(Zt − Ass)

(
dZt
dC
− dAss

dC

)]
︸ ︷︷ ︸

change in transition value

.

We see two components to the expected change in value due to climate change: the change
in steady-state value and the change in value along the transition to the steady state.16

The next proposition signs the change in transition value:

Proposition 4. If αγ > 0, then dE0[V (Zt,wt,Ft)]
dC

< dV (Ass,C,C)
dC

if and only if A0 < Ass.
dE0[V (Zt,wt,Ft)]

dC
→ dV (Ass,C,C)

dC
as α→ 0, as γ → 0, as t→∞, or as A0 → Ass.

Proof. See appendix.

The transition to a warmer climate imposes costs over and above the change in steady-state
value when A0 < Ass but provides benefits over and above the change in steady-state value
when A0 > Ass. When A0 < Ass, the agent is in the process of approaching Ass from below.
We already saw that Ass increases in C. Increasing C moves the steady state further away
from the current state and therefore requires even more adjustment from the agent. However,
when the agent is approaching Ass from above, raising C reduces the total adjustment that
the agent will have to undertake before reaching the steady state.

It is reasonable to believe that agents in warmer climates may be approaching their
steady-state investment level from below (e.g., by installing air conditioning) and that agents
in colder climates may be approaching their steady-state investment level from above (e.g.,
by installing insulation). We should then expect the cost of adjusting to a warmer climate
to be positive in regions with warmer climates and negative in regions with cooler climates.
Further, we should expect transition costs (or savings) to be larger in regions that are not

15Observe from Proposition 1 that At is separable in C, wt, and fit, and observe that the stochastic terms
in wt and fit are independent of C. Therefore each covariance in equation (5) is independent of C.

16Tol et al. (1998) informally draw a similar distinction.
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as far along the process of adapting to their baseline climate, whether because these regions
have lower incomes, were settled only recently, or have outdated capital stock.

Now consider how climate change affects steady-state value. Using Proposition 1, we
have:

dV (Ass, C,C)

dC
=Vw(Ass, C,C) +

N∑
i=1

Vfi(A
ss, C,C)

+
dc1
dC

Ass +
dc2
dC

C +
N∑
i=1

dci3
dC

C +
dd

dC
. (6)

The first line recognizes that a change in climate alters average weather and average fore-
casts. The second line arises because agents anticipate that climate change is permanent:
climate change therefore alters the value function itself, beyond altering realized weather
and forecasts. For instance, a permanent change in climate can make past adaptation in-
vestments more valuable (Proposition 1 showed that dc1/ dC ≥ 0) and can make higher
weather outcomes more valuable (or less painful) because they are closer to average weather
(Proposition 1 showed that dc2/ dC ≥ 0).

The following proposition describes the net effects of climate change on steady-state
value:

Proposition 5.

dV (Ass, C,C)

dC
=

1

1− β
dπ(Ass, Ass, C)

dC
=

1

1− β

[
γφ

γ + φ
(Ā− C) + ψ(w̄ − C)

]
. (7)

Proof. See appendix.

Value increases in the climate index if and only if C is sufficiently small. The change in
steady-state value is equal to the change in steady-state per-period payoffs, valued as a
perpetuity. The first term in brackets reflects the change in the cost of maintaining the
adaptation investments chosen for this climate. When the climate is sufficiently cold, a
warmer climate may justify investments that require less maintenance, but as the climate
becomes sufficiently warm, eventually the chosen investments require more upkeep. This
term vanishes as either maintenance costs vanish (φ → 0) or as the link between actions
and weather is broken (γ → 0). The second term in brackets reflects the changing cost of
unavoidable weather impacts. This term makes a warmer climate valuable when C < w̄ but
makes a warmer climate costly when C > w̄. This term vanishes when weather outcomes
impose no unavoidable costs (ψ → 0).

A rapidly growing empirical literature hopes to estimate the cost of climate change from
time series variation in weather. From Proposition 1, the marginal effect of weather on value
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is:
∂V (Zt, wt, Ft)

∂wt
= 2a2wt + b1Zt +

N∑
i=1

bi3fit + c2.

If we average the marginal effect of weather over many observations in a given climate and
assume that actions are, on average, close to the steady-state level Ass (as when a location
is well-adapted to its current climate), then we obtain the following average treatment effect
of weather on value:17

ATEV
w (C) , E0

[
∂V (Zt, wt, Ft)

∂wt

]
= 2a2C + b1A

ss +
N∑
i=1

bi3C + c2,

for t > N . Proceeding analogously, we have the average treatment effect of weather on
payoffs around a steady state as

ATEπ
w(C) , E0

[
dπ(At, At−1, wt)

dwt

]
= E0

[
∂π(At, At−1, wt)

∂wt

]
,

using that E0[∂π(At, At−1, wt)/∂At] = E0[∂π(At, At−1, wt)/∂At−1] = 0 around Ass. The next
proposition relates these average treatment effects to the marginal effect of climate:

Proposition 6.
dπ(Ass, Ass, C)

dC
= ATEV

w (C) = ATEπ
w(C)

Proof. See appendix.

This is a surprising result: once all adjustments are complete, the expected change in per-
period steady-state payoffs due to a change in climate is identical to the average change in
payoffs estimated from weather events around a steady state.18 The appendix shows that the
same result holds for general, non-quadratic payoff functions as long as (i) ∂π(At, At−1, wt)/∂At−1 =
0 at At = At−1 and (ii) σ2 and each τ 2i are not too large. When (i) holds (as it does in the
main text and in the right panel of Figure 1), the effects of climate on past actions becomes
irrelevant for steady-state payoffs and the dynamically optimal action converges to the my-
opically optimal action, in which case the envelope theorem concludes that the effect of
climate on current actions also becomes irrelevant for steady-state payoffs. And when either
(ii) holds or payoffs are quadratic, the average treatment effect of weather is approximately
linear and thus equivalent to the treatment effect of average weather. The result follows
from recognizing that average weather defines the climate.

17Relating to the Rubin causal model, the potential outcomes are the realizations of ∂V/∂wt if At−1, wt,
and Ft took on different values.

18Further, the appendix shows that the average treatment effect of forecasts can identify the discount
factor β and thus yield dV (Ass, C,C)/ dC from Proposition 5.
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6 Limitations

I have demonstrated how to estimate the effects of climate change from time series variation
in weather. The setting is fairly general, and the appendix generalizes it further. Nonetheless,
the results are subject to three main caveats.

First, the present setting omits constraints that could make the short-run effects of
weather shocks less severe than the long-run effects of permanently changing the climate.
In particular, some have argued that short-run adjustments could be greater than long-run
adjustments because some actions may not be sustainable indefinitely (e.g., Fisher et al.,
2012; Blanc and Schlenker, 2017; Auffhammer, 2018b), such as water withdrawals from a
reservoir. Future work could explore such possibilities by imposing constraints on cumulative
deviations in actions from some benchmark value.

Second, the present setting successfully captures the distinction between transient and
permanent changes in weather, but global climate change also differs from most weather
shocks in its spatial structure. A change in global climate affects weather in every location
and thus will have general equilibrium consequences. The present setting has followed most
empirical work in abstracting from such effects, but some recent empirical work has begun
exploring the implications of changing the weather in many locations simultaneously (e.g.,
Costinot et al., 2016; Dingel et al., 2018; Gouel and Laborde, 2018).

Finally, the present analysis has held the payoff function constant over time. However,
climate change should induce innovations that alter how weather affects payoffs. Some
historical studies have begun exploring the interaction between climate and agricultural
innovation (e.g., Olmstead and Rhode, 2011; Roberts and Schlenker, 2011). Future work
should consider approaches to bounding the scope for innovation.
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Appendix

The first section analyzes the estimators used in some previous literature that aimed to
estimate climate impacts from weather variation. The second section shows what we learn
about climate change from estimating nonlinear weather impacts. The third section analyzes
the average treatment effect of forecasts on payoffs. The fourth section derives the omitted
variables bias from ignoring forecasts in empirical work. The fifth section considers climate
change that affects the variance of the weather. The sixth section generalizes the analysis
to arbitrary payoff functions, multidimensional action spaces, and multidimensional weather
indexes. The final section contains proofs.

A Estimators used in previous literature

I now connect the analysis to three specific ways that researchers have estimated climate
impacts from weather impacts. I first analyze the estimators in Deschênes and Greenstone
(2007) and Deryugina and Hsiang (2017) for the effects of climate on payoffs, and I conclude
with the most common approach to estimating the effects of climate on actions (see Carleton
and Hsiang, 2016).

First, consider Deschênes and Greenstone (2007). They estimate agricultural profits
π(At, At−1, wt) from variation in weather, where weather is growing season degree-days. In
particular, they estimate π at different quantiles of the weather distribution by pooling
observations across the United States. They then calculate the change in profit resulting
from a change in climate by simulating how average growing season degree-days will change
with the climate. In their approach, marginal climate impacts are ∂π/∂wt, evaluated around
the average growing season degree-days for a location. This is close to the recommendations
that follow from the present analysis. The main distinction is that Deschênes and Greenstone
(2007) pool across locations when estimating ∂π/∂wt, so that the marginal effect of increasing
growing season degree-days from some level x is identified both from locations in which x is
typical and from locations in which x is uncommon. The former locations are well-adapted
to x, but the latter locations are not. It is the treatment effect in the former that is truly
informative about changing average growing season degree-days; the treatment effect in the
latter does not encompass much adaptation.1 The theoretically recommended approach
would estimate ∂π/∂wt by quantiles of average growing season degree-days, so that each
evaluation point recovers the average treatment effect within some climate.2

1In the main text’s setting, note that ∂π/∂wt depends on adaptation actions At, which in turn depend
on the climate C. Pooling observations across climate zones estimates a single ∂π/∂wt from observations in
which the true ∂π/∂wt varies with C.

2The state-by-state regressions in Deschênes and Greenstone (2007) come closest to the recommended
approach, since the climate may be broadly similar within U.S. states.
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Next consider the approach to estimating the effect of climate on payoffs in Deryugina
and Hsiang (2017). This paper again pools observations across locations, so the previous
discussion applies here as well. But ignore that point and imagine that the pooled regressions
successfully recover the marginal effect of weather across the spectrum of weather outcomes
for some given location.3 Deryugina and Hsiang (2017) calculate the marginal effect of
climate by estimating the effect on payoffs of having another day in each temperature bin
and then simulating how climate change will alter the frequency of days in each temperature
bin. Formally, let p(wt;C) represent the probability density function for weather in climate
C. Deryugina and Hsiang (2017) estimate π(At, Ã(wt), wt) − π(At, Ã(w0), w0) for each wt,
where w0 indicates the omitted category and where Ã(wt) indicates some incoming action
at wt. They calculate the marginal effect of climate from the following expression:∫ ∞

−∞

[
π(At, Ã(wt), wt)− π(At, Ã(w0), w0)

] dp(wt;C)

dC
dwt , Γ.

Analyzing, we find

Γ =

∫ ∞
−∞

[
π(At, Ã(wt), wt)− π(At, Ã(w0), w0)

] dp(wt;C)
dC

p(wt;C)
p(wt;C) dwt

=E

[[
π(At, Ã(wt), wt)− π(At, Ã(w0), w0)

] dp(wt;C)
dC

p(wt;C)

]

=Cov

[
π(At, Ã(wt), wt),

dp(wt;C)
dC

p(wt;C)

]
,

where the final equality uses
∫ dp(wt;C)

dC
dwt = 0. A second-order Taylor expansion of π(At, Ã(wt), wt)

around the average values of each argument (with average actions assumed to match their

3The fact that they do pool observations means that their actual results will differ from the derivation
here.
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steady-state values, as in the main text) yields:

Γ ≈ ∂π(At, At−1, wt)

∂At

∣∣∣∣
(Ass,Ass,C)

Cov

[
At,

dp(wt;C)
dC

p(wt;C)

]

+
∂π(At, At−1, wt)

∂At−1

∣∣∣∣
(Ass,Ass,C)

Cov

[
Ã(wt),

dp(wt;C)
dC

p(wt;C)

]

+
∂π(At, At−1, wt)

∂wt

∣∣∣∣
(Ass,Ass,C)

Cov

[
wt,

dp(wt;C)
dC

p(wt;C)

]

+
1

2

∂2π(At, At−1, wt)

∂A2
t

∣∣∣∣
(Ass,Ass,C)

Cov

[
(At − Ass)2,

dp(wt;C)
dC

p(wt;C)

]

+
1

2

∂2π(At, At−1, wt)

∂A2
t−1

∣∣∣∣
(Ass,Ass,C)

Cov

[
(Ã(wt)− Ass)2,

dp(wt;C)
dC

p(wt;C)

]

+
1

2

∂2π(At, At−1, wt)

∂w2
t

∣∣∣∣
(Ass,Ass,C)

Cov

[
(wt − C)2,

dp(wt;C)
dC

p(wt;C)

]

+
∂2π(At, At−1, wt)

∂At∂At−1

∣∣∣∣
(Ass,Ass,C)

Cov

[
(At − Ass)(Ã(wt)− Ass),

dp(wt;C)
dC

p(wt;C)

]

+
∂2π(At, At−1, wt)

∂At∂wt

∣∣∣∣
(Ass,Ass,C)

Cov

[
(At − Ass)(wt − C),

dp(wt;C)
dC

p(wt;C)

]

+
∂2π(At, At−1, wt)

∂At−1∂wt

∣∣∣∣
(Ass,Ass,C)

Cov

[
(Ã(wt)− Ass)(wt − C),

dp(wt;C)
dC

p(wt;C)

]
.

Now impose the functional form for π from the main text, in which case the expansion of
Γ is exact. The second line on the right-hand side is zero. The envelope theorem evaluated
around the steady state and the first-order condition together imply that the first line on
the right-hand side is also zero. Now assume that wt is normally distributed with mean C.
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A second-order Taylor expansion of the probability term around C then yields:

Γ ≈ 1

V ar[wt]

{
∂π(At, At−1, wt)

∂wt

∣∣∣∣
(Ass,Ass,C)

V ar[wt]

− 1

2
[γ + α + φ]Cov

[
(At − Ass)2, wt

]
− 1

2
αCov

[
(Ã(wt)− Ass)2, wt

]
− 1

2
[γ + ψ]V ar[wt]

+ αCov
[
(At − Ass)(Ã(wt)− Ass), wt

]
+ γCov [(At − Ass)(wt − C), wt]

}
.

Using the solution for A∗t from the main text, assuming (in line with much of the empir-
ical literature to date) that N = 0, first-order approximating Ã(wt) around wt = C, and
recognizing that Cov[w2

t , wt] = 2V ar[wt]C, we have:

Γ ≈ ∂π(At, At−1, wt)

∂wt

∣∣∣∣
(Ass,Ass,C)

− [γ + α + φ]
(αÃ′(C) + γ)

(
αÃ(C)− αÃ′(C)C + βb1C + βc1 + φĀ− (γ + α + φ− 2βa1)A

ss
)

(γ + α + φ− 2βa1)2

− [γ + α + φ]
(αÃ′(C) + γ)2C

(γ + α + φ− 2βa1)2

− αÃ′(C)[Ã(C)− Ã′(C)C − Ass]− α(Ã′(C))2C

− 1

2
[γ + ψ]

+ α
αÃ′(C) + γ

γ + α + φ− 2βa1
(Ã(C)− Ã′(C)C − Ass)

+ α
αÃ(C)− αÃ′(C)C + βb1C + βc1 + φĀ− (γ + α + φ− 2βa1)A

ss

γ + α + φ− 2βa1
Ã′(C)

+ 2αÃ′(C)
αÃ′(C) + γ

γ + α + φ− 2βa1
C

− γ αÃ′(C) + γ

γ + α + φ− 2βa1
C + γ

αÃ(C)− αÃ′(C)C + βb1C + βc1 + φĀ− (γ + α + φ− 2βa1)A
ss

γ + α + φ− 2βa1

+ 2γ
αÃ′(C) + γ

γ + α + φ− 2βa1
C.
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Assuming that Ã(C) = Ass and simplifying, this becomes:

Γ ≈ ∂π(At, At−1, wt)

∂wt

∣∣∣∣
(Ass,Ass,C)

− 1

2
[γ + ψ]

− [γ + α + φ]
(αÃ′(C) + γ)

(
γC + βb1C + βc1 + φĀ− (γ + φ− 2βa1)A

ss
)

(γ + α + φ− 2βa1)2

+ (αÃ′(C) + γ)
γC + βb1C + βc1 + φĀ− (γ + φ− 2βa1)A

ss

γ + α + φ− 2βa1

=
∂π(At, At−1, wt)

∂wt

∣∣∣∣
(Ass,Ass,C)

− 1

2
[γ + ψ]

+ [αÃ′(C) + γ]
γC + βb1C + βc1 + φĀ− (γ + φ− 2βa1)A

ss

γ + α + φ− 2βa1

−2βa1
γ + α + φ− 2βa1

.

Using Proposition 2, we have:

Γ ≈ ∂π(At, At−1, wt)

∂wt

∣∣∣∣
(Ass,Ass,C)

− 1

2
[γ + ψ]

+ [αÃ′(C) + γ]
β

VZ(A
ss,C,C)︷ ︸︸ ︷

[b1C + c1 + 2a1A
ss]

γ + α + φ− 2βa1

−2βa1
γ + α + φ− 2βa1

.

Note that ∂V (Zt, wt, Ft)/∂Zt = b1C + c1 + 2a1Zt when N = 0, and recall that the envelope
theorem and the fact that ∂π(At, At−1, wt)/∂At−1 = 0 around a steady state imply that
VZ(Ass, C,C) = 0. Therefore:

Γ ≈ ∂π(At, At−1, wt)

∂wt

∣∣∣∣
(Ass,Ass,C)

− 1

2
[γ + ψ].

Proposition 6 then implies that

Γ ≈ dπ(Ass, Ass, C)

dC
− 1

2
[γ + ψ]

=
dπ(Ass, Ass, C)

dC
+

1

2

∂2π(At, At−1, wt)

∂w2
t

≤ dπ(Ass, Ass, C)

dC
.

The estimator Γ overstates the cost (or understates the benefit) of marginal climate change.
Γ adjusts the desired effect dπ(Ass, Ass, C)/ dC for the nonlinearity of payoffs in weather. A
shift in the distribution of climate makes former extremes more likely, and extremes do tend
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to be costly. However, when former extremes become more regular, people undertake more
preparations for them and they become less costly. The next section will show that nonlinear
weather impacts are at best only loosely related to climate impacts and are potentially
unrelated to climate impacts.

Finally, much recent literature estimates the effects of climate on actions (or on functions
of actions) using the same kind of approach just studied (see Carleton and Hsiang, 2016).
This literature estimates A(Ã(wt), wt, F̃ (wt))−A(Ã(w0), w0, F̃ (w0)), where F̃ (wt) indicates
some vector of forecasts that correlates with the realized weather wt (the literature has not
explicitly conditioned on forecasts). The literature then calculates the effect of a marginal
change in climate as:∫ ∞

−∞

[
A(Ã(wt), wt, F̃ (wt))− A(Ã(w0), w0, F̃ (w0))

] dp(wt;C)

dC
dwt , Φ.

Analyzing, we find

Φ =Cov

[
A(Ã(wt), wt, F̃ (wt)),

dp(wt;C)
dC

p(wt;C)

]
.

Recall that A∗t is linear in the main text’s setting. We thus have:

Φ =
∂A(At−1, wt, Ft)

∂At−1
Cov

[
Ã(wt),

dp(wt;C)
dC

p(wt;C)

]
+
∂A(At−1, wt, Ft)

∂wt
Cov

[
wt,

dp(wt;C)
dC

p(wt;C)

]

+
N∑
i=1

∂A(At−1, wt, Ft)

∂fit
Cov

[
f̃it,

dp(wt;C)
dC

p(wt;C)

]

=
α

γ + α + φ− 2βa1
Cov

[
Ã(wt),

dp(wt;C)
dC

p(wt;C)

]
+

γ

γ + α + φ− 2βa1
Cov

[
wt,

dp(wt;C)
dC

p(wt;C)

]

+
βb1

γ + α + φ− 2βa1
Cov

[
f̃1t,

dp(wt;C)
dC

p(wt;C)

]
+

N−1∑
i=1

βbi2
γ + α + φ− 2βa1

Cov

[
f̃(i+1)t,

dp(wt;C)
dC

p(wt;C)

]
.

Assume that wt is normally distributed with mean C. A second-order Taylor expansion of
the probability term around long-run average weather C yields:

Φ ≈ 1

V ar[wt]

{
α

γ + α + φ− 2βa1
Cov

[
Ã(wt), wt

]
+

γ

γ + α + φ− 2βa1
V ar[wt]

+
βb1

γ + α + φ− 2βa1
Cov

[
f̃1t, wt

]
+

N−1∑
i=1

βbi2
γ + α + φ− 2βa1

Cov
[
f̃(i+1)t, wt

]}
.
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A first-order Taylor expansion of Ã(wt) around wt = C then gives:

Φ ≈ γ

γ + α + φ− 2βa1
+

α

γ + α + φ− 2βa1
Ã′(C)

+
βb1

γ + α + φ− 2βa1

Cov
[
f̃1t, wt

]
V ar[wt]

+
N−1∑
i=1

βbi2
γ + α + φ− 2βa1

Cov
[
f̃(i+1)t, wt

]
V ar[wt]

.

Note that if t is more than N periods in the future, then Cov[fit, wt] = ρi +
∑N−i

j=1 δj(j+i).
We can relate Φ to the main text’s estimator by writing it as

Φ ≈∂A(At−1, wt, Ft)

∂wt
+
∂A(At−1, wt, Ft)

∂At−1
Ã′(C) +

N∑
i=1

∂A(At−1, wt, Ft)

∂fit
Corr[f̃it, wt]V ar[fit].

Because weather is serially correlated, we should expect that Ã′(C) > 0 and Corr[f̃it, wt] > 0.
Proposition 3 showed that ∂At/∂wt < dAss/ dwt when α > 0. The estimator Φ does not
underestimate dAss/ dC by as much as would estimating ∂At/∂wt alone: Φ does account for
how previous actions may vary with weather and for how forecasts may vary with weather.
However, we should expect that Ã′(wt) is small when adjustment costs are large, and we
may expect longer-horizon forecasts to be less correlated with weather and, if they do not
improve much on knowledge of the background climate, also to have low variance. These
arguments suggest that Φ typically underestimates dAss/ dC by more than the main text’s
estimator that uses all available forecasts.

B What we do and do not learn from estimating non-

linear weather impacts

Much empirical work has found that weather outcomes have nonlinear effects. We have seen
that empirical researchers should be estimating the average treatment effect of weather in
order to identify the marginal effect of climate. Can the curvature of V and π in wt tell
us something about the curvature of V (Ass, C,C) and π(Ass, Ass, C) in C? The following
proposition provides reason for skepticism:

Proposition 7.

1. ∂2π(At,Zt,wt)

∂w2
t

≤ d2π(At,Zt,wt)

dw2
t

≤ ∂2V (Zt,wt,Ft)

∂w2
t

≤ d2π(Ass,Ass,C)
dC2 ≤ 0, with:

(a) ∂2π(At,Zt,wt)

∂w2
t

< d2π(At,Zt,wt)

dw2
t

if and only if βαγ > 0,

(b) d2π(At,Zt,wt)

dw2
t

< ∂2V (Zt,wt,Ft)

∂w2
t

if and only if γ > 0,
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(c) ∂2V (Zt,wt,Ft)

∂w2
t

< d2π(Ass,Ass,C)
dC2 if and only if αγ > 0, and

(d) d2π(Ass,Ass,C)
dC2 < 0 if and only if φγ + ψ > 0.

2. ∂2π(At,Zt,wt)

∂w2
t

→ d2π(Ass,Ass,C)
dC2 as either γ → 0 or φ→∞.

3. If φ + ψ = 0 and α > 0, then ∂2π(At,Zt,wt)

∂w2
t

, d2π(At,Zt,wt)

dw2
t

, ∂
2V (Zt,wt,Ft)

∂w2
t

< 0 even as
d2π(Ass,Ass,C)

dC2 = 0.

Proof. See appendix.

The proposition relates (i) the curvature of per-period payoffs in wt holding At and Zt con-
stant (∂2π/∂w2

t ), (ii) the curvature of per-period payoffs in wt when At adapts to realizations
of wt ( d2π/ dw2

t ), (iii) the curvature of intertemporal value in wt, and (iv) the curvature of
per-period steady-state payoffs in C.4 Empirical work will commonly estimate (ii), because
per-period payoffs are observable as profit and actions are often not observable.5

The first part of Proposition 7 establishes that the type of curvature estimated as (i),
(ii), or (iii) is at least as extreme as the curvature of steady-state payoffs in climate (iv).
Empirical estimates should therefore be taken as an upper bound on the nonlinearity of
climate impacts. Intuitively, an agent undertakes greater adjustment to a permanent change
in climate than to transient weather shocks, and this greater adjustment reduces the impact
on payoffs.

The second part of Proposition 7 establishes that the nonlinearity of weather impacts
can adequately approximate the nonlinearity of climate impacts when there are no avoidable
weather impacts (γ → 0) and when maintenance costs become infinitely large (φ → ∞).
In these rather special cases, actions do not adjust to a change in climate. In more general
cases, nonlinear weather impacts strictly overestimate the nonlinearity of climate impacts.

But perhaps detecting nonlinear weather impacts tells us something qualitative about
climate change? The third part of the proposition establishes that climate impacts can be
linear even when weather impacts are nonlinear. In particular, let φ = 0 and ψ = 0. Climate
then has no effect on steady-state value because there are no unavoidable weather impacts
and the agent adjusts her actions to completely offset the avoidable weather impacts from a
change in climate (Ass = C). However, when α > 0, this agent will not choose to completely
offset the effects of transient weather events. Transient weather events can then impose

4Proposition 5 relates the curvature of per-period steady-state payoffs in C to the curvature of intertem-

poral value in C: d2V (Ass,C,C)
dC2 = 1

1−β
d2π(Ass,Ass,C)

dC2 .
5Or at least it will estimate (ii) if it conditions on forecasts: the definition of dπ/dwt used here does

not allow Zt to change with wt. See Section D for a discussion of the implications of not conditioning on
forecasts.
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arbitrarily nonlinear costs even though climate change imposes no costs at all in the long
run.6

C What forecasts tell us about the effect of climate on

value

Now consider how we can use observable variation in forecasts to learn about climate impacts.
We saw in the main text that using variation in forecasts can improve an empirical analyst’s
ability to estimate changes in steady-state actions. We have already seen that ATEV

w (C) and
ATEπ

w(C) are sufficient statistics for the effect of climate change on steady-state per-period
payoffs. Does using forecasts add anything here? Let ATEV

fi
(C) and ATEπ

fi
(C) denote the

average treatment effect of forecasts at horizon i around a steady state, defined analogously
to ATEV

w (C) and ATEπ
w(C). We now have:

Proposition 8.

1. ATEV
fi

(C) = βiATEV
w (C).

2. As N →∞, ATEV
w (C) +

∑N
i=1ATE

V
fi

(C)→ dV (Ass,C,C)
dC

.

3. dV (Ass,C,C)
dC

= ATEVw (C)

1−
(
ATEV

fi
(C)

ATEVw (C)

) 1
i
.

4. ATEπ
fi

(C) = 0.

Proof. See appendix.

The first part of the proposition says that the average treatment effect of forecasts on value is
the discounted average treatment effect of weather, which Proposition 6 showed is the average
treatment effect of climate on per-period payoffs. We can therefore derive the change in per-
period payoffs from either estimate, provided we have an estimate of β in hand. The second
and third parts of the proposition show that if we use both types of treatment effects, then
we can identify not only the change in steady-state per-period payoffs but also the discount
factor β. We can then exactly identify the present value of the change in steady-state value
as revealed by the agent’s own actions. The final part of the proposition shows that it is
critical that the dependent variable be a forward-looking measure of value such as land prices
or stock prices. Per-period payoffs (e.g., profits) will not, on average, respond to forecasts
around a steady state.

6Below, we will learn what estimating nonlinear weather impacts tells us about the costs of changing the
variance of the weather.
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D Omitted variables bias from ignoring forecasts

Most empirical to date work has ignored the existence of weather forecasts. We have seen
that forecasts can provide valuable information, but our analysis also implies that ignoring
forecasts acts like omitted variables bias when estimating the consequences of weather (see
also Lemoine, 2017; Shrader, 2017).7 Accounting for forecasts is therefore not optional. The
covariance between wt and fit is, for t > N ,

Cov0(wt, fit) =Cov0

(
εt +

N∑
k=1

νk(t−k),
N−i∑
j=0

ν(i+j)(t−j)

)

=ρi +
N−i∑
k=1

δk(i+k).

In applications, we can reasonably expect each ρ and δ to be positive, with many strictly
positive. We can therefore reasonably expect this covariance to be strictly positive. The bias
from estimating ∂V/∂wt without accounting for Ft is proportional to

N∑
i=1

∂V (Zt, wt, Ft)

∂fit
Cov0(wt, fit).

When wt and fit affect V in the same way, omitting forecasts will generally overestimate
the magnitude of ∂V/∂wt. A similar analysis applies if the dependent variable were At
instead of V .8 Yet since we have previously seen that combining forecasts with weather
can generate useful information, one might wonder whether entwining forecasts and weather
through omitted variables bias might actually use weather and forecasts in the desired fash-
ion. Unfortunately, this is not generally the case: the ρ and δ terms that are critical to

7Previous work has shown that forecasts matter for outcome variables in a variety of contexts, suggesting
that we cannot assume that ∂V/∂fit = 0 or that ∂At/∂fit = 0. Lave (1963) illustrates the value of rain
forecasts to raisin growers, and Wood et al. (2014) find that developing-country farmers with better access
to weather information make more changes in their farming practices. Neidell (2009) demonstrates the
importance of accounting for forecasts when estimating the health impacts of air pollution. Studying Indian
agriculture, Rosenzweig and Udry (2013) show that farmers’ investments respond to forecasts (and respond
more strongly to more skillful forecasts), and Rosenzweig and Udry (2014) show that forecasts of planting
season weather affect migration decisions and thus wages. Shrader (2017) shows that fishers’ revenue and
effort both respond to seasonal forecasts of El Niño events. Severen et al. (2016) show that land markets
capitalize forecasts of climate change.

8However, the concern is mitigated if the dependent variable is π and actions are near the steady state.
Forecasts affect π only through At−1, and we saw that the marginal effect of At−1 vanishes around a steady
state. Therefore omitted variables bias is not a concern when estimating the consequences of weather on
per-period payoffs around a steady state.
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omitted variables bias did not appear in any earlier derivation.9 Taking advantage of varia-
tion in forecasts does require explicitly estimating the effects of weather and of forecasts at
each horizon. Empirical work should more carefully consider the informational structure of
weather shocks and take care to estimate the treatment effect of interest.

E When climate controls the variance of the weather

We now study a case where the climate controls the variance of the weather. The effects of
climate change on the variance of the weather are poorly understood and spatially heteroge-
neous (e.g., Huntingford et al., 2013; Lemoine and Kapnick, 2016), but many are interested
in how to think about the costs of greater variance. Extend the previous setting to allow the
variance to depend on a distinct climate index D (so that we can study effects on variance
without also changing average climate via C). Now let εt have variance σ2(D) and let each
νit have variance τ 2i (D). For simplicity, keep the covariances δij and ρi independent of D.

First, note from equation (3) that the optimal actions A∗t are linear in wt and the fit. It
is therefore clear that

dE0[At]

dD
= 0.

The variance of weather and forecasts does not affect expected actions because actions are
linear in the states when payoffs are quadratic.

Now consider the effect of D on value. From the solution for d in the proof of Proposition
1, the effect on time t value of permanently changing the variance via D is:10

dV (Zt, wt, Ft)

dD
=

β

1− β

[
a2

dσ2

dD
+

N∑
i=1

ai3
dτ 2i
dD

]
≤ 0.

Twice-differentiating the value function solution in Proposition 1 with respect to wt and each
fit, we have:

dV (Zt, wt, Ft)

dD
=

β

1− β

[
1

2

∂2V (Zt, wt, Ft)

∂w2
t

dσ2

dD
+

1

2

N∑
i=1

∂2V (Zt, wt, Ft)

∂f 2
it

dτ 2i
dD

]
. (A-1)

9In a regression of either value or actions on weather with forecasts acting as the only bias-generating
omitted variables, the usual ordinary least squares formula shows that omitted variables bias induces the
desired combination of weather and forecasts if and only if Cov0(wt, fit) = V ar0(wt) for all i. There is no
reason for this relationship to hold in practice.

10Alternately, one could use equation (5) to consider the effect of altered variance on expected value at
some future time, as we did with the effect of an altered mean in the main text. However, this analysis
becomes more complicated because we have to account for how climate change affects the variance of actions
and affects their covariance with weather and forecasts.
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If the entire effect of climate change consisted in changing the variance of the one-period-
ahead forecast errors εt, then the curvature of value in weather would identify the cost of
that change. However it is more likely that climate change affects the variance of νNt than
the variance of εt. In that case, the curvature of value in long-run forecasts identifies the
cost of that change. Further, from Proposition 1, those costs become small as βN decreases.
Therefore, if climate change increases the variance of long-run forecasts but does not affect
their accuracy,11 then we can expect the costs of a change in variance to be small.

Finally, Proposition 7 tells us that if γ > 0, then π(At, Zt, wt) is more concave in wt
than is V (Zt, wt, Ft), and we know that π(At, Zt, wt) is independent of fit, once we condition
on At and Zt. When applying equation (A-1), it is therefore important to distinguish be-
tween estimating the nonlinear effects of weather and forecasts on intertemporal value and
estimating the nonlinear effects of weather and forecasts on flow payoffs.

F Generalizing the functional form for payoffs

I now analyze a general functional form for payoffs rather than the quadratic form analyzed in
the main text. I also now allow for K ≥ 1 types of actions, indexed as Akt for k ∈ {1, ..., K},
and for J ≥ 1 dimensions of weather, indexed as wjt for j ∈ {1, ..., J}. Let time t payoffs be
π(At,At−1,wt), where At , {A1

t , ..., A
K
t }, At−1 , {A1

t−1, ..., A
K
t−1}, and wt , {w1

t , ..., w
J
t }.

π1k indicates a partial derivative with respect to Akt , π2k indicates a partial derivative with
respect to Akt−1, and π3j indicates a partial derivative with respect to wjt . Assume declining
marginal benefits of current and past adaptation investments (π1k1k < 0, π2k2k ≤ 0), and
assume the presence of smooth adjustment costs, which means that the marginal benefit of
current actions increases in the level of previous actions (π1k2k > 0). Finally, assume that the
effect of weather on payoffs does not depend directly on past adaptation actions: π2k3j = 0.

I modify the transition equations for weather and forecasts to multiply each disturbance
term by a perturbation parameter ζ ≥ 0. The Bellman equation is now:

V (Zt,wt,Ft; ζ) = max
At

{
π(At,Zt, wt) + βEt [V (Zt+1, wt+1, Ft+1; ζ)]

}
s.t. Zt+1 =At

wjt+1 =f j1t + ζεjt+1

f ji(t+1) =f j(i+1)t + ζνji(t+1) for i < N

f jN(t+1) =C + ζνjN(t+1)

Ft+1 now indicates a J × N matrix of forecasts. In order to avoid excess notation, assume

11If climate change does not affect the variance of εt or of νit for i < N , then it does not affect the accuracy
of forecasts made at horizon N .
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that the J dimensions of each εt are uncorrelated with each other and likewise for each νt.
We will be especially interested in the following assumption:

Assumption 1. π2k(At,At−1,wt) = 0 if Akt−1 = Akt .

This assumption says that small changes in past actions do not affect payoffs when they
match current actions. It will be satisfied by many specifications of adjustment costs, in-
cluding the specification in the main text.

First consider the deterministic system, with ζ = 0. In this case, each weather and
forecast variable is simply equal to C. The K first-order conditions are:

0 = π1k(At,Zt,C) + βV1k(Zt+1,C,C; 0),

where I abuse notation in using C for both the J×1 vector of time t weather and the J×N
matrix of time t forecasts. The envelope theorem yields:

V1k(Zt,C,C; 0) = π2k(At,Zt,C).

Advancing this forward by one timestep and substituting into the first-order conditions, we
have the K Euler equations:

0 = π1k(At,At−1,C) + βπ2k(At+1,At,C).

A steady state Ā is defined by the following K equations:

0 = π1k(Ā, Ā,C) + βπ2k(Ā, Ā,C).

Assumption 1 would imply that π1k(Ā, Ā,C) = 0. Using π2k3j = 0,12 we also have:

dĀk

dCj
=

π1k3j(Ā, Ā,C)

−π1k1k(Ā, Ā,C)− (1 + β)π1k2k(Ā, Ā,C)− βπ2k2k(Ā, Ā,C)
.

I now analyze the policy rule in the stochastic system. The K first-order conditions are:

0 = π1k(At,Zt,wt) + βEt[V1k(Zt+1,wt+1,Ft+1; ζ)].

12In the case with K = 1, the steady state is unique if −π11 − βπ22 > (1 + β)π12. Now consider stability
in the case with K = 1 and, for ease of notation, J = 1. Use the Euler equation to define A∗

t+1(At, Zt).

Linearizing around Ā gives a first-order difference equation: At+1 ≈ −π11(Ā,Ā,C)−βπ22(Ā,Ā,C)
βπ12(Ā,Ā,C)

At− 1
βZt+D, for

some constant D. Combined with the transition equation for Z, we have a two-dimensional linear system.

The product of the eigenvalues is 1
β > 1, and the sum of the eigenvalues is −π11(Ā,Ā,C)−βπ22(Ā,Ā,C)

βπ12(Ā,Ā,C)
> 0.

Therefore both eigenvalues are positive and at least one is greater than 1. Forming the characteristic
equation and solving for the condition under which the smallest root is less than 1, we find that the system
is saddle-path stable if and only if −π11(Ā, Ā, C)−βπ22(Ā, Ā, C) > (1+β)π12(Ā, Ā, C), which is ensured if π
satisfies the sufficient condition for uniqueness. Further, if the system is saddle-path stable, then dĀ/dC > 0
if and only if π13(Ā, Ā, C) > 0.
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The envelope theorem yields:

V1k(Zt,wt,Ft+1; ζ) = π2k(At,Zt,wt).

Advancing this forward by one timestep and substituting, we have the K Euler equations:

0 = π1k(At,At−1,wt) + βEt[π2k(At+1,At,wt+1)].

Approximate the value function via a second-order Taylor series expansion around Zt =
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Ā, wt = C, Ft = C, and ζ = 0:

V (Zt,wt,Ft; ζ) ≈V (Ā,C,C; 0) +
K∑
k=1

∂V

∂Zk
t

∣∣∣∣
(Ā,C,C,0)

(Zk
t − Āk) +

J∑
j=1

∂V

∂wjt

∣∣∣∣
(Ā,C,C,0)

(wjt − Cj)

+
J∑
j=1

N∑
i=1

∂V

∂f jit

∣∣∣∣
(Ā,C,C,0)

(f jit − Cj) +
∂V

∂ζ

∣∣∣∣
(Ā,C,C,0)

ζ

+
1

2

K∑
k=1

∂2V

∂Zk
t

2

∣∣∣∣
(Ā,C,C,0)

(Zk
t − Āk)2 +

1

2

J∑
j=1

∂2V

∂wjt
2

∣∣∣∣
(Ā,C,C,0)

(wjt − Cj)2

+
1

2

J∑
j=1

N∑
i=1

∂2V

∂f jit
2

∣∣∣∣
(Ā,C,C,0)

(f jit − Cj)2 +
1

2

∂2V

∂ζ2

∣∣∣∣
(Ā,C,C,0)

ζ2

+
K∑
k=1

J∑
j=1

∂2V

∂Zk
t ∂w

j
t

∣∣∣∣
(Ā,C,C,0)

(Zk
t − Āk)(w

j
t − Cj)

+
K∑
k=1

J∑
j=1

N∑
i=1

∂2V

∂Zk
t ∂f

j
it

∣∣∣∣
(Ā,C,C,0)

(Zk
t − Āk)(f

j
it − Cj)

+
J−1∑
j=1

J∑
m=j+1

∂2V

∂wjt∂w
m
t

∣∣∣∣
(Ā,C,C,0)

(wjt − Cj)(wmt − Cm)

+
J∑
j=1

J∑
m=1

N∑
i=1

∂2V

∂wjt∂f
m
it

∣∣∣∣
(Ā,C,C,0)

(wjt − Cj)(fmit − Cm)

+
J∑
j=1

N−1∑
i=1

N∑
n=i+1

∂2V

∂f jit∂f
j
it

∣∣∣∣
(Ā,C,C,0)

(f jit − Cj)(f jit − Cj)

+
J−1∑
j=1

J∑
m=j+1

N∑
i=1

N∑
n=1

∂2V

∂f jit∂f
m
nt

∣∣∣∣
(Ā,C,C,0)

(f jit − Cj)(fmnt − Cm)

+
K∑
k=1

∂2V

∂Zk
t ∂ζ

∣∣∣∣
(Ā,C,C,0)

(Zk
t − Āk)ζ +

J∑
j=1

∂2V

∂wjt∂ζ

∣∣∣∣
(Ā,C,C,0)

(wjt − Cj)ζ

+
J∑
j=1

N∑
i=1

∂2V

∂f jit∂ζ

∣∣∣∣
(Ā,C,C,0)

(f jit − Cj)ζ +
K−1∑
k=1

K∑
j=k+1

∂2V

∂Zk
t ∂Z

j
t

∣∣∣∣
(Ā,C,C,0)

(Zk
t − Āk)(Z

j
t − Āj).
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Use the envelope theorem to substitute for several of the derivatives and impose π2k3j = 0:

V (Zt,wt,Ft; ζ) ≈V (Ā,C,C; 0) +
K∑
k=1

π̄2k(Z
k
t − Āk) +

J∑
j=1

π̄3j(w
j
t − Cj)

+
1

2

K∑
k=1

π̄2k2k(Z
k
t − Āk)2 +

1

2

J∑
j=1

π̄3j3j(w
j
t − Cj)2 +

K−1∑
k=1

K∑
j=k+1

π̄2k2j(Z
k
t − Āk)(Z

j
t − Āj)

+
∂V

∂ζ

∣∣∣∣
(Ā,C,C,0)

ζ +
1

2

∂2V

∂ζ2

∣∣∣∣
(Ā,C,C,0)

ζ2

+
J−1∑
j=1

J∑
m=j+1

π̄3j3m(wjt − Cj)(wmt − Cm)

+
J∑
j=1

N∑
i=1

∂V

∂f jit

∣∣∣∣
(Ā,C,C,0)

(f jit − Cj) +
1

2

J∑
j=1

N∑
i=1

∂2V

∂f jit
2

∣∣∣∣
(Ā,C,C,0)

(f jit − Cj)2

+
J∑
j=1

N−1∑
i=1

N∑
n=i+1

∂2V

∂f jit∂f
j
nt

∣∣∣∣
(Ā,C,C,0)

(f jit − Cj)(f jnt − Cj)

+
J−1∑
j=1

J∑
m=j+1

N∑
i=1

N∑
n=1

∂2V

∂f jit∂f
m
nt

∣∣∣∣
(Ā,C,C,0)

(f jit − Cj)(fmnt − Cm)

+
J∑
j=1

N∑
i=1

∂2V

∂f jit∂ζ

∣∣∣∣
(Ā,C,C,0)

(f jit − Cj)ζ,

where I write π̄ for π(Ā, Ā,C). Consider the remaining derivatives. First, we have:

∂V (Zt,wt,Ft; ζ)

∂f jit

∣∣∣∣
(Ā,C,C,0)

=βEt

[
∂V (Zt+1,wt+1,Ft+1; ζ)

∂f j(i−1)(t+1)

]
for i > 1,

∂V (Zt,wt,Ft; ζ)

∂f j1t

∣∣∣∣
(Ā,C,C,0)

=βEt

[
∂V (Zt+1,wt+1,Ft+1; ζ)

∂wjt+1

]
= βEt[π3j(t+ 1)],

where I save notation by using t + 1 to stand in for the arguments of π and leaving the
conditioning of time t expectations on the evaluation points Ā and C implicit. These imply:

∂V (Zt,wt,Ft; ζ)

∂f jit

∣∣∣∣
(Ā,C,C,0)

=βiEt[π3j(t+ i)].

A-16



Lemoine Appendix: Estimating Climate from Weather November 2018

Similar derivations yield

∂2V (Zt,wt,Ft; ζ)

∂f jit∂f
m
it

∣∣∣∣
(Ā,C,C,0)

=βiEt[π3j3m(t+ i)],

∂2V (Zt,wt,Ft; ζ)

∂f jit∂f
m
nt

∣∣∣∣
(Ā,C,C,0)

=0 for i 6= n.

Now consider derivatives with respect to ζ:

∂V (Zt,wt,Ft; ζ)

∂ζ

∣∣∣∣
(Ā,C,C,0)

=
J∑
j=1

βEt

[
∂V (Zt+1,wt+1,Ft+1; ζ)

∂wjt+1

εjt+1

]

+
J∑
j=1

β
N∑
i=1

Et

[
∂V (Zt+1,wt+1,Ft+1; ζ)

∂f ji(t+1)

νji(t+1)

]

+
J∑
j=1

βEt

[
∂V (Zt+1,wt+1,Ft+1; ζ)

∂ζ

]

=
J∑
j=1

∞∑
s=1

βs

{
Covt

[
π3j(t+ s), εjt+s

]
+

N∑
i=1

βiCovt

[
π3j(t+ s+ i), νji(t+s)

]}
,

∂2V (Zt,wt,Ft; ζ)

∂ζ2

∣∣∣∣
(Ā,C,C,0)

=
J∑
j=1

∞∑
s=1

βs
{
Et
[
π3j3j(t+ s)

]
(σj)2 + Covt

[
π3j3j(t+ s), (εjt+s)

2
]

+
N∑
i=1

βiEt
[
π3j3j(t+ s+ i)

]
(τ ji )2

+
N∑
i=1

βiCovt

[
π3j3j(t+ s+ i), (νji(t+s))

2
]}

,

∂2V (Zt,wt,Ft; ζ)

∂ζ∂f jit

∣∣∣∣
(Ā,C,C,0)

=βiCovt

[
π3j3j(t+ i), εjt+i +

i−1∑
s=1

νj(i−s)(t+s)

]
.
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Substitute in:

V (Zt,wt,Ft; ζ) ≈V (Ā,C,C; 0) +
K∑
k=1

π̄2k(Z
k
t − Āk) +

J∑
j=1

π̄3j(w
j
t − Cj) +

1

2

K∑
k=1

π̄2k2k(Z
k
t − Āk)2

+
1

2

J∑
j=1

π̄3j3j(w
j
t − Cj)2 +

K−1∑
k=1

K∑
h=k+1

π̄2k2h(Zk
t − Āk)(Zh

t − Āh)

+
J∑
j=1

N∑
i=1

βiEt[π3j(t+ i)](f jit − Cj) +
1

2

J∑
j=1

N∑
i=1

βiEt[π3j3j(t+ i)](f jit − Cj)2

+
J−1∑
j=1

J∑
m=j+1

N∑
i=1

βiEt[π3j3m(t+ i)](f jit − Cj)(fmit − Cm)

+
J∑
j=1

N∑
i=1

βiCovt

[
π3j3j(t+ i), εjt+i +

i−1∑
s=1

νj(i−s)(t+s)

]
(f jit − Cj)ζ

+
J∑
j=1

∞∑
s=1

βs

{
Covt

[
π3j(t+ s), εjt+s

]
+

N∑
i=1

βiCovt

[
π3j(t+ s+ i), νji(t+s)

]}
ζ

+
1

2

J∑
j=1

∞∑
s=1

βs
{
Et
[
π3j3j(t+ s)

]
(σj)2 + Covt

[
π3j3j(t+ s), (εjt+s)

2
]

+
N∑
i=1

βiEt
[
π3j3j(t+ s+ i)

]
(τ ji )2 +

N∑
i=1

βiCovt

[
π3j3j(t+ s+ i), (νji(t+s))

2
]}

ζ2.
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Now take the time 0 expectation of value at some time t > N :

E0[V (Zt,wt,Ft; ζ)] ≈V (Ā,C,C; 0) +
K∑
k=1

π̄2kE0[Z
k
t − Āk] +

1

2

K∑
k=1

π̄2k2kE0[(Z
k
t − Āk)2]

+
K−1∑
k=1

K∑
h=k+1

π̄2k2hE0

[
(Zk

t − Āk)(Zh
t − Āh)

]
+

1

2

J∑
j=1

π̄3j3j

(
(σj)2 +

N∑
i=1

(τ ji )2

)
ζ2 +

1

2

J∑
j=1

N∑
i=1

βiE0[π3j3j(t+ i)]
N∑
n=i

(τ jn)2ζ2

+
J∑
j=1

∞∑
s=1

βs

{
Cov0

[
π3j(t+ s), εjt+s

]
+

N∑
i=1

βiCov0

[
π3j(t+ s+ i), νji(t+s)

]}
ζ

+
1

2

J∑
j=1

∞∑
s=1

βs
{
E0

[
π3j3j(t+ s)

]
(σj)2 + Cov0

[
π3j3j(t+ s), (εjt+s)

2
]

+
N∑
i=1

βiE0

[
π3j3j(t+ s+ i)

]
(τ ji )2 +

N∑
i=1

βiCov0

[
π3j3j(t+ s+ i), (νji(t+s))

2
]}

ζ2.

A marginal change in climate can alter several (or all) of the J dimensions of the climate
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index. The derivative with respect to dimension m ∈ {1, ..., J} of climate is:

dE0[V (Zt,wt,Ft; ζ)]

dCm

≈ dV (Ā,C,C; 0)

dCm
+

K∑
k=1

π̄2kE0

[
dZk

t

dCm

]
+

K∑
k=1

π̄2k2kE0

[
(Zk

t − Āk)
(

dZk
t

dCm
− dĀk

dCm

)]

+
K−1∑
k=1

K∑
h=k+1

π̄2k2hE0

[
dZk

t

dCm
(Zh

t − Āh) + (Zk
t − Āk)

dZh
t

dCm

]

+
1

2

J∑
j=1

π̄3j3j3m

(
(σj)2 +

N∑
i=1

(τ ji )2

)
ζ2 +

1

2

J∑
j=1

N∑
i=1

βiE0[π3j3j3m(t+ i)]
N∑
n=i

(τ jn)2ζ2

+
J∑
j=1

∞∑
s=N+1

βs

{
Cov0

[
π3j3m(t+ s), εjt+s

]
+

N∑
i=1

βiCov0

[
π3j3m(t+ s+ i), νji(t+s)

]}
ζ

+
1

2

J∑
j=1

∞∑
s=N+1

βs
{
E0

[
π3j3j3m(t+ s)

]
(σj)2 + Cov0

[
π3j3j3m(t+ s), (εjt+s)

2
]

+
N∑
i=1

βiE0

[
π3j3j3m(t+ s+ i)

]
(τ ji )2

+
N∑
i=1

βiCov0

[
π3j3j3m(t+ s+ i), (νji(t+s))

2
]}

ζ2.

The terms on the first line are analogous to the terms in the main text, capturing the change
in steady-state value and the change in transition value. In the main text, the second
term on the first line vanished because Assumption 1 held. The second line arises only for
K > 1. The remaining lines are new, as they vanish when π is quadratic. They capture
how preferences for variance change with climate. π̄3j3j3j > 0 means that the agent prefers
to attach a weather lottery to a high weather state, analogous to standard interpretations
of prudence in consumption. The whole expression is arbitrarily close to the expression in
the main text (generalized for K ≥ 1) when Assumption 1 holds and either each π3j3j3m is
small or ζ is small.

We now analyze how steady-state value changes with Cm. We have:

V (Ā,C,C; 0) =
1

1− β
π(Ā, Ā,C).

We then have:

dV (Ā,C,C; 0)

dCm
=

1

1− β
dπ(Ā, Ā,C)

dCm
.
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That change in steady-state payoffs is:

dπ(Ā, Ā,C)

dCm
=π̄3m +

K∑
k=1

(π̄1k + π̄2k)
dĀk

dCm

=π̄3m +
K∑
k=1

(π̄1k + π̄2k)
π̄1k3m

−π̄1k1k − (1 + β)π̄1k2k − βπ̄2k2k
.

Using π̄1k = −βπ̄2k from the Euler equations, we have:

dπ(Ā, Ā,C)

dCm
=π̄3m + (1− β)

K∑
k=1

π̄2k
π̄1k3m

−π̄1k1k − (1 + β)π̄1k2k − βπ̄2k2k
.

Now analyze the average treatment effect of weather dimension m:

ATEπ
wm(C) ,E0

[
dπ(At,At−1,wt)

dwmt

]
=E0

[
π3m(At,At−1,wt) +

K∑
k=1

π1k(At,At−1,wt)
∂Akt (At−1,wt)

∂wmt

]
.

If π is quadratic, then π1k , π3m , and Akt are linear and we can pass the expectation operator
through to the arguments. The expression then exactly equals dπ̄/ dCm if we also impose
Assumption 1. Now consider the general case. Use a second-order Taylor series approxima-
tion to the term in brackets around At = Ā, At−1 = Ā, and wt = C, assume that actions
are on average near their steady state, and use π2k3m = 0 and π̄1k = −βπ̄2k :

ATEπ
wm(C) =π̄3m − β

K∑
k=1

π̄2k
π̄1k3m

−π̄1k1k − (1 + β)π̄1k2k − βπ̄2k2k

+
K∑
k=1

K∑
h=k

B1khCov0[A
k
t , A

h
t ] +

K∑
k=1

K∑
h=k

B2khCov0[A
k
t−1, A

h
t−1] + ζ2

J∑
j=1

B3j

[
(σj)2 +

N∑
i=1

(τ ji )2

]

+
K∑
k=1

K∑
h=1

B4khCov0[A
k
t , A

h
t−1] +

J∑
j=1

K∑
k=1

B5kjCov0[A
k
t , w

j
t ] +

J∑
j=1

K∑
k=1

B6kjCov0[A
k
t−1, w

j
t ],

for constants B. The variances and covariances all vanish as ζ → 0, leaving only the first
line. That first line differs from dπ̄/ dCm by having −βπ̄2k in place of (1 − β)π̄2k , and it
is identical to dπ̄/ dCm if Assumption 1 holds. Therefore, we have established conditions
under which the main result of the paper holds in a general setting: ATEπ

wm(C) ≈ dπ̄/ dCm
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when Assumption 1 holds and either π is quadratic or ζ is not too large.13 The main result of
the paper therefore holds under general, non-quadratic payoff functions (and vector-valued
actions) as long as i) the variance of weather outcomes is not too large and ii) adjustment
costs vanish when current and past actions match each other. Further, these are the same
conditions that earlier ensured that the general form of dE0[V (Zt,wt,Ft; ζ)]/ dCm matched
the expression derived in the main text.

G Proofs and Lemmas

G.1 Proof of Proposition 1

Guess that the value function has the form given in the statement of the proposition. The
continuation value becomes:

Et[V ] =a1A
2
t + a2σ

2 + a2f
2
1t +

∑
i

ai3τ
2
i +

∑
i<N

ai3f
2
(i+1)t + aN3 C

2

+ b1Atf1t + At
∑
i<N

bi2f(i+1)t + Atb
N
2 C

+ f1t
∑
i<N

bi3f(i+1)t + f1tb
N
3 C +

∑
i

ρib
i
3

+
N−2∑
i=1

N−1∑
j=i+1

bij4 f(i+1)tf(j+1)t +
N−1∑
i=1

biN4 f(i+1)tC +
N−1∑
i=1

N∑
j=i+1

bij4 δij

+ c1At + c2f1t +
∑
i<N

ci3f(i+1)t + cN3 C + d.

The first-order condition is

γ(At − wt) + α(At − Zt) + φ(At − Ā) =βEt[VZ(Zt+1, wt+1,Ft+1]

=β

[
2a1At + b1f1t +

∑
i<N

bi2f(i+1)t + bN2 C + c1

]
,

which implies that optimal actions are

A∗t =
αZt + γwt + βb1f1t + β

∑
i<N b

i
2f(i+1)t + βbN2 C + βc1 + φĀ

γ + α + φ− 2βa1
.

13If we had instead defined ATEπwm
(C) as E0[∂π(At,At−1,wt)/∂w

m
t ], then we would not require Assump-

tion 1. Also, we defined ATEπwm
(C) as the average treatment effect conditional on forecasts (so that each

Akt−1 did not depend on wt). The primary result would be unchanged if we had allowed forecasts, and thus
each Akt−1, to reflect the change in weather.
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Substitute A∗t into the Bellman equation. Matching coefficients to the guessed form of
the value function and simplifying, the quadratic coefficients are:

a1 =
1

2

α2

γ + α + φ− 2βa1
− 1

2
α,

a2 =
1

2
γ

[
γ

γ + α + φ− 2βa1
− 1

]
− 1

2
ψ,

a13 =
1

2

[βb1]
2

γ + α + φ− 2βa1
+ βa2,

ai3 =
1

2

[βbi−12 ]2

γ + α + φ− 2βa1
+ βai−13 .

Rearrange the solution for a1:

βa21 −
1

2
(γ + α + φ− βα)a1 −

1

4
α(γ + φ) = 0.

Note that a1 is independent of C. If β = 0, then the left-hand side is linear in a1 and the
unique solution has a1 ≤ 0, with a1 < 0 if and only if α(γ + φ) > 0. Recalling that we
assumed that γ + φ > 0, we then have a1 < 0 if and only if α > 0. If β > 0, then the
left-hand side describes a parabola in a1 that opens up. If α(γ + φ) = 0 with β > 0, then
there is a root at zero and a second root that is strictly positive. If αβ(γ + φ) > 0, then the
parabola has a strictly negative y-intercept and its roots must be of opposite sign. The two
roots are

a1 =
1

2β

{
1

2
[γ + α + φ− βα]±

√
1

4
(γ + α + φ− βα)2 + βα(γ + φ)

}
.

The second-order condition for A∗t to be a maximum is

0 <γ + α + φ− 2βa1.

This is satisfied for a1 ≤ 0, using that γ+φ > 0. The second-order condition therefore holds
at the negative root of a1. As we solve for the other coefficients, we will find that they are
unique conditional on a1. Therefore the first-order condition is satisfied at only two points,
determined by the two roots of a1. Since we know that the value function is strictly concave
in At at the point with negative a1, the point with positive a1 must either be a saddle point
or a minimum. We therefore are only interested in the negative root of a1 and will henceforth
ignore the strictly positive root.

Finding that a1 ≤ 0 implies that a2 ≤ 0. This inequality is strict if either γ > 0, γα > 0,
or γφ > 0. a2 is independent of C because a1 is independent of C.
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Matching coefficients again, the coefficients on the interaction terms become:

b1 =α
γ

γ + α + φ− 2βa1
,

b12 =
αβb1

γ + α + φ− 2βa1
,

bi2 =
αβbi−12

γ + α + φ− 2βa1
for i > 1,

b13 =γ
βb1

γ + α + φ− 2βa1
,

bi3 =βbi−12

γ

γ + α + φ− 2βa1
for i > 1,

b1j4 =βbj−12

βb1
γ + α + φ− 2βa1

+ βbj−13 ,

bij4 =
β2bi−12 bj−12

γ + α + φ− 2βa1
+ βb

(i−1)(j−1)
4 for i > 1.

Note that we can write

bi2 =

[
αβ

γ + α + φ− 2βa1

]i
b1 and bi3 =

γ

α
bi2,

for all i ∈ {1, ..., N}. Using a1 ≤ 0, we have b1 ≥ 0, which implies bi2 ≥ 0, which in turn
implies bi3 ≥ 0, which in turn implies bij4 ≥ 0. Clearly b1 > 0 iff αγ > 0, and each of the other
b coefficients is strictly positive iff b1 > 0 and β > 0. Finally, because a1 is independent of
C, we have that each b coefficient is independent of C.
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Now use the solutions for bi2 and b1 to analyze ai3:

ai3 =
i−2∑
k=0

βk
1

2

[βbi−1−k2 ]2

γ + α + φ− 2βa1
+ βi−1a13

=
1

2

[βb1]
2

γ + α + φ− 2βa1

i−1∑
k=0

βk
[

αβ

γ + α + φ− 2βa1

]2(i−1−k)
+ βi

[
1

2
γ

[
γ

γ + α + φ− 2βa1
− 1

]
− 1

2
ψ

]

=
1

2

γ2

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]2i i∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k
− 1

2
βi [γ + ψ]

=
1

2

γ2

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]2i 1− βi+1
[

αβ
γ+α+φ−2βa1

]−2(i+1)

1− β
[

αβ
γ+α+φ−2βa1

]−2 − 1

2
βi [γ + ψ]

=βi

1

2
γ

γ

γ + α + φ− 2βa1

1− βi+1
[

α
γ+α+φ−2βa1

]2i+2

1− β
[

α
γ+α+φ−2βa1

]2 − 1

2
[γ + ψ]

 . (A-2)

Note that ai3 is independent of C. The term in braces increases in i, and it strictly increases
in i if and only if αβ > 0. It is weakly greater than a2 and is strictly greater than a2 if and
only if αβγ > 0. As i→∞, the term in braces goes to:

1

2
γ

γ

γ + α + φ− 2βa1

1

1− β
[

α
γ+α+φ−2βa1

]2 − 1

2
[γ + ψ]

=
1

2
γ

γ(γ + α + φ− 2βa1)

(γ + α + φ− 2βa1)2 − (αβ)2
− 1

2
[γ + ψ]

=
1

2
γ

γ(γ + α + φ− 2βa1)

γ(γ + α + φ− 2βa1) + α2 + α(γ + φ− 2βa1) + (φ− 2βa1)(γ + α + φ− 2βa1)− (αβ)2
− 1

2
[γ + ψ]

=− 1

2
γ

α(γ + φ− 2βa1) + (φ− 2βa1)(γ + α + φ− 2βa1) + (1− β2)α2

γ(γ + α + φ− 2βa1) + α(γ + φ− 2βa1) + (φ− 2βa1)(γ + α + φ− 2βa1) + (1− β2)α2
− 1

2
ψ

≤0.

This is strictly negative if either ψ > 0, γφ > 0, or γα > 0, and it is equal to zero otherwise.
Therefore, if ψ+ γ(φ+α) +αβ > 0, then the term in braces in (A-2) is strictly negative for
all finite i, and if ψ + γ(φ+ α) + αβ = 0, then the term in braces in (A-2) is zero.
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Now match the coefficients on the linear terms:

c1 =α
βbN2 C + βc1 + φĀ

γ + α + φ− 2βa1
,

c2 =γ
βbN2 C + βc1 + φĀ

γ + α + φ− 2βa1
+ ψw̄,

c13 =βb1
βbN2 C + βc1 + φĀ

γ + α + φ− 2βa1
+ βbN3 C + βc2,

ci3 =βbi−12

βbN2 C + βc1 + φĀ

γ + α + φ− 2βa1
+ β

[
b
(i−1)N
4 C + ci−13

]
.

Solve for c1:

c1 = α
βbN2 C + φĀ

γ + α + φ− 2βa1 − αβ
.

This increases in C, strictly increases in C iff αβγ > 0, and is strictly positive iff C >
−φĀ/[βbN2 ]. Substituting into the expression for c2, we have:

c2 = γ
c1
α

+ ψw̄.

This increases in C, strictly increases in C iff αβγ > 0, and is positive if c1 ≥ 0 and w̄ ≥ 0.
Substituting for c1 and for the recursive terms in each ci3, we find:

ci3 = βib1
c1
α

i−1∑
j=0

[
α

γ + α + φ− 2βa1

]j
+ βi

i−1∑
j=1

β−jbjN4 C + βi
[
bN3 C + c2

]
.

This too increases in C, strictly increases in C iff αβγ > 0, and is positive if c1 ≥ 0 and
w̄ ≥ 0.

Finally, matching coefficients yields the constant:

d =
1

2
(βbN2 C + βc1 + φĀ)

c1
α

+ βa2σ
2 + β

∑
i

ai3τ
2
i

+ βcN3 C + βaN3 C
2 +

N−1∑
i=1

N∑
j=i+1

bij4 δij +
∑
i

ρib
i
3 −

1

2
φĀ2 − 1

2
ψw̄2 + βd.

Solving for d yields:

d =
1

1− β

{
1

2
(βbN2 C + βc1 + φĀ)

c1
α

+ βa2σ
2 + β

∑
i

ai3τ
2
i

+ βcN3 C + βaN3 C
2 +

N−1∑
i=1

N∑
j=i+1

bij4 δij +
∑
i

ρib
i
3 −

1

2
φĀ2 − 1

2
ψw̄2

}
.
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G.2 Two Lemmas

The first lemma establishes properties of a1 that will come in handy in later proofs.

Lemma 9.

1. a1 → 0 as α→ 0.

2. βa1 → 0 as β → 0.

3. a1 → −1
2
γ+φ
1−β as α→∞.

4. a1 → −1
2
α as either γ →∞ or φ→∞.

Proof. The first claim follows from the analysis in the proof of Proposition 1.
To prove the second claim, first observe that the proof of Proposition 1 showed that

βa1 = 0 if β = 0. Then note that as β goes to 0, we have:

lim
β→0

βa1 =
1

2

{
1

2
[γ + α + φ]±

√
1

4
(γ + α + φ)2

}
= 0.

We now consider the third claim. First assume that β = 0. We have:

lim
α→∞

a1 =− 1

2
(γ + φ).

Now assume that β > 0. Rewrite a1 as

a1 =
1

4β

1−
√

1 + 4 βα(γ+φ)
(γ+α+φ−βα)2

1
γ+α+φ−βα

.

We have:

lim
α→∞

a1 =
0

0
.

Use L’Hôpital’s Rule:

lim
α→∞

a1 = lim
α→∞

1

2β(1− β)

β(γ + φ)− 2βα(γ+φ)(1−β)
γ+α+φ−βα√

1 + 4 βα(γ+φ)
(γ+α+φ−βα)2

=− 1

2

γ + φ

1− β
.
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Now consider the fourth claim. First assume that β = 0. We have:

lim
γ→∞

a1 =− 1

2
α,

lim
φ→∞

a1 =− 1

2
α.

Now assume that β > 0. As above, we have:

lim
γ→∞

a1 =
0

0
.

Use L’Hôpital’s Rule:

lim
γ→∞

a1 = lim
γ→∞

1

β

−1
2

βα

(γ+α+φ−βα)2
−2 βα(γ+φ)

(γ+α+φ−βα)3√
1+4

βα(γ+φ)

(γ+α+φ−βα)2

− 1
(γ+α+φ−βα)2

= lim
γ→∞

1

2β

βα− 2 βα(γ+φ)
γ+α+φ−βα√

1 + 4 βα(γ+φ)
(γ+α+φ−βα)2

=− 1

2
α.

The derivation for φ→∞ is similar.

The second lemma derives a relationship that will be used in several later proofs:

Lemma 10.
γ + α + φ− 2βa1

(γ + φ− 2βa1)(γ + α + φ− 2βa1 − αβ)
=

1

γ + φ

Proof. Using the solution for a1 in the proof of Proposition 1, we have:

γ + φ− 2βa1 =
1

2
(γ + φ) +

√
1

4
(γ + α + φ− βα)2 + βα(γ + φ)− 1

2
(1− β)α,

and

γ + α + φ− 2βa1 − αβ =
1

2
(γ + φ) +

√
1

4
(γ + α + φ− βα)2 + βα(γ + φ) +

1

2
(1− β)α.
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Therefore:

(γ + φ− 2βa1)(γ + (1− β)α + φ− 2βa1)

=
1

4
(γ + φ)2 +

1

4
(γ + α + φ− βα)2 + βα(γ + φ)

+ (γ + φ)

√
1

4
(γ + α + φ− βα)2 + βα(γ + φ)− 1

4
(1− β)2α2

=
1

2
(γ + φ)2 +

1

2
(1− β)α (γ + φ) + βα(γ + φ) + (γ + φ)

√
1

4
(γ + α + φ− βα)2 + βα(γ + φ).

Substitute for 2βa1 and factor γ + φ:

=(γ + φ)

{
γ + φ+ (1− β)α− 2βa1 + βα

}
=(γ + φ)

{
γ + φ+ α− 2βa1

}
.

The lemma follows.

G.3 Proof of Proposition 2

The autonomous first-order linear difference equation that determines Ât is stable because
α

γ+α+φ−2βa1 ∈ [0, 1). The steady state is:

Ass =

(
γ + βb1 + β

∑
i<N b

i
2 + βbN2

)
C + βc1 + φĀ

γ + φ− 2βa1
.
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Substitute for the coefficients from their solutions in the proof of Proposition 1, solve the
geometric series, and simplify:

Ass =

(
γ + βb1

∑N−1
i=0

[
αβ

γ+α+φ−2βa1

]i
+ βb1

[
αβ

γ+α+φ−2βa1

]N
γ+α+φ−2βa1

γ+α+φ−2βa1−αβ

)
C

γ + φ− 2βa1

+
φĀ γ+α+φ−2βa1

γ+α+φ−2βa1−αβ

γ + φ− 2βa1

=

(
γ + βb1

1−
[

αβ
γ+α+φ−2βa1

]N
1− αβ

γ+α+φ−2βa1

+ βb1

[
αβ

γ+α+φ−2βa1

]N
γ+α+φ−2βa1

γ+α+φ−2βa1−αβ

)
C

γ + φ− 2βa1

+
φĀ γ+α+φ−2βa1

γ+α+φ−2βa1−αβ

γ + φ− 2βa1

=

(
γ + βb1

γ+α+φ−2βa1
γ+α+φ−2βa1−αβ

)
C

γ + φ− 2βa1
+
φĀ γ+α+φ−2βa1

γ+α+φ−2βa1−αβ

γ + φ− 2βa1

=

γ+α+φ−2βa1
γ+α+φ−2βa1−αβ

γ + α + φ− 2βa1 − α
γC +

φĀ γ+α+φ−2βa1
γ+α+φ−2βa1−αβ

γ + α + φ− 2βa1 − α

=
γ + α + φ− 2βa1

(γ + φ− 2βa1)(γ + α + φ− 2βa1 − αβ)

[
γC + φĀ

]
. (A-3)

Using Lemma 10, we have:

Ass =
γ

γ + φ
C +

φ

γ + φ
Ā.

G.4 Proof of Proposition 3

From equation (A-3), we have:

dAss

dC
=

γ

γ + α + φ− 2βa1 − αβ
γ + α + φ− 2βa1
γ + φ− 2βa1

.

Using the solution for At in Proposition 1 and the solutions for the coefficients given in the
proof of that proposition, we have:

∂At
∂wt

=
γ

γ + α + φ− 2βa1
,

∂At
∂f1t

=
βb1

γ + α + φ− 2βa1

=
γ

γ + α + φ− 2βa1

αβ

γ + α + φ− 2βa1
.
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We also have, for i > 1,

∂At
∂fit

=
βbi−12

γ + α + φ− 2βa1

=
β

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]i−1
αγ

γ + α + φ− 2βa1

=
γ

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]i
.

Therefore,

∂At
∂wt

+

j∑
i=1

∂At
∂fit

=
γ

γ + α + φ− 2βa1

j∑
i=0

[
αβ

γ + α + φ− 2βa1

]i
=

γ

γ + α + φ− 2βa1 − αβ

[
1−

(
αβ

γ + α + φ− 2βa1

)j+1
]
.

Assuming γ > 0, we now have:

Bias(j) =

[
1−

(
αβ

γ + α + φ− 2βa1

)j+1
]

γ + φ− 2βa1
γ + α + φ− 2βa1

− 1.

The term in square brackets is in (0, 1], and the fraction outside of the square brackets is in
(0, 1]. Therefore Bias(j) ∈ (−1, 0]. As α→ 0, Bias(j)→ 0. For α > 0, the fraction outside
of the square brackets is < 1, so Bias(j) < 0.

It is clear that Bias(j) is independent of N . The term in parentheses is in [0, 1), so the
term in square brackets increases in j. Therefore dBias(j)/ dj ≥ 0. As β → 0, Bias(j)
becomes constant in j (using Lemma 9).

As j,N →∞, the term in brackets goes to 1, so Bias(j)→ −α/[γ + α + φ− 2βa1].
Using Lemma 9, note that ∂At/∂wt, ∂At/∂fit → 0 as α → ∞. Again using Lemma 9,

the term in parentheses in Bias(j) goes to β as α→∞ and the fraction outside parentheses
goes to 0 as α→∞. Therefore Bias(j)→ −1 as α→∞.

Using Lemma 9, dAss/ dC → 1 as γ → ∞. Again using Lemma 9, the fraction outside
the square brackets in Bias(j) goes to 1 and the term in square brackets also goes to 1. So
Bias(j)→ 0 as γ →∞.

Finally, it is easy to see that ∂At/∂wt, ∂At/∂fit, dAss/ dC → 0 as either γ → 0 or (using
Lemma 9) as φ→∞.
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G.5 Proof of Proposition 4

Solving the linear difference equation for Ât given in the main text, we have:

Ât =Ass +

(
α

γ + α + φ− 2βa1

)t [
Â0 − Ass

]
.

Using the solution for Ass given in Proposition 2, we have:

dÂt
dC

=

[
1−

(
α

γ + α + φ− 2βa1

)t]
γ

γ + φ
.

Recalling that Ât , E0[At], the change in transition value is

2a1E0

[
(Zt − Ass)

(
dZt
dC
− dAss

dC

)]
=2a1

{
(Ât−1 − Ass)

[
1−

(
α

γ + α + φ− 2βa1

)t−1]
γ

γ + φ
C + Cov0

[
At−1,

dAt−1
dC

]
− E0 [(At−1 − Ass)]

γ

γ + φ
C

}

=2a1

{
−
(

α

γ + α + φ− 2βa1

)2(t−1)

[A0 − Ass]
γ

γ + φ
C + Cov0

[
At−1,

dAt−1
dC

]}
.

Using the difference equation for At given in Proposition 1 and recognizing that wt and

fit are linearly separable in C and the random variables, we have Cov0

[
At−1,

dAt−1

dC

]
= 0.

Therefore the change in transition value is

−2a1

(
α

γ + α + φ− 2βa1

)2(t−1)
γ

γ + φ
C [A0 − Ass].

This is zero if αγ = 0 and is proportional to [A0 − Ass] if αγ > 0, in which case the change
in transition value is negative if and only if A0 < Ass. The change in transition value also
goes to zero as At → Ass and, because the term in parentheses is < 1, as t→∞.

G.6 Proof of Proposition 5

I here prove the result through algebraic manipulations. A shorter, cleaner proof would
follow the analysis of Section F.

We begin by analyzing several of the value coefficients derived in the proof of Proposition
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1. First, we have:

bij4 =
β2bi−12 bj−12

γ + α + φ− 2βa1
+ βb

(i−1)(j−1)
4

=
βi+j

γ + α + φ− 2βa1

[
α

γ + α + φ− 2βa1

]i−1+j−1
[b1]

2 + βb
(i−1)(j−1)
4

=
i−2∑
k=0

βk
β(i−k)+(j−k)

γ + α + φ− 2βa1

[
α

γ + α + φ− 2βa1

](i−1−k)+(j−1−k)

[b1]
2 + βi−1b

1(j−(i−1))
4

=
βi+j

γ + α + φ− 2βa1

[
α

γ + α + φ− 2βa1

](i−1)+(j−1)

[b1]
2

i−2∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k
+ βibj−i2

βb1
γ + α + φ− 2βa1

+ βibj−i3 .

Note that:

βibj−i2

βb1
γ + α + φ− 2βa1

=
βi

γ + α + φ− 2βa1
[b1]

2β

[
α

γ + α + φ− 2βa1

]j−i
βj−i

=
βi+j

γ + α + φ− 2βa1
[b1]

2βi−1
[

α

γ + α + φ− 2βa1

](i−1)+(j−1) [
α

γ + α + φ− 2βa1

]−2(i−1)
.

We then have:

bij4 =
βi+j

γ + α + φ− 2βa1

[
α

γ + α + φ− 2βa1

](i−1)+(j−1)

[b1]
2

i−1∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k
+ βibj−i3

=
βi+j

γ + α + φ− 2βa1

[
α

γ + α + φ− 2βa1

]i+j
γ2

i−1∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k
+ βi

γ

α
bj−i2

=
βi+j

γ + α + φ− 2βa1

[
α

γ + α + φ− 2βa1

]i+j
γ2

i∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k
. (A-4)
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Second, analyze the following term, which we will see often:

i∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k
=

1− β−(i+1)
[

α
γ+α+φ−2βa1

]−2(i+1)

1− β−1
[

α
γ+α+φ−2βa1

]−2
=
β
[

α
γ+α+φ−2βa1

]2
− β−i

[
α

γ+α+φ−2βa1

]−2i
β
[

α
γ+α+φ−2βa1

]2
− 1

. (A-5)

Third, analyze ci3 further:

ci3 =βib1
c1
α

i−1∑
j=0

[
α

γ + α + φ− 2βa1

]j
+ βi

i−1∑
j=1

β−jbjN4 C + βi
[
bN3 C + c2

]

=βib1
c1
α

1−
(

α
γ+α+φ−2βa1

)i
1− α

γ+α+φ−2βa1
+ βi

i−1∑
j=1

β−jbjN4 C + βi
γ

α

[
bN2 C + c1

]
+ βiψw̄. (A-6)

Now turn to our expression of interest. Substituting in for the value function derivatives,
we have:

dV (Ass, C,C)

dC
=2a2C + b1A

ss +
N∑
i=1

bi3C + c2

+
N∑
i=1

[
2ai3C + bi2A

ss + bi3C +
N∑

j=i+1

bij4 C +
i−1∑
j=1

bji4 C + ci3

]

+
dc1
dC

Ass +
dc2
dC

C +
N∑
i=1

dci3
dC

C +
dd

dC
.

This expression is linear in C. We will first analyze the terms without C before analyzing
the slope in C. Combining the results gives the statement of the proposition.
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Analyzing the terms in dV (Ass, C,C)/ dC that are independent of C

Using the value function coefficients derived in the proof of Proposition 1 and also using
equation (A-6), the terms without C in dV (Ass, C,C)/ dC are:[

b1
φ

γ + φ
Ā+ ψw̄ + γ

φĀ

γ + α + φ− 2βa1 − αβ

]
+

N∑
i=1

bi2
φ

γ + φ
Ā

+
N∑
i=1

βib1
φĀ

γ + α + φ− 2βa1 − αβ

[
1−

(
α

γ + α + φ− 2βa1

)i]
γ + α + φ− 2βa1
γ + φ− 2βa1

+
N∑
i=1

βiγ
φĀ

γ + α + φ− 2βa1 − αβ

+
N∑
i=1

βiψw̄

+
αβbN2

γ + α + φ− 2βa1 − αβ
φ

γ + φ
Ā

+
β

1− β
γ + α + φ− 2βa1

γ + α + φ− 2βa1 − αβ
bN2

φĀ

γ + α + φ− 2βa1 − αβ

+
β

1− β
βNb1

φĀ

γ + α + φ− 2βa1 − αβ

[
1−

(
α

γ + α + φ− 2βa1

)N]
γ + α + φ− 2βa1
γ + φ− 2βa1

+
β

1− β
βNγ

φĀ

γ + α + φ− 2βa1 − αβ

+
β

1− β
βNψw̄.
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Apply Lemma 10 to the third, seventh, and eighth lines, cancel the second line with part of
the third, and solve the geometric series:

=

[
b1

φ

γ + φ
Ā+ ψw̄ + γ

φĀ

γ + α + φ− 2βa1 − αβ

]
+ β

1− βN

1− β
b1

φĀ

γ + φ

+ β
1− βN

1− β
γ

φĀ

γ + α + φ− 2βa1 − αβ

+ β
1− βN

1− β
ψw̄

+
αβbN2

γ + α + φ− 2βa1 − αβ
φ

γ + φ
Ā

+
β

1− β
γ + α + φ− 2βa1 − α
γ + α + φ− 2βa1 − αβ

bN2
φĀ

γ + φ

+
β

1− β
βNb1

φĀ

γ + φ

[
1−

(
α

γ + α + φ− 2βa1

)N]

+
β

1− β
βNγ

φĀ

γ + α + φ− 2βa1 − αβ

+
β

1− β
βNψw̄.

Cancel the final two lines and part of the third-to-last line with earlier lines:

=b1
φ

γ + φ
Ā+ ψw̄ + γ

φĀ

γ + α + φ− 2βa1 − αβ

+
β

1− β
b1

φĀ

γ + φ

+
β

1− β
γ

φĀ

γ + α + φ− 2βa1 − αβ

+
β

1− β
ψw̄

+
αβbN2

γ + α + φ− 2βa1 − αβ
φ

γ + φ
Ā

+
β

1− β
γ + α + φ− 2βa1 − α
γ + α + φ− 2βa1 − αβ

bN2
φĀ

γ + φ

− β

1− β
βNb1

φĀ

γ + φ

(
α

γ + α + φ− 2βa1

)N
.
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Combine the first four lines and substitute bN2 into the final line:

=
1

1− β
b1

φĀ

γ + φ

+
1

1− β
γ

φĀ

γ + α + φ− 2βa1 − αβ

+
1

1− β
ψw̄

+
αβbN2

γ + α + φ− 2βa1 − αβ
φ

γ + φ
Ā

+
β

1− β
γ + α + φ− 2βa1 − α
γ + α + φ− 2βa1 − αβ

bN2
φĀ

γ + φ

− β

1− β
φĀ

γ + φ
bN2 .

Combine the final two lines, substitute for b1 in the first line, and apply Lemma 10 to the
second line:

=
1

1− β
γα

γ + α + φ− 2βa1

φĀ

γ + φ

+
1

1− β
γ
γ + α + φ− 2βa1 − α
γ + α + φ− 2βa1

φĀ

γ + φ

+
1

1− β
ψw̄

+
αβbN2

γ + α + φ− 2βa1 − αβ
φ

γ + φ
Ā

− αβ

γ + α + φ− 2βa1 − αβ
φĀ

γ + φ
bN2 .

Combine the first two lines and cancel the final two lines:

=
1

1− β
γφ

γ + φ
Ā+

1

1− β
ψw̄. (A-7)
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Analyzing the slope of dV (Ass, C,C)/ dC in C

The slope of dV (Ass, C,C)/ dC in C is:

d2V (Ass, C,C)

dC2
=2a2 + b1

dAss

dC
+

N∑
i=1

bi3 +
dc2
dC

+
N∑
i=1

[
2ai3 + bi2

dAss

dC
+ bi3 +

N∑
j=i+1

bij4 +
i−1∑
j=1

bji4 +
dci3
dC

]

+
dc1
dC

dAss

dC
+

dc2
dC

+
N∑
i=1

dci3
dC

+
β

1− β

{
γ + α + φ− 2βa1

[γ + α + φ− 2βa1 − αβ]2
β[bN2 ]2 + 2

dcN3
dC

+ 2aN3

}
.

Differentiate equation (A-6), and use Lemma 10 and equation (A-4):

N∑
i=1

dci3
dC

=
N∑
i=1

βi

[
1−

(
α

γ + α + φ− 2βa1

)i]
γ

γ + φ

αβ

γ + α + φ− 2βa1
bN2

+
N∑
i=1

βi
i−1∑
j=1

β−jbjN4

+
N∑
i=1

βi
γ

α

γ + α + φ− 2βa1
γ + α + φ− 2βa1 − αβ

bN2

=β
1− βN

1− β
γ

γ + φ

αβ

γ + α + φ− 2βa1
bN2

− γ

γ + φ

(
αβ

γ + α + φ− 2βa1

)2

bN2

N−1∑
i=0

(
αβ

γ + α + φ− 2βa1

)i
+

N∑
i=1

βi
i−1∑
j=1

β−j
γ2

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]j+N j∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k
+ β

1− βN

1− β
γ

α

γ + α + φ− 2βa1
γ + α + φ− 2βa1 − αβ

bN2 .
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Using this expression and dcN3 / dC, we then have:

dc1
dC

dAss

dC
+

dc2
dC

+
N∑
i=1

dci3
dC

+
β

1− β

{
γ+α+φ−2βa1

γ+α+φ−2βa1−αβ

γ + α + φ− 2βa1 − αβ
β[bN2 ]2 + 2

dcN3
dC

+ 2aN3

}

=
αβ

γ + α + φ− 2βa1 − αβ
bN2

[
γ

γ + φ
+
γ

α

]
+ β

1 + βN

1− β
γ

γ + φ

αβ

γ + α + φ− 2βa1
bN2

− γ

γ + φ

(
αβ

γ + α + φ− 2βa1

)2

bN2

N−1∑
i=0

(
αβ

γ + α + φ− 2βa1

)i
+

N∑
i=1

βi
i−1∑
j=1

β−j
γ2

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]j+N j∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k
+ β

1 + βN

1− β
γ

α

γ + α + φ− 2βa1
γ + α + φ− 2βa1 − αβ

bN2

+ β
β

1− β
γ + α + φ− 2βa1

[γ + α + φ− 2βa1 − αβ]2
[bN2 ]2

− 2
β

1− β
βN
(

α

γ + α + φ− 2βa1

)N
γ

γ + φ

αβ

γ + α + φ− 2βa1
bN2

+ 2
β

1− β
βN

N−1∑
j=1

β−j
γ2

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]j+N j∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k

+
β

1− β
γ

α
bN2

[
αβ

γ + α + φ− 2βa1

]N N∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k
− β

1− β
βN [γ + ψ] .
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Do the summation in the third line and simplify:

dc1
dC

dAss

dC
+

dc2
dC

+
N∑
i=1

dci3
dC

+
β

1− β

{
γ+α+φ−2βa1

γ+α+φ−2βa1−αβ

γ + α + φ− 2βa1 − αβ
β[bN2 ]2 + 2

dcN3
dC

+ 2aN3

}

=
1 + βN+1

1− β
γ

γ + φ

αβ

γ + α + φ− 2βa1
bN2

+
N∑
i=1

βi
i−1∑
j=1

β−j
γ2

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]j+N j∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k
+

β

1− β
γ

α

(1 + βN)(γ + α + φ− 2βa1) + (1− β)α

γ + α + φ− 2βa1 − αβ
bN2

+ β
β

1− β
γ + α + φ− 2βa1

[γ + α + φ− 2βa1 − αβ]2
[bN2 ]2

− β

1− β
2(γ + α + φ− 2βa1 − αβ)− (1− β)α

γ + α + φ− 2βa1 − αβ
γ

γ + φ

(
αβ

γ + α + φ− 2βa1

)N+1

bN2

+ 2
β

1− β
βN

N−1∑
j=1

β−j
γ2

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]j+N j∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k

+
β

1− β
γ

α
bN2

[
αβ

γ + α + φ− 2βa1

]N N∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k
− β

1− β
βN [γ + ψ] .

(A-8)

Now analyze the other terms in dV (Ass, C,C)/ dC, substituting in for the coefficients
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derived in the proof of Proposition 1:[
2a2 + b1

dAss

dC
+

N∑
i=1

bi3 +
dc2
dC

]
+

N∑
i=1

[
2ai3 + bi2

dAss

dC
+ bi3 +

N∑
j=i+1

bij4 +
i−1∑
j=1

bji4 +
dci3
dC

]

=γ
γ

γ + α + φ− 2βa1
− [γ + ψ] +

γ

γ + φ
b1

N∑
i=0

[
αβ

γ + α + φ− 2βa1

]i
+ 2

γ

α
b1

αβ

γ + α + φ− 2βa1

N−1∑
i=0

[
αβ

γ + α + φ− 2βa1

]i
+
γ

α

αβ

γ + α + φ− 2βa1 − αβ
bN2

+
N∑
i=1

γ2

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]2i i∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k
−

N∑
i=1

βi [γ + ψ] + 2
N−1∑
i=1

N∑
j=i+1

bij4

+
N∑
i=1

βi

[
1−

(
α

γ + α + φ− 2βa1

)i]
γ

γ + φ

αβ

γ + α + φ− 2βa1
bN2

+
N∑
i=1

βi
i−1∑
j=1

β−jbjN4 +
N∑
i=1

βi
γ

α

γ + α + φ− 2βa1
γ + α + φ− 2βa1 − αβ

bN2 .

A-41



Lemoine Appendix: Estimating Climate from Weather November 2018

Solving some of the geometric series and simplifying, this becomes:[
2a2 + b1

dAss

dC
+

N∑
i=1

bi3 +
dc2
dC

]
+

N∑
i=1

[
2ai3 + bi2

dAss

dC
+ bi3 +

N∑
j=i+1

bij4 +
i−1∑
j=1

bji4 +
dci3
dC

]

=
γ

γ + φ
b1

γ + α + φ− 2βa1
γ + α + φ− 2βa1 − αβ

+
1

1− β
γ

γ + φ

αβ

γ + α + φ− 2βa1
bN2
−(γ + α + φ− 2βa1 + αβ)(1− β) + β(1− βN)(γ + α + φ− 2βa1 − αβ − αβ)

γ + α + φ− 2βa1 − αβ

+
γ

α
b1

αβ

γ + α + φ− 2βa1 − αβ

[
2−

(
αβ

γ + α + φ− 2βa1

)N]

+
N∑
i=0

γ2

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]2i i∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k
+ 2

N−1∑
i=1

N∑
j=i+1

bij4

+
γ

γ + φ

αβ

γ + α + φ− 2βa1 − αβ

(
αβ

γ + α + φ− 2βa1

)N+1

bN2

+ β
1− βN

1− β
γ

α

γ + α + φ− 2βa1
γ + α + φ− 2βa1 − αβ

bN2

+
N∑
i=1

βi
i−1∑
j=1

β−jbjN4 −
1− βN+1

1− β
[γ + ψ] .
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Substituting for b1 and bN2 and simplifying, we have:[
2a2 + b1

dAss

dC
+

N∑
i=1

bi3 +
dc2
dC

]
+

N∑
i=1

[
2ai3 + bi2

dAss

dC
+ bi3 +

N∑
j=i+1

bij4 +
i−1∑
j=1

bji4 +
dci3
dC

]
=

γ

γ + φ

γα

γ + α + φ− 2βa1 − αβ

+
1

1− β
γ

γ + φ

αβ

γ + α + φ− 2βa1
bN2

−(γ + α + φ− 2βa1 + αβ)(1− β) + β(1− βN)(γ + α + φ− 2βa1 − αβ − αβ)

γ + α + φ− 2βa1 − αβ

+ 2γ
γ

γ + α + φ− 2βa1

αβ

γ + α + φ− 2βa1 − αβ

+
N∑
i=0

γ2

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]2i i∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k
+ 2

N−1∑
i=1

N∑
j=i+1

bij4

+
γ

γ + φ

αβ

γ + α + φ− 2βa1 − αβ

(
αβ

γ + α + φ− 2βa1

)N+1

bN2

+
β

1− β
γ

α

(1− βN)(γ + α + φ− 2βa1)− (1− β)α

γ + α + φ− 2βa1 − αβ
bN2

+
N∑
i=1

βi
i−1∑
j=1

β−jbjN4 −
1− βN+1

1− β
[γ + ψ] . (A-9)
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Now combine (A-8) and (A-9) and simplify:

d2V (Ass, C,C)

dC2

=
1

1− β
γ

γ + φ

αβ

γ + α + φ− 2βa1
bN2

2β(γ + α + φ− 2βa1 − α)

γ + α + φ− 2βa1 − αβ

+ 2
N∑
i=1

βi
i−1∑
j=1

β−j
γ2

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]j+N j∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k
+ 2

β

1− β
γ

α

γ + α + φ− 2βa1
γ + α + φ− 2βa1 − αβ

bN2

+ β
β

1− β
γ + α + φ− 2βa1

[γ + α + φ− 2βa1 − αβ]2
[bN2 ]2

− 2
β

1− β
γ

γ + φ

γ + φ− 2βa1
γ + α + φ− 2βa1 − αβ

(
αβ

γ + α + φ− 2βa1

)N+1

bN2

+ 2
β

1− β
βN

N−1∑
j=1

β−j
γ2

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]j+N j∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k

+
β

1− β
γ

α
bN2

[
αβ

γ + α + φ− 2βa1

]N N∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k
+

γ

γ + φ

γα

γ + α + φ− 2βa1 − αβ

+ 2γ
γ

γ + α + φ− 2βa1

αβ

γ + α + φ− 2βa1 − αβ

+
N∑
i=0

γ2

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]2i i∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k
+ 2

N−1∑
i=1

N∑
j=i+1

bij4

− 1

1− β
[γ + ψ] .
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Substitute for bij4 from equation (A-4), simplify, and rearrange:

d2V (Ass, C,C)

dC2

=γ
α

γ + α + φ− 2βa1 − αβ

{
γ

γ + φ
+ 2β

γ

γ + α + φ− 2βa1

}
+

1

1− β
γ

γ + φ

αβ

γ + α + φ− 2βa1
bN2

2β(γ + α + φ− 2βa1 − α)

γ + α + φ− 2βa1 − αβ

+ 2
β

1− β
γ

α

γ + α + φ− 2βa1
γ + α + φ− 2βa1 − αβ

bN2

+ β
β

1− β
γα

[γ + α + φ− 2βa1 − αβ]2

(
αβ

γ + α + φ− 2βa1

)N
bN2

− 2
β

1− β
γ

γ + φ

γ + φ− 2βa1
γ + α + φ− 2βa1 − αβ

(
αβ

γ + α + φ− 2βa1

)N+1

bN2

+ 2
N∑
i=1

βi
i−1∑
j=1

β−j
γ2

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]j+N j∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k

+ 2
β

1− β
βN

N−1∑
j=1

β−j
γ2

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]j+N j∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k

+
1

1− β
γ2

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]2N N∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k
+

N−1∑
i=0

γ2

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]2i i∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k
+ 2

N−1∑
j=1

N∑
i=j+1

γ2

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]j+i j∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k
− 1

1− β
[γ + ψ] .
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Substitute from equation (A-5) and simplify:

d2V (ASs, C,C)

dC2

=γ
α

γ + α + φ− 2βa1 − αβ

{
γ

γ + φ
+ 2β

γ

γ + α + φ− 2βa1

}
+

1

1− β
γ

γ + φ

αβ

γ + α + φ− 2βa1
bN2

2β(γ + α + φ− 2βa1 − α)

γ + α + φ− 2βa1 − αβ

+ 2
β

1− β
γ

α

γ + α + φ− 2βa1
γ + α + φ− 2βa1 − αβ

bN2

+ β
β

1− β
γα

[γ + α + φ− 2βa1 − αβ]2

(
αβ

γ + α + φ− 2βa1

)N
bN2

− 2
β

1− β
γ

γ + φ

γ + φ− 2βa1
γ + α + φ− 2βa1 − αβ

(
αβ

γ + α + φ− 2βa1

)N+1

bN2

+ 2
N∑
i=1

βi
i−1∑
j=1

γ2

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]N [ αβ
γ+α+φ−2βa1

]−j
− β

[
α

γ+α+φ−2βa1

]j+2

1− β
[

α
γ+α+φ−2βa1

]2
+ 2

β

1− β
βN

N−1∑
j=1

γ2

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]N [ αβ
γ+α+φ−2βa1

]−j
− β

[
α

γ+α+φ−2βa1

]j+2

1− β
[

α
γ+α+φ−2βa1

]2
+

βN

1− β
γ2

γ + α + φ− 2βa1

1− β1+N
[

α
γ+α+φ−2βa1

]2(1+N)

1− β
[

α
γ+α+φ−2βa1

]2
+

N−1∑
i=0

βi
γ2

γ + α + φ− 2βa1

1− β1+i
[

α
γ+α+φ−2βa1

]2(1+i)
1− β

[
α

γ+α+φ−2βa1

]2
+ 2

N−1∑
j=1

N∑
i=j+1

βj
γ2

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]i [ αβ
γ+α+φ−2βa1

]−j
− β

[
α

γ+α+φ−2βa1

]j+2

1− β
[

α
γ+α+φ−2βa1

]2
− 1

1− β
[γ + ψ] .

Solving the geometric series, repeatedly using Lemma 10, and working through tedious
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algebra (available upon request) then yields:

d2V (Ass, C,C)

dC2
=− 1

1− β

[
γφ

γ + φ
+ ψ

]
.

It is straightforward to show that

dπ(Ass, Ass, C)

dC
=

γφ

γ + φ
(Ā− C) + ψ(w̄ − C).

The proposition follows from these last two expressions and (A-7).
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G.7 Proof of Proposition 6

Using the value function coefficients derived in the proof of Proposition 1 and applying
Lemma 10, we have:

ATEV
w (C) =2a2C + b1A

ss +
N∑
i=1

bi3C + c2

=
γ2

γ + α + φ− 2βa1
C − (γ + ψ)C + b1

[
γ

γ + φ
C +

φ

γ + φ
Ā

]
+

N∑
i=1

γ

α
bi2C

+ γ
βbN2 C + φĀ

γ + α + φ− 2βa1 − αβ
+ ψw̄

=
α

γ + α + φ− 2βa1

γφ

γ + φ
(Ā− C) + ψ(w̄ − C)

− γ φ− 2βa1
γ + α + φ− 2βa1

C +
γ2

γ + α + φ− 2βa1

αβ

γ + α + φ− 2βa1 − αβ
C

+ γ
φĀ

γ + α + φ− 2βa1 − αβ

=
α

γ + α + φ− 2βa1

γφ

γ + φ
(Ā− C) + ψ(w̄ − C)

− γ φ− 2βa1
γ + α + φ− 2βa1 − αβ

C + γ
αβ[γ + φ− 2βa1]

[γ + α + φ− 2βa1][γ + α + φ− 2βa1 − αβ]
C

+
γφĀ

γ + φ

γ + α + φ− 2βa1 − α
γ + α + φ− 2βa1

=
γφ

γ + φ
(Ā− C) + ψ(w̄ − C)

+ γ
γ + α + φ− 2βa1 − α
γ + α + φ− 2βa1

C

[
2βa1
γ + φ

+
αβ

γ + α + φ− 2βa1 − αβ

]
=

γφ

γ + φ
(Ā− C) + ψ(w̄ − C)

+
γ

γ + φ

γ + α + φ− 2βa1 − α
γ + α + φ− 2βa1

C

[
2βa1 + βα− βα2

γ + α + φ− 2βa1

]
.
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Use a1 = 1
2

α2

γ+α+φ−2βa1 −
1
2
α from the proof of Proposition 1:

ATEV
w (C) =

γφ

γ + φ
(Ā− C) + ψ(w̄ − C)

+
γ

γ + φ

γ + α + φ− 2βa1 − α
γ + α + φ− 2βa1

C

[
βα2

γ + α + φ− 2βa1
− βα + βα− βα2

γ + α + φ− 2βa1

]
=

γφ

γ + φ
(Ā− C) + ψ(w̄ − C)

=
dπ(Ass, Ass, C)

dC
.

To obtain ATEπ
w(C), partially differentiate π(At, At−1, wt) with respect to wt and then

take expectations (and impose the assumption that expected actions are around a steady
state):

ATEπ
w(C) =γ(Ass − C)− ψ(C − w̄).

Substituting for Ass yields

ATEπ
w(C) =

dπ(Ass, Ass, C)

dC
.

G.8 Proof of Proposition 7

Differentiating π(At, Zt, wt), we have:

∂2π(At, Zt, wt)

∂w2
t

= −γ − ψ

and
d2π(At, Zt, wt)

dw2
t

=
∂2π(At, Zt, wt)

∂w2
t

− ∂At
∂wt

[
−1 +

∂At
∂wt

(γ + α + φ)

]
.

From Proposition 1, we have:

d2π(At, Zt, wt)

dw2
t

=
∂2π(At, Zt, wt)

∂w2
t

+ γ
γ

γ + α + φ− 2βa1

−2βa1
γ + α + φ− 2βa1

.

Note that

∂2π(At, Zt, wt)

∂w2
t

− d2π(At, Zt, wt)

dw2
t

=− γ γ

γ + α + φ− 2βa1

−2βa1
γ + α + φ− 2βa1

≤ 0.

Using Lemma 9, we see that the inequality is strict if and only if γ > 0, β > 0, and α > 0.
From Proposition 1, we have:

∂2V (Zt, wt, Ft)

∂w2
= 2a2 = γ

γ

γ + α + φ− 2βa1
− γ − ψ.
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Note that

d2π(At, Zt, wt)

dw2
t

− ∂2V (Zt, wt, Ft)

∂w2
=− γ γ

γ + α + φ− 2βa1

γ + α + φ

γ + α + φ− 2βa1
≤ 0.

Using our assumption that that γ + φ > 0, the inequality is strict if and only if γ > 0.
Using Proposition 5, Lemma 10, and the value function coefficients derived in the proof of
Proposition 1, we have:

∂2V (Zt, wt, Ft)

∂w2
− d2π(Ass, Ass, C)

dC2
=γ

[
γ

γ + α + φ− 2βa1
− 1

]
+

γφ

γ + φ

=− γ α + φ− 2βa1
γ + α + φ− 2βa1

+ γ
φ

γ + φ

=− γ α− 2βa1
γ + α + φ− 2βa1

+ γ
φ

γ + φ

−(γ + φ) + γ + α + φ− 2βa1
γ + α + φ− 2βa1

=− γ γ

γ + φ

α− 2βa1
γ + α + φ− 2βa1

≤0.

The inequality is strict if and only if αγ > 0. Proposition 5 implies that dπ(Ass, Ass, wt)/ dC2 ≤
0, with the inequality strict if and only if either ψ > 0 or γφ > 0. We have established the
first part of the proposition. To prove the second part of the proposition, note that none
of the inequalities above are strict if γ = 0 and note that γφ/[γ + φ] → γ as φ → ∞. To
prove the third part of the proposition, note that φ = 0 implies γ > 0 (by our assumption
that γ + φ > 0) and, from Proposition 1, γα > 0 implies a2 < 0, but φ, ψ = 0 implies
d2π(Ass, Ass, C)/ dC2 = 0 from Proposition 5.

G.9 Proof of Proposition 8

Defining ATEV
fi

(C) in the analogous fashion as ATEV
w (C), we have:

ATEV
fi

(C) ,2ai3C + bi2A
ss + bi3C +

N∑
j=i+1

bij4 C +
i−1∑
j=1

bji4 C + ci3.
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Using the value function coefficients derived in the proof of Proposition 1, we have:

ATEV
fi

(C) =
γ2

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]2i i∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k
C

− βi [γ + ψ]C

+ b1

(
αβ

γ + α + φ− 2βa1

)i [
γ

γ + φ
C +

φ

γ + φ
Ā

]
+
γ

α
b1

(
αβ

γ + α + φ− 2βa1

)i
C

+ C

N∑
j=i+1

γ2

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]i+j i∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k

+ C
i−1∑
j=1

γ2

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]i+j j∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k
+ βib1

c1
α

[
1−

(
α

γ + α + φ− 2βa1

)i]
γ + α + φ− 2βa1
γ + φ− 2βa1

+ βi
γ

α

[
bN2 C + c1

]
+ βiψw̄

+ βi
γ

α
bN2 C

1

β
[

α
γ+α+φ−2βa1

]2
− 1{

β

[
α

γ + α + φ− 2βa1

]2 i−1∑
j=1

[
α

γ + α + φ− 2βa1

]j
−

i−1∑
j=1

β−j
[

α

γ + α + φ− 2βa1

]−j }
.
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Combine the first and fifth lines, combine the ψ terms, and substitute for c1 in the third-to-
last line:

ATEV
fi

(C) =− βiγC + βiψ[w̄ − C]

+ b1

(
αβ

γ + α + φ− 2βa1

)i [
γ

γ + φ
C +

φ

γ + φ
Ā

]
+
γ

α
b1

(
αβ

γ + α + φ− 2βa1

)i
C

+ C
N∑
j=i

γ2

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]i+j i∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k

+ C
i−1∑
j=1

γ2

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]i+j j∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k
+ βib1

βbN2 C + φĀ

γ + α + φ− 2βa1 − αβ

[
1−

(
α

γ + α + φ− 2βa1

)i]
γ + α + φ− 2βa1
γ + φ− 2βa1

+ βi
γ

α

γ + α + φ− 2βa1
γ + α + φ− 2βa1 − αβ

bN2 C + βiγ
φĀ

γ + α + φ− 2βa1 − αβ

+ βi
γ

α
bN2 C

1

β
[

α
γ+α+φ−2βa1

]2
− 1{

β

[
α

γ + α + φ− 2βa1

]2 i−1∑
j=1

[
α

γ + α + φ− 2βa1

]j
−

i−1∑
j=1

β−j
[

α

γ + α + φ− 2βa1

]−j }
.
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Apply Lemma 10 to the sixth and seventh lines, combine the sixth line with the second and
seventh lines, and solve the geometric series in k:

ATEV
fi

(C) =− βiγC + βiψ[w̄ − C]

+ b1

(
αβ

γ + α + φ− 2βa1

)i
γ

γ + φ
C

+
γ

α
b1

(
αβ

γ + α + φ− 2βa1

)i
C

+ C

N∑
j=i

γ2

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]i+j β [ α
γ+α+φ−2βa1

]2
− β−i

[
α

γ+α+φ−2βa1

]−2i
β
[

α
γ+α+φ−2βa1

]2
− 1

+ C
i−1∑
j=1

γ2

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]i+j β [ α
γ+α+φ−2βa1

]2
− β−j

[
α

γ+α+φ−2βa1

]−2j
β
[

α
γ+α+φ−2βa1

]2
− 1

− b1
βbN2 C

γ + φ

(
αβ

γ + α + φ− 2βa1

)i
+ βi

γ

γ + φ

1

α

[γ + α + φ− 2βa1 − α][γ + α + φ− 2βa1] + βα2

γ + α + φ− 2βa1
bN2 C

+ βiγ
φĀ

γ + φ

+ βi
γ

α
bN2 C

1

β
[

α
γ+α+φ−2βa1

]2
− 1{

β

[
α

γ + α + φ− 2βa1

]2 i−1∑
j=1

[
α

γ + α + φ− 2βa1

]j
−

i−1∑
j=1

β−j
[

α

γ + α + φ− 2βa1

]−j }
.
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Simplify, and solve the geometric series in j:

ATEV
fi

(C) =− βiγC + βiψ[w̄ − C]

+ b1

(
αβ

γ + α + φ− 2βa1

)i
γ

γ + φ
C

+
γ

α
b1

(
αβ

γ + α + φ− 2βa1

)i
C

+ C
γ2

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]i β
[

α
γ+α+φ−2βa1

]2
β
[

α
γ+α+φ−2βa1

]2
− 1

αβ

γ + α + φ− 2βa1 − αβ(
1−

[
αβ

γ + α + φ− 2βa1

]N)

− C γ2

γ + α + φ− 2βa1 − αβ
βi

β
[

α
γ+α+φ−2βa1

]2
− 1

(
1−

[
αβ

γ + α + φ− 2βa1

]N−i+1
)

+ C
γ2

γ + α + φ− 2βa1

[
αβ

γ+α+φ−2βa1

]i
β
[

α
γ+α+φ−2βa1

]2
− 1

γ + α + φ− 2βa1
γ + α + φ− 2βa1 − α(

1−
[

α

γ + α + φ− 2βa1

]−(i−1))

− b1
βbN2 C

γ + φ

(
αβ

γ + α + φ− 2βa1

)i
+ βi

γ

γ + φ

1

α

[γ + α + φ− 2βa1 − α][γ + α + φ− 2βa1] + βα2

γ + α + φ− 2βa1
bN2 C

+ βiγ
φĀ

γ + φ

+ βi
γ

α
bN2 C

1

β
[

α
γ+α+φ−2βa1

]2
− 1{

β

[
α

γ + α + φ− 2βa1

]2 i−1∑
j=1

[
α

γ + α + φ− 2βa1

]j
−

i−1∑
j=1

β−j
[

α

γ + α + φ− 2βa1

]−j }
.
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Substitute bN2 using its solution from the proof of Proposition 1, substitute the solution for
b1 from the proof of Proposition 1, solve the geometric series in the final line, and simplify:

ATEV
fi

(C) =− βiγC + βiψ[w̄ − C] + βiγ
φĀ

γ + φ

+
γα

γ + α + φ− 2βa1

(
αβ

γ + α + φ− 2βa1

)i
γ

γ + φ
C

+
γ2

γ + α + φ− 2βa1

(
αβ

γ + α + φ− 2βa1

)i
C

+ C
γ2

γ + α + φ− 2βa1 − αβ

[
αβ

γ + α + φ− 2βa1

]i β
[

α
γ+α+φ−2βa1

]2
β
[

α
γ+α+φ−2βa1

]2
− 1

αβ

γ + α + φ− 2βa1

− γ

α

(γ + α + φ− 2βa1)
2 − βα2

(γ + α + φ− 2βa1 − α)(γ + α + φ− 2βa1 − αβ)

[
αβ

γ + α + φ− 2βa1

]i β
[

α
γ+α+φ−2βa1

]2
β
[

α
γ+α+φ−2βa1

]2
− 1

bN2 C

− C γ2

γ + α + φ− 2βa1 − αβ
βi

β
[

α
γ+α+φ−2βa1

]2
− 1

+ C
γ2

γ + α + φ− 2βa1 − α

[
αβ

γ+α+φ−2βa1

]i
β
[

α
γ+α+φ−2βa1

]2
− 1

− C γ2

γ + α + φ− 2βa1

βi

β
[

α
γ+α+φ−2βa1

]2
− 1

α

γ + α + φ− 2βa1 − α

− C γ

γ + φ

(
αβ

γ + α + φ− 2βa1

)i+1

bN2

+ βi
γ

γ + φ

1

α

[γ + α + φ− 2βa1 − α][γ + α + φ− 2βa1] + βα2

γ + α + φ− 2βa1
bN2 C

+ βi
γ

γ + α + φ− 2βa1 − α

β
[

α
γ+α+φ−2βa1

]2
β
[

α
γ+α+φ−2βa1

]2
− 1

bN2 C

+ βi
γ

α

γ + α + φ− 2βa1
γ + α + φ− 2βa1 − αβ

1

β
[

α
γ+α+φ−2βa1

]2
− 1

bN2 C.
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Apply Lemma 10 and simplify:

ATEV
fi

(C) =− βiγC + βiψ[w̄ − C] + βiγ
φĀ

γ + φ
+ βi

γ2

γ + φ
C

+
γ2

γ + φ

βα2

γ + α + φ− 2βa1

γ + α + φ− 2βa1 − αβ
(γ + α + φ− 2βa1)2 − βα2

(
αβ

γ + α + φ− 2βa1

)i
C

+
γ2

γ + φ

γ + α + φ− 2βa1 − αβ
γ + α + φ− 2βa1

(
αβ

γ + α + φ− 2βa1

)i
C

− γ2

γ + φ

(γ + α + φ− 2βa1)
2 − αβ(γ + α + φ− 2βa1)

(γ + α + φ− 2βa1)2 − βα2

[
αβ

γ + α + φ− 2βa1

]i
C

+ βi
γ

γ + φ

1

α

[γ + α + φ− 2βa1 − α][γ + α + φ− 2βa1] + βα2

γ + α + φ− 2βa1
bN2 C

− βi γ

γ + φ

γ + α + φ− 2βa1 − αβ
γ + α + φ− 2βa1

βα2

(γ + α + φ− 2βa1)2 − βα2
bN2 C

− βi γ

γ + φ

γ + α + φ− 2βa1 − α
α

(γ + α + φ− 2βa1)
2

(γ + α + φ− 2βa1)2 − βα2
bN2 C.

Combine the final three lines, combine the third and fourth lines, and simplify the first line:

ATEV
fi

(C) =βi
γφ

γ + φ
(Ā− C) + βiψ[w̄ − C]

+
γ2

γ + φ

βα2

γ + α + φ− 2βa1

γ + α + φ− 2βa1 − αβ
(γ + α + φ− 2βa1)2 − βα2

(
αβ

γ + α + φ− 2βa1

)i
C

− γ2

γ + φ

γ + α + φ− 2βa1 − αβ
γ + α + φ− 2βa1

βα2

(γ + α + φ− 2βa1)2 − βα2

[
αβ

γ + α + φ− 2βa1

]i
C.

Cancel the final two lines:

ATEV
fi

(C) =βi
γφ

γ + φ
(Ā− C) + βiψ[w̄ − C]

=βiATEV
w (C).

The second equation follows from the proof of Proposition 6. We have proved the first part
of Proposition 8.

To prove the second part of Proposition 8, use the above result and Proposition 6 to see
that

ATEV
w (C) +

∞∑
i=1

ATEV
fi

(C) =
∞∑
i=0

βiATEV
w (C) =

1

1− β
ATEV

w (C) =
dV (Ass, C,C)

dC
.
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To prove the third part of Proposition 8, note that ATEV
fi

(C)/ATEV
w (C) = βi and use

Proposition 6.
The final part of Proposition 8 follows straightforwardly from the fact that π(At, At− 1, wt)

is independent of Ft other than through At (and as noted before it is easy to show that
E0[∂π(At, At−1, wt)/∂At] = 0 around a steady state).
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