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1 Introduction

A pressing research agenda seeks to estimate the economic costs of climate change. Ignorance
of these costs has severely hampered economists’ ability to evaluate policy. Recognizing
that different locations have different climates, many economists have hoped to estimate the
effects of climate change from the spatial correlation between climate and outcomes of interest
(e.g., Mendelsohn et al., 1994; Schlenker et al., 2005; Nordhaus, 2006). However, any two
locations differ along many dimensions, leading to concerns about omitted variables bias.1

Fortunately, though, the same location does experience different weather at different times.
Stimulated by Deschênes and Greenstone (2007), an explosively growing empirical literature
estimates the consequences of a location happening to experience cooler-than-average or
hotter-than-average weather.2 These researchers project the consequences of climate change
by combining their credibly estimated effects of weather with scientists’ predictions about
how climate change will alter the distribution of weather. Whether the estimated weather
treatment is in fact a good proxy for the unobserved climate treatment has been the subject
of much debate but little analysis.3

I here undertake the first formal analysis that precisely delineates what and how we
can learn about climate impacts from weather impacts. A change in climate differs from a
weather shock in being repeated period after period and in affecting expectations of weather
far out into the future. Linking weather to climate therefore requires analyzing a dynamic
model that captures the distinction between transient and permanent changes in weather. I
study an agent (equivalently, firm) who is exposed to stochastic weather outcomes. The agent
chooses actions (equivalently, investments) that suit the weather. Actions can be responses
to realized weather (“ex-post adaptation”) or can be proactive investments against future
weather (“ex-ante adaptation”). The actions chosen in different periods may be complements
or substitutes: when actions are intertemporal complements, choosing a high action in the
previous period reduces the cost of choosing a high action today, but when actions are
intertemporal substitutes, choosing a high action in the previous period increases the cost
of choosing a high action today. The first case is consistent with adjustment costs, and the
second case is consistent with actions that require scarce resources.4 When choosing actions,

1See Dell et al. (2014) and Auffhammer (2018b) for expositions and Massetti and Mendelsohn (2018) for
a review.

2For recent reviews, see Dell et al. (2014), Carleton and Hsiang (2016), and Heal and Park (2016). Blanc
and Schlenker (2017) discuss the strengths and weaknesses of relying on panel variation in weather. Few
doubt that weather shocks are as-good-as-randomly assigned. For instance, Dell et al. (2014, 741) write that
“the primary advantage of the new literature is identification”, and Blanc and Schlenker (2017, 262) describe
“weather anomalies” as “ideal right-hand side variables” because “they are random and exogenous”.

3For instance, Dell et al. (2014, 771–772) emphasize that “short-run changes over annual or other relatively
brief periods are not necessarily analogous to the long-run changes in average weather patterns that may
occur with climate change.” And Mendelsohn (2019, 272) observes, “An important failing of current weather
panel studies is that they lack a clear theoretical model.”

4Both types of stories exist in the literature. For instance, in studies of the agricultural impacts of climate
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the agent knows the current weather, has access to forecasts of future weather, and relies
on knowledge of the climate to generate forecasts of weather at longer horizons. A change
in the climate alters the distribution of potential weather outcomes as well as the agent’s
expectation of future weather outcomes.

I derive the effects of climate change in terms of model primitives and express reduced-
form fixed effects estimators in terms of these same model primitives. I show that reduced-
form estimates of weather impacts can exactly recover the theory-implied effects of climate
change on payoffs in a few special cases. Two are of particular interest. First, if actions are
neither intertemporal substitutes nor intertemporal complements (so that current decisions
are not directly affected by previous decisions), then empirical researchers can recover the
effects of climate on actions by combining the estimated effects on actions of current weather,
lagged weather, and forecasts. And because empirical researchers can recover the effects of
climate on actions, they can also recover the effect of climate on payoffs. Second, researchers
do not need to recover effects on actions if agents’ payoff functions satisfy a particular
condition. Empirical researchers can then recover the effects of climate from especially
simple regressions that are consistent with standard practice to date.

However, many applications will not satisfy the special cases. I therefore also extend
conventional regression frameworks to recover structural estimates of climate impacts. Be-
cause I formally derive the reduced-form regression coefficients in terms of model primitives,
I can recover combinations of model primitives from these coefficients and then calculate the
theory-implied effects of climate change.5 The identification is exactly the same as in the re-
cent reduced-form literature (relying on within-unit variation in weather), but the regression
specification and the use of the estimated coefficients both differ from standard practice.

I apply this new method to the seminal analysis of climate and agriculture from De-
schênes and Greenstone (2007). The results suggest that the special cases do not hold in
this application. I find that adaptation offsets some of the costs of extreme heat in the short
run, but because adaptation imposes its own costs, adaptation adds to the costs of extreme
heat in the long run. In contrast, adaptation to non-extreme heat imposes costs in the short
run in exchange for adding to the long-run benefits of additional days with non-extreme

change, Deschênes and Greenstone (2007) conjecture that long-run adjustments to changes in climate should
be greater than short-run adjustments to weather shocks because there may be costs to adjusting crops,
whereas Fisher et al. (2012) and Blanc and Schlenker (2017) conjecture that constraints on storage and
groundwater pumping, respectively, could make short-run adjustments exceed long-run adjustments.

5This approach is in the spirit of Marschak’s Maxim. Heckman (2010, 359) writes, “Marschak’s Maxim
suggests that economists should solve well-posed economic problems with minimal assumptions. All that
is required to conduct many policy analyses or to answer many well-posed economic questions are policy
invariant combinations of the structural parameters that are often much easier to identify than the indi-
vidual parameters themselves and that do not require knowledge of individual structural parameters.” It
is also related to sufficient statistics approaches (see Chetty, 2009) and to price theory (see Weyl, 2019).
Throughout, I use “reduced-form” and “structural” in the way now common in empirical work rather than
in accord with their original usage.
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heat. Most adaptation is ex post, but there is evidence of ex-ante adaptation to extreme
heat in more recent years. In total, the costs of additional days with extreme heat outweigh
the benefits of more days with non-extreme heat: the median estimates suggest that the
current century’s warming (in the RCP 4.5 scenario of stabilized emissions) would reduce
agricultural profits by 56% in the absence of adaptation and by 50% if agents adapt as they
do to annual weather shocks.

But will agents display more or less adaptation to climate than to weather? The estimated
regression coefficients imply that actions are intertemporal substitutes, as in resource scarcity
stories. This finding is consistent with recent empirical results in agricultural economics
(Hendricks et al., 2014; Kim and Moschini, 2018) and with implications of crop rotation
dynamics (Eckstein, 1984) but is contrary to widespread intuition based on Le Châtelier’s
principle. According to the theoretical analysis, agents will undertake more adaptation to
short-run weather shocks than to long-run climate change. I can therefore bound the effects
of climate change by the no-adaptation and full-adaptation estimates. The median estimates
suggest losses of 50–56% ($20–22 billion annually, in year 2017 dollars) from warming over
the century.

There has been remarkably little formal analysis of the economic link between weather
and climate, despite the importance of empirically estimating the costs of climate change and
the sharpness of informal debates around the relevance of the recent empirical literature to
climate change. The primary exception is an argument given in Hsiang (2016) and repeated in
Deryugina and Hsiang (2017). The argument stipulates that a change in climate differs from
a change in weather only by affecting beliefs about future weather. This difference in beliefs
can matter for payoffs only if it affects an agent’s chosen actions. However, the envelope
theorem tells us that an optimizing agent’s actions cannot have first-order consequences for
payoffs. Therefore the effects of weather on payoffs exactly—and generically—identify the
effects of climate on payoffs.

By formalizing the distinction between climate and weather in a dynamic environment,
the present analysis highlights two weak points in this argument.6 First, it is true that
a change in climate alters beliefs about future weather, but it is also true that a change
in climate alters past weather and past actions. Past actions are predetermined variables
from the perspective of an optimizing agent and thus do not drop out through the envelope
theorem. Even myopic agents can respond differently to weather and climate. Second, in a
dynamic model, the envelope theorem applies to the intertemporal value function, not to the
per-period payoff function investigated by much empirical work. Optimized current actions
can have first-order effects on current payoffs when those are offset by first-order effects on

6In an earlier expositional analysis, I showed how envelope theorem arguments can fail in a three-period
model (Lemoine, 2017). The present work precisely analyzes the consequences of climate change in an
infinite-horizon model, constructively shows which types of empirical estimates can be informative about
the climate, and develops and applies a new approach to structurally estimating the consequences of climate
change.
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expected future payoffs. Only in a special class of payoff functions will optimized current
actions not have first-order effects on future payoffs.

A few other lines of research are related. First, calibrated numerical simulations have
shown that dynamic responses are critical to the effects of climate on timber markets (Sohn-
gen and Mendelsohn, 1998; Guo and Costello, 2013) and to the cost of increased cyclone
risk (Bakkensen and Barrage, 2018). I develop a general analytic setting that precisely dis-
entangles several types of dynamic responses and relates them to widely used fixed effects
estimators. Second, empirical work has shown that agents use forecasts of future weather,
even at seasonal scales. In particular, Shrader (2017) and Taraz (2017) use variation in
seasonal forecasts and in past years’ weather outcomes, respectively, to identify ex-ante
adaptation to weather events. I formally demonstrate that estimating responses to forecasts
and lagged weather is critical to recovering the consequences of climate change. Finally,
Kelly et al. (2005) and Kala (2017) study learning about the climate from observed weather.
I here abstract from learning in order to focus on mechanisms more relevant to the recent
empirical literature.

The challenge of attempting to estimate long-run effects from short-run variation is a com-
mon one in empirical economics. To get around this challenge, environmental economists
have found policy-induced variation in long-run pollution exposure that is plausibly ex-
ogenous to health outcomes (e.g., Chen et al., 2013; Anderson, 2015; Barreca et al., 2017;
Bishop et al., 2018). Unfortunately, this type of variation may not be available to researchers
interested in the consequences of changing the climate. Labor economists desire the long-
run consequences of changing the minimum wage, but inflation converts observed minimum
wage increases into short-run shocks (Sorkin, 2015).7 And macroeconomists formerly hoped
to learn about long-run output-inflation tradeoffs by estimating distributed lag models, but
Lucas (1972) argued that, when agents have rational expectations, the lagged response to a
transient inflation shock is not informative about the long-run effects of permanently chang-
ing inflation policy. Here we desire the long-run effect of changing the policy rule used by
nature to generate weather.

The next section describes the setting. Section 3 derives the theory-implied effect of
climate. Section 4 establishes conditions under which the effect of climate can be recovered
from reduced-form estimates of weather impacts. Section 5 develops the new method of
structurally estimating climate impacts and applies it to U.S. agriculture. The final sec-
tion describes potential extensions. The appendix contains empirical details, proofs, and

7Three other papers are related to both Sorkin (2015) and the present paper’s project. First, I here
formalize analogues to arguments in Hamermesh (1995) about why the pre- and post-periods around a min-
imum wage increase are not true pre- and post-periods. Second, in a model of dynamic stock accumulation,
Hennessy and Strebulaev (2019) show that estimated responses to transient shocks can differ substantially
from the theory-implied causal effects that empirical researchers seek to test. The present paper is similar in
deriving sufficient conditions for estimated effects to match theory-implied effects. Third, Keane and Wolpin
(2002) describe tradeoffs between cross-sectional and time series variation when estimating the effects of
welfare benefits. These tradeoffs are similar to those that motivate the present paper.
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additional results, including formal analysis of recently popular long difference estimators.

2 Setting

An agent is repeatedly exposed to stochastic weather outcomes and takes actions based on
realized weather and information about future weather. The realized weather in period t is
wt and the agent’s chosen action is At. This action may be interpreted as a level of activity
(e.g., time spent outdoors, energy used for heating or cooling, irrigation applied to a field)
or as a stock of capital (e.g., outdoor gear, size or efficiency of furnace, number or efficiency
of irrigation lines). The agent’s time t payoffs are given by the twice-differentiable function
π(At, At−1, wt, wt−1) : R× R× R× R→ R.8 Letting subscripts indicate partial derivatives,
I assume π11 < 0 and π22 ≤ 0, implying declining marginal benefits of current and past
actions.

I interpret actions as adaptations that become more valuable with high weather out-
comes (π13, π23 ≥ 0). Following terminology from the literature on climate adaptation (e.g.,
Fankhauser et al., 1999; Mendelsohn, 2000), a case with π13 > 0 reflects adaptation that can
occur after weather is realized (“reactive” or “ex-post” adaptation) and a case with π23 > 0
reflects adaptation that can occur before weather is realized (“anticipatory” or “ex-ante”
adaptation).9 I allow adaptation to play both roles at once. The possibility that π4 6= 0
reflects potential delayed impacts from the previous period’s weather, with π14 and π24 cap-
turing the potential for ex-post adaptation to alter these delayed impacts. Consistent with
the normalizations above, I assume π14, π24 ≥ 0. Finally, observe that the actions could
reflect a firm’s production responses to price signals rather than responses to weather per
se. In this interpretation, the normalizations imply that “high” weather outcomes increase
the price of a firm’s output or reduce the cost of its input.

I allow π12 to be positive or negative, with its magnitude constrained as described below.
When π12 < 0, actions are “intertemporal substitutes”, so that choosing a higher level of
past actions increases the cost of choosing higher actions today. I describe this case as
a resource scarcity story.10 For instance, pumping groundwater today raises the cost of
pumping groundwater tomorrow (see Blanc and Schlenker, 2017) or rescheduling activities
around today’s weather makes it hard to reschedule activities around tomorrow’s weather (see
Graff Zivin and Neidell, 2009). When π12 > 0, actions are “intertemporal complements”,

8I generalize to vector-valued actions and multidimensional weather in the appendix. Doing so yields
little new insight at the expense of exposition.

9When interpreting actions as the choice of capital stock, the payoff function is consistent with standard
models of depreciation. If we restrict the payoff function to allow only ex-ante adaptation, then the setting
corresponds to a time-to-build model with a one-period lag. Section 6 discusses the implications of capital
stocks that take longer to build.

10Relating to the literature on resource extraction, the case with π12 < 0 can be seen as reflecting stock-
dependent extraction costs (Heal, 1976).
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so that choosing a higher level of past actions increases the benefit from choosing higher
actions today. I describe this case as an adjustment cost story.11 For instance, small changes
to cropping practices or activity schedules may be easier to implement than large changes.
The magnitude of π12 affects the agent’s preferred timing of adaptation. As |π12| becomes
large, the agent prefers to begin adapting before the weather event arrives, but when |π12|
is small, the agent may wait to undertake most adaptation only once the weather event has
arrived.12

The agent observes time t weather before selecting her time t action. The agent also
understands the climate C, which controls the distribution of weather. We can interpret
weather as realized temperature and climate as a location’s long-run average temperature.
At all times before t − 1, the agent’s only information about time t weather consists in
knowledge of the climate. However, at time t − 1 the agent receives a forecast ft−1 of time
t weather: ft−1 = C + ζνt−1, where the innovation νt−1 is a mean-zero, serially uncorrelated
random variable with variance τ 2 > 0. The forecast is an unbiased predictor of time t
weather: wt = ft−1 +ζεt, where εt is a mean-zero, serially uncorrelated random variable with
variance σ2 > 0.13 The parameter ζ ≥ 0 is a perturbation parameter that will be useful for
analysis (see Judd, 1996). The covariance between εt and νt is ρ. The covariance between
wt and wt−1 is then ζ2ρ. The agent incorporates knowledge of such serial correlation in her
forecasts.

The agent maximizes the present value of payoffs over an infinite horizon:

max
{At}∞t=0

∞∑
t=0

βtE0 [π(At, At−1, wt, wt−1)] ,

where β ∈ [0, 1) is the per-period discount factor, A−1 is given, and E0 denotes expectations

11The benchmark quadratic adjustment cost model has π12 = k for some k > 0 (see Hamermesh and
Pfann, 1996).

12The magnitude of π12 is related to the distinction between ex-post and ex-ante adaptation insofar as it
affects the agent’s preferred timing of adaptation actions. However, π12 incentivizes early adaptation only to
reduce the costs of later adaptation, not because early adaptation provides protection from weather events.
I reserve the terms ex-ante and ex-post adaptation to refer to the effects of actions on the marginal benefit
of weather, captured by π13, π23, π14, and π24.

13Consistent with much previous literature, climate here controls average weather. One might wonder
about the dependence of higher moments of the weather distribution on climate. In fact, the effects of
climate change on the variance of the weather are poorly understood and likely to be spatially heterogeneous
(e.g., Huntingford et al., 2013; Lemoine and Kapnick, 2016). Further, for economic analysis, we need to know
not just how climate change affects the variance of realized weather but how it affects the forecastability of
weather: the variance of the weather more than one period ahead is ζ2(σ2 + τ2), so we need to apportion
any change in variance between σ2 and τ2. I leave such an extension to future work.
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at the time 0 information set. The solution satisfies the following Bellman equation:

V (At−1, wt, ft, wt−1; ζ) = max
At

{
π(At, At−1, wt, wt−1) + βEt [V (At, wt+1, ft+1, wt; ζ)]

}
s.t. wt+1 =ft + ζεt+1

ft+1 =C + ζνt+1.

Time t payoffs do depend indirectly on actions and weather prior to time t−1 because earlier
actions affect time t− 1 actions.

The setting is sufficiently general to describe many applications of interest. For instance,
much empirical literature has studied the effects of weather on energy use. The agent could
then be choosing indoor temperature in each period, where payoffs depend on current actions
through energy use and depend on weather through thermal comfort. Habituation to outdoor
temperatures is captured by π14. Much empirical work has also studied the effect of weather
on labor productivity. The decision variable could be effort, the dependence of payoffs on
weather could reflect current thermal stress as well as the effects of the previous day’s weather
via sleep and physiological functioning, the resource scarcity is one of tasks needing to be
done, and forecasts allow the agent to plan tasks and vacation time around weather outcomes.
Finally, many researchers have studied the effects of weather on agricultural outcomes. In
that case, payoffs are profits, actions include planting decisions, and weather affects yields.

I will often impose one of the following two assumptions:

Assumption 1. ζ2 is small.

Assumption 2. π is quadratic.

Either assumption will limit the consequences of stochasticity for optimal policy, whether by
limiting the variance of weather outcomes (Assumption 1) or by making the policy function
independent of that variance (Assumption 2).14

I will be interested in empirical researchers’ ability to estimate the consequences of al-
tering C from observable responses to time series variation in wt and ft. It is important
to be clear about the climate experiment. I study the effects of a change in climate on an
agent who has had time to adapt to the new climate. This climate change treatment is
consistent with the exercise common in the empirical literature, which calculates the effect
of replacing today’s distribution of weather with a distribution projected to hold by the end
of the century. I will not study how the transition from one climate to another interacts
with agents’ decisions,15 and I will not study how expectations of a future change in climate

14Note that when applying Assumption 2, the chosen policy is affected by the variance of weather (through
the realized weather) even though the policy rule is independent of that variance.

15Kelly et al. (2005) frame the cost of learning as an adjustment cost. Quiggin and Horowitz (1999, 2003)
discuss broader costs of adjusting to a change in climate. These papers’ adjustment costs are conceptually
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affect agents today.16 These are both important questions but are beyond the scope of the
present analysis—and thus far largely beyond the empirical literature that this analysis seeks
to inform.

3 Theory-Implied Effect of Climate Change

I now derive the exact effect of climate change on long-run payoffs and actions within this
model. I later explore how to estimate these effects from observable variation in weather.

The analysis approximates the solution to the full, stochastic model around the steady
state of the deterministic model, which sets ζ = 0 (Judd, 1996). The first-order condition
for the deterministic model is:

0 = π1(At, At−1, C, C) + βV1(At, C, C, C; 0).

The envelope theorem yields:

V1(At−1, C, C, C; 0) = π2(At, At−1, C, C).

Advancing this forward by one timestep and substituting into the first-order condition, we
have the Euler equation:

0 = π1(At, At−1, C, C) + βπ2(At+1, At, C, C). (1)

A steady state Ā of the deterministic system is implicitly defined by

0 = π1(Ā, Ā, C, C) + βπ2(Ā, Ā, C, C). (2)

Define π̄ , π(Ā, Ā, C, C). The following lemma describes the uniqueness and stability of the
steady state.17

Lemma 1. For π̄12 6= 0 and ζ = 0, Ā is locally saddle-path stable if and only if (1+β)|π̄12| <
−π̄11 − βπ̄22, in which case Ā is unique. For π̄12 = 0 and ζ = 0, the agent chooses At = Ā
at all times t.

distinct from the adjustment costs studied here. The present use of “adjustment costs” follows much other
economics literature in referring to the cost of changing decisions from their previous levels. I study how
these adjustment costs hinder estimation of the consequences of climate change from weather impacts, not
how they affect the cost of transitioning from one climate to another.

16Severen et al. (2018) show that land markets capitalize expectations of future climate change and correct
cross-sectional analyses in the tradition of Mendelsohn et al. (1994) for this effect. I here study responses to
widely available, shorter-run forecasts in a time series context and show how to use them to improve panel
analyses in the tradition of Deschênes and Greenstone (2007).

17The steady state exists if supĀ[π1(Ā, Ā, C,C) + βπ2(Ā, Ā, C,C)] > 0 and infĀ[π1(Ā, Ā, C,C) +
βπ2(Ā, Ā, C,C)] < 0. These conditions will hold in most applications.
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Proof. See appendix.

I henceforth assume that (1 + β)|π̄12| < −π̄11 − βπ̄22, so that the deterministic steady state
is unique and saddle-path stable.

Now consider optimal actions in the stochastic system. The first-order condition is:

0 = π1(At, At−1, wt, wt−1) + βEt[V1(At, wt+1, ft+1, wt; ζ)].

The envelope theorem yields:

V1(At−1, wt, ft, wt−1; ζ) = π2(At, At−1, wt, wt−1).

Advancing this forward by one timestep and substituting into the first-order condition, we
have the stochastic Euler equation:

0 = π1(At, At−1, wt, wt−1) + βEt[π2(At+1, At, wt+1, wt)]. (3)

The following lemma describes the evolution of E0[At].

Lemma 2. Let either Assumption 1 or 2 hold, and let E0[(A1 − Ā)2] be small. Then
limt→∞E0[At] = Ā.

Proof. See appendix.

When the conditions of Lemma 2 hold, applying the implicit function theorem to equation (2)
yields:

lim
t→∞

dE0[At]

dC
=

dĀ

dC
=

ex-post︷ ︸︸ ︷
π̄13 + π̄14 + βπ̄24 +

ex-ante︷︸︸︷
βπ̄23

−π̄11 − (1 + β)π̄12 − βπ̄22

≥ 0. (4)

This is the average long-run effect of climate change on actions. Expected future actions
increase in the climate index because I normalize high actions to be more beneficial when
the weather index is high. Equation (4) captures how climate change alters weather in all
periods: the past, the present, and the future. We see the various forms of ex-post adaptation
captured by π̄13, π̄14, and βπ̄24. We also see the possibility of ex-ante adaptation, controlled
by π̄23 and arising because the agent understands that the altered climate affects weather
in subsequent periods. Finally, observe that π̄12 enters through the denominator in (4).
When actions are intertemporal substitutes (π̄12 < 0), this term reduces the magnitude of
the response to climate change, as when resource scarcity makes long-run responses smaller
than short-run responses. However, when actions are intertemporal complements (π̄12 > 0),
this term increases the magnitude of the response to climate change, as when adjustment
costs allow long-run responses to exceed short-run responses.
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Approximating the payoff function around the steady state, wt = wt−1 = C, and ζ = 0
and using either Assumption 1 or Assumption 2, we have:

E0[π(At, At−1, wt, wt−1)] =π̄ + π̄1(E0[At]− Ā) + π̄2(E0[At−1]− Ā)

+
1

2
π̄11E0[(At − Ā)2] +

1

2
π̄22E0[(At−1 − Ā)2] +

1

2
(π̄33 + π̄44)ζ2(σ2 + τ 2)

+ π̄12E0[(At − Ā)(At−1 − Ā)] + π̄13Cov0[At, wt] + π̄23Cov0[At−1, wt]

+ π̄14Cov0[At, wt−1] + π̄24Cov0[At−1, wt−1] + π̄34ζ
2ρ, (5)

for t > 1. Differentiating equation (5) with respect to C and applying either Assumption 1
or Assumption 2 again, we find that

lim
t→∞

dE0[π(At, At−1, wt, wt−1)]

dC
=π̄3 + π̄4 + [π̄1 + π̄2]

dĀ

dC
. (6)

The marginal effect of climate on long-run payoffs is composed of the direct effect of a larger
weather index, in both the present (π̄3) and the past (π̄4), and the effects of changing long-
run actions, including both present actions (π̄1) and past actions (π̄2). Equation (2) implies
π̄1 = −βπ̄2. Therefore,

lim
t→∞

dE0[π(At, At−1, wt, wt−1)]

dC
=π̄3 + π̄4 + (1− β)π̄2

dĀ

dC
. (7)

Whether economic responses increase or decrease payoffs depends on the sign of π̄2. A
case with π̄2 > 0 is a case in which higher actions impose costs today but provide benefits
tomorrow, as when undertaking adaptation investments that take time to build. A case with
π̄2 < 0 is a case in which higher actions provide benefits today but impose costs tomorrow,
as when borrowing money or selling from storage. Undertaking more actions because of
climate change increases payoffs if and only if actions are of the former type.

Equation (6) shows that changes in average payoffs depend on changes in actions. How-
ever, some previous literature has relied on envelope theorem intuition to argue that changes
in actions are in fact irrelevant to effects on payoffs. Each solid curve in Figure 1 plots time t
payoffs as a function of time t weather holding current actions, past actions, and past weather
fixed. The three solid curves represent a continuum obtained by varying the agent’s current
actions. The dotted line gives the effect of time t weather on maximized time t payoffs,
with points (a) and (b) indicating maximized payoffs at two particular weather realizations.
The slope of the dotted line does not depend on how actions change with weather: because
it is tangent to the solid lines, it matches the partial derivative of payoffs with respect to
weather. This is the content of the envelope theorem. If a change in climate only affected
current weather, then we could ignore how actions respond to the change in climate.

However, a change in climate also affects past and future weather. First consider the
consequences of affecting past weather. Interpret weather as temperature. Imagine that
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Figure 1: Per-period payoffs πt against weather wt. Each solid curve holds actions fixed.
The dotted curve through points (a) and (b) gives the effect of time t weather shocks on
myopically maximized payoffs. Point (c) shows the effect of weather shocks repeated in times
t− 1 and t, and point (d) illustrates dynamically optimizing agents.

changing inputs imposes adjustment costs (i.e., π12 > 0) and that the solid curves are condi-
tioned on previous actions having been chosen in response to experiencing the temperature
at point (a). The dashed curves in Figure 1 plot payoffs conditional on past actions having
been chosen in response to experiencing the indicated temperature, not the temperature at
point (a). Payoffs increase because the preferred current actions do not impose as many
adjustment costs when past actions are better-matched to current weather. Whereas a tran-
sient weather shock induces a change from point (a) to point (b), an enduring weather shock
induces a change from point (a) to point (c). This figure illustrates intuition based on Le
Châtelier’s principle for why the effects of transient weather shocks on payoffs could overstate
the effects of climate change (e.g., Deschênes and Greenstone, 2007). What does envelope
theorem intuition miss? Changes in actions chosen at time t− 1 can have first-order effects
on time t payoffs. Responses to transient weather shocks can fail to identify the effects of
climate because they do not capture how climate affects the trajectory of previous actions.

Now consider the implications of climate affecting future weather. An agent who expects
a transient weather shock to occur yet again in period t+ 1 may choose actions that fail to
maximize short-run payoffs if these actions increase payoffs in subsequent periods, as when
π23 6= 0. As an example, point (d) could be optimal even though its action maximizes short-
run payoffs only at point (a). Further, if π12 6= 0, agents may choose not to maximize short-
run payoffs even when not expecting a time t+1 weather shock (see equation (2)). What does
envelope theorem intuition miss? Dynamic optimization typically requires trading off short-
run and long-run effects. The envelope theorem no longer applies to per-period payoffs in
the presence of such tradeoffs, instead applying only to expected present discounted payoffs.
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4 Estimating the Effect of Climate Change from Reduced-

Form Weather Regressions

I have derived the theory-implied long-run effect of climate change, but researchers do not
know all of the structural parameters required to calculate this effect. Instead, empirical
researchers have sought to estimate the effect of climate from reduced-form regressions with
observed weather. I now consider whether and how such reduced-form regressions can recover
the effect of climate.18

4.1 Estimating Effects on Actions

We have seen that the effects of climate on payoffs are closely related to its effects on actions.
Further, much empirical research has sought to estimate the consequences of climate change
for decision variables or functions of decision variables, including productivity (Heal and
Park, 2013; Zhang et al., 2018), time allocation (Graff Zivin and Neidell, 2014), and energy
use (Auffhammer and Aroonruengsawat, 2011; Deschênes and Greenstone, 2011; Auffham-
mer, 2018a). I therefore begin by considering the potential to estimate the effect of climate
on actions from time series variation in weather.

First consider the determinants of time t actions. The proof of Lemma 2 shows that if
either Assumption 1 or 2 holds and (At−1 − Ā)2 is small, then

At =Ā+

effects of past weather︷ ︸︸ ︷
π̄14

χ2

(wt−1 − C) +
π̄12

χ2

(At−1 − Ā) +

effects of current weather︷ ︸︸ ︷
π̄13 + βπ̄24 + βπ̄14

π̄12
χ1

χ2

(wt − C)

+
βπ̄23 + β

(
π̄13 + βπ̄24 + βπ̄14

π̄12
χ0

)
π̄12
χ1

χ2

(ft − C)︸ ︷︷ ︸
effects of future weather

, (8)

where each χi > |π12|. We see time t actions determined by past, present, and future weather.
Figure 2 illustrates the main relationships identified by this expression.

Actions depend on present weather in three ways. First, actions respond to current
weather as a means of mitigating its immediate harm or amplifying its immediate benefits.
This channel is controlled by π̄13. Second, actions respond to current weather when current
actions can mitigate the harm or amplify the benefits incurred by current weather in future
periods. This channel is controlled by π̄24 and arises only for forward-looking agents. As an

18I here consider only the internal validity of estimated effects. Equations (4) and (6) imply that the
effect of climate change will vary with the current climate unless weather enters π only linearly. Empirical
researchers should therefore take care when extrapolating estimated effects across locations and when pooling
data across locations.
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Figure 2: The determinants of present actions, from equation (8).

example of the distinction between the two channels, an agent may avoid going outside on
a cold day both to minimize discomfort from the current temperature and to avoid getting
sick in the near future. Both of these channels are forms of ex-post adaptation. Third, when
π̄14 6= 0, current weather will affect the agent’s chosen action in the next period (not pictured
in Figure 2), leading a forward-looking agent to adjust her current action in preparation for
that choice. This channel vanishes when π̄12 = 0 because today’s actions then do not directly
interact with subsequent actions.

Actions also depend on forecasts of future weather. When there is the possibility of
ex-ante adaptation (π̄23 > 0), the agent chooses today’s actions in order to directly mitigate
the consequences (or enhance the benefits) of expected future weather. Further, expected
future weather also affects desired future actions. The agent takes preparatory actions today
that help her achieve her desired future actions. When π̄12 > 0, a high forecast leads the
agent to choose high actions today as a means of reducing future adjustment costs, but when
π̄12 < 0, a high forecast leads the agent to choose low actions today as a means of conserving
resources for the future.

Past weather also affects actions in two ways. First, past weather affects the marginal
payoffs from current actions directly when π̄14 6= 0. This is a form of ex-post adaptation.
Second, past weather affects past actions, which impose historical restraints on current ac-
tions when π̄12 6= 0. When actions are intertemporal complements (π̄12 > 0), high past
actions justify higher present actions as a way to reduce adjustment costs, but when actions
are intertemporal substitutes (π̄12 < 0), high past actions justify lower present actions by
depleting the resources needed to maintain a high action.

Empirical researchers hope to recover (4) from time series variation in weather. Let there
be J agents (equivalently, firms) observed in each of T periods. Index these agents by j.
In order to focus on the issue at hand, imagine that they are in the same climate C with
the same payoff function π and the same stochastic process driving forecasts and weather,
though each agent draws its own sequence of weather and forecasts. Consider the following
fixed effects regression:

Ajt =αj + Γ1wjt + Γ2wj(t−1) + Γ3fjt + Γ4Aj(t−1) + ηjt, (9)

where αj is a fixed effect for unit j and ηjt is an error term that is uncorrelated with the
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covariates.19 I use a hat to denote the probability limit of each estimator. The following
proposition relates the estimated coefficients to the effect of climate change.

Proposition 1. Let either Assumption 1 or 2 hold, and let (Aj(t−1) − Ā)2 be small for all

observations. Then Γ̂4 ∝ π̄12 and

Γ̂1 + Γ̂2 + Γ̂3 = ω

(
dĀ

dC
+ βπ̄12Ω

)
, (10)

where π̄12 > 0 implies ω ∈ (0, 1), π̄12 < 0 implies ω > 1, π̄12 = 0 implies ω = 1, and
Ω ∝ π̄13 + π̄14 + βπ̄24 ≥ 0.

Proof. See appendix.

The three coefficients capture the three temporal relationships altered by climate change:
Γ̂1 recovers consequences of altering current weather, Γ̂2 recovers consequences of altering
past weather, and Γ̂3 recovers consequences of altering expectations of future weather. How-
ever, we cannot in general recover the response to a permanent change in climate from the
estimated response to transient weather shocks. The reason for this failure is the possibility
that π̄12 6= 0, which occurs if and only if Γ̂4 6= 0.

Relationships of intertemporal substitutability or complementarity drive two types of
wedges between the estimator in (10) and the effect of climate change in (4). The second
term in parentheses in (10) reflects preparatory actions that are undertaken in response to
forecasts but are not relevant to the long-run effects of climate. The fixed effects estimator is
identified from shocks to forecasts and weather. As described above, a high forecast increases
present actions both through the possibility of ex-ante adaptation and through preparatory
actions. The former are important components of the effect of climate but the latter are
not: an increase in the climate index C does increase forecasts, but because it also increases
current and past weather, preparatory actions are not relevant to its long-run effects. When
π̄12 > 0, preparatory actions make the fixed effects estimator overstate responses to climate
as observed agents are motivated by expectations of temporary adjustment costs, but when
π̄12 < 0, preparatory actions make the fixed effects estimator understate responses to climate
as observed agents temporarily conserve resources.

The second wedge in (10) arises from ω. This term reflects the difference between the his-
torical restraints on current actions imposed by transient weather shocks and those imposed
by a change in climate that affects all past weather realizations. When π̄12 > 0, historical
restraints prevent an agent from adjusting too much to a transient weather shock, but when

19I do not explicitly model the unobservable characteristics that motivate the fixed effects specification. I
am here not interested in identification but in what we learn from a well-identified weather regression. See
Dell et al. (2014) and Auffhammer (2018b), among others, for expositions of identification in the climate-
economy literature. I assume that the only possible sources of omitted variables bias are the failure to control
for variables such as forecasts and lagged actions that are defined within the theoretical model.
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that shock has been repeated many times in the past (as eventually happens following a
change in climate), the many small adjustments eventually add up to much greater adjust-
ment. The ω < 1 captures how responses to transient shocks overstate historical restraints
in this case. Consistent with conjectures in Deschênes and Greenstone (2007), observable
short-run responses are smaller than long-run responses. In contrast, when π̄12 < 0, an agent
experiences more severe historical restraints following a change in climate than following a
transient weather shock. When actions depend on scarce resources, actions can be more
extreme when they are maintained for only a short period of time. The ω > 1 captures how
responses to transient shocks understate historical restraints in this case. Consistent with
conjectures in Fisher et al. (2012) and Blanc and Schlenker (2017), short-run responses are
larger than long-run responses.

The wedges introduced by Ω and ω conflict, making it impossible to sign the bias in
general. However, we can make progress in two special cases. First, when π̄12 = 0, both
wedges vanish. In this case, the fixed effects estimator exactly recovers the effect of climate.
Second, when β = 0, the wedge introduced by preparatory actions vanishes because myopic
agents are not concerned about future actions. The sign of the bias then depends only on
the wedge ω induced by historical restraints, as even myopic agents respond to their own
past decisions (see also Keane and Wolpin, 2002).20

Now consider the following distributed lag regression, which matches most literature in
not controlling for lagged actions:21

Ajt =αj +
I+1∑
i=0

Γwt−i
wj(t−i) +

I+1∑
i=0

Γft−i
fj(t−i) + ηjt, (11)

where I ≥ 0. The following proposition relates the estimated coefficients to the effect of
climate change.22

Proposition 2. Let either Assumption 1 or 2 hold, and let (Aj(t−1) − Ā)2 be small for all
observations. Then

lim
I→∞

I∑
i=0

[
Γ̂wt−i

+ Γ̂ft−i

]
= ω̃

(
dĀ

dC
+ βπ̄12Ω

)
,

20The wedge introduced by preparatory actions also vanishes if there is no ex-post adaptation, but this is
an artifact of modeling forecasts as existing only one period ahead. In this environment, there are no time
t shocks that affect expectations of time t + 2 weather. If there were longer-horizon forecasts, then time t
shocks could affect those expectations and thereby induce preparation for ex-ante adaptation anticipated to
be undertaken at time t+ 1.

21This omission is driven in part by concern for Nickell (1981) omitted variables bias.
22The proof also shows that, beyond the first lag, the coefficients alternate signs as the lags increase if and

only if π̄12 < 0. The appendix shows that p̄i12 = 0 is not sufficient to recover the effects of climate if the
regression does not control for forecasts and there is scope for ex-ante adaptation.
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where βπ̄12 > 0 implies ω̃ ∈ (ω, 1), βπ̄12 < 0 implies ω̃ ∈ (1, ω), and βπ̄12 = 0 implies ω̃ = 1,
with ω and Ω from Proposition 1. If π̄12 = 0, then Γ̂wt−i

= 0 for i > 1 and Γ̂ft−i
= 0 for

i > 0. If β = 0, then Γ̂ft−i
= 0 for all i ≥ 0.

Proof. See appendix.

This estimator is subject to the same bias from preparatory actions, but by using a long
history of transient shocks, it reduces the bias introduced by historical restraints. If the latter
bias is the dominant one, then this estimator may reduce the overall bias in estimated effects
on actions. Further, this estimator recovers the effects of climate in a new case: when agents
are myopic. Myopic agents are never subject to the bias induced by preparatory actions,
and we now lose the bias induced by historical restraints because myopic agents respond to a
long sequence of transient weather shocks in exactly the same way as they respond to living
in a world with an altered climate.

4.2 Estimating Effects on Payoffs

We now consider the possibility of recovering effects on payoffs from observations of payoffs
and weather. For instance, empirical research studies how variation in weather affects agri-
cultural profits (e.g., Deschênes and Greenstone, 2007) or affects macroeconomic variables
such as gross output or income that are potentially related to payoffs (e.g., Dell et al., 2012;
Burke et al., 2015; Deryugina and Hsiang, 2017; Colacito et al., 2019).

The class of payoff functions defined by the following assumption will yield especially
interesting results:

Assumption 3. π2(At, At−1, wt, wt−1) = Kπ1(At, At−1, wt, wt−1) if At−1 = At, for K 6= −β.

Consider a few members of this class. First, adjustment cost models yield K = 0: if π =
g(At, (At−At−1)z, wt, wt−1) for z > 1, then π2 = z(At−At−1)z−1g2(At, (At−At−1)z, wt, wt−1)
and thus is equal to 0 when At = At−1. Second, a model in which the returns to resource
extraction decline in previous extraction can yield K = −1: if π = g(At/At−1, wt, wt−1),
then π1 = g1(At/At−1, wt, wt−1)/At−1 and π2 = −Atg1(At/At−1, wt, wt−1)/A2

t−1. Third, a
model in which ex-post adaptation and ex-ante adaptation form a constant elasticity of
substitution (CES) aggregate with distribution parameter κ yields K = (1 − κ)/κ: π =
g(h(At, At−1), wt, wt−1) where h(At, At−1) = (κAσt + (1 − κ)Aσt−1)1/σ for σ < 1, 6= 0 and
h(At, At−1)→ AκtA

1−κ
t−1 as σ → 0. Finally, a model without dynamic linkages has π2(·, ·, ·, ·) =

0 and thus K = 0.
Empirical researchers hope to recover (6) from time series variation in weather. They

will not generally observe the full set of actions available to agents or firms. As a result,
empirical researchers may estimate the following regression:

πjt =αj +
I+1∑
i=0

θwt−i
wj(t−i) +

I+1∑
i=0

θft−i
fj(t−i) + ηjt, (12)
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where I again label units as j, αj is a fixed effect for agent j, and ηjt is an error term (see
footnote 19). We are interested in the vector of coefficients θ. As before, I use a hat to
denote the probability limit of each coefficient.

Proposition 3. Let Assumption 1 hold, or let Assumption 2 hold with the ε and ν normally
distributed. Also let (Aj(t−1) − Ā)2 and (Ajt − Ā)2 be small for all observations and let each
agent’s average actions be Ā.

1. If π̄12 = 0 and I > 1, then lims→∞ dE0[πs]/ dC = θ̂wt + θ̂wt−1 + θ̂wt−2 + θ̂ft + θ̂ft−1 and
all other coefficients are equal to 0.

2. If β = 0, then lims→∞ dE0[πs]/ dC = limI→∞

[∑I
i=0 θ̂wt−i

+
∑I

i=0 θ̂ft−i

]
.

3. lims→∞ dE0[πs]/ dC = limβ→1 limI→∞

[∑I
i=0 θ̂wt−i

+
∑I

i=0 θ̂ft−i

]
.

4. If Assumption 3 holds and I ≥ 0, then lims→∞ dE0[πs]/ dC = θ̂wt + θ̂wt−1 and all other
coefficients are equal to zero.

Proof. See appendix.

The proposition describes four cases in which we can recover the effect of climate from
time series variation in weather (and the appendix further describes cases in which we can
unambiguously bound the effect). The first two cases follow directly from the analysis in
Section 4.1. There we saw that we can recover the effect of climate on actions if either
π̄12 = 0 or β = 0. In the former case, we can recover the effect on current actions from the
coefficient on weather, its lag, and forecasts, and the first result in Proposition 3 follows from
recognizing that we need to recover effects on both current and lagged actions and that the
coefficients on weather and its lag also capture the direct effects of weather in equation (6).
If β = 0, we recover effects on actions only as the lags become very long, in which case we
also recover effects on payoffs.

The other two cases are ones in which we do not need to recover the effect of climate on
actions. The proof shows that the bias from estimating the effect of climate on payoffs from
the combination of infinite lags is proportional to βπ̄12(π̄1 + π̄2). The bias vanishes as β → 1
because agents’ responses equalize the marginal value of past and current actions, without
discounting the former. Alternately, Assumption 3 and equation (2) imply that π̄2 = π̄1 = 0:
an optimizing agent sets the marginal benefit of actions to zero around a steady state. In
this case, the consequences of marginal climate change are independent of changes in actions
and the estimated coefficients do not include any effects of weather or forecasts on actions.
Summing θ̂wt and θ̂wt−1 now captures only the direct effects of weather and fully captures
the effects of climate on payoffs. We can test whether Assumption 3 holds by examining
the magnitude of the coefficient on forecasts: because forecasts matter for current payoffs
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Figure 3: Per-period payoffs πt against previous actions At−1. Each solid curve holds time
t actions and weather fixed. The dotted curve gives the effect of time t − 1 actions on
myopically maximized payoffs.

only through their effects on actions, they cannot affect these payoffs if Assumption 3 indeed
holds and agents are near a steady state.23,24

Assumption 3 leads us to the same point as envelope theorem intuition proposed in previ-
ous literature. But Section 3 explained why these arguments fail. So what does Assumption 3
do? Figure 3 plots payoffs as a function of previous actions, conditional on current actions
and weather. The dotted curve gives the effect of previous actions on myopically optimized
payoffs. Point (1) identifies the previous action that maximizes current payoffs. Around this
point, previous actions do not have first-order effects on current payoffs. Why is that im-
portant? The dashed curves in Figure 1 reflected how past actions can shift current payoffs.
If these past actions do not have first-order effects, then the dashed curves are not shifted
out and point (c) converges to point (b) in Figure 1. Further, if past actions do not have
first-order effects on current payoffs, then current actions do not have first-order effects on
future payoffs. In that case, the myopically optimal action is also dynamically optimal and
point (d) converges to point (b) in Figure 1. Assumption 3 ensures that point (1) occurs
at the steady-state action. Therefore, if Assumption 3 holds and agents are near a steady
state, then points (c) and (d) converge to point (b) in Figure 1 and the treatment effect of
a transient weather shock indeed recovers the effect of permanently changing the weather.25

23Much literature has studied dependent variables such as crop yields (e.g., Schlenker and Roberts, 2009),
mortality (e.g., Deschênes and Moretti, 2009; Deschênes and Greenstone, 2011), and health (e.g., Deschenes,
2014) that are functions of actions but are not payoff functions. If we consider recovering the effects of
climate on such dependent variables from a fixed effects regression on weather, then the final two parts of
Proposition 3 no longer apply because the Euler equation (1) holds only for payoffs, not for other functions
of actions.

24Empirical researchers have usually not controlled for forecasts. The appendix shows that such regressions
can still recover the full effect of climate on payoffs if either Assumption 3 holds or agents are myopic.
However, the other cases now also require the absence of ex-ante adaptation.

25As described earlier, one of the special cases of Assumption 3 is a model with no dynamic linkages
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Proposition 3 assumed that each agent’s average actions are Ā.26 The following corollary
establishes how relaxing this assumption changes the results.

Corollary 4. Let the conditions given in Proposition 3 hold, except let each agent’s average
actions be different from Ā. In addition, let at least one of π̄13, π̄23, π̄14, or π̄24 be strictly
positive. Then, in each part of Proposition 3, lims→∞ dE0[πs]/ dC is strictly less (greater)
than the indicated combination of coefficients if and only if Ā is strictly less (greater) than
each agent’s average actions.

Proof. See appendix.

The corollary establishes that the special cases that formerly sufficed to identify climate im-
pacts from weather impacts now merely bound the effect of climate on payoffs. In particular,
we obtain an upper bound if agents are approaching their steady-state actions from above
and a lower bound otherwise. Intuitively, if climate shifts the steady-state action farther
from the agent’s current action, then weather shocks incorporate transition costs that vanish
from the effect of climate on long-run payoffs.

5 Structurally Estimating Climate Impacts in U.S. Agri-

culture

I have thus far explored the potential for reduced-form estimates to recover climate impacts.
I now show how to recover the combinations of structural parameters necessary to calculate
climate impacts. I use these parameters to disentangle weather effects from adaptation
and to sign the bias in the adaptation estimate. This new approach maintains precisely
the same credible identification from the reduced-form specifications. As we will see, these
specifications suffice because we do not need to specify or recover every underlying structural
parameter in order to undertake the calculations of interest.

I demonstrate this new approach by extending the seminal analysis of agricultural impacts
from Deschênes and Greenstone (2007). In order to be consistent with common regression
specifications, generalize the foregoing analysis to allow for K types of weather variables,
which can be correlated with each other. Let there be M actions chosen in each period, so
that time t payoffs are now π(At,At−1,wt,wt−1) : RM × RM × RK × RK → R, with bold
script indicating vectors. Superscripts will indicate elements of these vectors. The following
assumption is useful for the structural calculations:

(π2(·, ·, ·, ·) = 0), in which case the agent solves a series of independent, static decision problems. Appeals
to the envelope theorem therefore can end up with the correct result in the types of static settings discussed
by previous literature (Hsiang, 2016; Deryugina and Hsiang, 2017).

26Sorkin (2015) imposes an analogous restriction when relating short-run and long-run variation.
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Assumption 4. Either (i) there exist g : RM → R, h : RM → R, and π0 : R×R×RK → R
such that π(At,At−1,wt,wt−1) = π0(g(At), h(At−1),wt), or (ii) there exist πk : R×R×R→
R for k ∈ {1, ..., K} and πK+1 : RM × RM → R such that M ≥ K and

π(At,At−1,wt,wt−1) =
K∑
k=1

πk(Akt , A
k
t−1, w

k
t ) + πK+1(A∼kt ,A∼kt−1),

where A∼kt indicates the (M −K)-dimensional vector of actions AK+1
t through AMt .

This assumption does two things. First, it rules out delayed effects of weather, which is
plausible in the below application to annual agricultural data. Some assumption about
delayed effects is necessary for identification of structural parameters. Second, it requires
either that the vector of actions be reducible to a composite action (trivially true for M = 1)
or that payoffs be separable in the dimensions of weather. Either restriction ensures that the
terms controlling whether actions are intertemporal substitutes or complements are scalar.

Consider the following regression:

πct =αc + ψrt +
K∑
k=1

[
Φk
wt−2

wkc(t−2) + Φk
wt−1

wkc(t−1) + Φk
wt
wkct + Φk

wt+1
wkc(t+1)

]
+ δct, (13)

where c indicates counties, t indicates years, πct is agricultural profits, the αc are county fixed
effects, the ψrt are region-year fixed effects,27 and superscript k indexes weather variables of
interest. The following lemma expresses the coefficients in terms of model primitives:28

Lemma 3. Let Assumption 4 and the conditions of Proposition 3 hold, and let εt be uncor-

27In the preferred specification, the regions are USDA Farm Resource Regions (see also Deschênes and
Greenstone, 2012). The appendix provides further details, reports the variance explained by the weather
variables (see Fisher et al., 2012), and assesses sensitivity to instead defining regions as individual states (as
in Deschênes and Greenstone, 2007) or as the whole country (as in Fisher et al., 2012).

28The lemma requires that weather be serially uncorrelated. This assumption seems an acceptable starting
point: over all U.S. counties from 1972 to 2017, the correlation between locally demeaned growing season
degree days and its lag is 0.10, the correlation between locally demeaned extreme growing season degree days
and its lag is 0.074, and the correlation between locally demeaned growing season precipitation and its lag
is -0.029.
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related with νt. Then:

Φ̂k
wt+1

= −βπ̄k2 Γ̂k3
(τ k)2

(τ k)2 + (σk)2
,

Φ̂k
wt

= π̄k3 − βπ̄k2 Γ̂k1 +

(
1− β π̄

k
12

χk2

)
π̄k2

(τ k)2

(τ k)2 + (σk)2
Γ̂k3,

Φ̂k
wt−1

=

(
1− β π̄

k
12

χk2

)
π̄k2 Γ̂k1 +

(
1− β π̄

k
12

χk2

)
π̄k12

χk2
π̄k2

(τ k)2

(τ k)2 + (σk)2
Γ̂k3,

Φ̂k
wt−2

=
π̄k12

χk2

(
1− β π̄

k
12

χk2

)
π̄k2 Γ̂k1 +

(
π̄k12

χk2

)2(
1− β π̄

k
12

χk2

)
π̄k2

(τ k)2

(τ k)2 + (σk)2
Γ̂k3.

If case (i) of Assumption 4 holds, then we replace the k superscripts on the right-hand side
with 0.

Proof. See appendix.

The Γ̂ were defined in regression (11) and analyzed in Proposition 1. The proof of Proposi-
tion 1 defines these in terms of model primitives. They here gain a superscript k to indicate
the corresponding dimension of weather. Solving the system of equations, we find:

π̄k12

χk2
=

Φ̂k
wt−2

Φ̂k
wt−1

,

π̄k2 Γ̂k3
(τ k)2

(τ k)2 + (σk)2
= −

Φ̂k
wt+1

β
,

π̄2Γ̂k1 =
Φ̂k
wt−1
−
(

1− β π̄
k
12

χk
2

)
π̄k
12

χk
2
π̄k2

(τk)2

(τk)2+(σk)2
Γ̂k3

1− β π̄
k
12

χk
2

,

π̄k3 = Φ̂k
wt

+ βπ̄k2 Γ̂k1 −
(

1− β π̄
k
12
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π̄k12/χ
k
2 is identified from the first and second lags of weather. Recalling that χk2 must be

positive for a saddle-path stable steady-state, the sign of this term matches the sign of π̄k12.

The lead of weather identifies π̄k2 Γ̂k3
(τk)2

(τk)2+(σk)2
, which the proof of Proposition 1 connects to

ex-ante adaptation.29 Given these two terms, the residual effects of lagged weather identify
π̄k2 Γ̂k1, which the proof of Proposition 1 connects to ex-post adaptation. Finally, the residual
effects of contemporary weather identify the direct effects π̄k3 . Intuitively, lagged weather
affects current payoffs only through actions, so we can identify ex-post adaptation from

29I calibrate β to the annual discount rate of 34% obtained in Duquette et al. (2012). The appendix shows
that results are not sensitive to lower discount rates.
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lagged weather and can identify intertemporal links between actions by comparing lags of
weather. And once we have identified the scope of adaptation, we can recover the direct
effects of weather from the response of payoffs to contemporary weather.

Equation (7) shows that calculating climate impacts requires π̄3 and (1 − β)π̄2 dĀ/ dC.
The above steps recover π̄3 directly. From equation (10),

dĀ

dC
=

1

ω

[
Γ̂1 + Γ̂3

]
− βπ̄12Ω,

with ω > 1 if and only if π̄12 < 0. If π̄12 ≈ 0, then

dĀ

dC
≈Γ̂1 + Γ̂3.

I calculate the effects of ex-post adaptation using (1 − β)π̄2Γ̂1 and the effects of ex-ante
adaptation using (1 − β)π̄2Γ̂3.30 As described below, I use the estimated sign of π̄k12 to
convert these estimates into bounds.

For comparison, I also undertake two reduced-form calculations of the effects of climate
change. Either can be justified from an analogue of Proposition 3. A first calculation
estimates (13) without any leads or lags on the right-hand side and multiplies each weather
variable’s coefficient by the projected change in that weather variable. This calculation
recovers the theory-implied effects of climate if Assumptions 3 and 4 hold. It matches the
calculations undertaken in previous literature. A second calculation estimates (13) without
the second lag on the right-hand side and multiplies the sum of each weather index’s three
coefficients by the projected change in that weather variable. This calculation recovers the
theory-implied effects of climate if π̄12 = 0 and Assumption 4 holds.

The appendix describes the data, details sample construction, and undertakes robustness
checks. The construction of the data follows an updated version of the methodology in
Deschênes and Greenstone (2007) and Fisher et al. (2012). I have observations of county-
level agricultural profits and acreage every 5 years from 1987 through 2012. I follow previous
literature in studying a measure of growing season degree days (i.e., accumulated heat within
a temperature range favorable to plant growth), a measure of extreme growing season degree
days (i.e., accumulated extreme heat, generally harmful to plant growth), and growing season
precipitation. The preferred specification includes USDA Farm Resource Region-by-year
fixed effects (as in Deschênes and Greenstone, 2012), weights counties by average acreage (as
in Deschênes and Greenstone, 2007), clusters standard errors by state (as in Fisher et al.,
2012), and restricts the sample to counties east of the 100th meridian, which are less likely
to be irrigated (Schlenker et al., 2005; Fisher et al., 2012).

30These calculations set (τk)2/((τk)2 +(σk)2) equal to 1. This fraction reflects the fraction of the variation
in weather that is already realized one period ahead (i.e., that is reflected in forecasts). Estimated ex-ante
adaptation is biased towards zero if the fraction is in fact less than 1. Replacing the lead of realized weather
in regression (13) with forecasts would eliminate this bias.
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Table 1: Top panel: Estimated coefficients and standard errors from regression (13). Bot-
tom panel: Theory-implied structural parameters, reported as the median and lower/upper
quartiles of the distribution implied by the reduced-form estimates.

GDD Extreme GDD Precip

Reduced-Form Coefficients
Current 18 -98 -7.9

(9.1) (54) (3.9)
Lag 1 5.4 -60 -7.1

(6.2) (22) (3.9)
Lag 2 -15 32 0.51

(9.9) (23) (3.8)
Lead -3.8 -1.4 1.3

(4.1) (20) (1.5)

Theory-Implied Parameters
π̄3 15 -130 -12

(8.9,22) (-160,-110) (-16,-7.8)

π̄2Γ̂1 13 -46 -7.6
(3.4,28) (-60,-31) (-11,-5)

π̄2Γ̂3
τ2

τ2+σ2 5.0 1.9 -1.8

(1.3,8.8) (-16,20) (-3.2,-0.43)
π̄12/χ2 -1.7 -0.53 -0.065

(-3.4,-0.41) (-0.74,-0.31) (-0.46,0.31)

All specifications include county and Farm Region-year fixed
effects. The reduced-form estimates’ standard errors and the
theory-implied results derive from covariance matrices that
are robust to clustering at the state level. The sample includes
only counties east of the 100th meridian. Observations are
weighted by (the square root of) a county’s average farmland
acreage. There are 13944 county-year observations and 37
state observations. Profits in thous. year 2002 dollars, GDD
in ◦C-days, and precip in mm.
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The top panel of Table 1 reports the reduced-form coefficients from regression (13).
Profits increase in same-year and previous-year growing degree days between 10◦C and 29◦C
(“GDD”), but profits decrease in same-year and previous-year growing degree days above
29◦C (“Extreme GDD”). The signs of the central estimates alternate from the first to the
second lag. The lead of weather does not have a statistically significant effect on profits.
Additional same-year and previous-year precipitation reduces profits.

The lower panel of Table 1 reports the medians and, in parentheses, lower and upper
quartiles for the theory-implied structural parameters.31 The signs of the direct terms π̄3 and
the ex-post adaptation terms π̄2Γ̂1 are consistent with the signs of same-year and previous-
year impacts on profits. The nonzero ex-post adaptation term suggests that Assumption 3
does not hold in this application, which motivates a structural approach to recovering climate
impacts. The ex-ante adaptation terms are small and noisy, as were the coefficients on the
leads of weather.

The final row of Table 1 reports π̄12/χ2. We have a case of intertemporal substitutes
(complements) if this term is negative (positive). The median values are all negative, and
even the 75th percentile is negative for the growing degree day variables.32 The negative
π̄12 are identified off the result that lagged weather affects payoffs much like current weather
but the second lag of weather has opposite effects to current weather. Within the eco-
nomic model, these opposite effects imply that adaptive actions taken two years ago increase
current payoffs by constraining the actions taken last year. Finding π̄12 < 0 is contrary
to Le Châtelier’s principle but consistent with recent empirical work in agricultural eco-
nomics (Hendricks et al., 2014; Kim and Moschini, 2018). Following Eckstein (1984), these
researchers attribute their results to soil nitrogen and pest dynamics inducing farmers to
rotate their crops over time.33

Table 2 reports the projected effects of climate change. It uses the RCP 4.5 trajectory
of stabilized emissions from 21 downscaled CMIP5 models. In this scenario, global mean
surface temperature increases by around 2 degrees Celsius over the century. The top panel
reports the two reduced-form calculations. Both approaches project substantial costs from
climate change. The projected increase in conventional growing degree days is estimated to

31The lower panel does not report means and standard errors because the distributions can be skewed due
to π̄12/χ2 being the ratio of two reduced-form coefficients. The appendix reports standard errors from method
of moments estimators of the structural parameters and reports results for the 10th and 90th percentiles.

32Reassuringly, these estimates are consistent with |π̄12| < χ2, which the proof of Lemma 2 shows follows
from saddle-path stability. One might consider estimating a geometric lag structure in regression (13), with
the geometric term equal to π̄12/χ2. I find that coefficient estimates can be unstable when adding longer lags,
likely due to collinearity problems that commonly arise with lagged predictors. When using three lags, the
estimated π̄12/χ2 for extreme growing degree days is extremely noisy, the estimated π̄12/χ2 for conventional
growing degree days in a one- (two-) step GMM estimator is -1.18 (-0.56) with a standard error of 0.43
(0.34), and the estimated π̄12/χ2 for precipitation in a one- (two-) step GMM estimator is -1.47 (-0.17) with
a standard error of 0.56 (0.31).

33Huang and Moore (2019) show that U.S. farmers do adjust crop acreage in response to pre-planting
precipitation.
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increase agricultural profits, but the projected increase in extreme growing degree days is
projected to reduce profits to a greater degree. Projected costs are 50% greater under the
assumption that π̄12 = 0 than under Assumption 3. However, these numbers are meaningless
if Assumption 3 does not hold or π̄12 6= 0, and we have already seen that Assumption 3 does
not appear to hold and that π̄12 < 0.

The lower panel reports the new, theory-based estimates of climate impacts. It decom-
poses the effects of climate change into direct effects (driven by π̄3), ex-post adaptation
(driven by π̄13 via π̄2Γ̂1), and ex-ante adaptation (driven by π̄23 via π̄2Γ̂3). The median
direct effects of projected changes in each measure of growing degree days are smaller than
either of the reduced-form estimates, but the median combined direct effect is in between
the two reduced-form estimates.

Ex-post adaptation increases the benefits from conventional growing degree days but
increases the costs from extreme growing degree days. From equation (6), adaptive changes
in actions affect steady-state payoffs as π̄1 + π̄2, and from equation (2), π̄1 + π̄2 is opposite
in sign to π̄1. As described following equation (7), actions that provide short-run benefits
(costs) in exchange for long-run costs (benefits) have negative (positive) effects on steady-
state payoffs when agents are not perfectly patient. Adaptation to increases in conventional
growing degree days therefore imposes short-run costs, but agents reap the benefits from
past adaptation in the long run. In contrast, adaptation to increases in extreme growing
degree days provides short-run benefits, but agents reap these benefits only while paying the
larger costs of past adaptation, which dominate in the long run. Ex-ante adaptation is not
clearly important.34 Accounting for adaptation, projected changes in conventional growing
degree days increase profits by 54% in the median estimate and projected changes in extreme
growing degree days eliminate profits in the median estimate. The median total effect of
climate change is a 50% reduction in profits.

The median effect of climate happens to be somewhat close to the value that would be
obtained by applying previous literature’s methods (which are identical to applying Assump-
tion 3). However, the interpretation is quite different. The structural estimates approximate
dĀ/ dC by setting π̄12 = 0, which implies that ω = 1 and that Ω is irrelevant in equation (10).
In contrast to reduced-form approaches, these structural calculations have a clear interpre-
tation even if that assumption is violated. We know from Proposition 1 that the bias from
π̄12 6= 0 reflects preparatory actions (through Ω) and historical restraints (through ω). In the
present context, it is reasonable to assume that the wedge induced by preparatory actions
is small relative to the wedge induced by historical restraints, an intuition reinforced by the
small effects of ex-ante adaptation. Therefore π̄12 > 0 implies that the present calculations

34Recall, however, that the estimated effects of ex-ante adaptation are biased towards zero (see footnote 30).
The appendix reports that ex-ante adaptation to extreme growing degree days becomes clearer if we omit the
earlier years from the sample, which is consistent with the reduced skill and availability of seasonal forecasts
prior to the mid-1990s (see Klemm and McPherson, 2017). Takle et al. (2013) and Klemm and McPherson
(2017) describe the various seasonal forecasts of interest to agriculture.
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Table 2: The percentage change in eastern U.S. agricultural profits due to predicted end-of-
century changes in growing degree days, extreme growing degree days, and precipitation. The
reduced-form estimates report central estimates and standard errors. The theory-implied
estimates report the median and lower/upper quartiles.

GDD Extreme GDD Precip Combined

Reduced-Form
Using Assumption 3 51 -97 -1.0 -47

(25) (37) (0.4) (24)
Using π̄12 = 0 44 -1.1e+02 -1.6 -71

(29) (35) (0.66) (28)

Theory-Implied
Direct Effects 38 -93 -1.2 -56

(22,54) (-1.1e+02,-74) (-1.7,-0.83) (-71,-41)
Ex-Post Adaptation 8.3 -8.0 -0.21 0.56

(2.1,17) (-11,-5.4) (-0.29,-0.13) (-5.7,9.2)
Ex-Ante Adaptation 3.2 0.33 -0.048 3.4

(0.84,5.5) (-2.8,3.4) (-0.085,-0.012) (0.026,6.8)
Total 54 -1e+02 -1.5 -50

(32,74) (-1.2e+02,-79) (-2,-1) (-69,-31)

All specifications include county and Farm Region-year fixed effects. The reduced-
form estimates’ standard errors and the theory-implied results derive from covari-
ance matrices that are robust to clustering at the state level. The sample includes
only counties east of the 100th meridian. Observations are weighted by (the square
root of) a county’s average farmland acreage. Climate projections use the RCP 4.5
scenario averaged across 21 CMIP5 models. There are 13944 county-year observa-
tions and 37 state observations.

underestimate adaptation to climate (because ω < 1) and π̄12 < 0 implies that the present
calculations overestimate adaptation to climate (because ω > 1).

We saw in Table 1 that π̄12 < 0, implying that we observe more adaptation to short-
run weather shocks than would occur in response to long-run changes in climate. We can
therefore bound the effects of climate by the estimated total effects that include projected
adaptation and by the estimated direct effects that exclude adaptation. If I were following
the conventional approach in the weather-climate literature, I would undertake calculations
like those relying on Assumption 3 and apply intuition based on Le Châtelier’s principle to
conclude that climate change reduces profits by 0–47% in the median estimates. Instead,
here the median estimates and the finding that π̄12 < 0 imply that climate change reduces
agricultural profits by 50–56% ($20–22 billion annually at the year 2017 price level), with the
75th percentile estimates yielding a reduction in profits of 31–41% and the 90th percentile
estimates (see appendix) yielding a reduction in profits of 9–28%.
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6 Potential Extensions

I have demonstrated how to estimate the effects of climate change from time series variation
in weather. I conclude by discussing the primary restrictions in the present setting and
describing other aspects of climate change that should be the subject of future analysis.

The theoretical model is fairly general. The three notable restrictions are that past
weather and actions can directly affect payoffs with only a one-period lag (although they
do indirectly affect payoffs arbitrarily far into the future) and that agents have access to
specialized forecasts only one period in advance of a realized weather outcome. Longer-run
delayed weather impacts are probably important to some applications, but they would not
substantially change the theoretical results. In particular, distributed lag models will recover
the effects of climate in exactly the same cases as analyzed here. Allowing for longer-horizon
forecasts also does not change the theoretical results unless actions can have direct effects
over those horizons.

Allowing actions to have longer-run direct consequences can have interesting conse-
quences. Such an extension is attractive if we interpret actions as the choice of capital
stock and we want to study capital that can be built only with a lag of more than one
period. If longer-run forecasts are available, then the present results extend in a natural
way, implying that it is important to control for these longer-run forecasts. But if weather
forecasts do not exist over the whole horizon over which today’s actions will directly af-
fect payoffs, then empirical researchers may be unable to estimate the full effect of climate:
changing the climate can lead agents to undertake actions that pay off only in the distant
future, but observable variation in forecasts will not identify this adaptation margin. In the
empirical application of Section 5, the existence of such actions would imply that long-run
adaptation could be greater than short-run adaptation even though I estimate π̄12 < 0 from
the actions that vary in the data.

The present setting successfully captures the distinction between transient and permanent
changes in weather. Future work should consider other aspects of climate change. First,
global climate change differs from weather shocks not only in its temporal structure but
also in its spatial structure. A change in global climate affects weather in every location
and thus will have general equilibrium consequences. In the empirical application, general
equilibrium channels change the prices of land and crops. The present setting has followed
most empirical work in abstracting from such effects, but some recent empirical work has
begun exploring the implications of changing the weather in many locations simultaneously
(e.g., Costinot et al., 2016; Gouel and Laborde, 2018; Dingel et al., 2019). Future work
should extend the present setting to account for general equilibrium effects.

Second, the present analysis has held the payoff function fixed over time. However,
climate change should induce innovations that alter how weather affects payoffs, and many
such innovations will arise even in the absence of climate change. Some types of innovation
can be interpreted as actions within the present framework, but the potential for future
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innovation may be inherently unobservable. Historical studies have begun exploring the
interaction between climate and agricultural innovation (e.g., Olmstead and Rhode, 2008,
2011; Roberts and Schlenker, 2011; Bleakley and Hong, 2017). Future work should consider
approaches to bounding the scope for future innovation.

Third, the present analysis has considered only marginal changes in climate, but climate
change over the next century is likely to be nonmarginal.35 The present analysis implies
that the marginal effect of climate will not generally be constant. Some recent work (Mérel
and Gammans, 2019) explores the types of variation captured by quadratic regression terms.
Future work should explore whether nonlinear specifications might inform estimates of the
impacts from nonmarginal climate change in a dynamic setting such as the present one.

Fourth, the present analysis assumes that actions can be adjusted continuously. In the
presence of fixed costs, an agent may choose to change an action only when the agent
expects a change in weather to endure, and in the presence of constraints imposed by policy,
actions may not respond smoothly to weather shocks, changing the interpretation of reduced-
form coefficients. Future work should explore the conditions under which aggregating over
many agents’ fixed-cost decisions makes actions appear continuous. Future work should also
explore whether responses to weather events of varying durations can identify how fixed-cost
actions respond to a change in climate and whether responses to weather events of varying
magnitudes can identify the role of policy constraints.

Finally, the present analysis has focused on identifying the long-run consequences of cli-
mate change, abstracting from the transition costs induced by climate change. In this regard,
the present analysis matches the calculations undertaken by nearly all empirical work but
omits a potentially critical aspect of climate change (see Quiggin and Horowitz, 1999, 2003;
Kelly et al., 2005). Future work should consider whether imposing stronger assumptions on
the decision-making environment can allow for credible simulation of counterfactual climate
trajectories and thereby estimate transition costs.
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Appendix

Appendix A establishes conditions under which reduced-form weather regressions can recover
the effects of climate even without controlling for forecasts. Appendix B analyzes estimators
that aggregate over multiple timesteps, including recently popular “long difference” estima-
tors. Appendix C establishes cases in which we can use weather variation to unambiguously
bound how climate affects payoffs. Appendix D provides details of the empirical imple-
mentation and additional results. Appendix E contains proofs. Appendix F generalizes the
primary analysis to the case of vector-valued actions and multidimensional weather.

A Reduced-Form Weather Regressions Without Fore-

casts

The main text explores regressions that control for forecasts. However, the empirical lit-
erature has, almost without exception, not controlled for forecasts. Now consider such a
regression:

Ajt =αj +
I∑
i=0

γwt−i
wj(t−i) + δjt. (A-1)

The following proposition considers whether this regression can succeed in cases where pre-
vious ones could succeed:

Proposition 5. Let either Assumption 1 or 2 hold, and let (Aj(t−1) − Ā)2 be small for all
observations.

1. If π̄12 = βπ̄23 = π̄14 = 0, then γ̂wt = dĀ/ dC for I = 0 or I = 1.

2. If π̄12 = βπ̄23 = 0, then γ̂wt + γ̂wt−1 = dĀ/ dC for I = 1.

3. If ρ = 0 and either β = 0 or π̄12 = π̄23 = 0, then limI→∞
∑I

i=0 γ̂wt−i
= dĀ/ dC.

Proof. See Appendix E.

Regression (A-1) does not control for forecasts or for past actions, so these affect the esti-
mated γ̂ as omitted variables. The first result establishes what we can learn from γ̂wt , which
is the coefficient of interest in much previous empirical literature. γ̂wt can capture part of
the effect of time t forecasts when νt is positively correlated with εt (i.e., when ρ > 0);
however, the proof shows that γ̂wt can never capture the total effect of forecasts. Omitted
variables bias helps, but it cannot replace explicitly controlling for forecasts. Further, γ̂wt

also misses the interaction between time t actions and past weather. Putting these pieces
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together, γ̂wt can fully recover climate impacts only if, in addition to the restriction from
Propositions 1 and 2 that π̄12 = 0, there is also no ex-ante adaptation that would use
forecasts (βπ̄23 = 0) and past weather shocks do not affect actions directly (π̄14 = 0). The
second result shows that also using γ̂wt−1 allows the estimator to succeed when past weather
affects current choices, and the third result establishes that we can recover the effects of
climate without using forecasts when agents are myopic.

Now consider a regression with payoffs as the dependent variable:

πjt =αj +
I∑
i=0

Φwt−i
wj(t−i) + δjt. (A-2)

The error term δjt now includes not only actions but also current and past forecasts. Most
empirical research sets I = 0. We are interested in the vector of coefficients Φ.36

Proposition 6. Let Assumption 1 hold, or let Assumption 2 hold with the ε and ν normally
distributed. Also let (Aj(t−1) − Ā)2 and (Ajt − Ā)2 be small for all observations and let each
agent’s average actions be Ā.

1. If π̄12 = 0 and βπ̄23 = 0, then:

(a) lims→∞ dE0[πs]/ dC = Φ̂wt + Φ̂wt−1 + Φ̂wt−2 for I = 2.

(b) lims→∞ dE0[πs]/ dC =
∑I

i=0 Φ̂wt−i
for I ≥ 2 and ρ = 0.

(c) If π̄14 = 0, then lims→∞ dE0[πs]/ dC = Φ̂wt + Φ̂wt−1 for I = 1 or I = 2.

2. If β = 0, then lims→∞ dE0[πs]/ dC = limI→∞
∑I

i=0 Φ̂wt−i
for ρ = 0.

3. If π̄23 = 0, then lims→∞ dE0[πs]/ dC = limβ→1 limI→∞
∑I

i=0 Φ̂wt−i
for ρ = 0.

4. If Assumption 3 holds, then:

(a) lims→∞ dE0[πs]/ dC = Φ̂wt + Φ̂wt−1 for I = 1 or I = 2.

(b) lims→∞ dE0[πs]/ dC =
∑I

i=0 Φ̂wt−i
for ρ = 0 and I ≥ 1.

Proof. See Appendix E.

We can still recover the full effect of climate on payoffs if either Assumption 3 holds or agents
are myopic. However, the other cases now require the absence of ex-ante adaptation.37 Some

36The matrix of regressors is symmetric, tridiagonal, and Toeplitz. For general I and ρ, the inverse is not
analytically convenient (Hu and O’Connell, 1996). Parts of the proposition assume ρ = 0 in order to simplify
this inverse.

37Including a lead of weather in regression (A-2) (i.e., summing from i = −1 to I) would allow the
sum of the Φ̂ to recover the effects of climate under the conditions given in Proposition 3 as ρ → 0 and
τ2/(τ2 + σ2)→ 1.
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of this ex-ante adaptation is captured through omitted variables bias in the plausible case
where weather and forecasts are positively correlated (i.e., where ρ > 0), but the proof shows
that it can never be captured completely. When agents can directly protect themselves
against future weather outcomes, forecasts provide variation that is critical to identifying
these responses (compare Keane and Wolpin, 2002).

Rather than focusing on the Φ̂, Deryugina and Hsiang (2017) undertake a different calcu-
lation. They estimate π(At(wt), At−1(wt), wt, wt−1(wt)) − π(At(w

0), At−1(w0), w0, wt−1(w0))
for each wt, where w0 indicates an omitted weather category and where we write At−1(wt)
and wt−1(wt) in order to focus on questions besides the evaluation point. Let p(wt;C) repre-
sent the probability density function for weather in climate C. They calculate the marginal
effect of climate from the following expression:∫ ∞

−∞

[
π(At, At−1, wt, wt−1)− π(At, At−1, w

0, wt−1)
] dp(wt;C)

dC
dwt , Ψ.

Analyzing, we find

Ψ = Cov

[
π(At, At−1, wt, wt−1),

dp(wt;C)
dC

p(wt;C)

]
.

If wt is normally distributed, then

Ψ =
Cov [π(At, At−1, wt, wt−1), wt]

V ar[wt]
,

which, following the proof of Proposition 6, is equal to Φ̂wt with I = 0. Proposition 6 shows
that this estimator recovers the effects of climate change in only the most special of cases.

B Aggregating over Longer Timesteps, Including Long

Difference Estimators

In actual empirical work, the proper timestep of analysis may be unclear, computational
requirements may require using coarser timesteps, or data may be available only over coarser
timesteps. I therefore now consider the implications of aggregating weather and payoffs over
longer timesteps.

Assume, as in the main text, that all agents are in the same climate and that this climate
is stationary. The empirical researcher averages outcomes over ∆ periods.38 Denote the
averages with a ˇ and use the time subscript to indicate the beginning of the averaging
interval, so that, for instance, π̌jt ,

∑t+∆−1
T=t πjT/∆. Consider estimating the regression

π̌jt = αj + Λw̌jt + ǔjt,

38The results do not depend on whether the operation is averaging or summing.
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where I assume that the averaging intervals do not overlap.
The following proposition establishes properties of the estimator Λ̂.

Proposition 7. Let Assumption 1 hold, or let Assumption 2 hold with the ε and ν normally
distributed. Also let (Aj(t−1) − Ā)2 and (Ajt − Ā)2 be small for all observations and let each
agent’s average actions be Ā. Then the following conditions are individually sufficient for
lims→∞[ dE0[πs]/ dC] = lim∆→∞ Λ̂:

1. Assumption 3 holds.

2. ρ, π̄12, βπ̄23 = 0.

3. ρ, π̄12 = 0 and σ2/τ 2 = 0.

Proof. See Appendix E.

Let Φ̂0
wt

be the estimator from regression (A-2) with I = 0. The proof shows that, for ∆ > 2,
the estimator is

Λ̂ = Φ̂0
wt

+
∆− 1

∆
Υ1 +

∆− 2

∆
Υ2,

with Υ1,Υ2 ≥ 0. As ∆ becomes small, the long-timestep estimator Λ̂ converges towards
Φ̂0
wt

, which Proposition 6 showed can approximate the effect of climate change in only the
most special of cases. As ∆ becomes large, the coefficients on Υ1 and Υ2 go to 1. This is
the case considered by Proposition 7. As ∆ becomes large, Λ̂ recovers the effect of climate
change in a broader set of cases than does Φ̂0

wt
: the process of aggregating ∆ time periods

into one picks up correlations between current payoffs and lags and leads of weather within
these ∆ periods.39 However, Λ̂ underperforms estimators analyzed in Section 4.2 that used
forecasts. In particular, for ρ, π̄12 = 0 and ∆ large, the estimator Λ̂ recovers the effect of
climate only in the absence of ex-ante adaptation, which was the same restriction required
by the estimator

∑I
i=0 Φ̂wt−i

studied in Proposition 6.

The estimator Λ̂ is closely to the panel regression (A-2). This insight has implications for
a recent literature developing “long difference” estimates of climate impacts. Rather than
estimating either a cross-sectional or a panel model, this method instead averages weather
and outcomes over two non-overlapping periods, differences the averages, and estimates how
the differenced dependent variable changes with differenced average weather (e.g., Dell et al.,
2012; Burke and Emerick, 2016). To many, this approach’s appeal rests in providing “plausi-
bly credible causal estimates of climate impacts that account for adaptation” (Auffhammer,

39Note, however, that aggregating over more periods reduces the sample size. I show that the bias of
the probability limit falls as the length of the aggregating interval increases, but, with a finite sample, the
variance of the estimator will also increase as the aggregating interval increases. Thus, the choice of ∆ faces
a bias-variance tradeoff.
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2018, 45): differencing removes the unobserved fixed factors that may covary with climate
in a cross-sectional regression, and the variation induced by spatially heterogeneous rates of
climate change may identify the long-run adaptations missing from standard panel regres-
sions. On this reasoning, comparing long difference estimates to standard panel estimates
indicates whether short-run adaptation differs from long-run adaptation.

In the present setting, there is no climate change (C is constant over time), yet it is
easy to show that the estimator Λ̂ is equivalent to a long difference estimator. Proposition 7
therefore implies that long difference estimators are in fact identified by random differences in
sequences of transient weather shocks over the aggregation intervals. At best, long difference
estimators conflate this variation with differential rates of climate change, but at worst,
they capture nothing but the same transient weather shocks as do the estimators in (A-2).40

Intuitively, averaging over several periods does not eliminate the old sources of variation
and need not introduce new sources of variation. In fact, previous work has found that long
difference and panel estimators produce similar results (Burke and Emerick, 2016). We now
see that this result should be unsurprising: rather than indicating the absence of long-run
adaptation, the similarity may in fact be mechanical.

C Bounding the effects of climate on payoffs

The main text describes cases in which time series regressions recover the effects of climate
on actions. It also describes some cases in which we can unambiguously bound the effect
of climate on actions. I now explore when time series regressions generate clearly signed
bounds on the effect of climate change on payoffs.41

Consider regression (12).

Proposition 8. Let Assumption 1 hold, or let Assumption 2 hold with the ε and ν normally
distributed. Also let (Aj(t−1) − Ā)2 and (Ajt − Ā)2 be small for all observations and let each
agent’s average actions be Ā. Then:

1. No Ex-Post Adaptation: If π̄13, π̄14, π̄24 = 0 and βπ̄23 > 0, then lims→∞ dE0[πs]/ dC <

limI→∞

[∑I
i=0 θ̂wt−i

+
∑I

i=0 θ̂ft−i

]
if and only if π̄12π̄2 < 0.

2. No Ex-Ante Adaptation: If π̄23, π̄14 = 0 and βπ̄13 > 0, then lims→∞ dE0[πs]/ dC <

limI→∞

[∑I
i=0 θ̂wt−i

+
∑I

i=0 θ̂ft−i

]
if and only if [π̄12]2π̄2 < 0.

40That worst case arises when the climate actually did not change differentially (as modeled here) or when
agents were not aware of ongoing changes in climate. See Dell et al. (2014) and Burke and Emerick (2016)
for discussion of awareness of climate change.

41Recall that we have normalized actions so that dĀ/ dC ≥ 0. It is straightforward to adapt the conditions
below to a case with dĀ/ dC either negative or of unknown sign.
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Proof. The proof of Proposition 3 showed that

lim
I→∞

I∑
i=0

[
θ̂wt−i

+ θ̂ft−i

]
= lim

s→∞

dE0[πs]

dC
+
β(1− β)

1− π̄12
χ2

π̄12π̄2

{
ωΩ− dĀ

dC

1− π̄12
χ1

χ2

}
.

First assume that π̄13, π̄14, π̄24 = 0 and βπ̄23 > 0. We then have Ω = 0, dĀ/ dC > 0, and

lim
I→∞

I∑
i=0

[
θ̂wt−i

+ θ̂ft−i

]
= lim

s→∞

dE0[πs]

dC
− β(1− β)

1− π̄12
χ2

π̄12π̄2
dĀ

dC

1− π̄12
χ1

χ2

.

The final fraction is strictly positive by the stability restriction imposed following Lemma 1
in the main text. Therefore the bias term on the right-hand side has the same sign as −π̄12π̄2

and thus

lim
s→∞

dE0[πs]

dC
− lim

I→∞

I∑
i=0

[
θ̂wt−i

+ θ̂ft−i

]
> 0 iff π̄12π̄2 > 0.

We have established the first part of the proposition.
Next assume that π̄23, π̄14 = 0 and βπ̄13 > 0. π̄23 = 0 implies, by the definition of Ω and

equation (4), that

Ω =
dĀ
dC

χ1

.

π̄13 > 0 implies that dĀ/ dC > 0. Recall that

ω ,
−π̄11 − (1 + β)π̄12 − βπ̄22

χ2

> 0.

Substituting, we find:

lim
I→∞

I∑
i=0

[
θ̂wt−i

+ θ̂ft−i

]
= lim

s→∞

dE0[πs]

dC
+
β(1− β)

1− π̄12
χ2

dĀ

dC

1

χ2

π̄12π̄2

{
−π̄11 − βπ̄12 − βπ̄22

−π̄11 − βπ̄12
π̄12
χ0
− βπ̄22

− 1

}
.

The term in braces is < 0 if π̄12 > 0 and is > 0 if π̄12 < 0. The bias on the right-hand side
has the same sign as −π̄2[π̄12]2 and thus

lim
s→∞

dE0[πs]

dC
− lim

I→∞

I∑
i=0

[
θ̂wt−i

+ θ̂ft−i

]
> 0 iff π̄2 > 0.

We have established the second part of the proposition.
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The first part of the proposition signs the bias in our estimate of the effect of climate on
payoffs when π̄12 6= 0 but there is no ex-post adaptation. In this case, Ω = 0 and the
estimator implicitly overestimates changes in actions if and only if π̄12 < 0. When π̄2 > 0,
equation (2) implies that π̄1+π̄2 > 0, so that the effect of climate on actions increases payoffs.
Overestimating (underestimating) this effect on actions then overestimates (underestimates)
the net benefits of climate change. But if π̄2 < 0, then equation (2) implies that π̄1 + π̄2 < 0,
so that the effect of climate on actions decreases payoffs. Overestimating (underestimating)
this effect on actions then overestimates (underestimates) the net costs of climate change.
Intuitively, a case with π̄2, π̄12 > 0 is one in which actions are costly to adjust and are
undertaken for future benefits, as with diverting crops to storage, and a case with π̄2, π̄12 < 0
is one in which actions impose long-run costs but will not be maintained for long, as may
be true of groundwater withdrawals. In either case, extrapolating from responses to weather
overstates the cost of climate change; in other cases, the estimator is an overly optimistic
estimate of the effect of climate change.

The second part of the proposition signs the bias in our estimate of the effect of climate
on payoffs when π̄12 6= 0 but there is no ex-ante adaptation. Now the bias introduced
by Ω is relevant and is proportional to dĀ/ dC. The proof implies that the estimator
always implicitly underestimates changes in actions. As a result, the estimator overstates
the benefits of climate change if and only if π̄2 < 0.

D Empirical Details

D.1 Sample construction and specification details

I use sales, expense, and farmland acreage data from the 1987, 1992, 1997, 2002, 2007, and
2012 U.S. Census of Agriculture. From 1997 on, data are available for download from the
official Quick Stats site. I obtain the 1987 and 1992 data from files posted by Deschênes
and Greenstone (2007) via Fisher et al. (2012). I use a balanced panel, dropping counties
that are missing observations in any year. I construct the weather variables from data avail-
able for download from Wolfram Schlenker’s web site, which follows Schlenker and Roberts
(2009). In line with supplementary analyses in both Deschênes and Greenstone (2007) and
Fisher et al. (2012), I include three weather variables (K = 3 in regression (13)): growing
season precipitation (in mm), growing season degree days, and extreme growing season de-
gree days. I define growing season degree days using temperatures between 10◦C and 29◦C.
Consistent with Schlenker and Roberts (2009), I define extreme growing season degree days
using temperatures above 29◦C. Lags and leads are defined using adjacent years. Following
arguments in Schlenker et al. (2005) and Fisher et al. (2012) regarding irrigation, the base
specification restricts the sample to counties east of the 100th meridian.42 And following

42County longitude is weighted by cropland, following previous literature.
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Deschênes and Greenstone (2007), the base specification weights observations by (the square
root of) average farmland acreage in a county over time. In Section D.2, I report results for
counties west of the 100th meridian and for unweighted regressions. Table D-1 summarizes
weather and economic data by year.

I measure profits as sales minus expenses, following Deschênes and Greenstone (2007).
Whereas they use profits per acre as the dependent variable, I use profits as the depen-
dent variable. One of the primary actions farmers may take is to choose their cultivated
acreage (e.g., Scott, 2014). I do not normalize profits by acreage because I am interested
in estimating such adaptation margins. Fisher et al. (2012) argue that market value may
be a better dependent variable since it does not conflate storage decisions, but for present
purposes, profits are the correct dependent variable because the theoretical analysis requires
the dependent variable to be flow payoffs and because the theoretical analysis can account
for storage as a type of action undertaken in response to the weather. The effects of storage
should be captured by the estimates of adaptation.

Deschênes and Greenstone (2007) favor state-by-year fixed effects to account for unob-
servables such as local price shocks.43 Fisher et al. (2012) raise concerns about the weather
variation remaining once state-by-year fixed effects and county fixed effects combine to re-
strict the identifying variation to deviations from average weather that are not shared by
nearby counties. In their Table A3, they report that three weather variables analogous to
the ones used here explain around 1.5% of the variance with year fixed effects (column 1e)
but explain only around 0.3% of the variance with state-by-year fixed effects (column 2e).44

As a result of this pattern, they prefer year fixed effects. In my preferred specification, the
variance explained by my twelve weather variables (which include two lags, a lead, and the
contemporary value for each of three weather indexes) is around 12% with year fixed effects
but only 2% with state-by-year fixed effects. Per weather variable, year fixed effects explain
twice as much variance in my data as in Fisher et al. (2012) and state-by-year fixed effects
explain over one-half more variance in my data than in Fisher et al. (2012).

However, some of the variation explained by weather in the case with year fixed effects
could be “bad” variation due to unobservables such as local shocks to prices, costs, or
productivity that are correlated with local weather shocks (Deschênes and Greenstone, 2007,
2012). I therefore also consider USDA Farm Region-by-year fixed effects (also explored in
Deschênes and Greenstone, 2012). The USDA Farm Resource Regions cover geographic
regions that are broader than states while also better reflecting patterns in crop production
related to unobservables such as local price shocks (USDA, 2000).45 There are nine Farm

43Carter et al. (2018) argue that interpreting marginal effects on profits in terms of social welfare requires
holding prices constant.

44Variance explained by weather is calculated as 1 minus the ratio of residual variance from a specification
with all weather variables over residual variance from a specification without any of the weather variables.

45I use the crosswalk between Farm Resource regions and counties available at https://www.ers.usda.

gov/data-products/arms-farm-financial-and-crop-production-practices/documentation.aspx.
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Resource Regions in the U.S., with eight of them including counties east of the 100th meridian
(as opposed to 37 states that include these counties). I find that the variance explained by
weather is 4.5% with these fixed effects, over two times greater than with state-by-year fixed
effects. On a per-variable basis with Farm Region-by-year fixed effects, weather explains
three-quarters as much variance as explained by weather with year fixed effects in Fisher
et al. (2012) but nearly four times more variance than explained by weather with state-
by-year fixed effects in Fisher et al. (2012). I use these Farm Resource Region-by-year
fixed effects in my preferred specifications because these fixed effects navigate a tradeoff
between absorbing omitted variables bias while leaving variation for weather to explain. In
Section D.2, I report results for specifications that instead include either state-by-year fixed
effects or year fixed effects.

I estimate covariance matrices that are cluster-robust at the state level, which accounts
both for arbitrary serial correlation within a county and for arbitrary spatial correlation
within a state (see also Fisher et al., 2012). The county fixed effects are nested within
clusters when clustering either by state or by county. The degrees of freedom adjustment
follows Cameron and Miller (2015).

I project climate change from the suite of 21 downscaled CMIP5 general circulation
climate model projections from the NASA Earth Exchange (NEX) database, kindly provided
by Wolfram Schlenker as county averages (weighted by measures of crop acreage). The
base specification uses the RCP 4.5 trajectory as that trajectory of stabilized emissions is
most consistent with the theoretical analysis of marginal climate change. (An alternate
specification in Section D.2 considers the higher-warming RCP 8.5 trajectory.) I calculate
each model’s estimate of climate change by differencing average weather over 2075–2095 with
average weather over 1985–2005. I then average over models’ estimates to obtain a single
climate change projection. I calculate the percentage change in profits due to climate change
by multiplying the theory-implied marginal effects of changing each climate variable by the
projected change in the weather variable and dividing by (acreage-weighted) average profits
over the sample. Table D-2 summarizes county-level climate projections. Climate change
increases both growing degree day variables but has heterogeneous effects on precipitation.

It may seem desirable to directly estimate the theory-implied parameters through the
method of moments: one can replace the estimated coefficients in the ordinary least squares
moment equations with their expressions in terms of theory-implied parameters. The prob-
lem is that the estimated covariance matrix is unreliable because calculating it can, depend-
ing on the data, require inverting a poorly conditioned (nearly-singular) matrix. The poorly
conditioned matrix arises when the theory-implied parameters rely on division of reduced-
form parameters that are close to zero. This happens to not pose a problem in the preferred
specification (results given in Section D.2), but it does pose a problem in other specifications.
Further, the distributions will be skewed in all specifications. I therefore instead obtain the
theory-implied parameters by sampling from the joint distribution of the reduced-form pa-
rameters (as defined by their estimated means and the estimated covariance matrix). In
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this case, the same underlying problem leads the standard deviation and the mean to be
unreliable statistics for the theory-implied parameters. I instead report the median and the
lower and upper quartiles for the theory-implied results. In Section D.2, I also report the
10th and 90th percentiles. All reported results use 1 million samples. Results are robust to
using 10 million samples.

Deschênes and Greenstone (2007) use sales, expenses, and farmland acreage data from
the Census of Agriculture for 1987, 1992, 1997, and 2002, which overlaps with data currently
available online from the Census of Agriculture only in the latter two years. Both Fisher
et al. (2012) and Deschênes and Greenstone (2012) use the same sales, expense, and acreage
data as Deschênes and Greenstone (2007). The three variables I downloaded exactly match
the data used in those papers for 2002 but none of them ever matches the data used in those
papers for 1997. On average, those papers’ data underestimate sales by 3%, underestimate
expenses by 6%, and underestimate farmland acreage by 5%, with substantial variation
around these averages and with many observations overestimating these variables. The
source of the discrepancy appears to be that the USDA changed its methodology for the
2002 Census of Agriculture. It had previously adjusted its data for non-response, but in
2002 it began also adjusting for coverage. The 1997 data currently available online include
a coverage adjustment, but the data originally published for 1997 (and presumably used
in those prior papers) do not. Further, there is no coverage adjustment available for the
pre-1997 data, so there is no way to make them perfectly consistent with the more recent
data. I assess robustness to this data issue in Section D.3. There I report specifications that
do not use any of the data from Deschênes and Greenstone (2007) (so dropping 1987 and
1992), and I report specifications that use economic and acreage data only from Deschênes
and Greenstone (2007) (so dropping 2007 and 2012 and replacing 1997 with their data),
with and without the year 2002. For consistency with those previous papers’ results, these
last specifications project climate change using Scenario B2 from the Hadley III model (see
Fisher et al., 2012), define growing season degree days using the interval 8–32◦C, and define
extreme growing season degree days as the square root of growing degree days above 34◦C.

D.2 Additional results and robustness checks

Table D-3 reports the same results as in the main text except now using the 10th and 90th
percentiles. Even the 90th percentile for the combined effect is negative. It is therefore
unlikely that climate change will help agriculture on net. Also, even the 90th percentile for
π̄12/χ2 (not shown) is negative in the case of extreme growing degree days, reinforcing the
conclusion that π̄12/χ2 is likely to be negative.

Instead of reporting medians and quartiles, Table D-4 reports central estimates and
standard errors obtained through method of moments estimation, with the caveats (from
Section D.1) that the estimated standard errors can be computationally imprecise (although
they do not appear to be in this specification) and may be misleading because the distri-
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Table D-1: Summary statistics for the sample used in the preferred specification.

1987 1992 1997 2002 2007 2012

Mean and standard deviation
Profit (million $2002) 12.3 11.8 13.6 7.8 14.8 17.2

(16.5) (14.4) (18.6) (15.8) (23.6) (28.8)
GDD (thous ◦C-days) 2.02 1.76 1.78 2.02 2.01 2.04

(0.415) (0.501) (0.468) (0.452) (0.422) (0.440)
Extreme GDD (◦C-days) 74.2 34.4 53.7 74.4 69.4 95.3

(51.1) (43.2) (53.9) (50.7) (48.8) (70.7)
Prec (mm) 550 616 591 597 569 534

(114) (126) (132) (136) (152) (175)

Weighted average
Profit (million $2002) 15.0 14.5 16.8 9.1 18.7 22.4
GDD (thous ◦C-days) 2.03 1.76 1.79 2.02 2.01 2.05
Extreme GDD (◦C-days) 78.0 37.6 59.3 79.0 68.5 107.7
Prec (mm) 542 601 579 583 590 499

The sample includes only counties east of the 100th meridian. Weights are the
square root of a county’s average acreage. There are 2324 counties and 6 years.

Table D-2: Projected effects of 21st century climate change for the sample used in the
preferred specification.

RCP 4.5 RCP 8.5

Mean and standard deviation
GDD (thous ◦C-days) 0.394 0.709

(0.0432) (0.0884)
Extreme GDD (◦C-days) 106 257

(51.2) (101)
Prec (mm) 23.3 21.3

(26.4) (41.0)

Weighted average
GDD (thous ◦C-days) 0.397 0.714
Extreme GDD (◦C-days) 111 266
Prec (mm) 17.0 11.1

Climate projections use the RCP 4.5 scenario from
the NEX database. The sample includes only
counties east of the 100th meridian. Weights are
the square root of a county’s average acreage.
There are 2222 counties, slightly fewer than in the
estimation sample.

A-11



Lemoine Estimating Climate from Weather November 2019

butions may be highly skewed. Nonetheless, the broad story is consistent with the results
we have already seen. The net effect of climate change is to reduce agricultural profits by
52–58% according to the central estimates, with a standard error of just over 20%. The cen-
tral estimate (standard error) for π̄12/χ2 is -2.73 (3.21) in the case of conventional growing
degree days and -0.531 (0.305) in the case of extreme growing degree days.

The remaining tables undertake robustness checks. All specifications include county fixed
effects. First, Table D-5 assesses sensitivity to a lower discount rate, which can affect only
the theory-based estimates. We see only small changes relative to the main text. The most
interesting change is mechanical: reducing the discount rate reduces the degree of ex-ante
adaptation required to explain the coefficient on the reduced-form lead of weather. The
median estimates of π̄12/χ2 are essentially unchanged.

Table D-6 replaces the Farm Region-by-year fixed effects with year fixed effects. The
estimated π̄12/χ2 are not too different from before. I point out a few differences. First, the
median estimate of the direct effects of conventional growing degree days is now negative,
which is cause for concern about specification error. Second, the estimates suggest a much
larger role for both types of adaptation. If we believe that geographically differentiated fixed
effects do in fact absorb local shocks to prices, costs, and productivity, then it may not be
surprising that estimation of direct effects and adaptation is especially sensitive to including
these fixed effects. Third, the interquartile ranges tend to become much larger than in the
preferred specification.

Table D-7 instead replaces the Farm Region-by-year fixed effects with state-by-year fixed
effects. The inclusion of state-by-year fixed effects shrinks the central estimates of the net
effect of climate change towards zero and makes the sign unclear. This effect is consistent
with Fisher et al. (2012). The estimated π̄12/χ2 is still clearly negative in the case of extreme
growing degree days, but the median estimate is now much closer to zero in the case of
conventional growing degree days.

Table D-8 replicates the main specification but without weighting by average farmland
acreage. It therefore estimates effects for the average county rather than for the average
acre of farmland. The results are broadly similar (including for π̄12/χ2), although ex-ante
adaptation now plays a larger role in offsetting the harm from extreme growing degree days.

Table D-9 repeats the climate change calculation with the high-warming RCP 8.5 tra-
jectory. This trajectory amplifies the benefit from additional growing degree days but also
amplifies the cost of additional extreme growing degree days. The latter effect dominates,
so that the results now suggest much greater losses from climate change. In fact, the me-
dian estimate suggests more-than-complete elimination of agricultural profits in the eastern
U.S. This extreme result suggests that extrapolating estimated impacts of marginal climate
change to this climate change scenario may be inappropriate.

Table D-10 studies the other side of the contiguous United States: those counties west of
the 100th meridian. Schlenker et al. (2005) argue that these counties tend to be irrigated,
whereas counties east of the 100th meridian tend to be rainfed. Consistent with intuition,
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the results suggest that the western counties are broadly less exposed to climate change and
could even plausibly benefit from climate change. In particular, projected changes in extreme
growing degree days are now plausibly beneficial and projected changes in conventional
growing degree days are now plausibly harmful. The 75th percentile estimates of π̄12/χ2 are
negative for both growing degree day variables. One difficulty with these results is that there
are only 17 states in this region, raising concerns about the reliability of clustering by state.
Table D-11 repeats the analysis, except clustering by county. The only notable difference in
the results is that the median theory-implied estimate for total effects from extreme growing
degree days now suggests negative effects, driven by costly adaptation.

Additional experiments (not reported) split the sample by USDA Farm Region. The
“Heartland”, “Northern Great Plains”, “Eastern Uplands”, and “Prairie Gateway” regions
demonstrate results broadly consistent with the aggregated results, being helped by changes
in conventional growing degree days, harmed by changes in extreme growing degree days,
and harmed by climate change overall. The most interesting exception is the “Mississippi
Portal”, which appears to be harmed by changes in conventional growing degree days, to
benefit from changes in extreme growing degree days, and to benefit from climate change
overall.

D.3 Robustness to adjustments in USDA economic and acreage
data

As described in Section D.1, the USDA changed their census methodology in 2002, with
corrections available only back to 1997. I begin by assessing the robustness of my results to
maintaining an internally consistent sample of years. I then assess the robustness of prior
literature’s results to maintaining an internally consistent sample of years. In the course
of the latter, I also assess whether my results are much affected by using prior literature’s
slightly different weather variable definitions.46

Table D-12 does not use observations for 1987 and 1992, instead sticking to the years
that are currently available online from the USDA and that adjust for both coverage and
non-response. The direct effects of extreme growing degree days are now smaller, and ex-ante
adaptation appears more important.47 Otherwise, estimates are largely similar, albeit noisier.
The median estimates suggest smaller total impacts from climate change, but even this much
noisier estimate suggests that total impacts are likely to be negative. The estimated π̄12/χ2

are quite noisy. The estimates for conventional growing degree days and precipitation could
plausibly have either sign, but the 75th percentile for π̄12/χ2 is still clearly negative (−0.5)

46The effects of climate are calculated as a percentage of average profits over the sample. Changing the
sample therefore also affects the denominator of this calculation.

47The skill and availability of seasonal forecasts improved dramatically from the early years of the primary
specification’s sample to the years used in this table (see Klemm and McPherson, 2017, among others). It
is possible that ex-ante adaptation actually did become more important over time.
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in the case of extreme growing degree days.
The remaining tables replicate the current approach using only the economic and acreage

data from Deschênes and Greenstone (2007), which means not using any years after 2002
and changing data values for 1997. Section D.1 describes differences in weather variable
definitions and climate change calculations between these specifications and all previous
ones. Table D-13 repeats the preferred specification with these alterations. The estimated
net effect of climate change from Assumption 3 is nearly identical to the most comparable
previous estimates, in column (1e) of Table A3 in Fisher et al. (2012). That specification
differs in using year fixed effects (instead of the current Farm Region-year fixed effects) and
in using profits per acre as the dependent variable rather than profits (which also creates
some minor differences in the climate change calculation). The most notable difference with
respect to the present paper’s results is that estimated ex-post adaptation to growing degree
days becomes rather noisy, which makes the net effect of climate change rather noisy. The
median estimate for π̄12/χ2 is now positive in the case of conventional growing degree days
but still negative in the case of extreme growing degree days. Neither interquartile range
includes zero.

Table D-14 modifies the previous paragraph’s specification to also drop all observations
for the year 2002, so that the economic and acreage time series are now internally consistent.
The reduced-form estimates using Assumption 3 shrink a bit. The theory-based estimates
change in more interesting ways. The estimate of ex-post adaptation to growing degree days
is now negative and, despite the sample being 25% smaller, is not nearly as noisy. As a
result, the total effect of climate change changes fairly dramatically. In fact, it is now not
too far from the main text’s results, despite the different years used, the different weather
variable definitions, and the different climate model projections. Finally, the interquartile
range for π̄12/χ2 is still well within negative values in the case of extreme growing degree
days, and it also now includes negative values in the case of conventional growing degree
days.

Table D-15 combines economic and acreage data from Deschênes and Greenstone (2007)
with the state-by-year fixed effects favored by Deschênes and Greenstone (2007, 2012). The
estimated net effect of climate change from Assumption 3 is again nearly identical to the
most comparable previous estimates, in column (2e) of Table A3 in Fisher et al. (2012).
That specification differs only in using profits per acre as the dependent variable rather than
profits. The theory-implied effects are broadly consistent with those in Table D-7 (which
also used state-by-year fixed effects), with the exception that the signs of the adaptation
channels flip for extreme growing degree days. The median estimates for π̄12/χ2 are negative
for both growing degree day variables. Table D-16 drops all observations for the year 2002.
The reduced-form estimates from Assumption 3 do not change much, suggesting that the
results in Deschênes and Greenstone (2007, 2012) are not too sensitive to the USDA’s change
in variable construction between 1997 and 2002. However, the theory-based total effect of
climate change is now clearly negative, driven by much smaller direct benefits from additional
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growing degree days. The median estimates for π̄12/χ2 are still negative for both growing
degree day variables.
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Table D-3: Like Table 2, except reporting the 10th and 90th percentiles (in parentheses)
instead of the 25th and 75th percentiles.

GDD Extreme GDD Precip Combined

Reduced-Form
Using Assumption 3 51 -97 -1 -47

(25) (37) (0.4) (24)
Using π̄12 = 0 44 -1.1e+02 -1.6 -71

(29) (35) (0.66) (28)

Theory-Implied
Direct Effects 38 -93 -1.2 -56

(6.9,69) (-1.3e+02,-58) (-2.1,-0.44) (-85,-28)
Ex-Post Adaptation 8.3 -8 -0.21 0.56

(-12,36) (-13,-2.6) (-0.4,-0.061) (-20,28)
Ex-Ante Adaptation 3.2 0.33 -0.048 3.4

(-1.3,7.6) (-5.6,6.2) (-0.12,0.022) (-3,9.9)
Total 54 -1e+02 -1.5 -50

(2.2,95) (-1.4e+02,-60) (-2.5,-0.6) (-92,-9.4)

All specifications include county and Farm Region-year fixed effects. The reduced-
form estimates’ standard errors and the theory-implied results derive from covari-
ance matrices that are robust to clustering at the state level. The sample includes
only counties east of the 100th meridian. Observations are weighted by (the square
root of) a county’s average farmland acreage. Climate projections use the RCP 4.5
scenario averaged across 21 CMIP5 models. There are 13944 county-year observa-
tions and 37 state observations.
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Table D-4: Like Table 2, except reporting the central estimates and standard errors from
method of moments estimation of the structural parameters.

GDD Extreme GDD Precip Combined

Reduced-Form
Using Assumption 3 50.9 -97.3 -1.03 -47.4

(25.4) (36.6) (0.4) (23.8)
Using π̄12 = 0 44 -114 -1.59 -71.5

(29.4) (34.6) (0.659) (28.4)

Theory-Implied
Direct Effects 35.5 -91.8 -1.17 -57.5

(23.6) (27) (0.567) (21.1)
Ex-Post Adaptation 9.75 -7.42 -0.185 2.15

(13.4) (3.79) (0.111) (12.8)
Ex-Ante Adaptation 3.16 0.325 -0.0484 3.44

(3.45) (4.6) (0.0547) (5.06)
Total 48.4 -98.9 -1.41 -51.9

(23.8) (31) (0.636) (22.6)

All specifications include county and Farm Region-year fixed effects.
Standard errors, in parentheses, are clustered at the state level. The
sample includes only counties east of the 100th meridian. Observa-
tions are weighted by (the square root of) a county’s average farmland
acreage. Climate projections use the RCP 4.5 scenario averaged across
21 CMIP5 models. There are 13944 county-year observations and 37
state observations.
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Table D-5: Like Table 2, except using a lower annual discount rate of 12%.

GDD Extreme GDD Precip Combined

Reduced-Form
Using Assumption 3 51 -97 -1 -47

(25) (37) (0.4) (24)
Using π̄12 = 0 44 -1.1e+02 -1.6 -71

(29) (35) (0.66) (28)

Theory-Implied
Direct Effects 41 -96 -1.4 -57

(25,57) (-1.2e+02,-77) (-1.9,-0.91) (-72,-42)
Ex-Post Adaptation 3.1 -3.2 -0.084 -0.043

(0.83,6.2) (-4.2,-2.2) (-0.13,-0.052) (-2.4,3)
Ex-Ante Adaptation 1.1 0.12 -0.017 1.2

(0.3,1.9) (-0.98,1.2) (-0.03,-0.0041) (0.009,2.4)
Total 47 -99 -1.5 -55

(29,65) (-1.2e+02,-79) (-2,-0.99) (-71,-38)

All specifications include county and Farm Region-year fixed effects. The reduced-
form estimates’ standard errors and the theory-implied results derive from covari-
ance matrices that are robust to clustering at the state level. The sample includes
only counties east of the 100th meridian. Observations are weighted by (the square
root of) a county’s average farmland acreage. Climate projections use the RCP 4.5
scenario averaged across 21 CMIP5 models. There are 13944 county-year observa-
tions and 37 state observations.
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Table D-6: Like Table 2, except using year fixed effects instead of Farm Region-by-year fixed
effects.

GDD Extreme GDD Precip Combined

Reduced-Form
Using Assumption 3 53 -1.1e+02 -1.9 -61

(22) (27) (0.57) (35)
Using π̄12 = 0 2.1 -1.2e+02 -2.3 -1.2e+02

(53) (25) (0.91) (54)

Theory-Implied
Direct Effects -19 -69 -1.7 -91

(-49,10) (-85,-54) (-2.3,-1.2) (-1.2e+02,-61)
Ex-Post Adaptation 39 -18 -0.29 21

(-38,1e+02) (-22,-15) (-0.37,-0.22) (-54,80)
Ex-Ante Adaptation 17 -6 -0.056 11

(13,22) (-9.5,-2.5) (-0.12,0.0053) (7.7,15)
Total 59 -94 -2.1 -39

(-36,99) (-1.1e+02,-76) (-2.7,-1.5) (-1.3e+02,9.6)

All specifications include county and year fixed effects. The reduced-form estimates’
standard errors and the theory-implied results derive from covariance matrices that
are robust to clustering at the state level. The sample includes only counties east of
the 100th meridian. Observations are weighted by (the square root of) a county’s
average farmland acreage. Climate projections use the RCP 4.5 scenario averaged
across 21 CMIP5 models. There are 13944 county-year observations and 37 state
observations.
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Table D-7: Like Table 2, except using state-by-year fixed effects instead of Farm Region-by-
year fixed effects.

GDD Extreme GDD Precip Combined

Reduced-Form
Using Assumption 3 81 -89 -0.093 -8

(33) (38) (0.3) (37)
Using π̄12 = 0 89 -82 -0.36 6.6

(40) (30) (0.58) (32)

Theory-Implied
Direct Effects 89 -80 -0.42 9.8

(58,1.2e+02) (-99,-61) (-0.98,0.04) (-19,37)
Ex-Post Adaptation -4.5 -4.9 -0.14 -9.5

(-13,5.2) (-17,3.5) (-0.3,0.029) (-28,6.3)
Ex-Ante Adaptation -6 -2.6 0.048 -8.6

(-10,-1.8) (-6.5,1.2) (-0.0065,0.1) (-14,-3.3)
Total 79 -86 -0.51 -5.3

(43,1.1e+02) (-1.2e+02,-58) (-1.2,0.095) (-49,32)

All specifications include county and state-year fixed effects. The reduced-form
estimates’ standard errors and the theory-implied results derive from covariance
matrices that are robust to clustering at the state level. The sample includes only
counties east of the 100th meridian. Observations are weighted by (the square root
of) a county’s average farmland acreage. Climate projections use the RCP 4.5 sce-
nario averaged across 21 CMIP5 models. There are 13944 county-year observations
and 37 state observations.
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Table D-8: Like Table 2, except not weighting the observations by average farmland acreage.

GDD Extreme GDD Precip Combined

Reduced-Form
Using Assumption 3 45 -89 -0.72 -46

(23) (30) (0.29) (18)
Using π̄12 = 0 34 -1.1e+02 -1.7 -81

(24) (28) (0.55) (24)

Theory-Implied
Direct Effects 36 -99 -1.3 -65

(22,50) (-1.2e+02,-82) (-1.6,-1.1) (-80,-51)
Ex-Post Adaptation 4.5 -3.3 -0.21 2.1

(-10,23) (-6.4,0.69) (-0.27,-0.14) (-12,21)
Ex-Ante Adaptation 3.1 3.7 0.042 6.8

(0.81,5.3) (1.4,6.1) (0.0056,0.079) (3.9,9.8)
Total 48 -98 -1.5 -53

(14,76) (-1.2e+02,-78) (-1.8,-1.2) (-79,-28)

All specifications include county and Farm Region-year fixed effects. The reduced-
form estimates’ standard errors and the theory-implied results derive from covari-
ance matrices that are robust to clustering at the state level. The sample includes
only counties east of the 100th meridian. Climate projections use the RCP 4.5 sce-
nario averaged across 21 CMIP5 models. There are 13944 county-year observations
and 37 state observations.
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Table D-9: Like Table 2, except using RCP8.5.

GDD Extreme GDD Precip Combined

Reduced-Form
Using Assumption 3 91 -2.3e+02 -0.67 -1.4e+02

(46) (87) (0.26) (60)
Using π̄12 = 0 79 -2.7e+02 -1 -1.9e+02

(53) (83) (0.43) (65)

Theory-Implied
Direct Effects 68 -2.2e+02 -0.81 -1.5e+02

(40,98) (-2.6e+02,-1.8e+02) (-1.1,-0.54) (-1.9e+02,-1.2e+02)
Ex-Post Adaptation 15 -19 -0.13 -3.2

(3.8,31) (-25,-13) (-0.19,-0.087) (-15,13)
Ex-Ante Adaptation 5.7 0.78 -0.032 6.4

(1.5,9.9) (-6.6,8.2) (-0.056,-0.0075) (-1.2,14)
Total 98 -2.4e+02 -0.97 -1.5e+02

(58,1.3e+02) (-2.9e+02,-1.9e+02) (-1.3,-0.68) (-1.9e+02,-1e+02)

All specifications include county and Farm Region-year fixed effects. The reduced-
form estimates’ standard errors and the theory-implied results derive from covari-
ance matrices that are robust to clustering at the state level. The sample includes
only counties east of the 100th meridian. Observations are weighted by (the square
root of) a county’s average farmland acreage. Climate projections use the RCP 8.5
scenario averaged across 21 CMIP5 models. There are 13944 county-year observa-
tions and 37 state observations.
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Table D-10: Like Table 2, except using only counties west of the 100th meridian.

GDD Extreme GDD Precip Combined

Reduced-Form
Using Assumption 3 -40 5.3 0.31 -35

(20) (14) (0.22) (24)
Using π̄12 = 0 -26 26 0.88 0.3

(33) (22) (0.49) (44)

Theory-Implied
Direct Effects -35 48 0.91 15

(-59,-14) (23,72) (0.15,1.5) (-26,53)
Ex-Post Adaptation 16 -28 0.19 -15

(9.8,23) (-65,-10) (0.033,0.36) (-52,1.7)
Ex-Ante Adaptation 8.6 -15 -0.044 -6.4

(3.8,14) (-23,-7) (-0.12,0.029) (-13,0.58)
Total -7.9 1.4 1.1 -9.2

(-31,13) (-29,22) (0.21,1.7) (-63,31)

All specifications include county and Farm Region-year fixed effects. The reduced-
form estimates’ standard errors and the theory-implied results derive from covari-
ance matrices that are robust to clustering at the state level. The sample includes
only counties west of the 100th meridian. Observations are weighted by (the square
root of) a county’s average farmland acreage. Climate projections use the RCP 4.5
scenario averaged across 21 CMIP5 models. There are 3240 county-year observa-
tions and 17 state observations.
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Table D-11: Like Table 2, except using only counties west of the 100th meridian and clus-
tering by county.

GDD Extreme GDD Precip Combined

Reduced-Form
Using Assumption 3 -40 5.3 0.31 -35

(21) (14) (0.17) (17)
Using π̄12 = 0 -26 26 0.88 0.3

(36) (30) (0.33) (31)

Theory-Implied
Direct Effects -35 47 1.1 13

(-59,-12) (25,69) (0.45,1.5) (-12,38)
Ex-Post Adaptation 15 -27 0.23 -12

(10,21) (-62,-13) (0.085,0.39) (-50,3)
Ex-Ante Adaptation 8.6 -15 -0.044 -6.4

(4.8,12) (-21,-9.1) (-0.08,-0.0074) (-13,-0.14)
Total -11 -5 1.3 -9.9

(-34,13) (-29,11) (0.57,1.8) (-54,22)

All specifications include county and Farm Region-year fixed effects. The reduced-
form estimates’ standard errors and the theory-implied results derive from covari-
ance matrices that are robust to clustering at the county level. The sample includes
only counties west of the 100th meridian. Observations are weighted by (the square
root of) a county’s average farmland acreage. Climate projections use the RCP 4.5
scenario averaged across 21 CMIP5 models. There are 3240 county-year observa-
tions and 540 county observations.
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Table D-12: Like Table 2, except using only data from 1997–2012.

GDD Extreme GDD Precip Combined

Reduced-Form
Using Assumption 3 64 -1e+02 -0.96 -39

(32) (41) (0.53) (31)
Using π̄12 = 0 18 -91 -0.3 -73

(50) (31) (0.76) (49)

Theory-Implied
Direct Effects 37 -64 0.28 -27

(0.59,73) (-81,-47) (-0.16,0.75) (-58,3)
Ex-Post Adaptation -1.5 -10 -0.21 -14

(-24,14) (-23,-3.9) (-0.74,0.56) (-49,10)
Ex-Ante Adaptation 3.6 -6.2 -0.32 -2.9

(-1.1,8.5) (-11,-1.4) (-0.4,-0.25) (-9.2,3.4)
Total 45 -80 -0.32 -38

(-9.8,85) (-1.1e+02,-56) (-1.2,0.94) (-1e+02,4)

All specifications include county and Farm Region-year fixed effects. The reduced-
form estimates’ standard errors and the theory-implied results derive from covari-
ance matrices that are robust to clustering at the state level. The sample includes
only counties east of the 100th meridian. Observations are weighted by (the square
root of) a county’s average farmland acreage. Climate projections use the RCP 4.5
scenario averaged across 21 CMIP5 models. There are 9380 county-year observa-
tions and 37 state observations.
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Table D-13: Like Table 2, except using years and weather variable definitions from Deschênes
and Greenstone (2007).

GDD Extreme GDD Precip Combined

Reduced-Form
Using Assumption 3 -0.9 -68 -0.1 -69

(19) (18) (0.12) (22)
Using π̄12 = 0 -4 -91 -0.27 -95

(34) (24) (0.13) (36)

Theory-Implied
Direct Effects 48 -82 -0.047 -41

(25,71) (-98,-67) (-0.29,0.14) (-67,-13)
Ex-Post Adaptation 26 21 -0.019 49

(-29,54) (9.4,38) (-0.11,0.11) (-16,94)
Ex-Ante Adaptation -12 12 -0.017 0.063

(-16,-7.4) (9,14) (-0.034,-0.00024) (-3.8,3.9)
Total 65 -47 -0.064 16

(-32,1.2e+02) (-69,-24) (-0.42,0.21) (-94,87)

All specifications include county and Farm Region-year fixed effects. The reduced-
form estimates’ standard errors and the theory-implied results derive from covari-
ance matrices that are robust to clustering at the state level. The sample includes
only counties east of the 100th meridian. Observations are weighted by (the square
root of) a county’s average farmland acreage. Climate projections use the B2 sce-
nario from the Hadley III model. There are 9528 county-year observations and 37
state observations.
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Table D-14: Like Table D-13, except using only data from 1987–1997.

GDD Extreme GDD Precip Combined

Reduced-Form
Using Assumption 3 6.4 -50 -0.23 -44

(22) (15) (0.15) (24)
Using π̄12 = 0 -9.1 -89 -0.49 -99

(31) (27) (0.17) (24)

Theory-Implied
Direct Effects 18 -96 -0.51 -80

(-17,44) (-1.1e+02,-77) (-0.65,-0.36) (-1e+02,-60)
Ex-Post Adaptation -10 17 -0.054 10

(-20,3.8) (6.7,35) (-0.11,-0.0097) (-7.7,44)
Ex-Ante Adaptation -11 16 0.055 4.5

(-14,-7.8) (13,18) (0.036,0.073) (0.82,8.2)
Total -11 -58 -0.51 -66

(-48,38) (-81,-34) (-0.68,-0.34) (-1e+02,-20)

All specifications include county and Farm Region-year fixed effects. The reduced-
form estimates’ standard errors and the theory-implied results derive from covari-
ance matrices that are robust to clustering at the state level. The sample includes
only counties east of the 100th meridian. Observations are weighted by (the square
root of) a county’s average farmland acreage. Climate projections use the B2 sce-
nario from the Hadley III model. There are 7146 county-year observations and 37
state observations.
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Table D-15: Like Table 2, except using years and weather variable definitions from Deschênes
and Greenstone (2007) and using their preferred state-year fixed effects.

GDD Extreme GDD Precip Combined

Reduced-Form
Using Assumption 3 43 -50 0.077 -7.8

(16) (13) (0.11) (18)
Using π̄12 = 0 54 -57 -0.097 -3.6

(21) (23) (0.15) (24)

Theory-Implied
Direct Effects 71 -79 -0.11 -7.6

(56,86) (-94,-63) (-0.24,0.0086) (-26,10)
Ex-Post Adaptation -8.5 8.3 -0.044 -1.3

(-17,4.2) (-0.083,14) (-0.17,0.11) (-12,11)
Ex-Ante Adaptation -11 9.5 0.049 -1.4

(-16,-5.9) (6.3,13) (0.024,0.074) (-5.3,2.6)
Total 50 -60 -0.077 -10

(32,71) (-79,-43) (-0.37,0.17) (-36,16)

All specifications include county and state-year fixed effects. The reduced-form
estimates’ standard errors and the theory-implied results derive from covariance
matrices that are robust to clustering at the state level. The sample includes only
counties east of the 100th meridian. Observations are weighted by (the square root
of) a county’s average farmland acreage. Climate projections use the B2 scenario
from the Hadley III model. There are 9528 county-year observations and 37 state
observations.
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Table D-16: Like Table D-15, except using only data from 1987–1997.

GDD Extreme GDD Precip Combined

Reduced-Form
Using Assumption 3 37 -39 0.036 -1.7

(16) (15) (0.12) (11)
Using π̄12 = 0 33 -61 -0.19 -28

(27) (24) (0.19) (20)

Theory-Implied
Direct Effects 42 -68 -0.19 -27

(25,60) (-86,-51) (-0.37,-0.011) (-46,-7.3)
Ex-Post Adaptation -9.1 0.99 -0.082 -6.8

(-16,1.7) (-18,16) (-0.25,0.0034) (-21,6)
Ex-Ante Adaptation -6.1 7.3 0.065 1.2

(-10,-2.1) (5,9.5) (0.034,0.097) (-2.5,5)
Total 27 -55 -0.22 -31

(8.5,48) (-94,-30) (-0.55,0.07) (-59,-6.8)

All specifications include county and state-year fixed effects. The reduced-form
estimates’ standard errors and the theory-implied results derive from covariance
matrices that are robust to clustering at the state level. The sample includes only
counties east of the 100th meridian. Observations are weighted by (the square root
of) a county’s average farmland acreage. Climate projections use the B2 scenario
from the Hadley III model. There are 7146 county-year observations and 37 state
observations.
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E Proofs

E.1 A Useful Lemma

The following lemma is critical to deriving the regression coefficients. Define X̃K as the
JT × 2(K + 1) matrix with rows[

wjt − C fjt − C wj(t−1) − C fj(t−1) − C ... wj(t−K) − C fj(t−K) − C
]
,

where the ε and ν are uncorrelated over time and across units j (though allowing for the
possibility that ρ , Cov[εjt, νjt] 6= 0). And define 0R as the 1 × R row vector of zeros if
R > 0 and as an empty element element if R ≤ 0. We then have:

Lemma 4. For K > 0 and i ≤ 2K, row i of E[X̃ᵀ
KX̃K ]−1 obeys the following rules.

• If i is odd, then

1

JTζ2[σ2τ 2 − ρ2]

[
0i−1 τ 2 −ρ 0 −τ 2 02(K+1)−(i+3)

]
.

• If i = 2, then
1

JTζ2[σ2τ 2 − ρ2]

[
−ρ σ2 0 ρ 02(K+1)−4

]
.

• If i is even and i > 2, then

1

JTζ2[σ2τ 2 − ρ2]

[
0i−4 −τ 2 ρ −ρ σ2 + τ 2 0 ρ 02(K+1)−(i+2)

]
.

Proof. Observe that, for K > 0,

E[X̃ᵀ
KX̃K ] =

[
E[X̃ᵀ

K−1X̃K−1] CK−1

Cᵀ
K−1 D

]
,

where CK−1 is a 2K × 2 matrix with the only nonzero entries being in row 2K − 1, which is
[JTζ2ρ JTζ2τ 2], and where

D , JTζ2

[
σ2 + τ 2 ρ

ρ τ 2

]
.

Define

BK ,

[
E[X̃ᵀ

K−1X̃K−1] CK−1

Cᵀ
K−1 B0

]
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for K > 0, where

B0 , JTζ2

[
σ2 ρ
ρ τ 2

]
.

The only nonzero entries in the 2K × 2 matrix CK−1D
−1 are in row 2K − 1, which is [0 1].

Therefore48

BK−1 = E[X̃ᵀ
K−1X̃K−1]− CK−1D

−1Cᵀ
K−1.

Using standard results for block matrix inversion and substituting BK−1,

E[X̃ᵀ
KX̃K ]−1 =

[
B−1
K−1 −B−1

K−1CK−1D
−1

−D−1Cᵀ
K−1B

−1
K−1 D−1 +D−1Cᵀ

K−1B
−1
K−1CK−1D

−1

]
. (E-3)

Also, we have, for K > 0,49

BK = E[X̃ᵀ
KX̃K ]− CKB−1

0 Cᵀ
K

and thus

B−1
K =

[
B−1
K−1 −B−1

K−1CK−1B
−1
0

−B−1
0 Cᵀ

K−1B
−1
K−1 B−1

0 +B−1
0 Cᵀ

K−1B
−1
K−1CK−1B

−1
0

]
. (E-4)

We proceed by induction, first directly proving the result for K = 1 and K = 2. Consider
K = 0. Direct calculations yield:

E[X̃ᵀ
0 X̃0] =JTζ2

[
σ2 + τ 2 ρ

ρ τ 2

]
⇒ E[X̃ᵀ

0 X̃0]−1 =
1

JTζ2[σ2τ 2 − ρ2]

[
τ 2 −ρ
−ρ σ2 + τ 2

]
.

Now consider K = 1. We have:

B−1
0 =

1

JTζ2[σ2τ 2 − ρ2]

[
τ 2 −ρ
−ρ σ2

]
,

−B−1
0 C0D

−1 =−B−1
0

[
0 1
0 0

]
=

1

JTζ2[σ2τ 2 − ρ2]

[
0 −τ 2

0 ρ

]
.

Therefore the first 2 rows of E[X̃ᵀ
1 X̃1]−1 are:

1

JTζ2[σ2τ 2 − ρ2]

[
τ 2 −ρ 0 −τ 2

−ρ σ2 0 ρ

]
.

48The only nonzero entry in the 2K × 2K matrix CK−1D
−1Cᵀ

K−1 is entry (2K − 1, 2K − 1), which is

JTζ2τ2. Subtracting this entry from E[X̃ᵀ
K−1X̃K−1] yields the result.

49The only nonzero entries in the 2K × 2 matrix CK−1B
−1
0 are in row 2K − 1, which is [0 1], and thus

the only nonzero entry in the 2K × 2K matrix CK−1B
−1
0 Cᵀ

K−1 is entry (2K − 1, 2K − 1), which is JTζ2τ2.

Subtracting this entry from E[X̃ᵀ
K−1X̃K ] yields the result.
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This is consistent with Lemma 4.
Now consider K = 2. Note that

−B−1
0 C0B

−1
0 =−B−1

0

[
0 1
0 0

]
=

1

JTζ2[σ2τ 2 − ρ2]

[
0 −τ 2

0 ρ

]
,

−B−1
0 Cᵀ

0B
−1
0 =−

[
0 0
1 0

]
B−1

0 =
1

JTζ2[σ2τ 2 − ρ2]

[
0 0
−τ 2 ρ

]
B−1

0 +B−1
0 Cᵀ

0B
−1
0 C0B

−1
0 =B−1

0 +
1

JTζ2[σ2τ 2 − ρ2]
B−1

0 Cᵀ
0

[
0 τ 2

0 −ρ

]
= B−1

0 +
τ 2

[σ2τ 2 − ρ2]
B−1

0

[
0 ρ
0 τ 2

]
=B−1

0

[
1 ρ τ2

[σ2τ2−ρ2]

0 1 + τ 2 τ2

[σ2τ2−ρ2]

]

=
1

JTζ2[σ2τ 2 − ρ2]

[
τ 2 −ρ
−ρ σ2

][
1 ρ τ2

[σ2τ2−ρ2]

0 1 + τ 2 τ2

[σ2τ2−ρ2]

]

=
1

JTζ2[σ2τ 2 − ρ2]

[
τ 2 −ρ
−ρ σ2 + τ 2

]
.

Putting these pieces together, we have:

B−1
1 =

1

JTζ2[σ2τ 2 − ρ2]


τ 2 −ρ 0 −τ 2

−ρ σ2 0 ρ
0 0 τ 2 −ρ
−τ 2 ρ −ρ σ2 + τ 2

 .
And we have:

−B−1
1 C1D

−1 = −B−1
1


0 0
0 0
0 1
0 0

 =
1

JTζ2[σ2τ 2 − ρ2]


0 0
0 0
0 −τ 2

0 ρ

 .
So the first four rows of E[X̃ᵀ

2 X̃2]−1 are:

1

JTζ2[σ2τ 2 − ρ2]


τ 2 −ρ 0 −τ 2 0 0
−ρ σ2 0 ρ 0 0
0 0 τ 2 −ρ 0 −τ 2

−τ 2 ρ −ρ σ2 + τ 2 0 ρ

 .
This is consistent with Lemma 4. This result with K = 2 is the basis step.

The induction hypothesis is that Lemma 4 is satisfied for some K > 1. We seek to show
it is then also satisfied for K + 1.

A-32



Lemoine Estimating Climate from Weather November 2019

The induction hypothesis and equation (E-3) imply that all rows of B−1
K−1 have the form

defined in Lemma 4. Now use equation (E-4) to getB−1
K . Consider−B−1

K−1CK−1B
−1
0 . Because

the only nonzero entries in the 2K × 2 matrix CK−1B
−1
0 are in row 2K − 1 and this row is

[0 1], the first column of −B−1
K−1CK−1B

−1
0 contains only zeros and the second column of

−B−1
K−1CK−1B

−1
0 selects the second-to-last element in each row of B−1

K−1, which is equivalent

to the fourth-to-last element in each of the first 2K rows of E[X̃ᵀ
KX̃K ]−1. Using the induction

hypothesis and temporarily ignoring the constant factored out of the matrix, this fourth-to-
last element is τ 2 in row 2K − 1, is −ρ in row 2K, and is zero in all other rows. Therefore,
under the induction hypothesis,

−B−1
K−1CK−1B

−1
0 =

1

JTζ2[σ2τ 2 − ρ2]

0ᵀ
2K−2 0ᵀ

2K−2

0 −τ 2

0 ρ

 .
Now consider −B−1

0 Cᵀ
K−1B

−1
K−1. Because the only nonzero entries in the 2 × 2K matrix

B−1
0 Cᵀ

K−1 are in column 2K − 1 and this column is [0 1]ᵀ, the first row of −B−1
0 Cᵀ

K−1B
−1
K−1

contains only zeros and the second row of −B−1
0 Cᵀ

K−1B
−1
K−1 selects the second-to-last ele-

ment in each column of B−1
K−1, which is equivalent to element 2K − 1 in each of the first

2K columns of E[X̃ᵀ
KX̃K ]−1. Using the induction hypothesis and temporarily ignoring the

constant factored out of the matrix, row 2K − 1 of E[X̃ᵀ
KX̃K ]−1 has 2(K + 1) − (i + 3) =

2(K + 1) − (2K + 2) = 0 zeros at the end of it, so in using only the first 2K columns of
E[X̃ᵀ

KX̃K ]−1, we drop [0 − τ 2] from row 2K−1 and are left with [02K−2 τ 2 −ρ]. Then,

−B−1
0 Cᵀ

K−1B
−1
K−1 =

1

JTζ2[σ2τ 2 − ρ2]

[
02K−2 0 0
02K−2 −τ 2 ρ

]
.

Now consider B−1
0 +B−1

0 Cᵀ
K−1B

−1
K−1CK−1B

−1
0 . Using previous results, we know that

B−1
0 Cᵀ

K−1B
−1
K−1CK−1B

−1
0 =

1

JTζ2[σ2τ 2 − ρ2]

[
02K−2 0 0
02K−2 1 0

]0ᵀ
2K−2 0ᵀ

2K−2

0 τ 2

0 −ρ

 .
Therefore

B−1
0 Cᵀ

K−1B
−1
K−1CK−1B

−1
0 =

1

JTζ2[σ2τ 2 − ρ2]

[
0 0
0 τ 2

]
,

and so

B−1
0 +B−1

0 Cᵀ
K−1B

−1
K−1CK−1B

−1
0 =

1

JTζ2[σ2τ 2 − ρ2]

[
τ 2 −ρ
−ρ σ2 + τ 2

]
.

Putting the pieces together, the induction hypothesis implies that

B−1
K =

1

JTζ2[σ2τ 2 − ρ2]


JTζ2[σ2τ 2 − ρ2]B−1

K−1

0ᵀ
2K−2 0ᵀ

2K−2

0 −τ 2

0 ρ

[
02K−2 0 0
02K−2 −τ 2 ρ

] [
τ 2 −ρ
−ρ σ2 + τ 2

]
 .
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In order to complete the first 2(K + 1) rows of E[X̃ᵀ
K+1X̃K+1]−1, we need −B−1

K CKD
−1.

Because the only nonzero entries in the (2K + 2) × 2 matrix CKD
−1 are in row 2K + 1

and this row is [0 1], the first column of −B−1
K CKD

−1 contains only zeros and the second
column of −B−1

K CKD
−1 selects the second-to-last element in each row of B−1

K . Therefore:

−B−1
K CKD

−1 =
1

JTζ2[σ2τ 2 − ρ2]

0ᵀ
2K 0ᵀ

2K

0 −τ 2

0 ρ

 .
The first 2(K + 1) rows of E[X̃ᵀ

K+1X̃K+1]−1 are then

1

JTζ2[σ2τ 2 − ρ2]


JTζ2[σ2τ 2 − ρ2]B−1

K−1

0ᵀ
2K−2 0ᵀ

2K−2

0 −τ 2

0 ρ

 [
0ᵀ

2K 0ᵀ
2K

]
[
02K−2 0 0
02K−2 −τ 2 ρ

] [
τ 2 −ρ
−ρ σ2 + τ 2

] [
0 −τ 2

0 ρ

]
 .

We already established that the top left 2K × 2K submatrix satisfies Lemma 4. Begin by
checking the remaining portions of the top 2K odd rows and as well as row 2K+ 1. For odd
rows up to 2K−3 inclusive, Lemma 4 posits that there are at least 2(K+1+1)−(2K−3+3) =
4 zeros. We have that here. Lemma 4 also posits that the odd row 2K−1 has two zeros and
a [0 − τ 2] leading up to them. We have that here. And Lemma 4 posits that row 2K + 1
has no trailing zeros, with a concluding [τ 2 − ρ 0 − τ 2]. We also have that here. The
odd rows are therefore consistent with Lemma 4.

Now consider the even rows, noting that K+1 > 2. For even rows up to 2K−2 inclusive,
Lemma 4 posits that there are at least 2(K + 1 + 1)− (2K − 2 + 2) = 4 zeros. We have that
here. Lemma 4 also posits that row 2K has two trailing zeros and a [0 ρ] leading up to
them. We have that here. And Lemma 4 posits that row 2K + 2 has no trailing zeros and
a concluding [−τ 2 ρ − ρ σ2 + τ 2 0 ρ] with zeros leading up to that. We have that
here.

We have therefore established that Lemma 4 holds for E[X̃ᵀ
K+1X̃K+1]−1 when it holds for

E[X̃ᵀ
KX̃K ]−1 (with K > 1), which was the induction step we sought.

E.2 Proof of Lemma 1

Begin by considering the uniqueness of the steady state. The right-hand side of equation (2)
monotonically decreases in Ā if and only if (1 +β)π̄12 < −π̄11−βπ̄22. Thus, the steady state
is unique if (1 + β)π̄12 < −π̄11 − βπ̄22, which is satisfied for all π̄12 ≤ 0.

If π̄12 = 0, then the Euler equation is a function of At but not of At+1 or At−1. The agent
selects At = Ā for any At−1.
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Now consider the stability of the steady state for π̄12 6= 0. Define A∗t+1(At, At−1) from
the Euler equation. Linearizing around Ā gives a first-order difference equation:

At+1 − Ā ≈
−π̄11 − βπ̄22

βπ̄12

(At − Ā)− 1

β
(At−1 − Ā).

We have: [
At+1 − Ā
At − Ā

]
≈
[−π̄11−βπ̄22

βπ̄12
− 1
β

1 0

] [
At − Ā
At−1 − Ā

]
.

The product of the linearized system’s eigenvalues is 1
β
> 1, and the sum of the linearized

system’s eigenvalues is −π̄11−βπ̄22
βπ̄12

, which is positive if and only if π̄12 > 0.
First, assume that π̄12 > 0. Both eigenvalues are positive and at least one is greater than

1. The characteristic equation is

z2 − −π̄11 − βπ̄22

βπ̄12

z +
1

β
,

where z defines the eigenvalues. The smaller eigenvalue is less than 1 if and only if the
characteristic equation is negative at z = 1, and therefore if and only if

−π̄11 − βπ̄22 >(1 + β)π̄12.

In this case, the linearized system is saddle-path stable.
Now assume that π̄12 < 0. Both eigenvalues are negative and at least one is less than

−1. The characteristic equation is as before. The larger eigenvalue is greater than −1 if and
only if the characteristic equation is negative at z = −1, and therefore if and only if

−π̄11 − βπ̄22

π̄12

+ 1 + β <0

⇔ −π̄11 − βπ̄22 >− (1 + β)π̄12.

In this case, the linearized system is saddle-path stable.
The proposition follows from a standard application of the Hartman-Grobman theo-

rem and from noticing that the conditions for saddle-path stability imply the condition for
uniqueness.

E.3 Proof of Lemma 2

I first describeAt, under the assumption that (At−1−Ā)2 is small. WriteAt+1 asA(At, wt+1, ft+1, wt; ζ).
Expanding the stochastic Euler equation around ζ = 0 and noting that all terms of order ζ2
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or larger depend on at least the third derivative of π, either Assumption 1 or 2 ensures that
we can drop all terms of order ζ2 or larger. We therefore have:

0 =π1(At, At−1, wt, wt−1) + βEt

[
π2(Ãt+1, At, ft, wt) + π23(Ãt+1, At, ft, wt)εt+1ζ

]
+ βEt

[
π12(Ãt+1, At, ft, wt)

(
∂At+1

∂ζ

∣∣∣∣
ζ=0

+
∂At+1

∂wt+1

∣∣∣∣
ζ=0

εt+1 +
N∑
i=1

∂At+1

∂fi(t+1)

∣∣∣∣
ζ=0

εi(t+1)

)
ζ

]

=π1(At, At−1, wt, wt−1) + βπ2(Ãt+1, At, ft, wt) + βπ12(Ãt+1, At, ft, wt)
∂At+1

∂ζ

∣∣∣∣
ζ=0

ζ, (E-5)

where Ãt+1 , A(At, ft, C, wt; 0).
I next establish two lemmas. The first one shows that uncertainty does not have a

first-order effect on policy:

Lemma 5. ∂At+1

∂ζ

∣∣∣
(Ā,C,C,C;0)

= 0.

Proof. Equation (E-5) defines At as a function of At−1, wt, ft, and ζ. Note that

∂At
∂ζ

∣∣∣∣
(Ā,C,C,C;0)

=

βπ̄12

(
∂At+1

∂ζ

∣∣∣
(Ā,C,C,C;0)

+ ∂2At+1

∂ζ2

∣∣∣
(Ā,C,C,C;0)

ζ

)
−π̄11 − βπ̄22 − βπ̄122

∂At+1

∂ζ

∣∣∣
ζ=0

ζ − βπ̄12
∂2At+1

∂ζ∂At

∣∣∣
ζ=0

ζ

=
βπ̄12

−π̄11 − βπ̄22

∂At+1

∂ζ

∣∣∣∣
(Ā,C,C,C;0)

,

where the second equality applies ζ = 0. Forward-substituting, we have:

∂At
∂ζ

∣∣∣∣
(Ā,C,C,C;0)

=

(
βπ̄12

−π̄11 − βπ̄22

)j
∂At+j
∂ζ

∣∣∣∣
(Ā,C,C,C;0)

for j ∈ Z+. The term in parentheses is < 1 by the condition imposed following Lemma 1.
Because At+j evaluated around At+j−1 = Ā, wt = C, ft = C, and ζ = 0 must be Ā, we know
that At+j is not infinite. The derivative on the right-hand side must also be finite, in which
case the right-hand side goes to 0 as j becomes large. Therefore:

∂At
∂ζ

∣∣∣∣
(Ā,C,C,C;0)

= 0.

Because the choice of t was arbitrary, we have established the lemma.

The second lemma solves for Ãt+1:
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Lemma 6. If either Assumption 1 or 2 holds and (At − Ā)2 is small, then there exists λ
such that |λ| < 1, sign(λ) = sign(π̄12), and

Ãt+1 =Ā+
π̄12

−π̄11 − βπ̄22 − βπ̄12
π̄12

−π̄11−βπ̄22−βπ̄12λ
(At − Ā) +

π̄14

−π̄11 − βπ̄22 − βπ̄12
π̄12

−π̄11−βπ̄22−βπ̄12λ
(wt − C)

+
π̄13 + βπ̄24 + βπ̄12

π̄14
−π̄11−βπ̄22−βπ̄12λ

−π̄11 − βπ̄22 − βπ̄12
π̄12

−π̄11−βπ̄22−βπ̄12λ
(ft − C).

Proof. For ζ = 0, the weather in period t+ 1 matches the forecast in ft, and the weather is
always C after period t+ 1. By period t+ 3, even lagged weather is just C and we are back
to the deterministic system. Begin by solving for policy in period t + 4. The characteristic
equation given in the proof of Lemma 1 implies the following two eigenvalues:

λ, µ =
−π̄11 − βπ̄22

2βπ̄12

±

√(
−π̄11 − βπ̄22

2βπ̄12

)2

− 1

β
.

The proof of Lemma 1 showed that the two eigenvalues have the same sign and that this
sign matches that of π̄12. Define λ as the eigenvalue that is smallest in absolute value. We
seek the eigenvectors corresponding to λ, which is the stable manifold. These eigenvectors
have Ãt+3 − Ā = λ(Ãt+2 − Ā) and thus are proportional to[

λ(Ãt+2 − Ā)

Ãt+2 − Ā

]
.

Therefore, along the saddle path,[
Ãt+4 − Ā
Ãt+3 − Ā

]
= cλ

[
λ(Ãt+2 − Ā)

Ãt+2 − Ā

]
for some c 6= 0. It must be true that Ãt+3−Ā = cλ(Ãt+2−Ā) and that Ãt+3−Ā = λ(Ãt+2−Ā).
Therefore c = 1.

Now consider policy at time t+ 2. The relevant Euler equation is:

0 = π1(Ãt+2, Ãt+1, C, ft) + βπ2(Ā+ λ(Ãt+2 − Ā), Ãt+2, C, C),

where we recognize that wt+1 = ft. A first-order approximation to Ãt+2 around Ā is exact
when either Assumption 1 or 2 holds and (Ãt+1 − Ā)2 is small. We thereby obtain Ãt+2 as
a function of Ãt+1 and ft:

Ãt+2 = Ā+
π̄12

−π̄11 − βπ̄22 − βπ̄12λ
(Ãt+1 − Ā) +

π̄14

−π̄11 − βπ̄22 − βπ̄12λ
(ft − C).
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Now consider policy at time t+ 1. The relevant Euler equation is:

0 = π1(Ãt+1, At, ft, wt) + βπ2(Ãt+2(Ãt+1, ft), Ãt+1, C, ft),

where we recognize that wt+1 = ft. A first-order approximation to Ãt+1 around Ā is exact
when either Assumption 1 or 2 holds and (At − Ā)2 is small. We then have the expression
in the lemma.

Applying Lemmas 5 and 6 to equation (E-5), we have:

0 =π1(At, At−1, wt, wt−1) + βπ2(Ãt+1(At, ft, wt), At, ft, wt). (E-6)

We now have At implicitly defined as A(At−1, wt, ft, wt−1; 0). If (At−1 − Ā)2 is small and
either Assumption 1 or 2 holds, then we have:

At =Ā+
∂At
∂At−1

∣∣∣∣
(Ā,C,C,C;0)

(At−1 − Ā) +
∂At
∂wt

∣∣∣∣
(Ā,C,C,C;0)

(wt − C) +
∂At
∂ft

∣∣∣∣
(Ā,C,C,C;0)

(ft − C)

+
∂At
∂wt−1

∣∣∣∣
(Ā,C,C,C;0)

(wt−1 − C) +
∂At
∂ζ

∣∣∣∣
(Ā,C,C,C;0)

ζ

=Ā+
π̄12

χ2

(At−1 − Ā) +
π̄13 + βπ̄24 + βπ̄14

π̄12
χ1

χ2

(wt − C)

+
βπ̄23 + β

(
π̄13 + βπ̄24 + βπ̄14

π̄12
χ0

)
π̄12
χ1

χ2

(ft − C)

+
π̄14

χ2

(wt−1 − C),

where we use Lemma 5 in the first equality and where χi is defined recursively:

χ0 ,− π̄11 − βπ̄22 − βπ̄12λ,

χi ,− π̄11 − βπ̄22 − βπ̄12
π̄12

χi−1

for i a strictly positive integer.

The condition imposed following Lemma 1 and the fact that |λ| < 1 together ensure that
each χi > |π̄12|.

Now use this result to analyze E0[At]. If either Assumption 1 or 2 holds and E0[(A1−Ā)2]
is small, then

E0[A2] =Ā+
π̄12

χ2

(E0[A1]− Ā).
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E0[(A2− Ā)2] must also be small because |π̄12|/χ2 < 1. Iterating forward, we find, for t > 1,

E0[At] =Ā+

(
π̄12

χ2

)t−1

(E0[A1]− Ā).

As t→∞, we have:

E0[At]→Ā.

We have proved the desired result.

E.4 Proof of Proposition 1

Using equation (8) and standard regression properties, we have:

Γ̂1 =ω
π̄13 + βπ̄24 + βπ̄14

π̄12
χ1

−π̄11 − (1 + β)π̄12 − βπ̄22

,

Γ̂2 =ω
π̄14

−π̄11 − (1 + β)π̄12 − βπ̄22

,

Γ̂3 =ω
βπ̄23 + β

(
π̄13 + βπ̄24 + βπ̄14

π̄12
χ0

)
π̄12
χ1

−π̄11 − (1 + β)π̄12 − βπ̄22

,

Γ̂4 =ω
π̄12

−π̄11 − (1 + β)π̄12 − βπ̄22

,

where

ω ,
−π̄11 − (1 + β)π̄12 − βπ̄22

χ2

> 0

and χ2 was defined in the proof of Lemma 2. Because 1 + β > βπ̄12/χ1, we have ω > 1 if
π̄12 < 0, ω = 1 if π̄12 = 0, and ω < 1 if π̄12 > 0. The proposition follows from defining

Ω ,
π̄13 + π̄14 + βπ̄24 + βπ̄14

π̄12
χ0

(−π̄11 − (1 + β)π̄12 − βπ̄22)χ1

≥ 0.

E.5 Proof of Proposition 2

The vector of estimated coefficients is

Γ̂ = E[Xᵀ
I+1XI+1]−1E[Xᵀ

I+1A],

where A is a JT × 1 vector with rows Ajt and XI+1 is a JT × J + 2(I + 2) matrix with the
final 2(I + 2) columns of each row being[

wjt fjt wj(t−1) fj(t−1) ... wj(t−(I+1)) fj(t−(I+1))

]
.
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By the Frisch-Waugh Theorem,

Γ̂ = E[X̃ᵀ
I+1X̃I+1]−1E[X̃ᵀ

I+1Ã],

where X̃I+1 is a JT × 2(I + 2) matrix with rows[
wjt − C fjt − C wj(t−1) − C fj(t−1) − C ... wj(t−(I+1)) − C fj(t−(I+1)) − C

]
and Ã is demeaned A. Lemma 4 establishes the first 2(I+ 1) rows of E[X̃ᵀ

I+1X̃I+1]−1, which

are the ones that are relevant for Γ̂wt through Γ̂wt−I
and for Γ̂ft through Γ̂ft−I

. Observe that:

E[X̃ᵀ
I+1Ã] =JT


Cov[wjt − C,Ajt]
Cov[fjt − C,Ajt]

...
Cov[wj(t−(I+1)) − C,Ajt]
Cov[fj(t−(I+1)) − C,Ajt]

 .

From here, drop the j subscript to save on unnecessary notation.
Equation (8) holds under the given assumptions. Using that equation, we find:

1

ζ2
Cov[wt − C,At] =

π̄13 + βπ̄24 + βπ̄14
π̄12
χ1

χ2

(
σ2 + τ 2 +

π̄12

χ2

ρ

)
+
π̄14

χ2

ρ

+
βπ̄23 + β

(
π̄13 + βπ̄24 + βπ̄14

π̄12
χ0

)
π̄12
χ1

χ2

(
ρ+

π̄12

χ2

τ 2

)
,

1

ζ2
Cov[ft − C,At] =

π̄13 + βπ̄24 + βπ̄14
π̄12
χ1

χ2

ρ+
βπ̄23 + β

(
π̄13 + βπ̄24 + βπ̄14

π̄12
χ0

)
π̄12
χ1

χ2

τ 2,

1

ζ2
Cov[wt−1 − C,At] =

π̄14

χ2

(σ2 + τ 2) +
π̄12

χ2

π̄14

χ2

ρ

+
π̄13 + βπ̄24 + βπ̄14

π̄12
χ1

χ2

[
ρ+

π̄12

χ2

(
σ2 + τ 2 +

π̄12

χ2

ρ

)]

+
π̄12

χ2

(
ρ+

π̄12

χ2

τ 2

) βπ̄23 + β
(
π̄13 + βπ̄24 + βπ̄14

π̄12
χ0

)
π̄12
χ1

χ2

,
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1

ζ2
Cov[ft−1 − C,At] =

π̄13 + βπ̄24 + βπ̄14
π̄12
χ1

χ2

(
τ 2 +

π̄12

χ2

ρ

)

+
βπ̄23 + β

(
π̄13 + βπ̄24 + βπ̄14

π̄12
χ0

)
π̄12
χ1

χ2

π̄12

χ2

τ 2 +
π̄14

χ2

ρ.

And for i ≥ 2,

1

ζ2
Cov[wt−i − C,At] =

(
π̄12

χ2

)i−2
π̄14

χ2

{
ρ+

π̄12

χ2

[
(σ2 + τ 2) + ρ

π̄12

χ2

]}
+

(
π̄12

χ2

)i−1 π̄13 + βπ̄24 + βπ̄14
π̄12
χ1

χ2

[
ρ+

π̄12

χ2

(σ2 + τ 2) +

(
π̄12

χ2

)2

ρ

]

+

(
π̄12

χ2

)i βπ̄23 + β
(
π̄13 + βπ̄24 + βπ̄14

π̄12
χ0

)
π̄12
χ1

χ2

[
ρ+

π̄12

χ2

τ 2

]
,

1

ζ2
Cov[ft−i − C, πt] =

(
π̄12

χ2

)i−2
π̄14

χ2

{
τ 2 +

π̄12

χ2

ρ

}
+

(
π̄12

χ2

)i−1 π̄13 + βπ̄24 + βπ̄14
π̄12
χ1

χ2

[
τ 2 +

π̄12

χ2

ρ

]

+

(
π̄12

χ2

)i βπ̄23 + β
(
π̄13 + βπ̄24 + βπ̄14

π̄12
χ0

)
π̄12
χ1

χ2

τ 2.

Direct calculations then yield the following coefficients:

Γ̂wt =Γ̂1,

Γ̂ft =Γ̂3,

Γ̂wt−1 =
π̄12

χ2

Γ̂1 + Γ̂2,

Γ̂ft−1 =
π̄12

χ2

Γ̂3,

Γ̂wt−i
=

(
π̄12

χ2

)i
Γ̂1 +

(
π̄12

χ2

)i−1

Γ̂2 for i ≥ 2,

Γ̂ft−i
=

(
π̄12

χ2

)i
Γ̂3 for i ≥ 2.
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Therefore

lim
I→∞

I∑
i=0

[Γ̂wt−i
+ Γ̂ft−i

] =
Γ̂1 + Γ̂2 + Γ̂3

1− π̄12
χ2

= ω̃

(
dĀ

dC
+ βπ̄12Ω

)
,

with Ω defined as in the proof of Proposition 1 and

ω̃ ,
ω

1− π̄12
χ2

=
−π̄11 − (1 + β)π̄12 − βπ̄22

−π̄11 −
(

1 + β π̄12
χ1

)
π̄12 − βπ̄22

.

The proposition follows straightforwardly.

E.6 Proof of Proposition 3

The vector of estimated coefficients is

θ̂ = E[Xᵀ
I+1XI+1]−1E[Xᵀ

I+1π],

where π is a JT × 1 vector with rows πjt and XI+1 is a JT × J + 2(I + 2) matrix with the
final 2(I + 2) columns of each row being[

wjt fjt wj(t−1) fj(t−1) ... wj(t−(I+1)) fj(t−(I+1))

]
.

By the Frisch-Waugh Theorem,

θ̂ = E[X̃ᵀ
I+1X̃I+1]−1E[X̃ᵀ

I+1π̃],

where X̃I+1 is a JT × 2(I + 2) matrix with rows[
wjt − C fjt − C wj(t−1) − C fj(t−1) − C ... wj(t−(I+1)) − C fj(t−(I+1)) − C

]
and π̃ is demeaned π. Lemma 4 establishes the first 2(I + 1) rows of E[X̃ᵀ

I+1X̃I+1]−1, which

are the ones that are relevant for θ̂wt through θ̂wt−I
and for θ̂ft through θ̂ft−I

. Observe that:

E[X̃ᵀ
I+1π̃] =JT


Cov[wjt − C, πjt]
Cov[fjt − C, πjt]

...
Cov[wj(t−(I+1)) − C, πjt]
Cov[fj(t−(I+1)) − C, πjt]

 .

From here, drop the j subscript to save on unnecessary notation.
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Consider Cov[wt−C, πt]. Expanding π around At = Ā, At−1 = Ā, wt = C, and wt−1 = C,
applying either Assumption 1 or 2, and assuming that (At− Ā)2 and (At−1− Ā)2 are small,
we have:

π(At, At−1, wt, wt−1) =π̄ + π̄1(At − Ā) + π̄2(At−1 − Ā) + π̄3(wt − C) + π̄4(wt−1 − C)

+
1

2
π̄33(wt − C)2 + π̄13(At − Ā)(wt − C) + π̄23(At−1 − Ā)(wt − C)

+
1

2
π̄44(wt−1 − C)2 + π̄14(At − Ā)(wt−1 − C) + π̄24(At−1 − Ā)(wt−1 − C)

+ π̄34(wt − C)(wt−1 − C).

As a result,

Cov[wt − C, πt] =π̄1Cov[At, wt] + π̄2Cov[At−1, wt] + π̄3V ar[wt] + π̄4Cov[wt, wt−1]

+
1

2
π̄33Cov[wt − C, (wt − C)2] +

1

2
π̄44Cov[wt − C, (wt−1 − C)2]

− Cπ̄13Cov[At, wt]− Āπ̄13V ar[wt] + π̄13Cov[wt, Atwt]

− Cπ̄23Cov[At−1, wt]− Āπ̄23V ar[wt] + π̄23Cov[wt, At−1wt]

− Cπ̄14Cov[wt, At]− Āπ̄14Cov[wt, wt−1] + π̄14Cov[wt, Atwt−1]

− Cπ̄24Cov[wt, At−1]− Āπ̄24Cov[wt, wt−1] + π̄24Cov[wt, At−1wt−1]

− Cπ̄34V ar[wt]− Cπ̄34Cov[wt, wt−1] + π̄34Cov[wt, wtwt−1].

If the ε and ν are normally distributed, then Cov[wt−C, (wt−C)2] = 0, or if Assumption 1
holds, then Cov[wt − C, (wt − C)2] ≈ 0. Using results from Bohrnstedt and Goldberger
(1969), we have:

Cov[wt − C, (wt−1 − C)2] =E[(wt − C)(wt−1 − C)2],

which is zero if either the ε and ν are normally distributed or Assumption 1 holds. Again
using results from Bohrnstedt and Goldberger (1969), we also have:

Cov[wt, Atwt] = E[At]V ar[wt] + C Cov[At, wt] + E[(wt − C)2(At − E[At])].

If either the ε and ν are normally distributed or Assumption 1 holds, then this becomes :

Cov[wt, Atwt] = E[At]V ar[wt] + C Cov[At, wt].

Analogous derivations yield:

Cov[wt, At−1wt] =E[At−1]V ar[wt] + C Cov[wt, At−1],

Cov[wt, Atwt−1] =E[At]Cov[wt, wt−1] + C Cov[wt, At],

Cov[wt, At−1wt−1] =E[At−1]Cov[wt, wt−1] + C Cov[wt, At−1]
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if either the ε and ν are normally distributed or Assumption 1 holds. Substituting these
results in, we find:

Cov[wt − C, πt] =π̄1Cov[At, wt] + π̄2Cov[At−1, wt] + π̄3V ar[wt] + π̄4Cov[wt, wt−1]

+
(
E[At]− Ā

)
(π̄13V ar[wt] + π̄14Cov[wt, wt−1])

+
(
E[At−1]− Ā

)
(π̄23V ar[wt] + π̄24Cov[wt, wt−1]) .

The assumption that actions are on average around Ā implies E[At] = Ā and E[At−1] = Ā.
Using that and equation (8), we obtain:

1

ζ2
Cov[wt − C, πt] =(σ2 + τ 2)π̄3 +

π̄13 + βπ̄24 + βπ̄14
π̄12
χ0

χ2

(
(σ2 + τ 2)π̄1 + π̄2ρ+ π̄1

π̄12

χ2

ρ

)
+ π̄4ρ+

π̄14

χ2

π̄1ρ+
βπ̄23 + β(π̄13 + βπ̄24) π̄12

χ0

χ2

(
π̄1ρ+ π̄2τ

2 + π̄1
π̄12

χ2

τ 2

)
.

Analogous derivations yield:

1

ζ2
Cov[ft − C, πt] =

1

ζ2

(
π̄1Cov[At, ft] + π̄3Cov[wt, ft]

)
=π̄3ρ+

π̄13 + βπ̄24 + βπ̄14
π̄12
χ1

χ2

π̄1ρ

+
βπ̄23 + β

(
π̄13 + βπ̄24 + βπ̄14

π̄12
χ0

)
π̄12
χ1

χ2

π̄1τ
2,

1

ζ2
Cov[wt−1 − C, πt] =

1

ζ2

(
π̄1Cov[At, wt−1] + π̄2Cov[At−1, wt−1] + π̄3Cov[wt, wt−1] + π̄4V ar[wt−1]

)
=π̄3ρ+ π̄4(σ2 + τ 2) + π̄1

π̄14

χ2

(σ2 + τ 2) +

(
π̄2 + π̄1

π̄12

χ2

)
π̄14

χ2

ρ

+
π̄13 + βπ̄24 + βπ̄14

π̄12
χ1

χ2

[
π̄1ρ+

(
π̄2 + π̄1

π̄12

χ2

)(
σ2 + τ 2 +

π̄12

χ2

ρ

)]

+

(
π̄2 + π̄1

π̄12

χ2

)(
ρ+

π̄12

χ2

τ 2

) βπ̄23 + β
(
π̄13 + βπ̄24 + βπ̄14

π̄12
χ0

)
π̄12
χ1

χ2

,
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1

ζ2
Cov[ft−1 − C, πt] =

1

ζ2

(
π̄1Cov[At, ft−1] + π̄2Cov[At−1, ft−1] + π̄3Cov[wt, ft−1] + π̄4Cov[wt−1, ft−1]

)
=π̄3τ

2 + π̄4ρ+
π̄13 + βπ̄24 + βπ̄14

π̄12
χ1

χ2

(
π̄1τ

2 + π̄2ρ+ π̄1
π̄12

χ2

ρ

)

+
βπ̄23 + β

(
π̄13 + βπ̄24 + βπ̄14

π̄12
χ0

)
π̄12
χ1

χ2

(
π̄2τ

2 + π̄1
π̄12

χ2

τ 2

)
+ π̄1

π̄14

χ2

ρ,

1

ζ2
Cov[wt−2 − C, πt] =

1

ζ2

(
π̄1Cov[At, wt−2] + π̄2Cov[At−1, wt−2] + π̄3Cov[wt, wt−2] + π̄4Cov[wt−1, wt−2]

)
=π̄4ρ+ π̄1

π̄14

χ2

ρ+
π̄14

χ2

(
π̄2 + π̄1

π̄12

χ2

)[
(σ2 + τ 2) + ρ

π̄12

χ2

]
+
π̄13 + βπ̄24 + βπ̄14

π̄12
χ1

χ2

(
π̄2 + π̄1

π̄12

χ2

)[
ρ+

π̄12

χ2

(σ2 + τ 2) +

(
π̄12

χ2

)2

ρ

]

+
βπ̄23 + β

(
π̄13 + βπ̄24 + βπ̄14

π̄12
χ0

)
π̄12
χ1

χ2

π̄12

χ2

(
π̄2 + π̄1

π̄12

χ2

)[
ρ+

π̄12

χ2

τ 2

]
,

1

ζ2
Cov[ft−2 − C, πt] =

1

ζ2

(
π̄1Cov[At, ft−2] + π̄2Cov[At−1, ft−2] + π̄3Cov[wt, ft−2] + π̄4Cov[wt−1, ft−2]

)
=π̄4τ

2 + π̄1
π̄14

χ2

τ 2 +
π̄14

χ2

(
π̄2 + π̄1

π̄12

χ2

)
ρ

+
π̄13 + βπ̄24 + βπ̄14

π̄12
χ1

χ2

(
π̄2 + π̄1

π̄12

χ2

)[
τ 2 +

π̄12

χ2

ρ

]

+
βπ̄23 + β

(
π̄13 + βπ̄24 + βπ̄14

π̄12
χ0

)
π̄12
χ1

χ2

(
π̄2 + π̄1

π̄12

χ2

)
π̄12

χ2

τ 2.
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For i ≥ 3, we have:

1

ζ2
Cov[wt−i − C, πt] =

1

ζ2

(
π̄1Cov[At, wt−i] + π̄2Cov[At−1, wt−i] + π̄3Cov[wt, wt−i] + π̄4Cov[wt−1, wt−i]

)
=

(
π̄12

χ2

)i−3
π̄14

χ2

(
π̄2 + π̄1

π̄12

χ2

){
ρ+

π̄12

χ2

[
(σ2 + τ 2) + ρ

π̄12

χ2

]}
+

(
π̄12

χ2

)i−2 π̄13 + βπ̄24 + βπ̄14
π̄12
χ1

χ2

(
π̄2 + π̄1

π̄12

χ2

)
[
ρ+

π̄12

χ2

(σ2 + τ 2) +

(
π̄12

χ2

)2

ρ

]

+

(
π̄12

χ2

)i−1 βπ̄23 + β
(
π̄13 + βπ̄24 + βπ̄14

π̄12
χ0

)
π̄12
χ1

χ2

(
π̄2 + π̄1

π̄12

χ2

)[
ρ+

π̄12

χ2

τ 2

]
,

1

ζ2
Cov[ft−i − C, πt] =

1

ζ2

(
π̄1Cov[At, ft−i] + π̄2Cov[At−1, ft−i] + π̄3Cov[wt, ft−i] + π̄4Cov[wt−1, ft−i]

)
=

(
π̄12

χ2

)i−3
π̄14

χ2

(
π̄2 + π̄1

π̄12

χ2

){
τ 2 +

π̄12

χ2

ρ

}
+

(
π̄12

χ2

)i−2 π̄13 + βπ̄24 + βπ̄14
π̄12
χ1

χ2

(
π̄2 + π̄1

π̄12

χ2

)[
τ 2 +

π̄12

χ2

ρ

]

+

(
π̄12

χ2

)i−1 βπ̄23 + β
(
π̄13 + βπ̄24 + βπ̄14

π̄12
χ0

)
π̄12
χ1

χ2

(
π̄2 + π̄1

π̄12

χ2

)
τ 2.

Now consider the regression coefficients, from E[X̃ᵀ
I+1X̃I+1]−1E[X̃ᵀ

I+1π] and using Lemma 4.
For I ≥ 0, the coefficient on wjt is

θ̂wt =
1

ζ2

(
τ 2

σ2τ 2 − ρ2
Cov[wt − C, πt] +

−ρ
σ2τ 2 − ρ2

Cov[ft − C, πt]−
τ 2

σ2τ 2 − ρ2
Cov[ft−1 − C, πt]

)
=π̄3 + Γ̂1π̄1

and the coefficient on fjt is

θ̂ft =
1

ζ2

(
−ρ

σ2τ 2 − ρ2
Cov[wt − C, πt] +

σ2

σ2τ 2 − ρ2
Cov[ft − C, πt] +

ρ

σ2τ 2 − ρ2
Cov[ft−1 − C, πt]

)
=Γ̂3π̄1.
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For I ≥ 1, the coefficient on wj(t−1) is

θ̂wt−1 =
1

ζ2

(
τ 2

σ2τ 2 − ρ2
Cov[wt−1 − C, πt]−

ρ

σ2τ 2 − ρ2
Cov[ft−1 − C, πt]−

τ 2

σ2τ 2 − ρ2
Cov[ft−2 − C, πt]

)
=π̄4 + Γ̂1

(
1− β π̄12

χ2

)
π̄2 + Γ̂2π̄1

and the coefficient on fj(t−1) is

θ̂ft−1 =
1

ζ2

(
− τ 2

σ2τ 2 − ρ2
Cov[wt − C, πt]−

ρ

σ2τ 2 − ρ2
Cov[wt−1 − C, πt] +

ρ

σ2τ 2 − ρ2
Cov[ft − C, πt]

+
σ2 + τ 2

σ2τ 2 − ρ2
Cov[ft−1 − C, πt] +

ρ

σ2τ 2 − ρ2
Cov[ft−2 − C, πt]

)
=Γ̂3

(
1− β π̄12

χ2

)
π̄2.

For i ≥ 2 and I ≥ i, we find:50

θ̂wt−i
=

1

ζ2

(
τ 2

σ2τ 2 − ρ2
Cov[wt−i − C, πt]−

ρ

σ2τ 2 − ρ2
Cov[ft−i − C, πt]−

τ 2

σ2τ 2 − ρ2
Cov[ft−(i+1) − C, πt]

)
=

(
π̄12

χ2

)i−1

Γ̂1

(
1− β π̄12

χ2

)
π̄2 +

(
π̄12

χ2

)i−2

Γ̂2

(
1− β π̄12

χ2

)
π̄2,

θ̂ft−i
=

1

ζ2

(
− τ 2

σ2τ 2 − ρ2
Cov[wt−(i−1) − C, πt]−

ρ

σ2τ 2 − ρ2
Cov[wt−i − C, πt]

+
ρ

σ2τ 2 − ρ2
Cov[ft−(i−1) − C, πt] +

σ2 + τ 2

σ2τ 2 − ρ2
Cov[ft−i − C, πt]

+
ρ

σ2τ 2 − ρ2
Cov[ft−(i+1) − C, πt]

)
=

(
π̄12

χ2

)i−1

Γ̂3

(
1− β π̄12

χ2

)
π̄2.

For I ≥ 2, we have:

I∑
i=0

[
θ̂wt−i

+ θ̂ft−i

]
=π̄3 + π̄4 + π̄1

[
Γ̂1 + Γ̂2 + Γ̂3

]
+

(
1− β π̄12

χ2

)
π̄2

[
(Γ̂1 + Γ̂3)

I−1∑
k=0

(
π̄12

χ2

)k
+ Γ̂2

I−2∑
k=0

(
π̄12

χ2

)k]
.

50To show this, derive coefficients on θ̂wt−2 , θ̂wt−i for i ≥ 3, θ̂ft−2 , θ̂ft−3 , and θ̂ft−i for i ≥ 4.
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If Assumption 3 holds, then π̄1 = π̄2 = 0. In that case, equation (6) implies dĀ/ dC =
π̄3 + π̄4. And the only nonzero coefficients are θ̂wt = π̄3 and θ̂wt−1 = π̄4. It is easy to show
that this same result holds even if I = 0.

If π̄12 = 0 and I > 1, then

I∑
i=0

[
θ̂wt−i

+ θ̂ft−i

]
= π̄3 + π̄4 + [π̄1 + π̄2]

[
Γ̂1 + Γ̂2 + Γ̂3

]
for I ≥ 2. And using equation (6) and Proposition 1, we know that the right-hand side
is equal to lims→∞ dE0[πs]/ dC when π̄12 = 0. Finally, note that θ̂wt−i

= 0 for i ≥ 3 and

θ̂ft−i
= 0 for i ≥ 2.

Now consider the case with I →∞, allowing π̄12 6= 0:

lim
I→∞

I∑
i=0

[
θ̂wt−i

+ θ̂ft−i

]
=π̄3 + π̄4 +

[
Γ̂1 + Γ̂2 + Γ̂3

] [
π̄1 +

1− β π̄12
χ2

1− π̄12
χ2

π̄2

]
.

Using Proposition 1 and then using equations (6) and (2), this becomes:

lim
I→∞

I∑
i=0

[
θ̂wt−i

+ θ̂ft−i

]
=π̄3 + π̄4 + ω

(
dĀ

dC
+ βπ̄12Ω

)[
π̄1 +

1− β π̄12
χ2

1− π̄12
χ2

π̄2

]

= lim
s→∞

dE0[πs]

dC
+

dĀ

dC

π̄12
χ2
− β π̄12

χ2

1− π̄12
χ2

π̄2

+

(
(ω − 1)

dĀ

dC
+ ωβπ̄12Ω

)[
π̄1 + π̄2 +

π̄12
χ2
− β π̄12

χ2

1− π̄12
χ2

π̄2

]

= lim
s→∞

dE0[πs]

dC
+

dĀ

dC

1− β
1− π̄12

χ2

(
π̄12

χ2

+ ω − 1

)
π̄2 + ωβπ̄12

1− β
1− π̄12

χ2

Ωπ̄2.

Note that:

ω − 1 +
π̄12

χ2

=− βπ̄12

1− π̄12
χ1

χ2

.

Using this, we have:

lim
I→∞

I∑
i=0

[
θ̂wt−i

+ θ̂ft−i

]
= lim

s→∞

dE0[πs]

dC
+
β(1− β)

1− π̄12
χ2

π̄12π̄2

{
ωΩ− dĀ

dC

1− π̄12
χ1

χ2

}
.

The bias vanishes if β = 0 and also as β → 1.
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E.7 Proof of Corollary 4

Following the proof of Proposition 3, we now have:

Cov[wt − C, πt] =π̄1Cov[At, wt] + π̄2Cov[At−1, wt]

+

(
π̄3 + π̄13(E[At]− Ā) + π̄23(E[At−1]− Ā)

)
V ar[wt]

+

(
π̄4 + π̄14(E[At]− Ā) + π̄24(E[At−1]− Ā)

)
Cov[wt, wt−1],

Cov[ft − C, πt] =π̄1Cov[At, ft] +

(
π̄3 + π̄13(E[At]− Ā) + π̄23(E[At−1]− Ā)

)
Cov[wt, ft],

Cov[wt−1 − C, πt] =π̄1Cov[At, wt−1] + π̄2Cov[At−1, wt−1]

+

(
π̄3 + π̄13(E[At]− Ā) + π̄23(E[At−1]− Ā)

)
Cov[wt, wt−1]

+

(
π̄4 + π̄14(E[At]− Ā) + π̄24(E[At−1]− Ā)

)
V ar[wt−1],

Cov[ft−1 − C, πt] =π̄1Cov[At, ft−1] + π̄2Cov[At−1, ft−1]

+

(
π̄3 + π̄13(E[At]− Ā) + π̄23(E[At−1]− Ā)

)
Cov[wt, ft−1]

+

(
π̄4 + π̄14(E[At]− Ā) + π̄24(E[At−1]− Ā)

)
Cov[wt−1, ft−1],

and so on. Following that analysis, we obtain the regression coefficients:

θ̂wt =π̄3 + Γ̂1π̄1 + π̄13(E[At]− Ā) + π̄23(E[At−1]− Ā),

θ̂wt−1 =π̄4 + Γ̂1

(
1− β π̄12

χ2

)
π̄2 + Γ̂2π̄1 + π̄14(E[At]− Ā) + π̄24(E[At−1]− Ā).

The other coefficients are unchanged. Under the assumption that at least one of π̄13, π̄14, π̄23, π̄24

is strictly positive, we have increased θ̂wt and θ̂wt−1 if average actions are above Ā and have

decreased θ̂wt and θ̂wt−1 if average actions are below Ā. The results follow.
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E.8 Proof of Lemma 3

If there exist g : RM → R, h : RM → R, and π0 : R × R × RK → R such that
π(At,At−1,wt,wt−1) = π0(g(At), h(At−1),wt), then define Ăt , g(At) and Ăt−1 , h(At−1).
We now have π(At,At−1,wt,wt−1) = π0(Ăt, Ăt−1,wt), which would be a special case of the
main text’s setting but for K > 1. Section F shows that the results of Proposition 6 go
through, except now indexing each Γ̂ and weather derivative according to the dimension of
weather under consideration. The only additional step is to demean for region-year fixed
effects, as described below. The coefficient on the lead of weather follows from the analysis
of Cov[ft − C, πt] in the proof of Proposition 3.

Now consider the case in which

π(At,At−1,wt,wt−1) =
K∑
k=1

πk(Akt , A
k
t−1, w

k
t ) + πK+1(A∼kt ,A∼kt−1).

Let εkt+1 and νkt+1 have variance (σk)2 and (τ k)2 respectively (where superscript k is, here
and below, an index, not a power). Applying Assumption 4 and following the same steps as
in the main text, it is easy to show that, if either ζ2 is small or πk is quadratic,

lim
t→∞

dE0[Akt ]

dCk
=

dĀk

dCk
=

π̄k13 + βπ̄k23

−π̄k11 − (1 + β)π̄k12 − βπ̄k22

and

lim
t→∞

dE0[π(At,At−1,wt)]

dCk
=π̄k3 + [π̄k1 + π̄k2 ]

dĀk

dCk
,

with π̄k1 = −βπ̄k2 .
Now consider the regression coefficients Φ̂. Let there be J counties, T years of observa-

tions, and R regions. The vector of estimated coefficients is

Φ̂ = E[XᵀX]−1E[Xᵀπ],

where π is a JT × 1 vector with rows πct and X is a JT × (J +RT + 4K) matrix with the
final 4K columns of each row being[

w1
j(t+1) ... w1

j(t−2) wKj(t+1) ... wKj(t−2)

]
.

By the Frisch-Waugh Theorem,

Φ̂ = E[X̃ᵀX̃]−1E[X̃ᵀπ̃],

where π̃ is demeaned π and X̃ is a JT × 4K matrix with the final 4K columns of each row
being[
w1
j(t+1) − C1 − w̄1

r(t+1) ... w1
j(t−2) − C1 − w̄1

r(t−2) wKj(t+1) − CK − w̄Kr(t+1) ... wKj(t−2) − CK − w̄Kr(t−2)

]
,
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where Ck indicates climate index k and w̄krt is the average weather dimension k observed
in region r in year t. We can show by the Frisch-Waugh Theorem that controlling for all
dimensions of weather means that we can analyze the regression dimension by dimension.
Let Φ̂k be the portion of the vector of coefficients corresponding to weather dimension k.
Then:

Φ̂k = E[(X̃k)ᵀX̃k]−1E[(X̃k)ᵀπ̃],

where X̃k is a JT × 4 matrix with the final 4 columns of each row being[
wkj(t+1) − Ck − w̄kr(t+1) ... wkj(t−2) − Ck − w̄kr(t−2)

]
.

The assumption that weather and forecast shocks are uncorrelated with each other then
implies that E[(X̃k)ᵀ(X̃k)] is a diagonal matrix with JTζ2[(σk)2 + (τ k)2] on the diagonal, so
E[(X̃k)ᵀ(X̃k)]−1 is a diagonal matrix with 1/[JTζ2((σk)2 +(τ k)2)] on the diagonal. Following
the proof of Proposition 6 yields the expressions in the lemma.

E.9 Proof of Proposition 5

The vector of estimated coefficients is

γ̂ = E[Xᵀ
IXI ]

−1E[Xᵀ
IA],

where A is a JT × 1 vector with rows Ajt and XI is a JT × J + I + 1 matrix with the final
I + 1 columns of each row being [

wjt ... wj(t−I)
]
.

By the Frisch-Waugh Theorem,

γ̂ = E[X̃ᵀ
I X̃I ]

−1E[X̃ᵀ
I Ã],

where X̃I is a JT × 2(I + 1) matrix with rows[
wjt − C ... wj(t−I) − C

]
and Ã is demeaned A.

First consider I = 0. The coefficient on wjt is:

γ̂wt =
Cov[Ajt, wjt]

ζ2(σ2 + τ 2)
= Γ̂1

(
1 +

π̄12

χ2

ρ

σ2 + τ 2

)
+ Γ̂2

ρ

σ2 + τ 2
+ Γ̂3

ρ+ τ 2 π̄12
χ2

σ2 + τ 2
,

where the second equality uses results for the covariance in the proof of Proposition 2 that
depend on the stated assumptions. If π̄14 = βπ̄23 = 0, then γ̂wt = Γ̂1, which the proof of
Proposition 1 shows equals dĀ/ dC if those same conditions hold and π̄12 = 0.
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Now let I = 1. Begin by considering γ̂wt , via the Frisch-Waugh theorem. The residuals
from regressing wjt − C on wj(t−1) − C are:

w̃jt , wjt − C −
ρ

τ 2 + σ2
(wj(t−1) − C) = ζεjt + ζνj(t−1) − ζ

ρ

τ 2 + σ2
[εj(t−1) + νj(t−2)].

We then have:

γ̂wt =
Cov[w̃jt, Ajt]

V ar[w̃jt]
= Γ̂1 − Γ̂2

π̄12

χ2

ρ2

τ2+σ2

σ2 + τ 2 − ρ2

τ2+σ2

+ Γ̂3

ρ+ π̄12
χ2

(
τ 2 − ρ2

τ2+σ2

)
σ2 + τ 2 − ρ2

τ2+σ2

,

where the second equality uses results for the covariance in the proof of Proposition 2 that
depend on the stated assumptions. Now consider γ̂wt−1 . The residuals from regressing
wj(t−1) − C on wjt − C are:

w̃j(t−1) , wj(t−1) − C −
ρ

τ 2 + σ2
(wjt − C) = ζεj(t−1) + ζνj(t−2) − ζ

ρ

τ 2 + σ2
[εjt + νj(t−1)].

We then have:

γ̂wt−1 =Γ̂1
π̄12

χ2

+ Γ̂2

(
1 +

π̄12

χ2

ρ

σ2 + τ 2 − ρ2

τ2+σ2

)
+ Γ̂3

π̄12
χ2

σ2

τ2+σ2 − ρ
τ2+σ2

σ2 + τ 2 − ρ2

τ2+σ2

ρ.

If βπ̄23 = π̄12 = 0, then γ̂wt + γ̂wt−1 = Γ̂1 + Γ̂2, which the proof of Proposition 1 shows equals
dĀ/ dC if those same conditions hold.

Now assume ρ = 0 and let I be arbitrary. E[X̃ᵀ
I X̃I ] is just a diagonal matrix with

JTζ2(σ2 + τ 2) on the diagonal, so E[X̃ᵀ
I X̃I ]

−1 is a diagonal matrix with 1/[JTζ2(σ2 + τ 2)]
on the diagonal. We have:

γ̂wt−i
=
Cov[wj(t−i), Ajt]

ζ2(σ2 + τ 2)
.

Using results for the covariances derived in the proof of Proposition 2, we have

γ̂wt =Γ̂1 + Γ̂3
π̄12

χ2

τ 2

σ2 + τ 2

and, for i > 0,

γ̂wt−i
=Γ̂1

(
π̄12

χ2

)i
+ Γ̂2

(
π̄12

χ2

)i−1

+ Γ̂3

(
π̄12

χ2

)i+1
τ 2

σ2 + τ 2
.

Therefore

lim
I→∞

I∑
i=0

γ̂wt−i
=

Γ̂1 + Γ̂2 + Γ̂3
π̄12
χ2

τ2

σ2+τ2

1− π̄12
χ2

.

If either β = 0 or π̄23 = π̄12 = 0, then limI→∞
∑I

i=0 γ̂wt−i
= (Γ̂1 + Γ̂2)/(1 − π̄12/χ2), which

Proposition 2 shows equals dĀ/ dC if either β = 0 or π̄12π̄23 = 0.
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E.10 Proof of Proposition 6

I first derive estimators in the cases of I = 0, I = 1, and I = 2. I then derive estimators for
general I in the special case with ρ = 0.

The vector of estimated coefficients is

Φ̂ = E[Xᵀ
IXI ]

−1E[Xᵀ
Iπ],

where π is a JT × 1 vector with rows πjt and XI is a JT × J + I + 1 matrix with the final
I + 1 columns of each row being [

wjt ... wj(t−I)
]
.

By the Frisch-Waugh Theorem,

Φ̂ = E[X̃ᵀ
I X̃I ]

−1E[X̃ᵀ
I π̃],

where X̃I is a JT × I + 1 matrix with rows[
wjt − C ... wj(t−I) − C

]
and π̃ is demeaned π.

Begin with I = 0. We have:

Φ̂wt =
Cov[wjt − C, πjt]
ζ2(σ2 + τ 2)

.

We analyzed this covariance in the proof of Proposition 3. Using those results, we find that

Φ̂wt =π̄3 + π̄4
ρ

σ2 + τ 2
+ Γ̂1

[
π̄1 +

(
1− β π̄12

χ2

)
ρ

σ2 + τ 2
π̄2

]
+ Γ̂2π̄1

ρ

σ2 + τ 2
+ Γ̂3

[
π̄1

ρ

σ2 + τ 2
+

(
1− β π̄12

χ2

)
τ 2

σ2 + τ 2
π̄2

]
.

Now consider I = 1. Now,

E[X̃ᵀ
1 X̃1]−1 =

1

JTζ2[(σ2 + τ 2)2 − ρ2]

[
σ2 + τ 2 −ρ
−ρ σ2 + τ 2

]
.

We also have:

E[X̃ᵀ
1π] =JT

[
Cov[wjt − C, πjt]

Cov[wj(t−1) − C, πjt]

]
.
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We analyzed these covariances in the proof of Proposition 3. Using those results, we find
that

Φ̂wt =π̄3 + Γ̂1

{
π̄1 −

ρ2

(σ2 + τ 2)2 − ρ2

π̄12

χ2

(
1− β π̄12

χ2

)
π̄2

}
− Γ̂2

ρ2

(σ2 + τ 2)2 − ρ2

(
1− β π̄12

χ2

)
π̄2

+ Γ̂3

{
ρ(σ2 + τ 2)

(σ2 + τ 2)2 − ρ2
π̄1 +

(
τ 2(σ2 + τ 2)− ρ2

(σ2 + τ 2)2 − ρ2
− ρτ 2

(σ2 + τ 2)2 − ρ2

π̄12

χ2

)(
1− β π̄12

χ2

)
π̄2

}
,

Φ̂wt−1 =π̄4 + Γ̂1

(
1 +

ρ(σ2 + τ 2)

(σ2 + τ 2)2 − ρ2

π̄12

χ2

)(
1− β π̄12

χ2

)
π̄2 + Γ̂2

[
π̄1 +

ρ(σ2 + τ 2)

(σ2 + τ 2)2 − ρ2

(
1− β π̄12

χ2

)
π̄2

]
+ Γ̂3

{
−ρ2

(σ2 + τ 2)2 − ρ2
π̄1 +

(
ρσ2

(σ2 + τ 2)2 − ρ2
+

τ 2(σ2 + τ 2)

(σ2 + τ 2)2 − ρ2

π̄12

χ2

)(
1− β π̄12

χ2

)
π̄2

}
.

Now consider I = 2. Now,

E[X̃ᵀ
2 X̃2]−1 =

1

JTζ2[(σ2 + τ 2)2 − 2ρ2]

σ2 + τ 2 − ρ2

σ2+τ2
−ρ ρ2

σ2+τ2

−ρ σ2 + τ 2 −ρ
ρ2

σ2+τ2
−ρ σ2 + τ 2 − ρ2

σ2+τ2

 .
We also have:

E[X̃ᵀ
2π] =JT

 Cov[wjt − C, πjt]
Cov[wj(t−1) − C, πjt]
Cov[wj(t−2) − C, πjt]

 .
We analyzed these covariances in the proof of Proposition 3. Using those results, we find
that

Φ̂wt =π̄3 + Γ̂1

{
π̄1 +

ρ

σ2 + τ 2

ρ2

(σ2 + τ 2)2 − 2ρ2

(
π̄12

χ2

)2(
π̄2 + π̄1

π̄12

χ2

)}
+ Γ̂3

1

(σ2 + τ 2)2 − 2ρ2

{(
σ2 + τ 2 − ρ2

σ2 + τ 2

)(
π̄1ρ+ π̄2τ

2 + π̄1
π̄12

χ2

τ 2

)
+

(
ρ2

σ2 + τ 2

π̄12

χ2

− ρ
)(

π̄2 + π̄1
π̄12

χ2

)(
ρ+

π̄12

χ2

τ 2

)}
+ Γ̂2

ρ2

(σ2 + τ 2)2 − 2ρ2

ρ

σ2 + τ 2

(
π̄2 + π̄1

π̄12

χ2

)
π̄12

χ2

,
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Φ̂wt−1 =π̄4 + Γ̂1

{
1− ρ2

(σ2 + τ 2)2 − 2ρ2

(
π̄12

χ2

)2}(
π̄2 + π̄1

π̄12

χ2

)
+ Γ̂3

1

(σ2 + τ 2)2 − 2ρ2

{
− ρ2π̄1 + σ2

(
π̄2 + π̄1

π̄12

χ2

)
ρ+ [τ 2(σ2 + τ 2)− ρ2]

(
π̄2 + π̄1

π̄12

χ2

)
π̄12

χ2

− ρτ 2

(
π̄12

χ2

)2(
π̄2 + π̄1

π̄12

χ2

)}
+ Γ̂2

{
π̄1 −

ρ2

(σ2 + τ 2)2 − 2ρ2

(
π̄2 + π̄1

π̄12

χ2

)
π̄12

χ2

}
,

Φ̂wt−2 =Γ̂1

{(
π̄2 + π̄1

π̄12

χ2

)
π̄12

χ2

+
ρ (σ2 + τ 2)

(σ2 + τ 2)2 − 2ρ2

(
π̄2 + π̄1

π̄12

χ2

)(
π̄12

χ2

)2}
+ Γ̂3

1

(σ2 + τ 2)2 − 2ρ2{
ρ2

σ2 + τ 2
π̄1ρ−

(
π̄2 + π̄1

π̄12

χ2

)
σ2ρ2

σ2 + τ 2
+ ρ

(
σ2 − ρ2

σ2 + τ 2

)
π̄12

χ2

(
π̄2 + π̄1

π̄12

χ2

)
+ τ 2

(
σ2 + τ 2 − ρ2

σ2 + τ 2

)(
π̄12

χ2

)2(
π̄2 + π̄1

π̄12

χ2

)}
+ Γ̂2

{
1 +

(σ2 + τ 2)2 − ρ2

(σ2 + τ 2)2 − 2ρ2

ρ

σ2 + τ 2

π̄12

χ2

}(
π̄2 + π̄1

π̄12

χ2

)
.

Now assume ρ = 0 and let I be arbitrary. E[X̃ᵀ
I X̃I ] is just a diagonal matrix with

JTζ2(σ2 + τ 2) on the diagonal, so E[X̃ᵀ
I X̃I ]

−1 is a diagonal matrix with 1/[JTζ2(σ2 + τ 2)]
on the diagonal. Following the proof of Proposition 3, we find:

Φ̂wt =π̄3 + Γ̂1π̄1 +

(
1− β π̄12

χ2

)
π̄2

τ 2

τ 2 + σ2
Γ̂3,

Φ̂wt−1 =π̄4 + π̄1Γ̂2 +

(
1− β π̄12

χ2

)
π̄2Γ̂1 +

(
1− β π̄12

χ2

)
π̄12

χ2

π̄2
τ 2

σ2 + τ 2
Γ̂3,

and, for i ≥ 2,

Φ̂wt−i
=

(
π̄12

χ2

)i−2(
1− β π̄12

χ2

)
π̄2Γ̂2 +

(
π̄12

χ2

)i−1(
1− β π̄12

χ2

)
π̄2Γ̂1 +

(
π̄12

χ2

)i(
1− β π̄12

χ2

)
π̄2

τ 2

τ 2 + σ2
Γ̂3.

Therefore

lim
I→∞

I∑
i=0

Φ̂wt−i
=π̄3 + π̄4 +

[
Γ̂1 + Γ̂2

] [
π̄1 +

1− β π̄12
χ2

1− π̄12
χ2

π̄2

]
+ Γ̂3

τ 2

τ 2 + σ2

1− β π̄12
χ2

1− π̄12
χ2

π̄2.
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From the proof of Proposition 1, βπ̄23 = 0 implies that Γ̂3 = 0. And Proposition 1 itself
then implies

Γ̂1 + Γ̂2 = ω

(
dĀ

dC
+ βπ̄12Ω

)
.

The proposition follows by inspection (noting that π̄14 = 0 implies Γ̂2 = 0 and that π̄12 =
βπ̄23 = 0 implies Γ̂3 = 0), by recalling that Assumption 3 implies π̄1 = π̄2 = 0, and, for the
case with I →∞, by following the last part of the proof of Proposition 3.

E.11 Proof of Proposition 7

Observe that

Λ̂ =
Cov[π̌jt, w̌jt − C]

V ar[w̌jt − C]
.

Begin by considering the case in which Assumption 3 holds. Equation (2) requires π̄2 =
π̄1 = 0. Using intermediate results in the proof of Proposition 3, we have:

1

ζ2
Cov[wjt, πjt] =(σ2 + τ 2)π̄3 + ρπ̄4,

1

ζ2
Cov[fjt, πjt] =ρπ̄3,

1

ζ2
Cov[wj(t−1), πjt] =ρπ̄3 + π̄4(σ2 + τ 2),

1

ζ2
Cov[wj(t−2), πjt] =ρπ̄4,

1

ζ2
Cov[wj(t−i), πjt] =0 for i > 2.
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We then have, for ∆ > 2:

Cov[π̃jt, w̃jt] =
1

∆2

{ t+∆−2∑
T=t+2

(
Cov[πjT , wjT ] + Cov[πjT , wj(T−1)] + Cov[πjT , wj(T−2)] + Cov[πjT , fjT ]

)
+ Cov[πj(t+1), wj(t+1)] + Cov[πj(t+1), wjt] + Cov[πj(t+1), fj(t+1)]

+ Cov[πjt, wjt] + Cov[πjt, fjt]

+ Cov[πj(t+∆−1), wj(t+∆−1)] + Cov[πj(t+∆−1), wj(t+∆−2)] + Cov[πj(t+∆−1), wj(t+∆−3)]

}
=

1

∆2

{
∆[σ2 + τ 2 + 2ρ][π̄3 + π̄4]− 2ρπ̄3 − [σ2 + τ 2 + 2ρ]π̄4

}
=

1

∆2

{
[σ2 + τ 2][∆π̄3 + (∆− 1)π̄4] + 2ρ[∆− 1][π̄3 + π̄4]

}
.

Note that

V ar(w̌jt − C) =
∆(σ2 + τ 2) + 2ρ(∆− 1)

∆2
.

The estimator is then:

Λ̂ =
[σ2 + τ 2][∆π̄3 + (∆− 1)π̄4] + 2ρ[∆− 1][π̄3 + π̄4]

∆(σ2 + τ 2) + 2ρ(∆− 1)

=π̄3 + π̄4
∆− 1

∆

σ2 + τ 2 + 2ρ

σ2 + τ 2 + 2ρ∆−1
∆︸ ︷︷ ︸

,Υ1

.

Therefore

lim
∆→∞

Λ̂ =π̄3 + π̄4 = lim
s→∞

dE[πs]

dC
,

where the second equality applies π̄1 = π̄2 = 0 (from Assumption 3) to equation (6).
Now consider the case in which Assumption 3 need not hold but π̄12 = 0 and ρ = 0.

Using intermediate results in the proof of Proposition 3, we have:

1

ζ2
Cov[wjt, πjt] =(σ2 + τ 2)π̄3 +

π̄13 + βπ̄24

−π̄11 − βπ̄22

(σ2 + τ 2)π̄1 +
βπ̄23

−π̄11 − βπ̄22

π̄2τ
2,

1

ζ2
Cov[fjt, πjt] =

βπ̄23

−π̄11 − βπ̄22

π̄1τ
2,

1

ζ2
Cov[wj(t−1), πjt] =π̄4(σ2 + τ 2) + π̄1

π̄14

−π̄11 − βπ̄22

(σ2 + τ 2) +
π̄13 + βπ̄24

−π̄11 − βπ̄22

π̄2

(
σ2 + τ 2

)
,
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1

ζ2
Cov[wj(t−2), πjt] =π̄2

π̄14

−π̄11 − βπ̄22

(σ2 + τ 2),

1

ζ2
Cov[wj(t−i), πjt] =0 for i > 2.

Summing these, we have:

Cov[wjt, πjt] + Cov[fjt, πjt] + Cov[wj(t−1), πjt] + Cov[wj(t−2), πjt]

=(σ2 + τ 2)

{
π̄3 + π̄4 +

π̄13 + βπ̄24 + π̄14

−π̄11 − βπ̄22

[π̄1 + π̄2] +
βπ̄23

−π̄11 − βπ̄22

τ 2

σ2 + τ 2
[π̄1 + π̄2]

}
,

Cov[wj(t+1), πj(t+1)] + Cov[fj(t+1), πj(t+1)] + Cov[wjt, πj(t+1)]

=(σ2 + τ 2)

{
π̄3 + π̄4 +

π̄13 + βπ̄24

−π̄11 − βπ̄22

[π̄1 + π̄2] + π̄1
π̄14

−π̄11 − βπ̄22

+
βπ̄23

−π̄11 − βπ̄22

τ 2

σ2 + τ 2
[π̄1 + π̄2]

}
,

Cov[wjt, πjt] + Cov[fjt, πjt] =(σ2 + τ 2)

{
π̄3 +

π̄13 + βπ̄24

−π̄11 − βπ̄22

π̄1 +
βπ̄23

−π̄11 − βπ̄22

τ 2

σ2 + τ 2
[π̄1 + π̄2]

}
,

Cov[wj(t+∆−1), πj(t+∆−1)] + Cov[wj(t+∆−2), πj(t+∆−1)] + Cov[wj(t+∆−3), πj(t+∆−1)]

=(σ2 + τ 2)

{
π̄3 + π̄4 +

π̄13 + βπ̄24 + π̄14

−π̄11 − βπ̄22

[π̄1 + π̄2] +
βπ̄23

−π̄11 − βπ̄22

τ 2

σ2 + τ 2
π̄2

}
.

Note that

V ar(w̌jt) =
σ2 + τ 2

∆
.
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The estimator is then, for ∆ > 2,

Λ̂ =
1

∆2V ar(w̌jt)

{ t+∆−2∑
T=t+2

(
Cov[πjT , wjT ] + Cov[πjT , wj(T−1)] + Cov[πjT , wj(T−2)] + Cov[πjT , fjT ]

)
+ Cov[πj(t+1), wj(t+1)] + Cov[πj(t+1), wjt] + Cov[πj(t+1), fj(t+1)]

+ Cov[πjt, wjt] + Cov[πjt, fjt]

+ Cov[πj(t+∆−1), wj(t+∆−1)] + Cov[πj(t+∆−1), wj(t+∆−2)] + Cov[πj(t+∆−1), wj(t+∆−3)]

}
=π̄3 +

π̄13 + βπ̄24

−π̄11 − βπ̄22

π̄1 +
βπ̄23

−π̄11 − βπ̄22

τ 2

σ2 + τ 2
π̄2

+
∆− 1

∆

{
π̄4 +

π̄13 + βπ̄24

−π̄11 − βπ̄22

π̄2 + π̄1
π̄14

−π̄11 − βπ̄22

+
βπ̄23

−π̄11 − βπ̄22

τ 2

σ2 + τ 2
π̄1

}
+

∆− 2

∆
π̄2

π̄14

−π̄11 − βπ̄22

=Φ̂0
wt

+
∆− 1

∆

{
π̄4 +

π̄13 + βπ̄24

−π̄11 − βπ̄22

π̄2 + π̄1
π̄14

−π̄11 − βπ̄22

+
βπ̄23

−π̄11 − βπ̄22

τ 2

σ2 + τ 2
π̄1

}
︸ ︷︷ ︸

,Υ1

+
∆− 2

∆
π̄2

π̄14

−π̄11 − βπ̄22︸ ︷︷ ︸
,Υ2

.

Therefore,

lim
∆→∞

Λ̂ =π̄3 + π̄4 +
π̄13 + βπ̄24 + π̄14

−π̄11 − βπ̄22

[π̄1 + π̄2] +
βπ̄23

−π̄11 − βπ̄22

τ 2

σ2 + τ 2
[π̄1 + π̄2]

=π̄3 + π̄4 + [π̄1 + π̄2]

[
Γ̂1 + Γ̂2 +

τ 2

σ2 + τ 2
Γ̂3

]
.

The results follow from inspection and previous results on the marginal effect of climate.

F Extension to vector-valued actions and multidimen-

sional weather

Generalize the main text’s setting to allow K weather variables, collected in a column
vector wt, and M actions, collected in a column vector At. The payoff function is now
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π(At,At−1,wt,wt−1). Agents solve

V (At−1,wt,ft,wt−1; ζ) = max
At

{
π(At,At−1,wt,wt−1) + βEt [V (At,wt+1,ft+1,wt; ζ)]

}
s.t. wt+1 =ft + ζεt+1

ft+1 =C + ζνt+1,

where ft, εt, and νt are column vectors of length K. Let εkt+1 and νkt+1 have variance (σk)2

and (τ k)2 respectively (where superscript k is, as always, an index, not a power). Now πi
represents a column vector corresponding to derivatives with respect to argument i and πij
represents a matrix with columns differentiating πi with respect to each element of argument
j.

Analyze the deterministic model, which fixes ζ = 0. The first-order conditions are:

0 = π1(At,At−1,C,C) + βV1(At,C,C,C; 0).

The envelope theorem yields:

V1(At−1,C,C,C; 0) = π2(At,At−1,C,C).

Advancing this forward by one timestep and substituting into the first-order condition, we
have the Euler equation:

0 = π1(At,At−1,C,C) + βπ2(At+1,At,C,C).

A steady state Ā of the deterministic system is implicitly defined by

0 = π1(Ā, Ā,C,C) + βπ2(Ā, Ā,C,C). (F-7)

Define π̄ , π(Ā, Ā,C,C). Linearizing around Ā gives a first-order difference equation:

At+1 − Ā ≈ [βπ̄12]−1 [−π̄11 − βπ̄22] (At − Ā)− 1

β
(At−1 − Ā).

The dynamic system is:[
At+1 − Ā
At − Ā

]
≈
[
[βπ̄12]−1 [−π̄11 − βπ̄22] − 1

β
IM

IM 0MM

] [
At − Ā
At−1 − Ā

]
,

where IM is an M ×M identity matrix and 0MM is an M ×M matrix of zeros. It is easy to
show that as each π1j1k , π1j2k , π2j2k goes to zero for j 6= k, there are M pairs of eigenvalues like
those identified in the proof of Lemma 2. More generally, using results for the determinants
of block matrices, the product of the linearized system’s eigenvalues is

det

(
[βπ̄12]−1 [−π̄11 − βπ̄22]

)
det

(
1

β

{
[βπ̄12]−1 [−π̄11 − βπ̄22]

}−1
)

=

(
1

β

)M
> 1.
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At least one eigenvalue must be greater than 1 in absolute value. If π1j2k = 0 for all j 6= k,

then the sum of the linearized system’s eigenvalues is
∑M

m=1
−π̄1m1m−βπ̄2m2m

βπ̄1m2m
, which is positive

if each π̄1m2m > 0 and is negative if each π̄1m2m < 0.
Denote the eigenvalues that are less than 1 in absolute value as λi. These define the

stable manifold. We seek the eigenvectors corresponding to each λi. These eigenvectors have
At − Ā = λi(At−1 − Ā) and thus are proportional to[

λ(At−1 − Ā)
At−1 − Ā

]
.

Therefore, along the stable manifold,[
At+1 − Ā
At − Ā

]
=
∑
i

ciλi

[
λi(At−1 − Ā)
At−1 − Ā

]
with at least one ci 6= 0. Because it must be true that At− Ā =

∑
i ciλi(At−1− Ā) and also

that At− Ā = λi(At− Ā) for each i, it must be true that one ci equals 1 and the rest equal
0. I now assume that some such λi exists, as we know it must when π1j1k , π1j2k , and π2j2k

are small for all pairs (j, k) such that j 6= k. I label the λi corresponding to the ci = 1 as λ.
Now consider optimal actions in the stochastic system. The first-order condition is:

0 = π1(At,At−1,wt,wt−1) + βEt[V1(At,wt+1,ft+1,wt; ζ)].

The envelope theorem yields:

V1(At−1,wt,ft,wt−1; ζ) = π2(At,At−1,wt,wt−1).

Advancing this forward by one timestep and substituting into the first-order condition, we
have the stochastic Euler equation:

0 = π1(At,At−1,wt,wt−1) + βEt[π2(At+1,At,wt+1,wt)].

Extending Lemma 2 shows that, under its assumptions, limt→∞E0[At] = Ā. And extending
its proof shows that

At =Ā+ χ−1
2 π̄12(At−1 − Ā) + χ−1

2

[
π̄13 + βπ̄24 + βπ̄12χ

−1
1 π̄14

]
(wt −C)

+ χ−1
2

[
βπ̄23 + βπ̄12χ

−1
1

(
π̄13 + βπ̄24 + βπ̄12χ

−1
0 π̄14

)]
(ft −C)

+ χ−1
2 π̄14(wt−1 −C),

where each χi is M ×M and defined recursively:

χ0 ,− π̄11 − βπ̄22 − βπ̄12λ,

χi ,− π̄11 − βπ̄22 − βπ̄12χ
−1
i−1π̄12 for i a strictly positive integer.
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If π̄1j1k , π̄1j2k , and π̄2j2k are small for all pairs (j, k) such that j 6= k, then the analogue of
the condition imposed following Lemma 1 and the fact that |λ| < 1 together ensure that
the absolute value of each element on the diagonal of χ−1

i π̄12 is less than 1 (for i a weakly
positive integer).

When the conditions of Lemma 2 hold, applying the implicit function theorem to equa-
tion (F-7) yields:

lim
t→∞

dE0[At]

dC
=

dĀ

dC
= [−π̄11 − (1 + β)π̄12 − βπ̄22]−1 [π̄13 + π̄14 + βπ̄24 + βπ̄23] .

Following the main text, we then obtain:

lim
t→∞

dE0[π(At,At−1,wt,wt−1)]

dC
=π̄3 + π̄4 +

(
dĀ

dC

)ᵀ

[π̄1 + π̄2]

=π̄3 + π̄4 +

(
dĀ

dC

)ᵀ

π̄2(1− β).

With these expressions and the expression forAt in hand, it is easy to derive Proposition 1
and its underlying terms. Let either Assumption 1 or 2 hold, and let (Aj(t−1)− Ā)2 be small
for all observations. Consider the following regression:

Amjt =αj +
K∑
k=1

[
Γk1w

k
jt + Γk2w

k
j(t−1) + Γk3f

k
jt

]
+

M∑
m=1

Γm4 A
m
j(t−1) + ηjt.

Stack the coefficients of the M regressions in vectors Γ. Then:

Γ̂k
1 =ω [−π̄11 − (1 + β)π̄12 − βπ̄22]−1 [π̄13k + βπ̄24k + βπ̄12χ

−1
1 π̄14k

]
,

Γ̂k
2 =ω [−π̄11 − (1 + β)π̄12 − βπ̄22]−1 π̄14k ,

Γ̂k
3 =ω [−π̄11 − (1 + β)π̄12 − βπ̄22]−1 [βπ̄23k + βπ̄12χ

−1
1

(
π̄13k + βπ̄24k + βπ̄12χ

−1
0 π̄14k

)]
,

where each Γ̂k
i is M × 1 and

ω , χ−1
2 [−π̄11 − (1 + β)π̄12 − βπ̄22] > 0.

If each π̄1j1k , π̄1j2k , and π̄2j2k is small for all pairs (j, k) such that j 6= k, then each diagonal
element of ω is > 1 if each π̄1m2m < 0, = 1 if each π̄1m2m = 0, and < 1 if each π̄1m2m > 0.
Then:

Γ̂k1 + Γ̂k2 + Γ̂k3

=ω

(
dĀ

dCk
+ β [−π̄11 − (1 + β)π̄12 − βπ̄22]−1 π̄12χ

−1
1

[
π̄13k + π̄14k + βπ̄24k + βπ̄12χ

−1
0 π̄14k

])
.
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Now consider the regression:

πjt =αj +
K∑
k=1

[
I+1∑
i=0

θkwt−i
wkj(t−i) +

I+1∑
i=0

θkft−i
fkj(t−i)

]
+ ηjt.

The vector of estimated coefficients is

θ̂ = E[Xᵀ
I+1XI+1]−1E[Xᵀ

I+1π],

where π is a JT × 1 vector with rows πjt and XI+1 is a JT × J + 2K(I + 2) matrix with the
final 2K(I + 2) columns of each row being[

w1
jt f 1

jt ... wKjt fKjt ... w1
j(t−(I+1)) f 1

j(t−(I+1)) ... wKj(t−(I+1)) fKj(t−(I+1))

]
.

By the Frisch-Waugh Theorem,

θ̂ = E[X̃ᵀ
I+1X̃I+1]−1E[X̃ᵀ

I+1π̃],

where X̃I+1 is a JT × 2K(I + 2) matrix with rows[
w1
jt − C1 f 1

jt − C1 ... wKj(t−(I+1)) − CK fKj(t−(I+1)) − CK
]

and π̃ is demeaned π. We can show by the Frisch-Waugh Theorem that controlling for all
dimensions of weather means that we can analyze the regression dimension by dimension.
Let θ̂k be the portion of the vector of coefficients corresponding to weather dimension k.
Then:

Φ̂k = E[(X̃k)ᵀX̃k]−1E[(X̃k)ᵀπ̃],

where X̃k is a JT × 2(I + 2) matrix with rows[
wkjt − Ck fkjt − Ck wkj(t−1) − Ck fkj(t−1) − Ck ... wkj(t−(I+1)) − Ck fkj(t−(I+1)) − Ck

]
.

From here, we can follow the proof of Proposition 3 fairly directly. Analogous logic shows
that the proof of Proposition 6 also goes through fairly directly.
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