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1 Introduction

A pressing empirical agenda seeks to estimate the economic costs of climate change. Ig-
norance of these costs has severely hampered economists’ ability to give concrete policy
recommendations (Pindyck, 2013). The challenge is that although variation in climate has
been primarily cross-sectional, cross-sectional regressions cannot clearly identify the effects of
climate.1 Seeking credible identification, an explosively growing empirical literature has re-
cently explored panel variation in weather.2 The hope is that variation in transient weather
identifies—or at worst bounds—the effects of a change in climate, which manifests itself
through weather but differs from a transient weather shock in being repeated period after
period and in affecting expectations of weather far out into the future.

I here undertake the first formal analysis that precisely delineates what and how we can
learn about the climate from the weather. Linking weather to climate requires analyzing a
dynamic model that can capture the distinction between transient and permanent changes
in weather. I study an agent who is exposed to stochastic weather outcomes. These weather
outcomes impose some costs that are unavoidable and some costs that depend on the agent’s
actions (equivalently, investments). The agent wants to choose actions that best match the
weather, but actions also impose costs: maintaining a given level of activity is costly, and
adjusting actions from period to period is costly. When choosing actions, the agent knows
the current weather, has access to specialized forecasts of the weather some arbitrary number
of periods into the future, and relies on knowledge of the climate to generate forecasts at
longer horizons. A change in the climate affects the distribution of realized weather in every
period and also affects the agent’s expectations of future weather.

I show several novel results. First, I show that estimating the effects of weather on actions
understates the long-run effect of climate on actions. Many economists have intuited that
short-run adaptation responses to weather are likely to be smaller than long-run adaptation
responses to climate (e.g., Deschênes and Greenstone, 2007). I show that the critical factor
for this result is adjustment costs, not expectations of future weather. The actions an
agent takes in response to a transient weather shock are constrained by the agent’s desire
to not change actions too much from period to period, but when the same weather shock
is repeated period after period, even a myopic agent eventually achieves a larger change in

1For many years, empirical analyses did rely on cross-sectional variation in climate to identify the economic
consequences of climate change (e.g., Mendelsohn et al., 1994; Schlenker et al., 2005; Nordhaus, 2006).
However, cross-sectional analyses fell out of favor due to concerns about omitted variables bias. See Dell
et al. (2014) for an exposition and Massetti and Mendelsohn (2018) for a review.

2This literature has estimated the effects of climate on gross domestic product (Dell et al., 2012; Burke
et al., 2015), on profits (Deschênes and Greenstone, 2007), and on behavioral variables including productivity
(Heal and Park, 2013; Zhang et al., 2018), health (Deschenes, 2014), crime (Ranson, 2014), and energy use
(Auffhammer and Aroonruengsawat, 2011; Deschênes and Greenstone, 2011), among many others. For recent
reviews, see Dell et al. (2014), Carleton and Hsiang (2016), and Heal and Park (2016). Blanc and Schlenker
(2017) discuss the strengths and weaknesses of relying on panel variation in weather.
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activity through a sequence of incremental adjustments. I also show that combining short-
run adaptation responses to weather realizations with short-run adaptation responses to
weather forecasts can better approximate long-run adaptation to climate.

Second, I show that the effect of climate on steady-state payoffs is equal to the average
treatment effect of weather around a steady state in the current climate. An easily estimated
function of weather is therefore a sufficient statistic for the impact of climate change on
variables such as welfare and profits.3 This is a surprising and powerful result. Changing the
climate is equivalent to changing expected weather in all future periods, yet transient weather
shocks identify the consequences of climate. This result arises for three reasons. First, the
envelope theorem implies that small changes in current actions do not have first-order effects
on maximized value. Second, standard representations of adjustment costs imply that small
changes in past actions also do not have first-order effects on maximized value around a
steady state. Together, these two observations imply that we do not need to consider how
expectations of weather affect actions around a steady state. Finally, the treatment effect
of weather is linear when payoffs are quadratic and is otherwise approximately linear when
the weather has small variance. The average treatment effect of transient weather shocks is
then equivalent to the effect of changing the average weather, which in turn is the definition
of the effect of changing the climate. This result suggests that reduced-form empirical work
should begin estimating the average treatment effect of weather as a function of long-run
average weather.4

Despite the importance of empirically estimating the costs of climate change and the
sharpness of informal debates around the relevance of the recent empirical literature to cli-
mate change, there has been remarkably little formal analysis of the link between weather
and climate. The most prominent defense of using panel variation to estimate the effects of
climate change rests on an appeal to the envelope theorem: if climate differs from weather
only via expectations and if expectations matter only via actions, then the envelope theorem
suggests that expectations do not matter for the effects of climate on payoffs. This argument
dates to Deschênes and Greenstone (2007) and has been most forcefully elaborated in Hsiang
(2016) and Deryugina and Hsiang (2017). However, these envelope theorem arguments apply
static analysis to an inherently dynamic problem. In fact, climate change can affect prede-
termined variables that are not subject to the envelope theorem but are themselves actions
that were chosen in previous periods based on expectations of weather in the current period

3I describe the average treatment effect of weather as a sufficient statistic because multiple combinations
of structural parameters can yield the same welfare consequences. Estimating the average treatment effect
of weather does not recover all deep primitives but does provide a credibly identified estimate of climate
impacts. See Chetty (2009) for a general treatment of sufficient statistics for welfare analysis.

4In contrast, much empirical literature estimates the marginal effect of weather by weather bin (see Car-
leton and Hsiang, 2016), sometimes allowing the marginal effects to differ by climate zone (e.g., Barreca et al.,
2015; Deryugina and Hsiang, 2017; Auffhammer, 2018). The standard practice can identify nonlinearities in
the effects of weather on payoffs. In the appendix, I show that nonlinear weather impacts may not indicate
anything about the consequences of changing the climate.
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and beyond. I here show precisely when researchers can ignore the effects of expectations
and show precisely which panel estimators can recover the effects of climate.5

The next section describes the setting. Section 3 solves the dynamic programming prob-
lem. Sections 4 and 5 analyze the effects of climate on agents’ chosen actions and payoffs,
respectively. The final section discusses implications for empirical work. The appendix ana-
lyzes a more general setting, provides results about forecasts and nonlinearities, and contains
proofs.

2 Setting

An agent is repeatedly exposed to stochastic weather outcomes. The realized weather in
period t is wt. This weather realization imposes two types of costs. A first type of cost arises
independently of any actions the agent might take. These unavoidable costs are 1

2
ψ(wt−w̄)2,

where the parameter w̄ defines the weather outcome that minimizes unavoidable costs and
the parameter ψ ≥ 0 determines the costliness of any other weather outcome. A second
type of cost depends on the agent’s actions At. These avoidable costs are 1

2
γ(At − wt)

2,
where γ ≥ 0. They vanish when the agent’s actions are well-matched to the weather and
potentially become large when the agent’s actions are poorly matched to the weather.

In each period, the agent chooses her action At. This action may be interpreted as a
level of activity (e.g., time spent outdoors, energy used for heating or cooling, irrigation
applied to a field) or as a stock of capital (e.g., outdoor gear, size or efficiency of furnace,
number or efficiency of irrigation lines). The agent’s actions impose two types of costs. First,
maintaining At imposes costs of 1

2
φ(At−Ā)2, where φ ≥ 0. The parameter Ā defines the level

of activity or capital that is cheapest to sustain. It can also be interpreted as the capital stock
that would be chosen if weather imposed only unavoidable costs. Second, the agent faces a
cost of adjusting actions from one period to the next. This cost is 1

2
α(At − At−1)2, where

α ≥ 0. When At represents a capital stock, these adjustment costs are investment costs.
Relating to the literature on climate adaptation (e.g., Fankhauser et al., 1999; Mendelsohn,
2000), low adjustment costs allow adaptation investments to occur after weather is realized
(“reactive” or “ex-post” adaptation), but large adjustment costs require adaptation to occur

5A few other papers are also related. First, in an expositional analysis, I showed how envelope theorem
arguments can fail in a three-period model (Lemoine, 2017). The present work precisely analyzes the con-
sequences of climate change in an infinite-horizon model and constructively shows exactly which types of
empirical estimates can be informative about the climate. Second, Kelly et al. (2005) study the cost of having
to learn about a change in the climate from an altered sequence of weather as opposed to knowing outright
how the climate has changed. I here abstract from learning in order to focus on mechanisms more relevant to
the growing empirical literature. Third, calibrated simulations have shown that dynamic responses are criti-
cal to the effects of climate on timber markets (Sohngen and Mendelsohn, 1998; Guo and Costello, 2013) and
to the cost of increased cyclone risk (Bakkensen and Barrage, 2018). Finally, Shrader (2017) demonstrates
the importance of distinguishing adaptation motivated by expectations of future weather in an application
to fisheries.
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before weather is realized (“anticipatory” or “ex-ante” adaptation). Maintenance costs make
the agent want to choose actions close to Ā, and adjustment costs make the agent want to
keep actions constant over time.

The agent observes time t weather before selecting her time t action. The agent has
access to specialized forecasts of future weather and knows her region’s climate, indexed
by C. Specialized forecasts extend up to N ≥ 0 periods ahead. Each period’s forecast is
an unbiased predictor of later weather. Beyond horizon N , the agent formulates generic
forecasts that rely only on knowledge of the climate, not on information germane to that
particular time period. For instance, the agent may rely on the local news to predict weather
one week out but relies on knowledge of typical weather to predict weather one year out.
Horizon N is therefore the shortest forecast horizon at which the agent receives information
beyond knowledge of the climate.

Formally, let fit be the i-period-ahead forecast available in period t. The time t weather
realization is a random deviation from the one-period-ahead forecast: wt = f1(t−1)+εt, where
εt has mean zero and variance σ2. Because forecasts are unbiased predictors, any changes
in forecasts must be unanticipated: for i ∈ [1, N ], fit = f(i+1)(t−1) + νit, where νit has mean
zero and variance τ 2i . Forecasts at horizons i > N are fit = C.6 The νit and εt are serially
uncorrelated, the covariance between νit and νjt is δij, and the covariance between εt and νit
is ρi.

7 Note that Et[wt+j] = fjt. For notational convenience, collect all specialized forecasts
available at time t in a vector Ft of length N .8

The agent maximizes the present value of payoffs over an infinite horizon. Time t payoffs
are:

π(At, At−1, wt) = −1

2
γ(At − wt)2 −

1

2
α(At − At−1)2 −

1

2
φ(At − Ā)2 − 1

2
ψ(wt − w̄)2.

She chooses time t actions as a function of past actions, current weather, and current fore-
casts. In order to study an interesting problem, assume that γ + φ > 0. The agent solves:

max
{At}∞t=0

∞∑
t=0

βtE0 [π(At, At−1, wt)] ,

6One might be concerned about a sharp discontinuity in information at horizon N . However, I have left
the variances τ2i general. Defining them to decrease in i and to approach zero as i approaches N would allow
for the informativeness of the signal about time t weather to increase smoothly from long horizons to short
horizons.

7Assuming that each shock is serially uncorrelated does not imply that weather and forecasts are serially
uncorrelated. For instance, for t > N , Cov0(wt, wt+1) = ρ1 +

∑N−1
i=1 δi(i+1).

8The system of weather and forecasts can be written as a vector autoregression. Climate here controls
average weather. One might wonder about the dependence of higher moments of the weather distribution
on climate. However, the effects of climate change on the variance of the weather are poorly understood and
potentially heterogeneous (e.g., Huntingford et al., 2013). Further, we need to know not just how climate
change affects the variance of realized weather but how it affects the forecastability of weather at each
horizon: the variance of the weather more than N periods ahead is σ2 +

∑N
i=1 τ

2
i , so we need to apportion

any change in variance between σ2 and each τ2i .
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where β ∈ [0, 1) is the per-period discount factor, A−1 is given, and E0 denotes expectations
at the time 0 information set. The solution satisfies the following Bellman equation:

V (Zt, wt, Ft) = max
At

{
π(At, Zt, wt) + βEt [V (Zt+1, wt+1, Ft+1)]

}
(1)

s.t. Zt+1 =At

wt+1 =f1t + εt+1

fi(t+1) =f(i+1)t + νi(t+1) for i ∈ {1, ..., N}
fN(t+1) =C + νN(t+1) if N > 0.

The state variable Zt summarizes the previous period’s actions.
The setting is sufficiently general to describe many applications of interest. For instance,

much empirical literature has studied the effects of weather on energy use. The agent could
then be choosing indoor temperature in each period, where maintenance costs reflect energy
use and avoidable weather costs reflect thermal comfort. Empirical literature has also studied
the effect of weather on agricultural profits. The decision variable could then be irrigation,
fertilizer inputs, or crop varieties, maintenance costs reflect the cost of purchasing these in
each year, adjustment costs reflect the cost of changing equipment and plans from year to
year, and weather costs reflect the deviation in crop yields from their maximum possible
value.

The primary specialization in the setting is the assumption of quadratic payoffs. Linear-
quadratic models have long been workhorses in economic research because they allow for
explicit analytic solutions to the Bellman equation (1). The appendix generalizes the analysis
to arbitrary functional forms and vector-valued actions by applying perturbation methods
(Judd, 1996).

3 Solution

The following proposition describes the value function that solves equation (1):

Proposition 1. The value function V (Zt, wt, Ft) has the form:

a1Z
2
t +a2w

2
t+

N∑
i=1

ai3f
2
it+b1Ztwt+

N∑
i=1

bi2Ztfit+
N∑
i=1

bi3wtfit+
N−1∑
i=1

N∑
j=i+1

bij4 fitfjt+c1Zt+c2wt+
N∑
i=1

ci3fit+d.

Optimal actions are:

A∗t =
αAt−1 + γwt + βb1f1t + β

∑
i<N b

i
2f(i+1)t + βbN2 C + βc1 + φĀ

γ + α + φ− 2βa1
. (2)

The coefficients are as follows:
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1. a1 ≤ 0, with a1 < 0 if and only if α > 0.

2. a2 ≤ 0, with a2 < 0 if and only if ψ + γ(φ+ α) > 0.

3. ai3 ∈ [βia2, 0], with ai3 < 0 if and only if both a2 < 0 and αβ > 0 and with ai3 > βia2 if
and only if βαγ > 0.

4. Each of the b coefficients is positive, with b1 > 0 if and only if αγ > 0 and bi2, b
i
3, b

ij
4 > 0

if and only if βαγ > 0.

5. c1 ≥ (≤) 0 if C is sufficiently large (small), and c2, c
i
3 ≥ (≤) 0 if, in addition, w̄ ≥

(≤) 0.

6. Each a and b coefficient is independent of C.

7. Each c coefficient weakly increases in C, and each c coefficient strictly increases in C
if and only if βαγ > 0.

Proof. See appendix.

The value function is concave in previous actions (a1 ≤ 0), in weather outcomes (a2 ≤ 0),
and in forecasts (ai3 ≤ 0). If βαγ > 0, then each a and b coefficient is nonzero. Several
coefficients depend on C, reflecting how climate controls the agent’s beliefs about long-run
weather. I henceforth omit the asterisk on A∗t when clear.

4 Effect of Climate on Actions

Now consider how climate change affects the agent’s actions, which is of direct relevance to
much empirical work and produces results that we will use to analyze the effect of climate
on payoffs. Define Ât , E0[At]. From equation (2),

Ât =
αÂt−1 + γC + βb1C + β

∑
i<N b

i
2C + βbN2 C + βc1 + φĀ

γ + α + φ− 2βa1

for t > N . The following proposition describes long-run behavior:

Proposition 2. As t→∞, Ât → γ
γ+φ

C + φ
γ+φ

Ā , Ass.

Proof. See appendix.

Expected actions converge to a steady state, denoted Ass. This steady-state expected action
is a weighted average of the action that minimizes expected weather impacts and the action
that minimizes maintenance costs. Steady-state policy fully offsets the avoidable portion of
expected weather impacts (determined by the climate C) when there are no maintenance
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costs (φ = 0), but steady-state policy becomes unresponsive to the climate as marginal
maintenance costs become large relative to marginal avoidable weather costs (as φ becomes
large relative to γ). Adjustment costs slow the approach to the steady-state expected action,
but they do not affect it.

From Proposition 2, an increase in the climate index affects steady-state expected actions
as

dAss

dC
=

γ

γ + φ
∈ [0, 1].

As γ → 0, there are no avoidable weather impacts, and as φ→∞, maintenance costs are too
large to justify changing actions on the basis of the climate. In either case, dAss/ dC → 0.
Steady-state actions otherwise strictly increase with the climate index. But this increase is
less than one-for-one when φ > 0: adaptation is less than perfect when maintenance costs
deter the agent from fully offsetting the change in climate.

Now consider how we might estimate dAss/ dC from data. Reduced-form empirical
models can estimate the derivatives ∂At/∂wt and ∂At/∂fit by regressing observed At on
weather and forecasts.9 Imagine that empirical researchers were to then approximate the
effect of climate change as

dAss

dC
≈ ∂At
∂wt

+

j∑
i=1

∂At
∂fit

, (3)

for j ∈ {0, ..., N}. For dAss/ dC > 0 (i.e., for γ > 0), the bias from this approximation as a
fraction of the true effect is

Bias(j) =

∂At

∂wt
+
∑j

i=1
∂At

∂fit
dAss

dC

− 1.

Bias(0) is the bias from using only ∂At/∂wt, and Bias(N) is the bias when also using all
available forecasts. The approximation underestimates dAss/ dC if and only if Bias(j) < 0
and correctly estimates dAss/ dC if and only if Bias(j) = 0. The following proposition
establishes several results about this bias:

Proposition 3. Assume γ > 0. Then:

1. Bias(j) ∈ (−1, 0], with Bias(j) < 0 if and only if α > 0.

2. dBias(j)
dj

≥ 0, dBias(j)
dN

= 0.

3. dBias(j)
dj

→ 0 as β → 0.

9Note that the estimation equation should include At−1, because time t − 1 actions can directly affect
time t actions (see equation (2)) and the dependence of time t−1 actions on time t−1 forecasts makes them
correlated with time t weather and forecasts.
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4. Bias(j)→ −α
γ+α+φ−2βa1 as j,N →∞.

5. ∂At/∂wt → 0, ∂At/∂fit → 0, and Bias(j)→ −1 as α→∞.

6. dAss/ dC → 1 and Bias(j)→ 0 as γ →∞.

7. ∂At/∂wt, ∂At/∂fit, dAss/ dC → 0 as either γ → 0 or φ→∞.

Proof. See appendix.

The approximation in (3) never overestimates dAss/ dC (Bias(j) ≤ 0), and it underesti-
mates dAss/ dC whenever there are nonzero adjustment costs (α > 0). The quality of the
approximation improves when we include the effects of forecasts in addition to the effects
of weather shocks ( dBias(j)/ dj ≥ 0), although the bias with any number of forecasts is
independent of the length of the longest forecast horizon ( dBias(j)/ dN = 0).

The approximation in (3) can underestimate dAss/ dC for three reasons. First, the
approximation misses the effect of changing expectations at horizons longer than N (i.e.,
it misses the βbN2 in equation (2)). Second, the approximation misses the change in the
policy rule induced by the anticipated permanence of climate change (i.e., it misses the
effect of C on c1 in equation (2)). Third, the approximation misses the accumulated effect
of changing the weather period after period: even for a given policy rule, the long-run effect
of repeating short-run shocks is greater than the effect of a single short-run shock because
incremental adjustments accumulate over time (i.e., the approximation misses the effects on
At−1 in equation (2)). The first two reasons make the bias sensitive to the discount factor β
and explain why estimating responses to forecasts can be helpful. The third reason is why
nonzero bias can arise even when agents are myopic (i.e., even as β → 0) and even when
estimating responses to forecasts at arbitrarily long horizons (i.e., even as j,N →∞).

The bias vanishes in a few special cases. First, as adjustment costs vanish (α → 0),
actions adjust instantaneously to realized weather, so neither expectations nor the slow
accrual of incremental adjustments matters for steady-state actions. Second, as avoidable
weather impacts become infinitely costly (γ →∞), the agent tries to exactly match At to wt
in every period, regardless of adjustment costs or maintenance costs. Third, when there are
no avoidable weather impacts (γ → 0) or maintenance costs are prohibitive (φ→∞), actions
become completely insensitive to the climate and also to realized weather and forecasts. In
all other cases, the bias is nonzero and becomes large as adjustment costs become large.

Finally, we also see two cases in which Bias(j) < 0 but including the effects of forecasts
does not improve the quality of the approximation in (3): dBias(j)/ dj → 0 as either β → 0
or α→∞.10 The reason is that actions are not sensitive to forecasts in these cases.11 First,

10In addition, dBias(j)/dj = 0 if α = 0 because, from part 1 of Proposition 3, α = 0 implies that
Bias(j) = 0 for all j.

11From Proposition 1, ∂At/∂fit → 0 as β → 0 and, using the solutions for a1 and b1 given in the proof,
also as α→∞.
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forecasts enable the agent to take actions that improve future payoffs, but when agents are
myopic, they act for the present only. Second, as adjustment costs become very large, agents
barely adjust actions on the basis of forecasts. The steady state will change due to the
accumulation of many tiny changes over a very long time horizon, but these effects will not
be detectable from responses to forecasts.

5 Effect of Climate on Value

Now consider the expected effect of climate change on intertemporal value and per-period
payoffs. From Proposition 1, we have:

V (Zt, wt, Ft) =V (Ass, C,C)

+ [Zt − Ass]VZ(Ass, C,C) + [wt − C]Vw(Ass, C,C) +
N∑
i=1

[fit − C]Vfi(A
ss, C,C)

+ [Zt − Ass]2a1 + [wt − C]2a2 +
N∑
i=1

[fit − C]2ai3 + [Zt − Ass][wt − C]b1

+
N∑
i=1

[Zt − Ass][fit − C]bi2 +
N∑
i=1

[wt − C][fit − C]bi3 +
N−1∑
i=1

N∑
j=i+1

[wt − C][fit − C]bij4 ,

where C is an N × 1 vector with all entries equal to C. The envelope theorem and the
fact that ∂π(At, At−1, wt)/∂At−1 = 0 around a steady state imply VZ(Ass, C,C) = 0. The
expectation at time 0 of V (Zt, wt, Ft) at some future time t > N is:

E0[V (Zt, wt, Ft)] =V (Ass, C,C) + E0[(At − Ass)2]a1 + σ2a2 +
N∑
i=1

τ 2i a
i
3 + Cov0[Zt, wt]b1

+
N∑
i=1

Cov0[Zt, fit]b
i
2 +

N∑
i=1

Cov0[wt, fit]b
i
3 +

N−1∑
i=1

N∑
j=i+1

Cov0[wt, fit]b
ij
4 .

(4)

Recalling from Proposition 1 that each a and b coefficient is independent of C, and recognizing
that each covariance is independent of C,12 we have:

dE0[V (Zt, wt, Ft)]

dC
=

dV (Ass, C,C)

dC︸ ︷︷ ︸
change in ss value

+ 2a1E0

[
(Zt − Ass)

(
dZt
dC
− dAss

dC

)]
︸ ︷︷ ︸

change in transition value

.

12Observe from Proposition 1 that At is separable in C, wt, and fit, and observe that the stochastic terms
in wt and fit are independent of C. Therefore each covariance in equation (4) is independent of C.

9 of 16



Lemoine Sufficient Statistics for Climate August 2018

We see two components to the expected change in value due to climate change: the change
in steady-state value and the change in value along the transition to the steady state.13

The next proposition signs the change in transition value:

Proposition 4. If αγ > 0, then dE0[V (Zt,wt,Ft)]
dC

< dV (Ass,C,C)
dC

if and only if A0 < Ass.
dE0[V (Zt,wt,Ft)]

dC
→ dV (Ass,C,C)

dC
as α→ 0, as γ → 0, as t→∞, or as A0 → Ass.

Proof. See appendix.

The transition to a warmer climate imposes costs over and above the change in steady-state
value when A0 < Ass but provides benefits over and above the change in steady-state value
when A0 > Ass. When A0 < Ass, the agent is in the process of approaching Ass from below.
We already saw that Ass increases in C. Increasing C moves the steady state further away
from the current state and therefore requires even more adjustment from the agent. However,
when the agent is approaching Ass from above, raising C reduces the total adjustment that
the agent will have to undertake before reaching the steady state.

It is reasonable to believe that agents in warmer climates may be approaching their
steady-state investment level from below (e.g., by installing air conditioning) and that agents
in colder climates may be approaching their steady-state investment level from above (e.g.,
by installing insulation). We should then expect the cost of adjusting to a warmer climate
to be positive in regions with warmer climates and negative in regions with cooler climates.
Further, we should expect transition costs (or savings) to be larger in regions that are not
as far along the process of adapting to their baseline climate, whether because these regions
have lower incomes, were settled only recently, or have outdated capital stock.

Now consider how climate change affects steady-state value. Using Proposition 1, we
have:

dV (Ass, C,C)

dC
=Vw(Ass, C,C) +

N∑
i=1

Vfi(A
ss, C,C)

+
dc1
dC

Ass +
dc2
dC

C +
N∑
i=1

dci3
dC

C +
dd

dC
. (5)

The first line recognizes that a change in climate alters average weather and average fore-
casts. The second line arises because agents anticipate that climate change is permanent:
climate change therefore alters the value function itself, beyond altering realized weather
and forecasts. For instance, a permanent change in climate can make past adaptation in-
vestments more valuable (Proposition 1 showed that dc1/ dC ≥ 0) and can make higher
weather outcomes more valuable (or less painful) because they are closer to average weather
(Proposition 1 showed that dc2/ dC ≥ 0).

13Tol et al. (1998) informally draw a similar distinction.

10 of 16



Lemoine Sufficient Statistics for Climate August 2018

The following proposition describes the net effects of climate change on steady-state
value:

Proposition 5.

dV (Ass, C,C)

dC
=

1

1− β
dπ(Ass, Ass, C)

dC
=

1

1− β

[
γφ

γ + φ
(Ā− C) + ψ(w̄ − C)

]
. (6)

Proof. See appendix.

Value increases in the climate index if and only if C is sufficiently small. The change in
steady-state value is equal to the change in steady-state per-period payoffs, valued as a
perpetuity. The first term in brackets reflects the change in the cost of maintaining the
adaptation investments chosen for this climate. When the climate is sufficiently cold, a
warmer climate may justify investments that require less maintenance, but as the climate
becomes sufficiently warm, eventually the chosen investments require more upkeep. This
term vanishes as either maintenance costs vanish (φ → 0) or as the link between actions
and weather is broken (γ → 0). The second term in brackets reflects the changing cost of
unavoidable weather impacts. This term makes a warmer climate valuable when C < w̄ but
makes a warmer climate costly when C > w̄. This term vanishes when weather outcomes
impose no unavoidable costs (ψ → 0).

A rapidly growing empirical literature hopes to estimate the cost of climate change from
time series variation in weather. From Proposition 1, the marginal effect of weather on value
is:

∂V (Zt, wt, Ft)

∂wt
= 2a2wt + b1Zt +

N∑
i=1

bi3fit + c2.

If we average the marginal effect of weather over many observations in a given climate and
assume that expected actions are, on average, close to their steady-state level, then we obtain
the following average treatment effect of weather on value:

ATEV
w (C) , 2a2C + b1A

ss +
N∑
i=1

bi3C + c2.

Proceeding analogously, we have the average treatment effect of weather on payoffs around
a steady state as

ATEπ
w(C) , E0

[
dπ(At, At−1, wt)

dwt

]
= E0

[
∂π(At, At−1, wt)

∂wt

]
,

using that E0[∂π(At, At−1, wt)/∂At] = E0[∂π(At, At−1, wt)/∂At−1] = 0 around a steady state.
The next proposition relates these average treatment effects to the marginal effect of climate:
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Proposition 6.
dπ(Ass, Ass, C)

dC
= ATEV

w (C) = ATEπ
w(C)

Proof. See appendix.

This is a surprising result: once all adjustments are complete, the expected change in per-
period steady-state payoffs due to a change in climate is identical to the average change in
payoffs estimated from weather events around a steady state.14 The appendix shows that the
same result holds for general, non-quadratic payoff functions if (i) ∂π(At, At−1, wt)/∂At−1 = 0
when At = At−1 and (ii) σ2 and τ 2i are not too large. The envelope theorem holds that
the effect of climate on current actions does not matter for the effect of climate on value.
When (i) holds (as it does in the main text), the effects of climate on past actions also
vanish around a steady state, so that adjustment costs and beliefs about future weather
both become irrelevant for value. Finally, when either (ii) holds or payoffs are quadratic,
the average treatment effect of weather is approximately linear and thus equivalent to the
treatment effect of average weather. The result follows from recognizing that average weather
defines the climate.

6 Implications for Empirical Work

A rapidly growing empirical literature seeks to estimate the effects of climate change from
panel variation in weather. I now discuss how the present paper’s results should influence
that research agenda.

First, much empirical research has sought to estimate the consequences of climate change
for decision variables or functions of decision variables, including productivity (Heal and
Park, 2013; Zhang et al., 2018), health (Deschenes, 2014), crime (Ranson, 2014), and energy
use (Auffhammer and Aroonruengsawat, 2011; Deschênes and Greenstone, 2011). Many have
recognized that long-run adjustment to a new climate regime may be more complete than the
adjustment seen in response to short-run weather shocks.15 I have formally demonstrated
that this intuition relies on adjustment costs, not on forward-looking behavior, and I have
shown that empirical work can better approximate the effects of a change in climate by also
estimating how actions respond to forecasts of future weather. Further, the appendix shows
that modeling forecasts is not optional: ignoring forecasts can act like omitted variables
bias when estimating the consequences of weather. Finally, if agents are patient (i.e., if β is

14Further, the appendix shows that the average treatment effect of forecasts can identify the discount
factor β and thus yield dV (Ass, C,C)/ dC from Proposition 5.

15Some have argued that short-run adjustments could be greater than long-run adjustments because some
actions may not be sustainable indefinitely (e.g., Blanc and Schlenker, 2017), such as water withdrawals from
a reservoir. Future work could explore such possibilities by imposing constraints on cumulative deviations
in At from some benchmark value.
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close to 1) over timescales of interest, then responses to weather and to forecasts differ only
because of adjustment costs. In this case, estimating the response to forecasts allows for a
nice test: if actions are much less sensitive to forecasts than to weather, then adjustment
costs may be small and responses to weather may approximate responses to climate.

Second, much empirical research has sought to estimate the consequences of climate
change for flow payoffs such as profits (e.g., Deschênes and Greenstone, 2007) and for vari-
ables such as gross output that are potentially related to aggregate payoffs (e.g., Dell et al.,
2012; Burke et al., 2015; Deryugina and Hsiang, 2017). I have shown that the average ef-
fect of weather in a given climate is a sufficient statistic for the consequences of marginally
perturbing the climate. This new result suggests that empirical work should estimate the
average effect of weather as a function of long-run average weather, in contrast to the stan-
dard approach of estimating the marginal effect of weather within different weather bins and
simulating how climate change will alter the frequency of weather in each bin.16 The sug-
gested approach combines panel and cross-sectional variation: panel variation will identify
the average effect of weather within a region’s current climate and thus the consequences of
marginally changing each location’s climate, and cross-sectional variation will identify how
that average effect varies across climates and thus the consequences of nonmarginal changes
in climate.17
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Appendix

The first section considers what we learn from estimating nonlinear weather impacts, which
has been the focus of recent literature that semiparametrically estimates the marginal effect
of weather in distinct weather bins. The second section analyzes the average treatment effect
of forecasts on payoffs. The third section derives the omitted variables bias from ignoring
forecasts in empirical work. The fourth section generalizes the analysis to arbitrary payoff
functions. The final section contains proofs.

A What we do and do not learn from estimating non-

linear weather impacts

Much empirical work has emphasized that weather outcomes have nonlinear effects, and these
nonlinear effects often drive the simulated impacts of climate change. We have seen that
empirical researchers should instead be estimating the average treatment effect of weather
in order to identify the marginal effect of climate. Can the curvature of V and π in wt tell
us something about the curvature of V (Ass, C,C) and π(Ass, Ass, C) in C? The following
proposition provides reason for skepticism:

Proposition 7.

1. ∂2π(At,Zt,wt)

∂w2
t

≤ d2π(At,Zt,wt)

dw2
t

≤ ∂2V (Zt,wt,Ft)

∂w2
t

≤ d2π(Ass,Ass,C)
dC2 ≤ 0, with:

(a) ∂2π(At,Zt,wt)

∂w2
t

< d2π(At,Zt,wt)

dw2
t

if and only if βαγ > 0,

(b) d2π(At,Zt,wt)

dw2
t

< ∂2V (Zt,wt,Ft)

∂w2
t

if and only if γ > 0,

(c) ∂2V (Zt,wt,Ft)

∂w2
t

< d2π(Ass,Ass,C)
dC2 if and only if αγ > 0, and

(d) d2π(Ass,Ass,C)
dC2 < 0 if and only if φγ + ψ > 0.

2. ∂2π(At,Zt,wt)

∂w2
t

→ d2π(Ass,Ass,C)
dC2 as either γ → 0 or φ→∞.

3. If φ + ψ = 0 and α > 0, then ∂2π(At,Zt,wt)

∂w2
t

, d2π(At,Zt,wt)

dw2
t

, ∂
2V (Zt,wt,Ft)

∂w2
t

< 0 even as
d2π(Ass,Ass,C)

dC2 = 0.

Proof. See appendix.

The proposition relates (i) the curvature of per-period payoffs in wt holding At and Zt con-
stant (∂2π/∂w2

t ), (ii) the curvature of per-period payoffs in wt when At adapts to realizations
of wt ( d2π/ dw2

t ), (iii) the curvature of intertemporal value in wt, and (iv) the curvature of
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per-period steady-state payoffs in C.1 Empirical work (e.g., Deschênes and Greenstone,
2007) will commonly estimate (ii), because per-period payoffs are observable as profit and
actions are often not observable.2

The first part of Proposition 7 establishes that the type of curvature estimated as (i),
(ii), or (iii) is at least as extreme as the curvature of steady-state payoffs in climate (iv).
Empirical estimates should therefore be taken as an upper bound on the nonlinearity of
climate impacts. Intuitively, an agent undertakes greater adjustment to a permanent change
in climate than to transient weather shocks, and this greater adjustment reduces the impact
on payoffs.

The second part of Proposition 7 establishes that the nonlinearity of weather impacts
can adequately approximate the nonlinearity of climate impacts when there are no avoidable
weather impacts (γ → 0) and when maintenance costs become infinitely large (φ → ∞).
In these rather special cases, actions do not adjust to a change in climate. In more general
cases, nonlinear weather impacts strictly overestimate the nonlinearity of climate impacts.

But perhaps detecting nonlinear weather impacts tells us something qualitative about
climate change? The third part of the proposition establishes that climate impacts can be
linear even when weather impacts are nonlinear. In particular, let φ = 0 and ψ = 0. Climate
then has no effect on steady-state value because there are no unavoidable weather impacts
and the agent adjusts her actions to completely offset the avoidable weather impacts from a
change in climate (Ass = C). However, when α > 0, this agent will not choose to completely
offset the effects of transient weather events. Transient weather events can then impose
arbitrarily nonlinear avoidable costs even though climate change imposes no costs at all in
the long run.3

1Proposition 5 relates the curvature of per-period steady-state payoffs in C to the curvature of intertem-

poral value in C: d2V (Ass,C,C)
dC2 = 1

1−β
d2π(Ass,Ass,C)

dC2 .
2Or at least it will estimate (ii) if it conditions on forecasts: the definition of dπ/dwt used here does

not allow Zt to change with wt. See Section C for a discussion of the implications of not conditioning on
forecasts.

3Nonlinear weather impacts do tell us about a less-studied aspect of climate change. From the proof of
Proposition 1, we know that [β/(1− β)]a2 measures the cost of changing the variance of weather outcomes,
holding all other variances and covariances constant. Estimating nonlinear weather impacts implies that
a2 < 0 instead of a2 = 0. If we expect climate change to change the variance of the weather, then the
nonlinearity of weather impacts can measure the cost of this effect. However, care should be taken to
apportion any change in variance due to climate change between the variance σ2 of the weather conditional
on forecasts and the variance τ2

i of each forecast. This requires detailed modeling of not just how climate
change affects the variance of realized weather but of how climate change affects the forecastability of weather
at each horizon.
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B What forecasts tell us about the effect of climate on

value

Now consider how we can use observable variation in forecasts to learn about climate impacts.
We saw in the main text that using variation in forecasts can improve an empirical analyst’s
ability to estimate changes in steady-state actions. We have already seen that ATEV

w (C) and
ATEπ

w(C) are sufficient statistics for the effect of climate change on steady-state per-period
payoffs. Does using forecasts add anything here? Let ATEV

fi
(C) and ATEπ

fi
(C) denote the

average treatment effect of forecasts at horizon i around a steady state, defined analogously
to ATEV

w (C) and ATEπ
w(C). We now have:

Proposition 8.

1. ATEV
fi

(C) = βiATEV
w (C).

2. As N →∞, ATEV
w (C) +

∑N
i=1ATE

V
fi

(C)→ dV (Ass,C,C)
dC

.

3. dV (Ass,C,C)
dC

= ATEVw (C)

1−
(
ATEV

fi
(C)

ATEVw (C)

) 1
i
.

4. ATEπ
fi

(C) = 0.

Proof. See appendix.

The first part of the proposition says that the average treatment effect of forecasts on value is
the discounted average treatment effect of weather, which Proposition 6 showed is the average
treatment effect of climate on per-period payoffs. We can therefore derive the change in per-
period payoffs from either estimate, provided we have an estimate of β in hand. The second
and third parts of the proposition show that if we use both types of treatment effects, then
we can identify not only the change in steady-state per-period payoffs but also the discount
factor β. We can then exactly identify the present value of the change in steady-state value
as revealed by the agent’s own actions. The final part of the proposition shows that it is
critical that the dependent variable be a forward-looking measure of value such as land prices
or stock prices. Per-period payoffs (e.g., profits) will not, on average, respond to forecasts
around a steady state.

C Omitted variables bias from ignoring forecasts

Most empirical to date work has ignored the existence of weather forecasts. We have seen
that forecasts can provide valuable information, but our analysis also implies that ignoring
forecasts acts like omitted variables bias when estimating the consequences of weather (see
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also Lemoine, 2017; Shrader, 2017).4 Accounting for forecasts is therefore not optional. The
covariance between wt and fit is, for t > N ,

Cov0(wt, fit) =Cov0

(
εt +

N∑
k=1

νk(t−k),

N−i∑
j=0

ν(i+j)(t−j)

)

=ρi +
N−i∑
k=1

δk(i+k).

In applications, we can reasonably expect each ρ and δ to be positive, with many strictly
positive. We can therefore reasonably expect this covariance to be strictly positive. The bias
from estimating ∂V/∂wt without accounting for Ft is proportional to

N∑
i=1

∂V (Zt, wt, Ft)

∂fit
Cov0(wt, fit).

When wt and fit affect V in the same way, omitting forecasts will generally overestimate
the magnitude of ∂V/∂w. A similar analysis applies if the dependent variable were At in-
stead of V .5 Yet since we have previously seen that combining forecasts with weather can
generate useful information, one might wonder whether entwining forecasts and weather
through omitted variables bias might actually use weather and forecasts in the desired fash-
ion. Unfortunately, this is not generally the case: the ρ and δ terms that are critical to
omitted variables bias did not appear in any earlier derivation.6 Taking advantage of varia-
tion in forecasts does require explicitly estimating the effects of weather and of forecasts at
each horizon. Empirical work should more carefully consider the informational structure of
weather shocks and take care to estimate the treatment effect of interest.

4Previous work has shown that forecasts matter for outcome variables in a variety of contexts, suggesting
that we cannot assume that ∂V/∂fit = 0 or that ∂At/∂fit = 0. Lave (1963) illustrates the value of rain
forecasts to raisin growers, and Wood et al. (2014) find that developing-country farmers with better access
to weather information make more changes in their farming practices. Neidell (2009) demonstrates the
importance of accounting for forecasts when estimating the health impacts of air pollution. Studying Indian
agriculture, Rosenzweig and Udry (2013) show that farmers’ investments respond to forecasts (and respond
more strongly to more skillful forecasts), and Rosenzweig and Udry (2014) show that forecasts of planting
season weather affect migration decisions and thus wages. Shrader (2017) shows that fishers’ revenue and
effort both respond to seasonal forecasts of El Niño events. Severen et al. (2016) show that land markets
capitalize forecasts of climate change.

5However, the concern is mitigated if the dependent variable is π and actions are near the steady state.
Forecasts affect π only through At−1, and we saw that the marginal effect of At−1 vanishes around a steady
state. Therefore omitted variables bias is not a concern when estimating the consequences of weather on
per-period payoffs around a steady state.

6In a regression of either value or actions on weather with forecasts acting as the only bias-generating
omitted variables, the usual ordinary least squares formula shows that omitted variables bias induces the
desired combination of weather and forecasts if and only if Cov0(wt, fit) = V ar0(wt) for all i. There is no
reason for this relationship to hold in practice.
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D Generalizing the functional form for payoffs

I now analyze a general functional form for payoffs rather than the quadratic form analyzed
in the main text. I also now allow for K ≥ 1 types of actions, indexed as Akt for k ∈
{1, ..., K}. Let time t payoffs be π(At,At−1, wt), where At , {A1

t , ..., A
K
t } and At−1 ,

{A1
t−1, ..., A

K
t−1}. π1k indicates a partial derivative with respect to Akt , π2k indicates a partial

derivative with respect to Akt−1, and π3 indicates a partial derivative with respect to wt.
Assume declining marginal benefits of current and past adaptation investments: π1k1k <
0, π2k2k ≤ 0. Adjustment costs mean that the marginal benefit of current actions increases
in the level of previous actions (π1k2k > 0). Finally, assume that the effect of weather on
payoffs does not depend directly on past adaptation actions: π2k3 = 0.

We modify the transition equations for weather and forecasts to multiply each disturbance
term by a perturbation parameter ζ ≥ 0. The Bellman equation is now:

V (Zt, wt, Ft; ζ) = max
At

{
π(At,Zt, wt) + βEt [V (Zt+1, wt+1, Ft+1; ζ)]

}
s.t. Zt+1 =At

wt+1 =f1t + ζεt+1

fi(t+1) =f(i+1)t + ζνi(t+1) for i < N

fN(t+1) =C + ζνN(t+1).

We will be especially interested in the following assumption:

Assumption 1. π2k(At,At−1, wt) = 0 if Akt−1 = Akt .

This assumption says that small changes in past actions do not affect payoffs when they
match current actions. It will be satisfied by many specifications of adjustment costs, in-
cluding the specification in the main text.

First consider the deterministic system, with ζ = 0. In this case, all weather and forecasts
are simply equal to C. The K first-order conditions are:

0 = π1k(At,Zt, C) + βV1k(Zt+1, C,C; 0).

The envelope theorem yields:

V1k(Zt, C,C; 0) = π2k(At,Zt, C).

Advancing this forward by one timestep and substituting into the first-order conditions, we
have the K Euler equations:

0 = π1k(At,Zt, C) + βπ2k(At+1,At, C).
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A steady state Ā is defined by the following K equations:

0 = π1k(Ā, Ā, C) + βπ2k(Ā, Ā, C).

Assumption 1 would imply that π1k(Ā, Ā, C) = 0. We also have:

dĀk

dC
=

π1k3(Ā, Ā, C)

−π1k1k(Ā, Ā, C)− (1 + β)π1k2k(Ā, Ā, C)− βπ2k2k(Ā, Ā, C)
,

where we use π2k3 = 0.7

We now analyze the policy rule in the full system. The K first-order conditions are:

0 = π1k(At,Zt, wt) + βEt[V1k(Zt+1, wt+1, Ft+1; ζ)].

The envelope theorem yields:

V1k(Zt, wt, Ft+1; ζ) = π2k(At,Zt, wt).

Advancing this forward by one timestep and substituting, we have the K Euler equations:

0 = π1k(At,Zt, wt) + βEt[π2k(At+1,At, wt+1)].

Approximate the value function via a second-order Taylor series expansion around Zt =

7In the case with K = 1, the steady state is unique if −π11−βπ22 > (1+β)π12. Now consider stability in
the case with K = 1. Use the Euler equation to define A∗

t+1(At, Zt). Linearizing around Ā gives a first-order

difference equation: At+1 ≈ −π11(Ā,Ā,C)−βπ22(Ā,Ā,C)
βπ12(Ā,Ā,C)

At − 1
βZt + D, for some constant D. Combined with

the transition equation for Z, we have a two-dimensional linear system. The product of the eigenvalues

is 1
β > 1, and the sum of the eigenvalues is −π11(Ā,Ā,C)−βπ22(Ā,Ā,C)

βπ12(Ā,Ā,C)
> 0. Therefore both eigenvalues are

positive and at least one is greater than 1. Forming the characteristic equation and solving for the condition
under which the smallest root is less than 1, we find that the system is saddle-path stable if and only if
−π11(Ā, Ā, C)− βπ22(Ā, Ā, C) > (1 + β)π12(Ā, Ā, C), which is ensured if π satisfies the sufficient condition
for uniqueness. Further, if the system is saddle-path stable, then dĀ/ dC > 0 if and only if π13(Ā, Ā, C) > 0.
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Ā, wt = C, Ft = C, and ζ = 0:

V (Zt, wt, Ft; ζ) ≈V (Ā, C,C; 0) +
K∑
k=1

∂V

∂Zk
t

∣∣∣∣
(Ā,C,C,0)

(Zk
t − Āk) +

∂V

∂wt

∣∣∣∣
(Ā,C,C,0)

(wt − C)

+
N∑
i=1

∂V

∂fit

∣∣∣∣
(Ā,C,C,0)

(fit − C) +
∂V

∂ζ

∣∣∣∣
(Ā,C,C,0)

ζ

+
1

2

K∑
k=1

∂2V

∂Zk
t

2

∣∣∣∣
(Ā,C,C,0)

(Zk
t − Āk)2 +

1

2

∂2V

∂w2
t

∣∣∣∣
(Ā,C,C,0)

(wt − C)2

+
1

2

N∑
i=1

∂2V

∂f 2
it

∣∣∣∣
(Ā,C,C,0)

(fit − C)2 +
1

2

∂2V

∂ζ2

∣∣∣∣
(Ā,C,C,0)

ζ2

+
K∑
k=1

∂2V

∂Zk
t ∂wt

∣∣∣∣
(Ā,C,C,0)

(Zk
t − Āk)(wt − C)

+
K∑
k=1

N∑
i=1

∂2V

∂Zk
t ∂fit

∣∣∣∣
(Ā,C,C,0)

(Zk
t − Āk)(fit − C)

+
N∑
i=1

∂2V

∂wt∂fit

∣∣∣∣
(Ā,C,C,0)

(wt − C)(fit − C)

+
N−1∑
i=1

N∑
j=i+1

∂2V

∂fit∂fjt

∣∣∣∣
(Ā,C,C,0)

(fit − C)(fjt − C)

+
K∑
k=1

∂2V

∂Zk
t ∂ζ

∣∣∣∣
(Ā,C,C,0)

(Zk
t − Āk)ζ +

∂2V

∂wt∂ζ

∣∣∣∣
(Ā,C,C,0)

(wt − C)ζ

+
N∑
i=1

∂2V

∂fit∂ζ

∣∣∣∣
(Ā,C,C,0)

(fit − C)ζ +
K−1∑
k=1

K∑
j=k+1

∂2V

∂Zk
t ∂Z

j
t

∣∣∣∣
(Ā,C,C,0)

(Zk
t − Āk)(Z

j
t − Āj).
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Use the envelope theorem to substitute for several of the derivatives and impose π2k3 = 0:

V (Zt, wt, Ft; ζ) ≈V (Ā, C,C; 0) +
K∑
k=1

π̄2k(Z
k
t − Āk) + π̄3(wt − C)

+
1

2

K∑
k=1

π̄2k2k(Z
k
t − Āk)2 +

1

2
π̄33(wt − C)2 +

K−1∑
k=1

K∑
j=k+1

π̄2k2j(Z
k
t − Āk)(Z

j
t − Āj)

+
∂V

∂ζ

∣∣∣∣
(Ā,C,C,0)

ζ +
1

2

∂2V

∂ζ2

∣∣∣∣
(Ā,C,C,0)

ζ2

+
N∑
i=1

∂V

∂fit

∣∣∣∣
(Ā,C,C,0)

(fit − C) +
1

2

N∑
i=1

∂2V

∂f 2
it

∣∣∣∣
(Ā,C,C,0)

(fit − C)2

+
N−1∑
i=1

N∑
j=i+1

∂2V

∂fit∂fjt

∣∣∣∣
(Ā,C,C,0)

(fit − C)(fjt − C) +
N∑
i=1

∂2V

∂fit∂ζ

∣∣∣∣
(Ā,C,C,0)

(fit − C)ζ,

where we write π̄ for π(Ā, Ā, C). Consider the remaining derivatives. First, we have:

∂V (Zt, wt, Ft; ζ)

∂fit

∣∣∣∣
(Ā,C,C,0)

=βEt

[
∂V (Zt+1, wt+1, Ft+1; ζ)

∂f(i−1)(t+1)

]
for i > 1,

∂V (Zt, wt, Ft; ζ)

∂f1t

∣∣∣∣
(Ā,C,C,0)

=βEt

[
∂V (Zt+1, wt+1, Ft+1; ζ)

∂wt+1

]
= βEt[π3(t+ 1)],

where we save notation by using t + 1 to stand in for the arguments of π and leaving the
conditioning of time t expectations on the evaluation points Ā and C implicit. These imply:

∂V (Zt, wt, Ft; ζ)

∂fit

∣∣∣∣
(Ā,C,C,0)

=βiEt[π3(t+ i)].

Similar derivations yield

∂2V (Zt, wt, Ft; ζ)

∂f 2
it

∣∣∣∣
(Ā,C,C,0)

=βiEt[π33(t+ i)],

∂2V (Zt, wt, Ft; ζ)

∂fit∂fjt

∣∣∣∣
(Ā,C,C,0)

=0.
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Now consider derivatives with respect to ζ:

∂V (Zt, wt, Ft; ζ)

∂ζ

∣∣∣∣
(Ā,C,C,0)

=βEt

[
∂V (Zt+1, wt+1, Ft+1; ζ)

∂wt+1

εt+1

]
+ β

N∑
i=1

Et

[
∂V (Zt+1, wt+1, Ft+1; ζ)

∂fi(t+1)

νi(t+1)

]
+ βEt

[
∂V (Zt+1, wt+1, Ft+1; ζ)

∂ζ

]
=
∞∑
s=1

βs

{
Covt [π3(t+ s), εt+s] +

N∑
i=1

βiCovt
[
π3(t+ s+ i), νi(t+s)

]}
,

∂2V (Zt, wt, Ft; ζ)

∂ζ2

∣∣∣∣
(Ā,C,C,0)

=βEt

[
∂2V (Zt+1, wt+1, Ft+1; ζ)

∂w2
t+1

ε2t+1

]

+ 2β
N∑
i=1

Et

[
∂2V (Zt+1, wt+1, Ft+1; ζ)

∂wt+1∂fi(t+1)

εt+1νi(t+1)

]

+ β
N∑
i=1

Et

[
∂2V (Zt+1, wt+1, Ft+1; ζ)

∂f 2
i(t+1)

ν2i(t+1)

]

+ 2β
N−1∑
i=1

N∑
j=i+1

Et

[
∂2V (Zt+1, wt+1, Ft+1; ζ)

∂fi(t+1)∂fj(t+1)

νi(t+1)νj(t+1)

]
+ βEt

[
∂2V (Zt+1, wt+1, Ft+1; ζ)

∂ζ2

]
=
∞∑
s=1

βs
{
Et [π33(t+ s)]σ2 + Covt

[
π33(t+ s), ε2t+s

]
+

N∑
i=1

βiEt [π33(t+ s+ i)] τ 2i +
N∑
i=1

βiCovt
[
π33(t+ s+ i), ν2i(t+s)

]}
,

∂2V (Zt, wt, Ft; ζ)

∂ζ∂fit

∣∣∣∣
(Ā,C,C,0)

=βiCovt

[
π33(t+ i), εt+i +

i−1∑
s=1

ν(i−s)(t+s)

]
.
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Substitute in:

V (Zt, wt, Ft; ζ) ≈V (Ā, C,C; 0) +
K∑
k=1

π̄2k(Z
k
t − Āk) + π̄3(wt − C) +

1

2

K∑
k=1

π̄2k2k(Z
k
t − Āk)2

+
1

2
π̄33(wt − C)2 +

K−1∑
k=1

K∑
j=k+1

π̄2k2j(Z
k
t − Āk)(Z

j
t − Āj)

+
N∑
i=1

βiEt[π3(t+ i)](fit − C) +
1

2

N∑
i=1

βiEt[π33(t+ i)](fit − C)2

+
N∑
i=1

βiCovt

[
π33(t+ i), εt+i +

i−1∑
s=1

ν(i−s)(t+s)

]
(fit − C)ζ

+
∞∑
s=1

βs

{
Covt [π3(t+ s), εt+s] +

N∑
i=1

βiCovt
[
π3(t+ s+ i), νi(t+s)

]}
ζ

+
1

2

∞∑
s=1

βs
{
Et [π33(t+ s)]σ2 + Covt

[
π33(t+ s), ε2t+s

]
+

N∑
i=1

βiEt [π33(t+ s+ i)] τ 2i +
N∑
i=1

βiCovt
[
π33(t+ s+ i), ν2i(t+s)

]}
ζ2.

Now consider the time 0 expectation of value at some time t > N :

E0[V (Zt, wt, Ft; ζ)] ≈V (Ā, C,C; 0) +
K∑
k=1

π̄2kE0[Z
k
t − Āk] +

1

2

K∑
k=1

π̄2k2kE0[(Z
k
t − Āk)2]

+
K−1∑
k=1

K∑
j=k+1

π̄2k2jE0

[
(Zk

t − Āk)(Z
j
t − Āj)

]
+

1

2
π̄33

(
σ2 +

N∑
i=1

τ 2i

)
ζ2 +

1

2

N∑
i=1

βiE0[π33(t+ i)]
N∑
j=i

τ 2j ζ
2

+
∞∑
s=1

βs

{
Cov0 [π3(t+ s), εt+s] +

N∑
i=1

βiCov0
[
π3(t+ s+ i), νi(t+s)

]}
ζ

+
1

2

∞∑
s=1

βs
{
E0 [π33(t+ s)]σ2 + Cov0

[
π33(t+ s), ε2t+s

]
+

N∑
i=1

βiE0 [π33(t+ s+ i)] τ 2i +
N∑
i=1

βiCov0
[
π33(t+ s+ i), ν2i(t+s)

]}
ζ2.
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The derivative with respect to climate is:

dE0[V (Zt, wt, Ft; ζ)]

dC
≈ dV (Ā, C,C; 0)

dC
+

K∑
k=1

π̄2kE0

[
dZk

t

dC

]
+

K∑
k=1

π̄2k2kE0

[
(Zk

t − Āk)
(

dZk
t

dC
− dĀk

dC

)]

+
K−1∑
k=1

K∑
j=k+1

π̄2k2jE0

[
dZk

t

dC
(Zj

t − Āj) + (Zk
t − Āk)

dZj
t

dC

]

+
1

2
π̄333

(
σ2 +

N∑
i=1

τ 2i

)
ζ2 +

1

2

N∑
i=1

βiE0[π333(t+ i)]
N∑
j=i

τ 2j ζ
2

+
∞∑
s=1

βs

{
Cov0 [π33(t+ s), εt+s] +

N∑
i=1

βiCov0
[
π33(t+ s+ i), νi(t+s)

]}
ζ

+
1

2

∞∑
s=1

βs
{
E0 [π333(t+ s)]σ2 + Cov0

[
π333(t+ s), ε2t+s

]
+

N∑
i=1

βiE0 [π333(t+ s+ i)] τ 2i +
N∑
i=1

βiCov0
[
π333(t+ s+ i), ν2i(t+s)

]}
ζ2.

The terms on the first line are analogous to the terms in the main text, capturing the change
in steady-state value and the change in transition value. In the main text, the second
term on the first line vanished because Assumption 1 held. The second line arises only for
K > 1. The remaining lines are new, as they vanish when π is quadratic. They capture
how preferences for variance change with climate. π̄333 > 0 means that the agent prefers to
attach a weather lottery to a high climate state, analogous to standard interpretations of
prudence in consumption. The whole expression is arbitrarily close to the expression in the
main text when Assumption 1 holds, K = 1, and either π333 or ζ is small.

We now analyze how steady-state value changes with C. We have:

V (Ā, C,C; 0) =
1

1− β
π(Ā, Ā, C).

We then have:

dV (Ā, C,C; 0)

dC
=

1

1− β
dπ(Ā, Ā, C)

dC
.

That change in steady-state payoffs is:

dπ(Ā, Ā, C)

dC
=π̄3 +

K∑
k=1

(π̄1k + π̄2k)
dĀk

dC

=π̄3 +
K∑
k=1

(π̄1k + π̄2k)
π̄1k3

−π̄1k1k − (1 + β)π̄1k2k − βπ̄2k2k
.
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Using π̄1k = −βπ̄2k from the Euler equations, we have:

dπ(Ā, Ā, C)

dC
=π̄3 + (1− β)

K∑
k=1

π̄2k
π̄1k3

−π̄1k1k − (1 + β)π̄1k2k − βπ̄2k2k
.

Now analyze the average treatment effect of weather:

ATEπ
w(C) ,E0

[
dπ(At,At−1, wt)

dwt

]
=E0

[
π3(At,At−1, wt) +

K∑
k=1

π1k(At,At−1, wt)
∂Akt (At−1, wt)

∂wt

]
.

If π is quadratic, then π1k , π3, and Akt are linear and we can pass the expectation operator
through to the arguments. The expression then exactly equals dπ̄/ dC if we also impose As-
sumption 1. Now consider the general case. Use a second-order Taylor series approximation
to the term in brackets around At = Ā, At−1 = Ā, and wt = C, assume that actions are on
average near their steady state, and use π2k3 = 0 and π̄1k = −βπ̄2k :

ATEπ
w(C) =π̄3 − β

K∑
k=1

π̄2k
π̄1k3

−π̄1k1k − (1 + β)π̄1k2k − βπ̄2k2k

+
K∑
k=1

K∑
j=k

B1kjCov0[A
k
t , A

j
t ] +

K∑
k=1

K∑
j=k

B2kjCov0[A
k
t−1, A

j
t−1] +B3ζ

2

[
σ2 +

N∑
i=1

τ 2i

]

+
K∑
k=1

K∑
j=1

B4kjCov0[A
k
t , A

j
t−1] +

K∑
k=1

B5kCov0[A
k
t , wt] +

K∑
k=1

B6kCov0[A
k
t−1, wt],

for constants B. The variances and covariances all vanish as ζ → 0, leaving only the first line.
That first line differs from dπ̄/ dC by having −βπ̄2k in place of (1−β)π̄2k , and it is identical
to dπ̄/ dC if Assumption 1 holds. Therefore, we have established conditions under which the
main result of the paper holds in a general setting: ATEπ

w(C) ≈ dπ̄/ dC when Assumption 1
holds and either π is quadratic or ζ is not too large.8 The main result of the paper therefore
holds under general, non-quadratic payoff functions (and vector-valued actions) as long as
i) the variance of weather outcomes is not too large and ii) adjustment costs vanish when
current and past actions match each other. These are the same conditions that earlier
ensured that the general form of dE0[V (Zt, wt, Ft; ζ)]/ dC matched the expression derived
in the main text.

8If we had instead defined ATEπw(C) as E0[∂π(At,At−1, wt)/∂wt], then we would not require Assump-
tion 1. Also, we defined ATEπw(C) as the average treatment effect conditional on forecasts (so that At−1 did
not depend on wt). The primary result would be unchanged if we had allowed forecasts, and thus At−1, to
reflect the change in weather.
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E Proofs and Lemmas

E.1 Proof of Proposition 1

Guess that the value function has the form given in the statement of the proposition. The
continuation value becomes:

Et[V ] =a1A
2
t + a2σ

2 + a2f
2
1t +

∑
i

ai3τ
2
i +

∑
i<N

ai3f
2
(i+1)t + aN3 C

2

+ b1Atf1t + At
∑
i<N

bi2f(i+1)t + Atb
N
2 C

+ f1t
∑
i<N

bi3f(i+1)t + f1tb
N
3 C +

∑
i

ρib
i
3

+
N−2∑
i=1

N−1∑
j=i+1

bij4 f(i+1)tf(j+1)t +
N−1∑
i=1

biN4 f(i+1)tC +
N−1∑
i=1

N∑
j=i+1

bij4 δij

+ c1At + c2f1t +
∑
i<N

ci3f(i+1)t + cN3 C + d.

The first-order condition is

γ(At − wt) + α(At − Zt) + φ(At − Ā) =βEt[VZ(Zt+1, wt+1,Ft+1]

=β

[
2a1At + b1f1t +

∑
i<N

bi2f(i+1)t + bN2 C + c1

]
,

which implies that optimal actions are

A∗t =
αZt + γwt + βb1f1t + β

∑
i<N b

i
2f(i+1)t + βbN2 C + βc1 + φĀ

γ + α + φ− 2βa1
.

Substitute A∗t into the Bellman equation. Matching coefficients to the guessed form of
the value function and simplifying, the quadratic coefficients are:

a1 =
1

2

α2

γ + α + φ− 2βa1
− 1

2
α,

a2 =
1

2
γ

[
γ

γ + α + φ− 2βa1
− 1

]
− 1

2
ψ,

a13 =
1

2

[βb1]
2

γ + α + φ− 2βa1
+ βa2,

ai3 =
1

2

[βbi−12 ]2

γ + α + φ− 2βa1
+ βai−13 .
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Rearrange the solution for a1:

βa21 −
1

2
(γ + α + φ− βα)a1 −

1

4
α(γ + φ) = 0.

Note that a1 is independent of C. If β = 0, then the left-hand side is linear in a1 and the
unique solution has a1 ≤ 0, with a1 < 0 if and only if α(γ + φ) > 0. Recalling that we
assumed that γ + φ > 0, we then have a1 < 0 if and only if α > 0. If β > 0, then the
left-hand side describes a parabola in a1 that opens up. If α(γ + φ) = 0 with β > 0, then
there is a root at zero and a second root that is strictly positive. If αβ(γ + φ) > 0, then the
parabola has a strictly negative y-intercept and its roots must be of opposite sign. The two
roots are

a1 =
1

2β

{
1

2
[γ + α + φ− βα]±

√
1

4
(γ + α + φ− βα)2 + βα(γ + φ)

}
.

The second-order condition for A∗t to be a maximum is

0 <γ + α + φ− 2βa1.

This is satisfied for a1 ≤ 0, using that γ+φ > 0. The second-order condition therefore holds
at the negative root of a1. As we solve for the other coefficients, we will find that they are
unique conditional on a1. Therefore the first-order condition is satisfied at only two points,
determined by the two roots of a1. Since we know that the value function is strictly concave
in At at the point with negative a1, the point with positive a1 must either be a saddle point
or a minimum. We therefore are only interested in the negative root of a1 and will henceforth
ignore the strictly positive root.

Finding that a1 ≤ 0 implies that a2 ≤ 0. This inequality is strict if either γ > 0, γα > 0,
or γφ > 0. a2 is independent of C because a1 is independent of C.
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Matching coefficients again, the coefficients on the interaction terms become:

b1 =α
γ

γ + α + φ− 2βa1
,

b12 =
αβb1

γ + α + φ− 2βa1
,

bi2 =
αβbi−12

γ + α + φ− 2βa1
for i > 1,

b13 =γ
βb1

γ + α + φ− 2βa1
,

bi3 =βbi−12

γ

γ + α + φ− 2βa1
for i > 1,

b1j4 =βbj−12

βb1
γ + α + φ− 2βa1

+ βbj−13 ,

bij4 =
β2bi−12 bj−12

γ + α + φ− 2βa1
+ βb

(i−1)(j−1)
4 for i > 1.

Note that we can write

bi2 =

[
αβ

γ + α + φ− 2βa1

]i
b1 and bi3 =

γ

α
bi2,

for all i ∈ {1, ..., N}. Using a1 ≤ 0, we have b1 ≥ 0, which implies bi2 ≥ 0, which in turn
implies bi3 ≥ 0, which in turn implies bij4 ≥ 0. Clearly b1 > 0 iff αγ > 0, and each of the other
b coefficients is strictly positive iff b1 > 0 and β > 0. Finally, because a1 is independent of
C, we have that each b coefficient is independent of C.
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Now use the solutions for bi2 and b1 to analyze ai3:

ai3 =
i−2∑
k=0

βk
1

2

[βbi−1−k2 ]2

γ + α + φ− 2βa1
+ βi−1a13

=
1

2

[βb1]
2

γ + α + φ− 2βa1

i−1∑
k=0

βk
[

αβ

γ + α + φ− 2βa1

]2(i−1−k)
+ βi

[
1

2
γ

[
γ

γ + α + φ− 2βa1
− 1

]
− 1

2
ψ

]

=
1

2

γ2

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]2i i∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k
− 1

2
βi [γ + ψ]

=
1

2

γ2

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]2i 1− βi+1
[

αβ
γ+α+φ−2βa1

]−2(i+1)

1− β
[

αβ
γ+α+φ−2βa1

]−2 − 1

2
βi [γ + ψ]

=βi

1

2
γ

γ

γ + α + φ− 2βa1

1− βi+1
[

α
γ+α+φ−2βa1

]2i+2

1− β
[

α
γ+α+φ−2βa1

]2 − 1

2
[γ + ψ]

 . (A-1)

Note that ai3 is independent of C. The term in braces increases in i, and it strictly increases
in i if and only if αβ > 0. It is weakly greater than a2 and is strictly greater than a2 if and
only if αβγ > 0. As i→∞, the term in braces goes to:

1

2
γ

γ

γ + α + φ− 2βa1

1

1− β
[

α
γ+α+φ−2βa1

]2 − 1

2
[γ + ψ]

=
1

2
γ

γ(γ + α + φ− 2βa1)

(γ + α + φ− 2βa1)2 − (αβ)2
− 1

2
[γ + ψ]

=
1

2
γ

γ(γ + α + φ− 2βa1)

γ(γ + α + φ− 2βa1) + α2 + α(γ + φ− 2βa1) + (φ− 2βa1)(γ + α + φ− 2βa1)− (αβ)2
− 1

2
[γ + ψ]

=− 1

2
γ

α(γ + φ− 2βa1) + (φ− 2βa1)(γ + α + φ− 2βa1) + (1− β2)α2

γ(γ + α + φ− 2βa1) + α(γ + φ− 2βa1) + (φ− 2βa1)(γ + α + φ− 2βa1) + (1− β2)α2
− 1

2
ψ

≤0.

This is strictly negative if either ψ > 0, γφ > 0, or γα > 0, and it is equal to zero otherwise.
Therefore, if ψ+ γ(φ+α) +αβ > 0, then the term in braces in (A-1) is strictly negative for
all finite i, and if ψ + γ(φ+ α) + αβ = 0, then the term in braces in (A-1) is zero.
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Now match the coefficients on the linear terms:

c1 =α
βbN2 C + βc1 + φĀ

γ + α + φ− 2βa1
,

c2 =γ
βbN2 C + βc1 + φĀ

γ + α + φ− 2βa1
+ ψw̄,

c13 =βb1
βbN2 C + βc1 + φĀ

γ + α + φ− 2βa1
+ βbN3 C + βc2,

ci3 =βbi−12

βbN2 C + βc1 + φĀ

γ + α + φ− 2βa1
+ β

[
b
(i−1)N
4 C + ci−13

]
.

Solve for c1:

c1 = α
βbN2 C + φĀ

γ + α + φ− 2βa1 − αβ
.

This increases in C, strictly increases in C iff αβγ > 0, and is strictly positive iff C >
−φĀ/[βbN2 ]. Substituting into the expression for c2, we have:

c2 = γ
c1
α

+ ψw̄.

This increases in C, strictly increases in C iff αβγ > 0, and is positive if c1 ≥ 0 and w̄ ≥ 0.
Substituting for c1 and for the recursive terms in each ci3, we find:

ci3 = βib1
c1
α

i−1∑
j=0

[
α

γ + α + φ− 2βa1

]j
+ βi

i−1∑
j=1

β−jbjN4 C + βi
[
bN3 C + c2

]
.

This too increases in C, strictly increases in C iff αβγ > 0, and is positive if c1 ≥ 0 and
w̄ ≥ 0.

Finally, matching coefficients yields the constant:

d =
1

2
(βbN2 C + βc1 + φĀ)

c1
α

+ βa2σ
2 + β

∑
i

ai3τ
2
i

+ βcN3 C + βaN3 C
2 +

N−1∑
i=1

N∑
j=i+1

bij4 δij +
∑
i

ρib
i
3 −

1

2
φĀ2 − 1

2
ψw̄2 + βd.

Solving for d yields:

d =
1

1− β

{
1

2
(βbN2 C + βc1 + φĀ)

c1
α

+ βa2σ
2 + β

∑
i

ai3τ
2
i

+ βcN3 C + βaN3 C
2 +

N−1∑
i=1

N∑
j=i+1

bij4 δij +
∑
i

ρib
i
3 −

1

2
φĀ2 − 1

2
ψw̄2

}
.

A-17



Lemoine Appendix: Sufficient Statistics for Climate August 2018

E.2 Two Lemmas

The first lemma establishes properties of a1 that will come in handy in later proofs.

Lemma 9.

1. a1 → 0 as α→ 0.

2. βa1 → 0 as β → 0.

3. a1 → −1
2
γ+φ
1−β as α→∞.

4. a1 → −1
2
α as either γ →∞ or φ→∞.

Proof. The first claim follows from the analysis in the proof of Proposition 1.
To prove the second claim, first observe that the proof of Proposition 1 showed that

βa1 = 0 if β = 0. Then note that as β goes to 0, we have:

lim
β→0

βa1 =
1

2

{
1

2
[γ + α + φ]±

√
1

4
(γ + α + φ)2

}
= 0.

We now consider the third claim. First assume that β = 0. We have:

lim
α→∞

a1 =− 1

2
(γ + φ).

Now assume that β > 0. Rewrite a1 as

a1 =
1

4β

1−
√

1 + 4 βα(γ+φ)
(γ+α+φ−βα)2

1
γ+α+φ−βα

.

We have:

lim
α→∞

a1 =
0

0
.

Use L’Hôpital’s Rule:

lim
α→∞

a1 = lim
α→∞

1

2β(1− β)

β(γ + φ)− 2βα(γ+φ)(1−β)
γ+α+φ−βα√

1 + 4 βα(γ+φ)
(γ+α+φ−βα)2

=− 1

2

γ + φ

1− β
.
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Now consider the fourth claim. First assume that β = 0. We have:

lim
γ→∞

a1 =− 1

2
α,

lim
φ→∞

a1 =− 1

2
α.

Now assume that β > 0. As above, we have:

lim
γ→∞

a1 =
0

0
.

Use L’Hôpital’s Rule:

lim
γ→∞

a1 = lim
γ→∞

1

β

−1
2

βα

(γ+α+φ−βα)2
−2 βα(γ+φ)

(γ+α+φ−βα)3√
1+4

βα(γ+φ)

(γ+α+φ−βα)2

− 1
(γ+α+φ−βα)2

= lim
γ→∞

1

2β

βα− 2 βα(γ+φ)
γ+α+φ−βα√

1 + 4 βα(γ+φ)
(γ+α+φ−βα)2

=− 1

2
α.

The derivation for φ→∞ is similar.

The second lemma derives a relationship that will be used in several later proofs:

Lemma 10.
γ + α + φ− 2βa1

(γ + φ− 2βa1)(γ + α + φ− 2βa1 − αβ)
=

1

γ + φ

Proof. Using the solution for a1 in the proof of Proposition 1, we have:

γ + φ− 2βa1 =
1

2
(γ + φ) +

√
1

4
(γ + α + φ− βα)2 + βα(γ + φ)− 1

2
(1− β)α,

and

γ + α + φ− 2βa1 − αβ =
1

2
(γ + φ) +

√
1

4
(γ + α + φ− βα)2 + βα(γ + φ) +

1

2
(1− β)α.
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Therefore:

(γ + φ− 2βa1)(γ + (1− β)α + φ− 2βa1)

=
1

4
(γ + φ)2 +

1

4
(γ + α + φ− βα)2 + βα(γ + φ)

+ (γ + φ)

√
1

4
(γ + α + φ− βα)2 + βα(γ + φ)− 1

4
(1− β)2α2

=
1

2
(γ + φ)2 +

1

2
(1− β)α (γ + φ) + βα(γ + φ) + (γ + φ)

√
1

4
(γ + α + φ− βα)2 + βα(γ + φ).

Substitute for 2βa1 and factor γ + φ:

=(γ + φ)

{
γ + φ+ (1− β)α− 2βa1 + βα

}
=(γ + φ)

{
γ + φ+ α− 2βa1

}
.

The lemma follows.

E.3 Proof of Proposition 2

The autonomous first-order linear difference equation that determines Ât is stable because
α

γ+α+φ−2βa1 ∈ [0, 1). The steady state is:

Ass =

(
γ + βb1 + β

∑
i<N b

i
2 + βbN2

)
C + βc1 + φĀ

γ + φ− 2βa1
.
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Substitute for the coefficients from their solutions in the proof of Proposition 1, solve the
geometric series, and simplify:

Ass =

(
γ + βb1

∑N−1
i=0

[
αβ

γ+α+φ−2βa1

]i
+ βb1

[
αβ

γ+α+φ−2βa1

]N
γ+α+φ−2βa1

γ+α+φ−2βa1−αβ

)
C

γ + φ− 2βa1

+
φĀ γ+α+φ−2βa1

γ+α+φ−2βa1−αβ

γ + φ− 2βa1

=

(
γ + βb1

1−
[

αβ
γ+α+φ−2βa1

]N
1− αβ

γ+α+φ−2βa1

+ βb1

[
αβ

γ+α+φ−2βa1

]N
γ+α+φ−2βa1

γ+α+φ−2βa1−αβ

)
C

γ + φ− 2βa1

+
φĀ γ+α+φ−2βa1

γ+α+φ−2βa1−αβ

γ + φ− 2βa1

=

(
γ + βb1

γ+α+φ−2βa1
γ+α+φ−2βa1−αβ

)
C

γ + φ− 2βa1
+
φĀ γ+α+φ−2βa1

γ+α+φ−2βa1−αβ

γ + φ− 2βa1

=

γ+α+φ−2βa1
γ+α+φ−2βa1−αβ

γ + α + φ− 2βa1 − α
γC +

φĀ γ+α+φ−2βa1
γ+α+φ−2βa1−αβ

γ + α + φ− 2βa1 − α

=
γ + α + φ− 2βa1

(γ + φ− 2βa1)(γ + α + φ− 2βa1 − αβ)

[
γC + φĀ

]
. (A-2)

Using Lemma 10, we have:

Ass =
γ

γ + φ
C +

φ

γ + φ
Ā.

E.4 Proof of Proposition 3

From equation (A-2), we have:

dAss

dC
=

γ

γ + α + φ− 2βa1 − αβ
γ + α + φ− 2βa1
γ + φ− 2βa1

.

Using the solution for At in Proposition 1 and the solutions for the coefficients given in the
proof of that proposition, we have:

∂At
∂wt

=
γ

γ + α + φ− 2βa1
,

∂At
∂f1t

=
βb1

γ + α + φ− 2βa1

=
γ

γ + α + φ− 2βa1

αβ

γ + α + φ− 2βa1
.
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We also have, for i > 1,

∂At
∂fit

=
βbi−12

γ + α + φ− 2βa1

=
β

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]i−1
αγ

γ + α + φ− 2βa1

=
γ

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]i
.

Therefore,

∂At
∂wt

+

j∑
i=1

∂At
∂fit

=
γ

γ + α + φ− 2βa1

j∑
i=0

[
αβ

γ + α + φ− 2βa1

]i
=

γ

γ + α + φ− 2βa1 − αβ

[
1−

(
αβ

γ + α + φ− 2βa1

)j+1
]
.

Assuming γ > 0, we now have:

Bias(j) =

[
1−

(
αβ

γ + α + φ− 2βa1

)j+1
]

γ + φ− 2βa1
γ + α + φ− 2βa1

− 1.

The term in square brackets is in (0, 1], and the fraction outside of the square brackets is in
(0, 1]. Therefore Bias(j) ∈ (−1, 0]. As α→ 0, Bias(j)→ 0. For α > 0, the fraction outside
of the square brackets is < 1, so Bias(j) < 0.

It is clear that Bias(j) is independent of N . The term in parentheses is in [0, 1), so the
term in square brackets increases in j. Therefore dBias(j)/ dj ≥ 0. As β → 0, Bias(j)
becomes constant in j (using Lemma 9).

As j,N →∞, the term in brackets goes to 1, so Bias(j)→ −α/[γ + α + φ− 2βa1].
Using Lemma 9, note that ∂At/∂wt, ∂At/∂fit → 0 as α → ∞. Again using Lemma 9,

the term in parentheses in Bias(j) goes to 1 as α→∞ and the fraction outside parentheses
goes to 0 as α→∞. Therefore Bias(j)→ −1 as α→∞.

Using Lemma 9, dAss/ dC → 1 as γ → ∞. Again using Lemma 9, the fraction outside
the square brackets in Bias(j) goes to 1 and the term in square brackets also goes to 1. So
Bias(j)→ 0 as γ →∞.

Finally, it is easy to see that ∂At/∂wt, ∂At/∂fit, dAss/ dC → 0 as either γ → 0 or (using
Lemma 9) as φ→∞.
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E.5 Proof of Proposition 4

Solving the linear difference equation for Ât given in the main text, we have:

Ât =Ass +

(
α

γ + α + φ− 2βa1

)t [
Â0 − Ass

]
.

Using the solution for Ass given in Proposition 2, we have:

dÂt
dC

=

[
1−

(
α

γ + α + φ− 2βa1

)t]
γ

γ + φ
.

Recalling that Ât , E0[At], the change in transition value is

2a1E0

[
(Zt − Ass)

(
dZt
dC
− dAss

dC

)]
=2a1

{
(Ât−1 − Ass)

[
1−

(
α

γ + α + φ− 2βa1

)t−1]
γ

γ + φ
C + Cov0

[
At−1,

dAt−1
dC

]
− E0 [(At−1 − Ass)]

γ

γ + φ
C

}

=2a1

{
−
(

α

γ + α + φ− 2βa1

)2(t−1)

[A0 − Ass]
γ

γ + φ
C + Cov0

[
At−1,

dAt−1
dC

]}
.

Using the difference equation for At given in Proposition 1 and recognizing that wt and

fit are linearly separable in C and the random variables, we have Cov0

[
At−1,

dAt−1

dC

]
= 0.

Therefore the change in transition value is

−2a1

(
α

γ + α + φ− 2βa1

)2(t−1)
γ

γ + φ
C [A0 − Ass].

This is zero if αγ = 0 and is proportional to [A0 − Ass] if αγ > 0, in which case the change
in transition value is negative if and only if A0 < Ass. The change in transition value also
goes to zero as At → Ass and, because the term in parentheses is < 1, as t→∞.

E.6 Proof of Proposition 5

I here prove the result through algebraic manipulations. A shorter, cleaner proof would
follow the analysis of Section D.

We begin by analyzing several of the value coefficients derived in the proof of Proposition
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1. First, we have:

bij4 =
β2bi−12 bj−12

γ + α + φ− 2βa1
+ βb

(i−1)(j−1)
4

=
βi+j

γ + α + φ− 2βa1

[
α

γ + α + φ− 2βa1

]i−1+j−1
[b1]

2 + βb
(i−1)(j−1)
4

=
i−2∑
k=0

βk
β(i−k)+(j−k)

γ + α + φ− 2βa1

[
α

γ + α + φ− 2βa1

](i−1−k)+(j−1−k)

[b1]
2 + βi−1b

1(j−(i−1))
4

=
βi+j

γ + α + φ− 2βa1

[
α

γ + α + φ− 2βa1

](i−1)+(j−1)

[b1]
2

i−2∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k
+ βibj−i2

βb1
γ + α + φ− 2βa1

+ βibj−i3 .

Note that:

βibj−i2

βb1
γ + α + φ− 2βa1

=
βi

γ + α + φ− 2βa1
[b1]

2β

[
α

γ + α + φ− 2βa1

]j−i
βj−i

=
βi+j

γ + α + φ− 2βa1
[b1]

2βi−1
[

α

γ + α + φ− 2βa1

](i−1)+(j−1) [
α

γ + α + φ− 2βa1

]−2(i−1)
.

We then have:

bij4 =
βi+j

γ + α + φ− 2βa1

[
α

γ + α + φ− 2βa1

](i−1)+(j−1)

[b1]
2

i−1∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k
+ βibj−i3

=
βi+j

γ + α + φ− 2βa1

[
α

γ + α + φ− 2βa1

]i+j
γ2

i−1∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k
+ βi

γ

α
bj−i2

=
βi+j

γ + α + φ− 2βa1

[
α

γ + α + φ− 2βa1

]i+j
γ2

i∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k
. (A-3)
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Second, analyze the following term, which we will see often:

i∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k
=

1− β−(i+1)
[

α
γ+α+φ−2βa1

]−2(i+1)

1− β−1
[

α
γ+α+φ−2βa1

]−2
=
β
[

α
γ+α+φ−2βa1

]2
− β−i

[
α

γ+α+φ−2βa1

]−2i
β
[

α
γ+α+φ−2βa1

]2
− 1

. (A-4)

Third, analyze ci3 further:

ci3 =βib1
c1
α

i−1∑
j=0

[
α

γ + α + φ− 2βa1

]j
+ βi

i−1∑
j=1

β−jbjN4 C + βi
[
bN3 C + c2

]

=βib1
c1
α

1−
(

α
γ+α+φ−2βa1

)i
1− α

γ+α+φ−2βa1
+ βi

i−1∑
j=1

β−jbjN4 C + βi
γ

α

[
bN2 C + c1

]
+ βiψw̄. (A-5)

Now turn to our expression of interest. Substituting in for the value function derivatives,
we have:

dV (Ass, C,C)

dC
=2a2C + b1A

ss +
N∑
i=1

bi3C + c2

+
N∑
i=1

[
2ai3C + bi2A

ss + bi3C +
N∑

j=i+1

bij4 C +
i−1∑
j=1

bji4 C + ci3

]

+
dc1
dC

Ass +
dc2
dC

C +
N∑
i=1

dci3
dC

C +
dd

dC
.

This expression is linear in C. We will first analyze the terms without C before analyzing
the slope in C. Combining the results gives the statement of the proposition.
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Analyzing the terms in dV (Ass, C,C)/ dC that are independent of C

Using the value function coefficients derived in the proof of Proposition 1 and also using
equation (A-5), the terms without C in dV (Ass, C,C)/ dC are:[

b1
φ

γ + φ
Ā+ ψw̄ + γ

φĀ

γ + α + φ− 2βa1 − αβ

]
+

N∑
i=1

bi2
φ

γ + φ
Ā

+
N∑
i=1

βib1
φĀ

γ + α + φ− 2βa1 − αβ

[
1−

(
α

γ + α + φ− 2βa1

)i]
γ + α + φ− 2βa1
γ + φ− 2βa1

+
N∑
i=1

βiγ
φĀ

γ + α + φ− 2βa1 − αβ

+
N∑
i=1

βiψw̄

+
αβbN2

γ + α + φ− 2βa1 − αβ
φ

γ + φ
Ā

+
β

1− β
γ + α + φ− 2βa1

γ + α + φ− 2βa1 − αβ
bN2

φĀ

γ + α + φ− 2βa1 − αβ

+
β

1− β
βNb1

φĀ

γ + α + φ− 2βa1 − αβ

[
1−

(
α

γ + α + φ− 2βa1

)N]
γ + α + φ− 2βa1
γ + φ− 2βa1

+
β

1− β
βNγ

φĀ

γ + α + φ− 2βa1 − αβ

+
β

1− β
βNψw̄.
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Apply Lemma 10 to the third, seventh, and eighth lines, cancel the second line with part of
the third, and solve the geometric series:

=

[
b1

φ

γ + φ
Ā+ ψw̄ + γ

φĀ

γ + α + φ− 2βa1 − αβ

]
+ β

1− βN

1− β
b1

φĀ

γ + φ

+ β
1− βN

1− β
γ

φĀ

γ + α + φ− 2βa1 − αβ

+ β
1− βN

1− β
ψw̄

+
αβbN2

γ + α + φ− 2βa1 − αβ
φ

γ + φ
Ā

+
β

1− β
γ + α + φ− 2βa1 − α
γ + α + φ− 2βa1 − αβ

bN2
φĀ

γ + φ

+
β

1− β
βNb1

φĀ

γ + φ

[
1−

(
α

γ + α + φ− 2βa1

)N]

+
β

1− β
βNγ

φĀ

γ + α + φ− 2βa1 − αβ

+
β

1− β
βNψw̄.

Cancel the final two lines and part of the third-to-last line with earlier lines:

=b1
φ

γ + φ
Ā+ ψw̄ + γ

φĀ

γ + α + φ− 2βa1 − αβ

+
β

1− β
b1

φĀ

γ + φ

+
β

1− β
γ

φĀ

γ + α + φ− 2βa1 − αβ

+
β

1− β
ψw̄

+
αβbN2

γ + α + φ− 2βa1 − αβ
φ

γ + φ
Ā

+
β

1− β
γ + α + φ− 2βa1 − α
γ + α + φ− 2βa1 − αβ

bN2
φĀ

γ + φ

− β

1− β
βNb1

φĀ

γ + φ

(
α

γ + α + φ− 2βa1

)N
.
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Combine the first four lines and substitute bN2 into the final line:

=
1

1− β
b1

φĀ

γ + φ

+
1

1− β
γ

φĀ

γ + α + φ− 2βa1 − αβ

+
1

1− β
ψw̄

+
αβbN2

γ + α + φ− 2βa1 − αβ
φ

γ + φ
Ā

+
β

1− β
γ + α + φ− 2βa1 − α
γ + α + φ− 2βa1 − αβ

bN2
φĀ

γ + φ

− β

1− β
φĀ

γ + φ
bN2 .

Combine the final two lines, substitute for b1 in the first line, and apply Lemma 10 to the
second line:

=
1

1− β
γα

γ + α + φ− 2βa1

φĀ

γ + φ

+
1

1− β
γ
γ + α + φ− 2βa1 − α
γ + α + φ− 2βa1

φĀ

γ + φ

+
1

1− β
ψw̄

+
αβbN2

γ + α + φ− 2βa1 − αβ
φ

γ + φ
Ā

− αβ

γ + α + φ− 2βa1 − αβ
φĀ

γ + φ
bN2 .

Combine the first two lines and cancel the final two lines:

=
1

1− β
γφ

γ + φ
Ā+

1

1− β
ψw̄. (A-6)
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Analyzing the slope of dV (Ass, C,C)/ dC in C

The slope of dV (Ass, C,C)/ dC in C is:

d2V (Ass, C,C)

dC2
=2a2 + b1

dAss

dC
+

N∑
i=1

bi3 +
dc2
dC

+
N∑
i=1

[
2ai3 + bi2

dAss

dC
+ bi3 +

N∑
j=i+1

bij4 +
i−1∑
j=1

bji4 +
dci3
dC

]

+
dc1
dC

dAss

dC
+

dc2
dC

+
N∑
i=1

dci3
dC

+
β

1− β

{
γ + α + φ− 2βa1

[γ + α + φ− 2βa1 − αβ]2
β[bN2 ]2 + 2

dcN3
dC

+ 2aN3

}
.

Differentiate equation (A-5), and use Lemma 10 and equation (A-3):

N∑
i=1

dci3
dC

=
N∑
i=1

βi

[
1−

(
α

γ + α + φ− 2βa1

)i]
γ

γ + φ

αβ

γ + α + φ− 2βa1
bN2

+
N∑
i=1

βi
i−1∑
j=1

β−jbjN4

+
N∑
i=1

βi
γ

α

γ + α + φ− 2βa1
γ + α + φ− 2βa1 − αβ

bN2

=β
1− βN

1− β
γ

γ + φ

αβ

γ + α + φ− 2βa1
bN2

− γ

γ + φ

(
αβ

γ + α + φ− 2βa1

)2

bN2

N−1∑
i=0

(
αβ

γ + α + φ− 2βa1

)i
+

N∑
i=1

βi
i−1∑
j=1

β−j
γ2

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]j+N j∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k
+ β

1− βN

1− β
γ

α

γ + α + φ− 2βa1
γ + α + φ− 2βa1 − αβ

bN2 .
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Using this expression and dcN3 / dC, we then have:

dc1
dC

dAss

dC
+

dc2
dC

+
N∑
i=1

dci3
dC

+
β

1− β

{
γ+α+φ−2βa1

γ+α+φ−2βa1−αβ

γ + α + φ− 2βa1 − αβ
β[bN2 ]2 + 2

dcN3
dC

+ 2aN3

}

=
αβ

γ + α + φ− 2βa1 − αβ
bN2

[
γ

γ + φ
+
γ

α

]
+ β

1 + βN

1− β
γ

γ + φ

αβ

γ + α + φ− 2βa1
bN2

− γ

γ + φ

(
αβ

γ + α + φ− 2βa1

)2

bN2

N−1∑
i=0

(
αβ

γ + α + φ− 2βa1

)i
+

N∑
i=1

βi
i−1∑
j=1

β−j
γ2

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]j+N j∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k
+ β

1 + βN

1− β
γ

α

γ + α + φ− 2βa1
γ + α + φ− 2βa1 − αβ

bN2

+ β
β

1− β
γ + α + φ− 2βa1

[γ + α + φ− 2βa1 − αβ]2
[bN2 ]2

− 2
β

1− β
βN
(

α

γ + α + φ− 2βa1

)N
γ

γ + φ

αβ

γ + α + φ− 2βa1
bN2

+ 2
β

1− β
βN

N−1∑
j=1

β−j
γ2

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]j+N j∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k

+
β

1− β
γ

α
bN2

[
αβ

γ + α + φ− 2βa1

]N N∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k
− β

1− β
βN [γ + ψ] .
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Do the summation in the third line and simplify:

dc1
dC

dAss

dC
+

dc2
dC

+
N∑
i=1

dci3
dC

+
β

1− β

{
γ+α+φ−2βa1

γ+α+φ−2βa1−αβ

γ + α + φ− 2βa1 − αβ
β[bN2 ]2 + 2

dcN3
dC

+ 2aN3

}

=
1 + βN+1

1− β
γ

γ + φ

αβ

γ + α + φ− 2βa1
bN2

+
N∑
i=1

βi
i−1∑
j=1

β−j
γ2

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]j+N j∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k
+

β

1− β
γ

α

(1 + βN)(γ + α + φ− 2βa1) + (1− β)α

γ + α + φ− 2βa1 − αβ
bN2

+ β
β

1− β
γ + α + φ− 2βa1

[γ + α + φ− 2βa1 − αβ]2
[bN2 ]2

− β

1− β
2(γ + α + φ− 2βa1 − αβ)− (1− β)α

γ + α + φ− 2βa1 − αβ
γ

γ + φ

(
αβ

γ + α + φ− 2βa1

)N+1

bN2

+ 2
β

1− β
βN

N−1∑
j=1

β−j
γ2

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]j+N j∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k

+
β

1− β
γ

α
bN2

[
αβ

γ + α + φ− 2βa1

]N N∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k
− β

1− β
βN [γ + ψ] .

(A-7)

Now analyze the other terms in dV (Ass, C,C)/ dC, substituting in for the coefficients
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derived in the proof of Proposition 1:[
2a2 + b1

dAss

dC
+

N∑
i=1

bi3 +
dc2
dC

]
+

N∑
i=1

[
2ai3 + bi2

dAss

dC
+ bi3 +

N∑
j=i+1

bij4 +
i−1∑
j=1

bji4 +
dci3
dC

]

=γ
γ

γ + α + φ− 2βa1
− [γ + ψ] +

γ

γ + φ
b1

N∑
i=0

[
αβ

γ + α + φ− 2βa1

]i
+ 2

γ

α
b1

αβ

γ + α + φ− 2βa1

N−1∑
i=0

[
αβ

γ + α + φ− 2βa1

]i
+
γ

α

αβ

γ + α + φ− 2βa1 − αβ
bN2

+
N∑
i=1

γ2

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]2i i∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k
−

N∑
i=1

βi [γ + ψ] + 2
N−1∑
i=1

N∑
j=i+1

bij4

+
N∑
i=1

βi

[
1−

(
α

γ + α + φ− 2βa1

)i]
γ

γ + φ

αβ

γ + α + φ− 2βa1
bN2

+
N∑
i=1

βi
i−1∑
j=1

β−jbjN4 +
N∑
i=1

βi
γ

α

γ + α + φ− 2βa1
γ + α + φ− 2βa1 − αβ

bN2 .
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Solving some of the geometric series and simplifying, this becomes:[
2a2 + b1

dAss

dC
+

N∑
i=1

bi3 +
dc2
dC

]
+

N∑
i=1

[
2ai3 + bi2

dAss

dC
+ bi3 +

N∑
j=i+1

bij4 +
i−1∑
j=1

bji4 +
dci3
dC

]

=
γ

γ + φ
b1

γ + α + φ− 2βa1
γ + α + φ− 2βa1 − αβ

+
1

1− β
γ

γ + φ

αβ

γ + α + φ− 2βa1
bN2
−(γ + α + φ− 2βa1 + αβ)(1− β) + β(1− βN)(γ + α + φ− 2βa1 − αβ − αβ)

γ + α + φ− 2βa1 − αβ

+
γ

α
b1

αβ

γ + α + φ− 2βa1 − αβ

[
2−

(
αβ

γ + α + φ− 2βa1

)N]

+
N∑
i=0

γ2

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]2i i∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k
+ 2

N−1∑
i=1

N∑
j=i+1

bij4

+
γ

γ + φ

αβ

γ + α + φ− 2βa1 − αβ

(
αβ

γ + α + φ− 2βa1

)N+1

bN2

+ β
1− βN

1− β
γ

α

γ + α + φ− 2βa1
γ + α + φ− 2βa1 − αβ

bN2

+
N∑
i=1

βi
i−1∑
j=1

β−jbjN4 −
1− βN+1

1− β
[γ + ψ] .
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Substituting for b1 and bN2 and simplifying, we have:[
2a2 + b1

dAss

dC
+

N∑
i=1

bi3 +
dc2
dC

]
+

N∑
i=1

[
2ai3 + bi2

dAss

dC
+ bi3 +

N∑
j=i+1

bij4 +
i−1∑
j=1

bji4 +
dci3
dC

]
=

γ

γ + φ

γα

γ + α + φ− 2βa1 − αβ

+
1

1− β
γ

γ + φ

αβ

γ + α + φ− 2βa1
bN2

−(γ + α + φ− 2βa1 + αβ)(1− β) + β(1− βN)(γ + α + φ− 2βa1 − αβ − αβ)

γ + α + φ− 2βa1 − αβ

+ 2γ
γ

γ + α + φ− 2βa1

αβ

γ + α + φ− 2βa1 − αβ

+
N∑
i=0

γ2

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]2i i∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k
+ 2

N−1∑
i=1

N∑
j=i+1

bij4

+
γ

γ + φ

αβ

γ + α + φ− 2βa1 − αβ

(
αβ

γ + α + φ− 2βa1

)N+1

bN2

+
β

1− β
γ

α

(1− βN)(γ + α + φ− 2βa1)− (1− β)α

γ + α + φ− 2βa1 − αβ
bN2

+
N∑
i=1

βi
i−1∑
j=1

β−jbjN4 −
1− βN+1

1− β
[γ + ψ] . (A-8)
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Now combine (A-7) and (A-8) and simplify:

d2V (Ass, C,C)

dC2

=
1

1− β
γ

γ + φ

αβ

γ + α + φ− 2βa1
bN2

2β(γ + α + φ− 2βa1 − α)

γ + α + φ− 2βa1 − αβ

+ 2
N∑
i=1

βi
i−1∑
j=1

β−j
γ2

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]j+N j∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k
+ 2

β

1− β
γ

α

γ + α + φ− 2βa1
γ + α + φ− 2βa1 − αβ

bN2

+ β
β

1− β
γ + α + φ− 2βa1

[γ + α + φ− 2βa1 − αβ]2
[bN2 ]2

− 2
β

1− β
γ

γ + φ

γ + φ− 2βa1
γ + α + φ− 2βa1 − αβ

(
αβ

γ + α + φ− 2βa1

)N+1

bN2

+ 2
β

1− β
βN

N−1∑
j=1

β−j
γ2

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]j+N j∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k

+
β

1− β
γ

α
bN2

[
αβ

γ + α + φ− 2βa1

]N N∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k
+

γ

γ + φ

γα

γ + α + φ− 2βa1 − αβ

+ 2γ
γ

γ + α + φ− 2βa1

αβ

γ + α + φ− 2βa1 − αβ

+
N∑
i=0

γ2

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]2i i∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k
+ 2

N−1∑
i=1

N∑
j=i+1

bij4

− 1

1− β
[γ + ψ] .
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Substitute for bij4 from equation (A-3), simplify, and rearrange:

d2V (Ass, C,C)

dC2

=γ
α

γ + α + φ− 2βa1 − αβ

{
γ

γ + φ
+ 2β

γ

γ + α + φ− 2βa1

}
+

1

1− β
γ

γ + φ

αβ

γ + α + φ− 2βa1
bN2

2β(γ + α + φ− 2βa1 − α)

γ + α + φ− 2βa1 − αβ

+ 2
β

1− β
γ

α

γ + α + φ− 2βa1
γ + α + φ− 2βa1 − αβ

bN2

+ β
β

1− β
γα

[γ + α + φ− 2βa1 − αβ]2

(
αβ

γ + α + φ− 2βa1

)N
bN2

− 2
β

1− β
γ

γ + φ

γ + φ− 2βa1
γ + α + φ− 2βa1 − αβ

(
αβ

γ + α + φ− 2βa1

)N+1

bN2

+ 2
N∑
i=1

βi
i−1∑
j=1

β−j
γ2

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]j+N j∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k

+ 2
β

1− β
βN

N−1∑
j=1

β−j
γ2

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]j+N j∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k

+
1

1− β
γ2

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]2N N∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k
+

N−1∑
i=0

γ2

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]2i i∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k
+ 2

N−1∑
j=1

N∑
i=j+1

γ2

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]j+i j∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k
− 1

1− β
[γ + ψ] .
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Substitute from equation (A-4) and simplify:

d2V (ASs, C,C)

dC2

=γ
α

γ + α + φ− 2βa1 − αβ

{
γ

γ + φ
+ 2β

γ

γ + α + φ− 2βa1

}
+

1

1− β
γ

γ + φ

αβ

γ + α + φ− 2βa1
bN2

2β(γ + α + φ− 2βa1 − α)

γ + α + φ− 2βa1 − αβ

+ 2
β

1− β
γ

α

γ + α + φ− 2βa1
γ + α + φ− 2βa1 − αβ

bN2

+ β
β

1− β
γα

[γ + α + φ− 2βa1 − αβ]2

(
αβ

γ + α + φ− 2βa1

)N
bN2

− 2
β

1− β
γ

γ + φ

γ + φ− 2βa1
γ + α + φ− 2βa1 − αβ

(
αβ

γ + α + φ− 2βa1

)N+1

bN2

+ 2
N∑
i=1

βi
i−1∑
j=1

γ2

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]N [ αβ
γ+α+φ−2βa1

]−j
− β

[
α

γ+α+φ−2βa1

]j+2

1− β
[

α
γ+α+φ−2βa1

]2
+ 2

β

1− β
βN

N−1∑
j=1

γ2

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]N [ αβ
γ+α+φ−2βa1

]−j
− β

[
α

γ+α+φ−2βa1

]j+2

1− β
[

α
γ+α+φ−2βa1

]2
+

βN

1− β
γ2

γ + α + φ− 2βa1

1− β1+N
[

α
γ+α+φ−2βa1

]2(1+N)

1− β
[

α
γ+α+φ−2βa1

]2
+

N−1∑
i=0

βi
γ2

γ + α + φ− 2βa1

1− β1+i
[

α
γ+α+φ−2βa1

]2(1+i)
1− β

[
α

γ+α+φ−2βa1

]2
+ 2

N−1∑
j=1

N∑
i=j+1

βj
γ2

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]i [ αβ
γ+α+φ−2βa1

]−j
− β

[
α

γ+α+φ−2βa1

]j+2

1− β
[

α
γ+α+φ−2βa1

]2
− 1

1− β
[γ + ψ] .

Solving the geometric series, repeatedly using Lemma 10, and working through tedious
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algebra (available upon request) then yields:

d2V (Ass, C,C)

dC2
=− 1

1− β

[
γφ

γ + φ
+ ψ

]
.

It is straightforward to show that

dπ(Ass, Ass, C)

dC
=

γφ

γ + φ
(Ā− C) + ψ(w̄ − C).

The proposition follows from these last two expressions and (A-6).
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E.7 Proof of Proposition 6

Using the value function coefficients derived in the proof of Proposition 1 and applying
Lemma 10, we have:

ATEV
w (C) =2a2C + b1A

ss +
N∑
i=1

bi3C + c2

=
γ2

γ + α + φ− 2βa1
C − (γ + ψ)C + b1

[
γ

γ + φ
C +

φ

γ + φ
Ā

]
+

N∑
i=1

γ

α
bi2C

+ γ
βbN2 C + φĀ

γ + α + φ− 2βa1 − αβ
+ ψw̄

=
α

γ + α + φ− 2βa1

γφ

γ + φ
(Ā− C) + ψ(w̄ − C)

− γ φ− 2βa1
γ + α + φ− 2βa1

C +
γ2

γ + α + φ− 2βa1

αβ

γ + α + φ− 2βa1 − αβ
C

+ γ
φĀ

γ + α + φ− 2βa1 − αβ

=
α

γ + α + φ− 2βa1

γφ

γ + φ
(Ā− C) + ψ(w̄ − C)

− γ φ− 2βa1
γ + α + φ− 2βa1 − αβ

C + γ
αβ[γ + φ− 2βa1]

[γ + α + φ− 2βa1][γ + α + φ− 2βa1 − αβ]
C

+
γφĀ

γ + φ

γ + α + φ− 2βa1 − α
γ + α + φ− 2βa1

=
γφ

γ + φ
(Ā− C) + ψ(w̄ − C)

+ γ
γ + α + φ− 2βa1 − α
γ + α + φ− 2βa1

C

[
2βa1
γ + φ

+
αβ

γ + α + φ− 2βa1 − αβ

]
=

γφ

γ + φ
(Ā− C) + ψ(w̄ − C)

+
γ

γ + φ

γ + α + φ− 2βa1 − α
γ + α + φ− 2βa1

C

[
2βa1 + βα− βα2

γ + α + φ− 2βa1

]
.
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Use a1 = 1
2

α2

γ+α+φ−2βa1 −
1
2
α from the proof of Proposition 1:

ATEV
w (C) =

γφ

γ + φ
(Ā− C) + ψ(w̄ − C)

+
γ

γ + φ

γ + α + φ− 2βa1 − α
γ + α + φ− 2βa1

C

[
βα2

γ + α + φ− 2βa1
− βα + βα− βα2

γ + α + φ− 2βa1

]
=

γφ

γ + φ
(Ā− C) + ψ(w̄ − C)

=
dπ(Ass, Ass, C)

dC
.

To obtain ATEπ
w(C), partially differentiate π(At, At−1, wt) with respect to wt and then

take expectations (and impose the assumption that expected actions are around a steady
state):

ATEπ
w(C) =γ(Ass − C)− ψ(C − w̄).

Substituting for Ass yields

ATEπ
w(C) =

dπ(Ass, Ass, C)

dC
.

E.8 Proof of Proposition 7

Differentiating π(At, Zt, wt), we have:

∂2π(At, Zt, wt)

∂w2
t

= −γ − ψ

and
d2π(At, Zt, wt)

dw2
t

=
∂2π(At, Zt, wt)

∂w2
t

− ∂At
∂wt

[
−1 +

∂At
∂wt

(γ + α + φ)

]
.

From Proposition 1, we have:

d2π(At, Zt, wt)

dw2
t

=
∂2π(At, Zt, wt)

∂w2
t

+ γ
γ

γ + α + φ− 2βa1

−2βa1
γ + α + φ− 2βa1

.

Note that

∂2π(At, Zt, wt)

∂w2
t

− d2π(At, Zt, wt)

dw2
t

=− γ γ

γ + α + φ− 2βa1

−2βa1
γ + α + φ− 2βa1

≤ 0.

Using Lemma 9, we see that the inequality is strict if and only if γ > 0, β > 0, and α > 0.
From Proposition 1, we have:

∂2V (Zt, wt, Ft)

∂w2
= 2a2 = γ

γ

γ + α + φ− 2βa1
− γ − ψ.
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Note that

d2π(At, Zt, wt)

dw2
t

− ∂2V (Zt, wt, Ft)

∂w2
=− γ γ

γ + α + φ− 2βa1

γ + α + φ

γ + α + φ− 2βa1
≤ 0.

Using our assumption that that γ + φ > 0, the inequality is strict if and only if γ > 0.
Using Proposition 5, Lemma 10, and the value function coefficients derived in the proof of
Proposition 1, we have:

∂2V (Zt, wt, Ft)

∂w2
− d2π(Ass, Ass, C)

dC2
=γ

[
γ

γ + α + φ− 2βa1
− 1

]
+

γφ

γ + φ

=− γ α + φ− 2βa1
γ + α + φ− 2βa1

+ γ
φ

γ + φ

=− γ α− 2βa1
γ + α + φ− 2βa1

+ γ
φ

γ + φ

−(γ + φ) + γ + α + φ− 2βa1
γ + α + φ− 2βa1

=− γ γ

γ + φ

α− 2βa1
γ + α + φ− 2βa1

≤0.

The inequality is strict if and only if αγ > 0. Proposition 5 implies that dπ(Ass, Ass, wt)/ dC2 ≤
0, with the inequality strict if and only if either ψ > 0 or γφ > 0. We have established the
first part of the proposition. To prove the second part of the proposition, note that none
of the inequalities above are strict if γ = 0 and note that γφ/[γ + φ] → γ as φ → ∞. To
prove the third part of the proposition, note that φ = 0 implies γ > 0 (by our assumption
that γ + φ > 0) and, from Proposition 1, γα > 0 implies a2 < 0, but φ, ψ = 0 implies
d2π(Ass, Ass, C)/ dC2 = 0 from Proposition 5.

E.9 Proof of Proposition 8

Defining ATEV
fi

(C) in the analogous fashion as ATEV
w (C), we have:

ATEV
fi

(C) ,2ai3C + bi2A
ss + bi3C +

N∑
j=i+1

bij4 C +
i−1∑
j=1

bji4 C + ci3.
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Using the value function coefficients derived in the proof of Proposition 1, we have:

ATEV
fi

(C) =
γ2

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]2i i∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k
C

− βi [γ + ψ]C

+ b1

(
αβ

γ + α + φ− 2βa1

)i [
γ

γ + φ
C +

φ

γ + φ
Ā

]
+
γ

α
b1

(
αβ

γ + α + φ− 2βa1

)i
C

+ C

N∑
j=i+1

γ2

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]i+j i∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k

+ C
i−1∑
j=1

γ2

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]i+j j∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k
+ βib1

c1
α

[
1−

(
α

γ + α + φ− 2βa1

)i]
γ + α + φ− 2βa1
γ + φ− 2βa1

+ βi
γ

α

[
bN2 C + c1

]
+ βiψw̄

+ βi
γ

α
bN2 C

1

β
[

α
γ+α+φ−2βa1

]2
− 1{

β

[
α

γ + α + φ− 2βa1

]2 i−1∑
j=1

[
α

γ + α + φ− 2βa1

]j
−

i−1∑
j=1

β−j
[

α

γ + α + φ− 2βa1

]−j }
.
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Combine the first and fifth lines, combine the ψ terms, and substitute for c1 in the third-to-
last line:

ATEV
fi

(C) =− βiγC + βiψ[w̄ − C]

+ b1

(
αβ

γ + α + φ− 2βa1

)i [
γ

γ + φ
C +

φ

γ + φ
Ā

]
+
γ

α
b1

(
αβ

γ + α + φ− 2βa1

)i
C

+ C
N∑
j=i

γ2

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]i+j i∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k

+ C
i−1∑
j=1

γ2

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]i+j j∑
k=0

β−k
[

α

γ + α + φ− 2βa1

]−2k
+ βib1

βbN2 C + φĀ

γ + α + φ− 2βa1 − αβ

[
1−

(
α

γ + α + φ− 2βa1

)i]
γ + α + φ− 2βa1
γ + φ− 2βa1

+ βi
γ

α

γ + α + φ− 2βa1
γ + α + φ− 2βa1 − αβ

bN2 C + βiγ
φĀ

γ + α + φ− 2βa1 − αβ

+ βi
γ

α
bN2 C

1

β
[

α
γ+α+φ−2βa1

]2
− 1{

β

[
α

γ + α + φ− 2βa1

]2 i−1∑
j=1

[
α

γ + α + φ− 2βa1

]j
−

i−1∑
j=1

β−j
[

α

γ + α + φ− 2βa1

]−j }
.
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Apply Lemma 10 to the sixth and seventh lines, combine the sixth line with the second and
seventh lines, and solve the geometric series in k:

ATEV
fi

(C) =− βiγC + βiψ[w̄ − C]

+ b1

(
αβ

γ + α + φ− 2βa1

)i
γ

γ + φ
C

+
γ

α
b1

(
αβ

γ + α + φ− 2βa1

)i
C

+ C

N∑
j=i

γ2

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]i+j β [ α
γ+α+φ−2βa1

]2
− β−i

[
α

γ+α+φ−2βa1

]−2i
β
[

α
γ+α+φ−2βa1

]2
− 1

+ C
i−1∑
j=1

γ2

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]i+j β [ α
γ+α+φ−2βa1

]2
− β−j

[
α

γ+α+φ−2βa1

]−2j
β
[

α
γ+α+φ−2βa1

]2
− 1

− b1
βbN2 C

γ + φ

(
αβ

γ + α + φ− 2βa1

)i
+ βi

γ

γ + φ

1

α

[γ + α + φ− 2βa1 − α][γ + α + φ− 2βa1] + βα2

γ + α + φ− 2βa1
bN2 C

+ βiγ
φĀ

γ + φ

+ βi
γ

α
bN2 C

1

β
[

α
γ+α+φ−2βa1

]2
− 1{

β

[
α

γ + α + φ− 2βa1

]2 i−1∑
j=1

[
α

γ + α + φ− 2βa1

]j
−

i−1∑
j=1

β−j
[

α

γ + α + φ− 2βa1

]−j }
.
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Simplify, and solve the geometric series in j:

ATEV
fi

(C) =− βiγC + βiψ[w̄ − C]

+ b1

(
αβ

γ + α + φ− 2βa1

)i
γ

γ + φ
C

+
γ

α
b1

(
αβ

γ + α + φ− 2βa1

)i
C

+ C
γ2

γ + α + φ− 2βa1

[
αβ

γ + α + φ− 2βa1

]i β
[

α
γ+α+φ−2βa1

]2
β
[

α
γ+α+φ−2βa1

]2
− 1

αβ

γ + α + φ− 2βa1 − αβ(
1−

[
αβ

γ + α + φ− 2βa1

]N)

− C γ2

γ + α + φ− 2βa1 − αβ
βi

β
[

α
γ+α+φ−2βa1

]2
− 1

(
1−

[
αβ

γ + α + φ− 2βa1

]N−i+1
)

+ C
γ2

γ + α + φ− 2βa1

[
αβ

γ+α+φ−2βa1

]i
β
[

α
γ+α+φ−2βa1

]2
− 1

γ + α + φ− 2βa1
γ + α + φ− 2βa1 − α(

1−
[

α

γ + α + φ− 2βa1

]−(i−1))

− b1
βbN2 C

γ + φ

(
αβ

γ + α + φ− 2βa1

)i
+ βi

γ

γ + φ

1

α

[γ + α + φ− 2βa1 − α][γ + α + φ− 2βa1] + βα2

γ + α + φ− 2βa1
bN2 C

+ βiγ
φĀ

γ + φ

+ βi
γ

α
bN2 C

1

β
[

α
γ+α+φ−2βa1

]2
− 1{

β

[
α

γ + α + φ− 2βa1

]2 i−1∑
j=1

[
α

γ + α + φ− 2βa1

]j
−

i−1∑
j=1

β−j
[

α

γ + α + φ− 2βa1

]−j }
.
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Substitute bN2 using its solution from the proof of Proposition 1, substitute the solution for
b1 from the proof of Proposition 1, solve the geometric series in the final line, and simplify:

ATEV
fi

(C) =− βiγC + βiψ[w̄ − C] + βiγ
φĀ

γ + φ

+
γα

γ + α + φ− 2βa1

(
αβ

γ + α + φ− 2βa1

)i
γ

γ + φ
C

+
γ2

γ + α + φ− 2βa1

(
αβ

γ + α + φ− 2βa1

)i
C

+ C
γ2

γ + α + φ− 2βa1 − αβ

[
αβ

γ + α + φ− 2βa1

]i β
[

α
γ+α+φ−2βa1

]2
β
[

α
γ+α+φ−2βa1

]2
− 1

αβ

γ + α + φ− 2βa1

− γ

α

(γ + α + φ− 2βa1)
2 − βα2

(γ + α + φ− 2βa1 − α)(γ + α + φ− 2βa1 − αβ)

[
αβ

γ + α + φ− 2βa1

]i β
[

α
γ+α+φ−2βa1

]2
β
[

α
γ+α+φ−2βa1

]2
− 1

bN2 C

− C γ2

γ + α + φ− 2βa1 − αβ
βi

β
[

α
γ+α+φ−2βa1

]2
− 1

+ C
γ2

γ + α + φ− 2βa1 − α

[
αβ

γ+α+φ−2βa1

]i
β
[

α
γ+α+φ−2βa1

]2
− 1

− C γ2

γ + α + φ− 2βa1

βi

β
[

α
γ+α+φ−2βa1

]2
− 1

α

γ + α + φ− 2βa1 − α

− C γ

γ + φ

(
αβ

γ + α + φ− 2βa1

)i+1

bN2

+ βi
γ

γ + φ

1

α

[γ + α + φ− 2βa1 − α][γ + α + φ− 2βa1] + βα2

γ + α + φ− 2βa1
bN2 C

+ βi
γ

γ + α + φ− 2βa1 − α

β
[

α
γ+α+φ−2βa1

]2
β
[

α
γ+α+φ−2βa1

]2
− 1

bN2 C

+ βi
γ

α

γ + α + φ− 2βa1
γ + α + φ− 2βa1 − αβ

1

β
[

α
γ+α+φ−2βa1

]2
− 1

bN2 C.
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Apply Lemma 10 and simplify:

ATEV
fi

(C) =− βiγC + βiψ[w̄ − C] + βiγ
φĀ

γ + φ
+ βi

γ2

γ + φ
C

+
γ2

γ + φ

βα2

γ + α + φ− 2βa1

γ + α + φ− 2βa1 − αβ
(γ + α + φ− 2βa1)2 − βα2

(
αβ

γ + α + φ− 2βa1

)i
C

+
γ2

γ + φ

γ + α + φ− 2βa1 − αβ
γ + α + φ− 2βa1

(
αβ

γ + α + φ− 2βa1

)i
C

− γ2

γ + φ

(γ + α + φ− 2βa1)
2 − αβ(γ + α + φ− 2βa1)

(γ + α + φ− 2βa1)2 − βα2

[
αβ

γ + α + φ− 2βa1

]i
C

+ βi
γ

γ + φ

1

α

[γ + α + φ− 2βa1 − α][γ + α + φ− 2βa1] + βα2

γ + α + φ− 2βa1
bN2 C

− βi γ

γ + φ

γ + α + φ− 2βa1 − αβ
γ + α + φ− 2βa1

βα2

(γ + α + φ− 2βa1)2 − βα2
bN2 C

− βi γ

γ + φ

γ + α + φ− 2βa1 − α
α

(γ + α + φ− 2βa1)
2

(γ + α + φ− 2βa1)2 − βα2
bN2 C.

Combine the final three lines, combine the third and fourth lines, and simplify the first line:

ATEV
fi

(C) =βi
γφ

γ + φ
(Ā− C) + βiψ[w̄ − C]

+
γ2

γ + φ

βα2

γ + α + φ− 2βa1

γ + α + φ− 2βa1 − αβ
(γ + α + φ− 2βa1)2 − βα2

(
αβ

γ + α + φ− 2βa1

)i
C

− γ2

γ + φ

γ + α + φ− 2βa1 − αβ
γ + α + φ− 2βa1

βα2

(γ + α + φ− 2βa1)2 − βα2

[
αβ

γ + α + φ− 2βa1

]i
C.

Cancel the final two lines:

ATEV
fi

(C) =βi
γφ

γ + φ
(Ā− C) + βiψ[w̄ − C]

=βiATEV
w (C).

The second equation follows from the proof of Proposition 6. We have proved the first part
of Proposition 8.

To prove the second part of Proposition 8, use the above result and Proposition 6 to see
that

ATEV
w (C) +

∞∑
i=1

ATEV
fi

(C) =
∞∑
i=0

βiATEV
w (C) =

1

1− β
ATEV

w (C) =
dV (Ass, C,C)

dC
.
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To prove the third part of Proposition 8, note that ATEV
fi

(C)/ATEV
w (C) = βi and use

Proposition 6.
The final part of Proposition 8 follows straightforwardly from the fact that π(At, At− 1, wt)

is independent of Ft other than through At (and as noted before it is easy to show that
E0[∂π(At, At−1, wt)/∂At] = 0 around a steady state).
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