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Abstract

This paper considers dynamic time series binary choice models. It proves near epoch
dependence and strong mixing for the dynamic binary choice model with correlated
errors. Using this result, it shows in a time series setting the validity of the dynamic
probit likelihood procedure when lags of the dependent binary variable are used as
regressors, and it establishes the asymptotic validity of Horowitz’ smoothed maximum
score estimation of dynamic binary choice models with lags of the dependent variable
as regressors. For the semiparametric model, the latent error is explicitly allowed to be
correlated. It turns out that no long-run variance estimator is needed for the validity
of the smoothed maximum score procedure in the dynamic time series framework.

1 Introduction

For a dynamic linear time series model

yn =

p∑
j=1

ρjyn−j + γ′xn + un, (1)

n = 1, . . . , N , it is well-known that a sufficient condition for consistency as N → ∞ of the
least squares estimator is that E(un|yn−1, . . . , yn−p, xn) = 0, and that even if un is weakly
dependent, consistency can be proven as long as this condition holds, without the assumption
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of normality on un. In this paper, we analyze maximum likelihood estimation of the dynamic
probit model of order p, and maximum score estimation of dynamic binary choice models of
order p, and we explicitly allow the error to be correlated. We define the dynamic binary
choice model of order p as

yn = I(

p∑
j=1

ρjyn−j + γ′xn + un > 0), (2)

where xn is predetermined and un can be correlated and heteroskedastic. We first show near
epoch dependence and strong mixing for this model. We then impose identifying assumptions
to ensure identification of the probit model and the binary choice model. For conditional
maximum likelihood estimation of the dynamic probit model, the key condition that is needed
will turn out to be

E(yn|xn, yn−1, yn−2, . . .) = Φ(

p∑
j=1

ρjyn−j + γ′xn), (3)

while in the smoothed maximum score setting, we will need the condition

Median(un|yn−1, . . . , yn−p, xn) = 0. (4)

Therefore, this paper analyzes the dynamic time series binary choice model at a level of
generality that is comparable to the level of generality at which linear dynamic time series
models can be analyzed.
Manski (1975) uses the sign function to develop the first semiparametric estimator for the
binary choice model. Cosslett (1983) and Ichimura (1993) derive alternative estimators for
the binary choice model. Imbens (1992) and Matzkin (1992) also develop estimators for the
semiparametric binary choice model. Finally, in his seminal paper, Horowitz (1992) smooths
the sign function of Manski (1975, 1985) and derives an estimator that is asymptotically
normally distributed. However, all these estimators assume that one has a random sample.
Thus, none of these estimators allows for lagged dependent explanatory variables. Park and
Phillips (2000) assume that one of the regressors in a binary choice model is integrated, and
they assume that all regressors are exogenous, thereby excluding predetermined variables
and lagged yn as possible regressors. Other recent papers that consider multinomial choice
models in the presence of an integrated regressor are Hu and Phillips (2004) and Moon
(2004).
In this paper we consider the binary choice model in a time series setting and we allow for
lagged dependent variables and predetermined regressors as explanatory variables. For the
semiparametric case, we only impose a median assumption. Thus, we allow the variance (and
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other moments of the error distribution) to depend on lagged error terms, lagged dependent
variables as well as regressors. Moreover, the median assumption allows for heterogeneity
that is caused by random coefficients, e.g. a data generating process whose parameters are
random and symmetrically distributed around (ρ′, γ′)′.
Ruud (1981) and Poirier and Ruud (1988) have considered the probit model with correlated
errors. Robinson (1982) considered the tobit model with correlated errors. An example of
an empirical paper that focuses on the dynamic probit methodology is Eichengreen, Watson,
and Grossman (1985). However, no formal stationarity properties for dynamic probit models
are derived in these papers, nor anywhere else in the literature as far as the authors are
aware. Potential applications include finance models concerning the likelihood of a financial
transaction in a given time period as well as models concerning labor market participation
decisions in which the relative importance of wealth versus welfare effects are studied.
The setup of this paper is as follows. In Section 2, the weak dependence properties of yn are
analyzed. Section 3 of this paper will analyze the dynamic probit procedure when lagged
values of yn have been included among the regressors and normality of un is assumed. In
Section 4, we consider consistency of the smoothed maximum score estimator of the dynamic
time series binary choice model. The smoothed maximum score estimator was first suggested
in Horowitz (1992). Section 5 establishes asymptotic normality of the smoothed maximum
score estimator1.

2 Properties of the dynamic time series binary choice

model

A key aspect of the analysis below is to show that yn satisfies the appropriate “fading
memory” property when generated through a general dynamic binary choice model with
regressors and possibly correlated errors. For the analysis of the smoothed maximum score
estimator, this “fading memory” property that is proven for yn needs to be strong enough to
allow a proof of an equivalent of the Hoeffding inequality, and in addition, it needs to allow
for a proof of a central limit theorem (CLT) for a function of yn and xn that depends on N
in a situation where no martingale difference CLT can be applied. For a proof of validity
of the dynamic probit model, the “fading memory” property only needs to support laws of
large numbers and uniform laws of large numbers.
The “fading memory” property that we will prove for yn is that of near epoch dependence.
The idea of the proof is similar to that of proofs for showing fading memory properties of

1In addition, some corrections to Horowitz’ proof of the validity of the smoothed maximum score procedure
are provided.
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processes yn of the form

yn = f(yn−1) + εn, (5)

where f(.) is such that |f(x)−f(y)| ≤ L|x−y| for some L < 1. Functions f(.) satisfying this
condition are called contraction mappings. Such proofs can be found in Bierens (1981) and
Pötscher and Prucha (1997), for example. Pötscher and Prucha (1997, Section 6.4) contains
a thorough discussion of these types of results, but the approach in the proof of this paper
is different from the techniques discussed there. The differences are that the f(.) function
in the dynamic binary choice case is not continuous, depends on εn, is not strictly less than
1, and depends on more than one lagged value of yn. These problems are essentially solved
by smoothing the response function by the expectations operator, by using the fact that yn

is a binary random variable, and by the use of the appropriate metric on the arguments of
the f(.) function.
Near epoch dependence of random variables yn on a base process of random variables ηn is
defined as follows:

Definition 1 Random variables yn are called near epoch dependent on ηn if

sup
n∈Z

E|yn − E(yn|ηn−m, ηn−m+1, . . . , ηn)|2 = ν(m)2 → 0 as m →∞. (6)

The base process ηn needs to satisfy a condition such as strong or uniform mixing or inde-
pendence. For the definitions of strong (α-) and uniform (φ-) mixing see e.g. Gallant and
White (1988, p. 23) or Pötscher and Prucha (1997, p. 46). The near epoch dependence
condition functions as a device that allows approximation of yn by a function of finitely many
mixing or independent random variables ηn. Note also that for strictly stationary (yn, ηn),
the “sup” in the above definition can be removed, because in that case

E|yn − E(yn|ηn−m, ηn−m+1, . . . , ηn)|2 (7)

does not depend on n. The reader is referred to Gallant and White (1988) for a detailed
account of the near epoch dependence condition. See also Pötscher and Prucha (1997) for a
more up-to-date treatment of dependence concepts such as near epoch dependence.
The main results of the paper are the conditions under which yn is stationary and near epoch
dependent (Theorem 1) and the conditions under which yn is strong mixing (Theorem 2).
Unlike the linear model autoregressive model, no restrictions on the parameter space are
needed for stationarity, near epoch dependence or strong mixing.
For establishing near epoch dependence of yn, we have the following result. Define S as the
set of all 2p possible p -vectors s such that its elements si are 0 or 1, and define

Φ = {φ : φ =

p∑
i=1

ρisi, s ∈ S}. (8)
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Let φmin denote the smallest element of Φ, and let φmax denote the largest element.

Theorem 1 Assume that yn is generated as yn = I(
∑p

j=1 ρjyn−j +ηn > 0). Let ηn be strong
mixing and strictly stationary. Assume that there is some δ > 0 for which there exists a
positive integer K such that

P (φmax + max
i=1,...,p

ηn−i > 0|yn−p−K , yn−p−K−1, . . .)

−P (φmin + min
i=1,...,p

ηn−i > 0|yn−p−K , yn−p−K−1, . . .) < 1− δ almost surely. (9)

Then (i) yn is near epoch dependent on ηn and the near epoch dependence sequence ν(.)
satisfies ν(m) ≤ C1 exp(−C2m), for positive constants C1 and C2; (ii) (yn, ηn) is strictly
stationary.

Note that if ηn = γ′xn + un for strong mixing and strictly stationary (x′n, un), clearly ηn is
mixing as well. This observation will be used below. The assumption of Equation (9) limits
the predictability of yt given the distant past. From the definition of uniform mixing, by
choosing K large enough, the assumption of Equation (9) follows if ηn is uniform mixing and

P (φmax + max
i=1,...,p

ηn−i > 0)− P (φmin + min
i=1,...,p

ηn−i > 0) < 1− δ. (10)

The proof of the above result is substantially easier for the case where ηn is i.i.d., only one
lagged yn is used as regressor and no other regressors are included. In that case, we can
write

yn = yn−1I(ρ1 + ηn > 0) + (1− yn−1)I(ηn > 0), (11)

implying that

νm ≡ sup
n∈Z

E|yn − E(yn|ηn−m, . . . , ηn)|2

= sup
n∈Z

E|(I(ρ1 + ηn > 0)− I(ηn > 0))(yn−1 − E(yn−1|ηn−m, . . . , ηn−1)|2

= |P (ρ1 + ηn > 0)− P (ηn > 0)| sup
n∈Z

E|yn−1 − E(yn−1|η(n−1)−(m−1), . . . , ηn−1)|2

= |P (ρ1 + ηn > 0)− P (ηn > 0)|νm−1, (12)

which implies that the ν(m) sequence decays exponentially under the condition of Equation
(9). The proof of Theorem 1 should be viewed as an extension to the above reasoning.
The fact that yn is a 0/1-valued near epoch dependent random variable can now be exploited
to show that (yn, x

′
n) is also strong mixing. Note that this is an observation that apparently

has not been made in the literature before. The result is as follows:
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Theorem 2 Suppose that yn = f(ηn, ηn−1, . . .) is a sequence of 0/1-valued random variables
that is near epoch dependent on (un, x

′
n) with near epoch dependence coefficients ν(m), where

ηn = γ′xn + un and (un, x′n)′ is strong mixing with mixing coefficients α(m). Then (yn, x′n)′

is strong mixing with strong mixing coefficients C(ν(m) + α(m)) for some C > 0.

The mixing property of (yn, x
′
n) will be used in the proofs for consistency and asymptotic

normality of the next sections.

3 The dynamic probit model

This section examines the behavior of the dynamic probit model estimator that results from
including lagged yn among the regressors. Let β = (ρ′, γ′)′ denote the true parameter and
let b = (r′, c′)′, ρ, r ∈ Rp and γ, c ∈ Rq, and let R and Γ denote the parameter spaces for
r and c respectively, and let B = R × Γ. We assume normality of the errors so that the
normalized loglikelihood conditional on y1, ..., yp has the following form,

LN(b) = (N − p)−1

N∑
n=p+1

ln(b)

= (N − p)−1

N∑
n=p+1

[yn log(Φ(

p∑
j=1

rjyn−j + c′xn)) + (1− yn) log(1−Φ(

p∑
j=1

rjyn−j + c′xn))].(13)

Given the result of Theorem 2, it is now straightforward to find standard conditions under
which the maximum likelihood estimator bML

N is consistent.

Assumption A

1. xn is a sequence of strictly stationary strong mixing random variables with α-mixing
numbers α(m), where xn ∈ Rq for q ≥ 0 and γ ∈ Rq, and the second absolute moment
of xn exits. The distribution of wn = (x′n, yn−1, . . . , yn−p)

′ is not contained in any linear
subspace of Rq.

2. un|xn, yn−1, yn−2 . . . , yn−p ∼ iid N(0, 1).

3. yn = I(
∑p

i=1 ρiyn−i + γ′xn + un > 0).

4. β is an element of the interior of a convex set B.
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Theorem 3 Under Assumption A, bML
N

p−→ β. If in addition (i) the strong mixing coeffi-
cients satisfy α(m) ≤ Cm−η for positive constants C and η and (ii) E|ln(b)|1+δ < ∞ for
some δ > 0 and all b ∈ B, and (iii) B is compact, then bML

N
as−→ β.

Let I = −E(∂/∂b)(∂/∂b′)ln(β). For asymptotic normality, we need an additional assump-
tion.

Assumption B

1. un|(xn, yn−1), (xn−1, yn−2) . . . ∼ iid N(0, 1).

Theorem 4 Under Assumptions A and B, N1/2(bML
N − β)

d−→ N(0, I−1).

Under the above Assumptions A and B, it also follows that the usual estimators of I, using
either the outer product or Hessian approach, will both be weakly consistent for I.
Note that given the weak dependence property of Theorem 2, it is also possible to set forth

conditions such that for weakly dependent un with arbitrary distribution, N1/2(bML
N −β∗) d−→

N(0, J) for some matrix J and a β∗ that uniquely minimizes the objective function. Here of
course β∗ does not necessarily equal the true parameter value β. However, in order to show
that the probit objective function is uniquely maximized at β, we need that a first order
condition of the type

E(yn − Φ(

p∑
i=1

ρiyn−i + γ′xn))m(yn−1, . . . , yn−p, xn) = 0 (14)

holds for some function m(., . . . , .). This condition is implied by

E(yn|yn−1, . . . , xn) = Φ(

p∑
i=1

ρiyn−i + γ′xn), (15)

and the latter condition is equivalent to assuming that un is i.i.d. and standard normal if
lagged values of yn are included.

4 Consistency of the smoothed maximum score esti-

mator

The smoothed maximum score estimator is defined as argmaxb∈BSN(b, σN), where

SN(b, σN) = (N − p)−1

N∑
n=p+1

(2 · I(yn = 1)− 1)K((

p∑
j=1

rjyn−j + c′xn)/σN) (16)
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and σN is a bandwidth-type sequence such that σN → 0 as N →∞, where K(.) is a function
such that K(−∞) = 0 and K(∞) = 1. This objective function is a smoothed version of the
maximum score objective function

S∗N(b) = (N − p)−1

N∑
n=p+1

(2 · I(yn = 1)− 1)I(

p∑
j=1

rjyn−j + c′xn ≥ 0). (17)

In addition, let S(b) = ES∗N(b). This notation is justified because we will use conditions
under which (yn, xn) will be proven to be strictly stationary. See Manski (1985) and Kim
and Pollard (1990) for more information and results regarding the maximum score estimator.
While Horowitz’ maximum score estimator can reach the optimal rate of convergence (see
Horowitz (1992)), Kim and Pollard (1990) showed that the maximum score estimator in
general is consistent of order N−1/3.
The following five assumptions are needed for the proof of our consistency result:

Assumption 1 (x′n, un)′ is a sequence of strictly stationary strong mixing random variables
with α-mixing numbers α(m), where xn ∈ Rq for q ≥ 1 and γ ∈ Rq, and

yn = I(

p∑
i=1

ρiyn−i + γ′xn + un > 0). (18)

Note that by Theorem 1 and the discussion following that theorem, (yn, xn)′ is strictly
stationary. This justifies the formulation of the assumptions below in their current forms.
Define x̃n = (yn−1, . . . , yn−p, xn2, . . . , xnq).

Assumption 2 The support of the distribution of (xn1, x̃
′
n)′ is not contained in any proper

linear subspace of Rp+q. (b) 0 < P (yn = 1|xn1, x̃n) < 1 almost surely. (c) γ1 6= 0, and for
almost every x̃n, the distribution of xn1 conditional on x̃n has everywhere positive density
with respect to Lebesgue measure.

Assumption 3 Median(un|xn, yn−1, . . . , yn−p) = 0 almost surely.

Assumption 3 allows for heteroskedasticity of arbitrary form, including heteroskedasticity
that depends on lagged values of yn. If all regressors are exogenous, Assumption 3 allows
for correlated errors, e.g. the errors could follow an ARMA process.

Assumption 4 |γ1| = 1, and β̃ = (ρ1, . . . , ρp, γ2, . . . , γq) is contained in a compact subset
B̃ of Rp+q−1.
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The following assumption is simply the assumption of Equation (9) in Theorem 1 for ηn =
γ′xn + un.

Assumption 5 For φmax and φmin as defined before, for some δ > 0 there exists a positive
integer K such that

P (φmax + max
i=1,...,p

(γ′xn−i + un−i) > 0|yn−p−K , yn−p−K−1, . . .)

−P (φmin + min
i=1,...,p

(γ′xn−i + un−i) > 0|yn−p−K , yn−p−K−1, . . .) < 1− δ. (19)

We need some form of scale normalization; we set |b1| = 1 here, as in Horowitz (1992).
Therefore, the estimator bN needs to be defined as

bN = argmaxb:|b1|=1SN(b, σN). (20)

The following result shows the consistency of bN :

Theorem 5 Under Assumptions 1,2,3,4 and 5, bN
p−→ β. If in addition the strong mixing

coefficients satisfy α(m) ≤ Cm−η for positive constants C and η, then bN
as−→ β.

5 Asymptotic normality of the smoothed maximum

score estimator

Define, analogously to Horowitz (1992), b̃ = (r1, . . . , rp, c2, . . . , cq), and let

TN(b, σN) = ∂SN(b, σN)/∂b̃, (21)

QN(b, σN) = ∂2SN(b, σN)/∂b̃∂b̃′. (22)

Also, define

zn =

p∑
j=1

ρjyn−j + γ′xn, (23)

and let p(zn|x̃n) denote the density of zn given x̃n, let P (.) denote the distribution of x̃n,
let F (.|zn, x̃n) denote the cumulative distribution of un conditional on zn and x̃n. For each
positive integer i, define

F (i)(−z, x, x̃) = ∂iF (−z|z, x̃)/∂zi (24)
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Let h denote a positive integer that satisfies the conditions of Assumptions 8, 9 and 10 below,
and let

αA =

∫ ∞

−∞
vhK ′(v)dv (25)

αD =

∫ ∞

−∞
K ′(v)2dv. (26)

Also analogously to Horowitz (1992), define

A = −2αA

h∑
i=1

{[i!(h− i)!]−1E[F (i)(0, 0, x̃n)p(h−i)(0|x̃n)x̃n]}, (27)

D = αD · E[x̃nx̃
′
np(0|x̃n)], (28)

Q = 2 · E[x̃nx̃
′
nF (1)(0|0, x̃n)p(0|x̃n)]. (29)

The following assumption is the analogue of Horowitz’ Assumption 5, which is the assumption
below for s = 4. It appears that Horowitz’ truncation argument is in error (see also notes 2,
3, 4 and 5), but that his argument is correct for bounded data. This explains the presence
here of a condition that is stronger than that of Horowitz.

Assumption 6 For all vectors ξ such that |ξ| = 1, E|ξ′x̃|s < ∞ for some s > 4.

We need to strengthen the fading memory conditions of Assumption 1 in order to establish
asymptotic normality:

Assumption 1’ (x′n, un) is a sequence of strictly stationary strong mixing random variables
with α-mixing numbers α(m) such that α(m) ≤ Cm−(2s−2)/(s−2)−η for some η > 0, where
xn ∈ Rq for q ≥ 1 and γ ∈ Rq, and

yn = I(

p∑
i=1

ρiyn−i + γ′xn + un > 0). (30)

The assumption below is needed in lieu of Horowitz’ Assumption 6.

Assumption 7 For some sequence mN ≥ 1,

σ
−3(p+q−1)
N σ−2

N N1/sα(mN) + σ
−2(p+q−1)/β
N N2/sα(mN)

+| log(NmN)|(N1−4/sσ4
Nm−2

N )−1 → 0 as N →∞. (31)
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For the case of independent (xn, un), α(m) = 0 for m ≥ 1, and we can set mN = 1 for that
case. The condition of Assumption 7 then becomes

(log(N))(N1−4/sσ4
N)−1 → 0 as N →∞, (32)

implying that for bounded data, we can set s = ∞ and obtain Horowitz’ condition

(log(N))(Nσ4
N)−1 → 0 as N →∞. (33)

The following assumptions are identical to Horowitz’ Assumptions 7-11:

Assumption 8 (a) K(.) is twice differentiable everywhere, |K(.)| and K ′′(.) are uniformly
bounded, and each of the following integrals over (−∞,∞) is finite:

∫
[K ′(v)]4dv,

∫
[K ′′(v)]2dv,∫ |v2K ′′(v)|dv. (b) For some integer h ≥ 2 and each integer i (1 ≤ i ≤ h),

∫ |viK ′(v)|dv <
∞, and

∫ ∞

−∞
viK ′(v)dv =

{
0 if i < h,
d (nonzero) if i=h.

(34)

(c) For any integer i between 0 and h, any η > 0, and any sequence {σN} converging to 0,

lim
N→∞

σi−h
N

∫

|σNv|>η

|viK ′(v)|dv = 0 (35)

and

lim
N→∞

σN

∫

|σNv|>η

|K ′′(v)|dv = 0. (36)

Assumption 9 For each integer i such that 1 ≤ i ≤ h − 1, all z in a neighborhood of 0,
almost every x̃n, and some M < ∞, p(i)(zn|x̃n) exists and is a continuous function of zn

satisfying |p(i)(zn|x̃n)| < M . In addition, p(zn|x̃n) < M for all z and almost every x̃.

Assumption 10 For each integer i such that 1 ≤ i ≤ h, all zn in a neighborhood of 0,
almost every x̃n, and some M < ∞, F (i)(−zn, zn, x̃n) exists and is a continuous function of
zn satisfying |F (i)(−zn, zn, x̃n)| < M .

Assumption 11 β̃ is an interior point of B̃.

Assumption 12 The matrix Q is negative definite.

In addition to the above equivalents to Horowitz’ assumptions, we will also need the following
two assumptions. The first assumption is needed to assure proper behavior of covariance
terms.
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Assumption 13 The conditional joint density p(zn, zn−j|xn, xn−j) exists for all j ≥ 1 and
is continuous at (zn, zn−j) = (0, 0) for all j ≥ 1.

The next condition on K ′′(.) is needed to formally show a uniform law of large numbers for
the second derivative of the objective function.

Assumption 14 K ′′(.) satisfies, for some µ ∈ (0, 1] and L ∈ [0,∞) and all x, y ∈ R,

|K ′′(x)−K ′′(y)| ≤ L|x− y|µ. (37)

To prove asymptotic normality, we need an inequality in the spirit of Hoeffding’s inequality,
but for weakly dependent random variables. We derive such an inequality in the Appendix
as Lemma 10. The inequality of Lemma 10 also allows for martingale difference sequences
so that it covers both the random sample case of Horowitz (1992) as well as the dynamic
case.
Our asymptotic normality result now is the following. This result, of course, is nearly
identical to Horowitz’ in the non-dynamic cross-section case.

Theorem 6 Let Assumptions 1’ and Assumptions 2-14 hold for some h ≥ 2. Then

1. If Nσ2h+1
N →∞ as N →∞, σ−h

N (b̃N − β̃)
p−→ −Q−1A.

2. If Nσ2h+1
N has a finite limit λ as N →∞,

(NσN)1/2(b̃N − β̃)
d−→ N(−λ1/2Q−1A,Q−1DQ−1). (38)

In order to estimate the matrices A, D and Q, we need an additional result, the analogue of
Horowitz’ (1992) Theorem 3.

Theorem 7 Let bN be a consistent smoothed maximum score estimator based on σN such
that σN = O(n−1/(2h+1)). For b ∈ {−1, 1} × B̃, define

tn(b, σ) = (2 · I(yn = 1)− 1)(x̃n/σN)K ′((
p∑

j=1

rjyn−j + c′xn)/σ). (39)

Let σ∗N be such that σ∗N = O(N−δ/(2h+1)), where 0 < δ < 1. Then: (a) ÂN ≡ (σ∗N)−hTN(bN , σ∗N)
converges in probability to A; (b) the matrix

D̂N ≡ σN(N − p)−1

N∑
n=p+1

tn(bN , σN)tn(bN , σN)′ (40)

converges in probability to D; (c) QN(bN , σN) converges in probability to Q.

12



References

Andrews, D.W.K. (1987), Consistency in nonlinear econometric models: a generic uniform
law of large numbers, Econometrica 55, 1465-1471.

Andrews, D.W.K. (1988), Laws of large numbers for dependent non-identically distributed
random variables, Econometric Theory 4, 458-467.

Azuma, K. (1967), Weighted sums of certain dependent random variables, Tokohu Mathe-
matical Journal 19, 357-367.

Bierens, H.J. (1981) Robust methods and asymptotic theory in nonlinear econometrics. New
York: Springer-Verlag.

Bierens, H. J. (2004) Introduction to the mathematical and statistical foundations of Econo-
metrics. Cambridge University Press, forthcoming, available at
http://econ.la.psu.edu/~hbierens/CHAPTER7.PDF.

Cosslett, S. R. (1983), Distribution-free maximum likelihood estimator of the binary choice
model, Econometrica 51, 765-782.

Davidson, J. (1994) Stochastic limit theory. Oxford: Oxford University Press.

de Jong, R.M. (1995), Laws of large numbers for dependent heterogeneous processes, Econo-
metric Theory 11, 347-358.

de Jong, R.M. (1997), Central limit theorems for dependent heterogeneous random variables,
Econometric Theory 13, 353-367.

Eichengreen, B., Watson, M. and R. Grossman (1985), Bank rate policy under the interwar
gold standard: a dynamic probit model, Economic Journal 95, 725-745.

Gallant, A.R. and H. White (1988) A unified theory of estimation and inference for nonlinear
dynamic models. New York: Basil Blackwell.

Horowitz, J. (1992), A smoothed maximum score estimator for the binary response model,
Econometrica 60, 505-531.

Hu, L. and P.C.B. Phillips (2004), Nonstationary discrete choice, Journal of Econometrics
120, 103-138.

Ichimura, I. (1993), Semiparametric least squares (SLS) and weighted SLS estimation of
single-index models, Journal of Econometrics 58, 71-120.

Imbens, G. W. (1992), An efficient method of moment estimator for discrete choice models

13



with choice-based sampling, Econometrica 60, 1187-1214.

Kim, J., and D. Pollard (1990), Cube root asymptotics, Annals of Statistics 18, 191-219.

Manski, C.F. (1975), Maximum score estimation of the stochastic utility model of choice,
Journal of Econometrics 3, 205-228.

Manski, C.F. (1985), Semiparametric analysis of discrete response: asymptotic properties of
the maximum score estimator, Journal of Econometrics 27, 313-333.

Matzkin, R.L. (1992), Nonparametric and distribution-free estimation of the binary thresh-
old crossing and the binary choice models, Econometrica 60, 239-270.

McLeish, D. L. (1974), Dependent central limit theorems and invariance principles, Annals
of Probability 2, 620-628.

Moon, H.R. (2004), Maximum score estimation of a nonstationary binary choice model,
Journal of Econometrics 120, 385-403.

Newey, W. K., and D. McFadden (1994), Large sample estimation and hypothesis testing,
in Handbook of Econometrics, Vol. 4, ed. by R. F. Engle and D. MacFadden. Amsterdam:
North-Holland.

Park, Y., and P.C.B. Phillips (2000), Nonstationary binary choice, Econometrica 68, 1249-
1280.

Poirier and Ruud (1988), Probit with dependent observations, Review of Economic Studies
55, 593-614.

Pötscher, B.M. and I.R. Prucha (1997) Dynamic nonlinear econometric models. Berlin:
Springer-Verlag.

Robinson, P.M. (1982), On the asymptotic properties of estimators of models containing
LDV, Econometrica 50, 27-41.

Ruud, P. (1981), Conditional minimum distance estimation and autocorrelation in limited
dependent variable models, Chapter 3 of Ph.D. thesis, Department of Economics, MIT.

White, H. (2001) Asymptotic theory for Econometricians. New York: Academic Press.

Wooldridge, J. (1994), Estimation and inference for dependent processes, in Handbook of
Econometrics, volume 4, ed. by R. F. Engle and D. MacFadden. Amsterdam: North-
Holland.

14



Proofs

Proof of Theorem 1:

The dynamic binary choice model of order p can be written as

yn = I(

p∑
i=1

ρiyn−i + ηn > 0) = g(yn−1, yn−2, . . . , yn−p, ηn).

This g(., . . . , .) satisfies, for all 0-1 valued y1, y2, . . . , yn−p and ỹ1, ỹ2, . . . , ỹn−p,

|g(y1, y2, . . . , yp, ηn)− g(ỹ1, ỹ2, . . . , ỹp, ηn)| ≤ L(ηn) max
j=1,...,p

|yj − ỹj|,

L(ηn) = sup
φ,φ′∈Φ

|I(φ + ηn > 0)− I(φ′ + ηn > 0)|.

where Φ was defined in Equation (8). The idea of the proof is to show that the process yn

can be approximated arbitrarily well by using a function of a finite number of ηn - this is the
content of the near epoch dependence concept. We do this by using for our approximation
ŷm

n the y that would have resulted if the process had been started up using 0 values for the yn

and ηn that occurred m periods or longer ago. Formally, for all n define ŷm
n = 0 for m ≤ 0.

Then for all m ≥ 1 recursively define

ŷm
n = g(ŷm−1

n−1 , ŷm−2
n−2 , . . . , ŷm−p

n−p , ηn).

Note that by construction, ŷm
n = fm(ηn, ηn−1, . . . , ηn−m). Define maxj∈A cj = 0 if A is empty.

Then for these approximators ŷm
n we have, using 0 ≤ L(·) ≤ 1,

max
j=1,...,p

|yn−j+1 − ŷm−j+1
n−j+1 |

= max(|g(yn−1, yn−2, . . . , yn−p, ηn)− g(ŷm−1
n−1 , ŷm−2

n−2 , . . . , ŷm−p
n−p , ηn)|, max

j=2,...,p
|yn−j+1 − ŷm−j+1

n−j+1 |)

≤ max(L(ηn) max
j=1,...,p

|yn−j − ŷm−j
n−j |, max

j=2,...,p
|yn−j+1 − ŷm−j+1

n−j+1 |)

≤ max(L(ηn)|yn−p − ŷm−p
n−p |, max

j=2,...,p
|yn−j+1 − ŷm−j+1

n−j+1 |)

≤ max(L(ηn)|yn−p − ŷm−p
n−p |, L(ηn−1) max

j=1,...,p
|yn−j−1 − ŷm−j−1

n−j−1 |, max
j=3,...,p

|yn−j+1 − ŷm−j+1
n−j+1 |)

≤ max(L(ηn)|yn−p − ŷm−p
n−p |, L(ηn−1)|yn−p−1 − ŷm−p−1

n−p−1 |,
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L(ηn−1)|yn−p − ŷm−p
n−p |, max

j=3,...,p
|yn−j+1 − ŷm−j+1

n−j+1 |)

≤ max
j=1,...,p

L(ηn−j+1) max
j=1,...,p

|yn−p−j+1 − ŷm−p−j+1
n−p−j+1 |,

and again using 0 ≤ L(·) ≤ 1, we also have by repeating this reasoning K times, for all
K ≥ 1,

max
j=1,...,p

|yn−j+1 − ŷm−j+1
n−j+1 |

≤ max
j=1,...,p

L(ηn−j+1) max
j=1,...,p

|yn−pK−j+1 − ŷm−pK−j+1
n−pK−j+1 |.

Next, note that by assumption there exists a positive integer K̃ such that, for some δ > 0,
for φmax and φmin as defined below Equation (8),

|E( max
j=1,...,p

L(ηn−j+1)|yn−pK̃ , yn−pK̃−1, . . .)|

= |P (φmax + max
j=1,...,p

ηn−j+1 > 0|yn−pK̃ , yn−pK̃−1, . . .)

−P (φmin + min
j=1,...,p

ηn−j+1 > 0|yn−pK̃ , yn−pK̃−1, . . .)| < 1− δ

for some δ > 0. Therefore, for m ≥ pK̃,

χm
def
= sup

n∈Z
E max

j=1,...,p
|yn−j+1 − ŷm−j+1

n−j+1 |2

≤ sup
n∈Z

E

(
E( max

j=1,...,p
L(ηn−j+1)|yn−pK̃ , yn−pK̃−1, . . .) max

j=1,...,p
|yn−pK̃−j+1 − ŷm−pK̃−j+1

n−pK̃−j+1
|2

)

≤ (1− δ) sup
n∈Z

E max
j=1,...,p

|yn−pK̃−j+1 − ŷm−pK̃−j+1

n−pK̃−j+1
|2

= (1− δ) sup
n∈Z

E max
j=1,...,p

|yn−j+1 − ŷm−pK̃−j+1
n−j+1 |2

= (1− δ)χm−pK̃ .

The one but last equality follows because supn∈Z f(n− pK̃) = supn∈Z f(n) for any function
f(·). Because χj ≤ 1 for all j ≥ 0, it now follows that

χm ≤ (1− δ)[m/(pK̃)],
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where [x] denotes the integer part of x. Now, because the conditional expectation is the best
possible L2-approximation,

sup
n∈Z

E|yn − E(yn|ηn, ηn−1, . . . , ηn−m)|2

≤ sup
n∈Z

E max
j=1,...,p

|yn−j+1 − ŷm−j+1
n−j+1 |2

≤ (1− δ)[m/(2K̃)] ≤ C1 exp(−C2m)

for positive constants C1 and C2.
To show that (yn, ηn) is strictly stationary, note that ŷm

n = fm(ηn−m, . . . , ηn) by construction,
where fm(., . . . , .) does not depend on n or N . This then implies that (yn, ηn) is strictly
stationary. ¤

Proof of Theorem 2:

Let Xa,b denote the σ-algebra generated by ((xa, ya), . . . , (xb, yb)). The definition of the strong
mixing coefficients is

sup
n∈Z

sup
F∈X−∞,t,G∈Xt+m,∞

{|P ((xn, yn) ∈ F, (xn+m, yn+m) ∈ G)− P ((xn, yn) ∈ F )P ((xn+m, yn+m) ∈ G)|},

see for example White (2001, page 47). Because yn is a 0/1-valued random variable, there
are only four possibilities for the possible values of the (yn, yn−m) pair. Therefore,

P ((xn, yn) ∈ F, (xn+m, yn+m) ∈ G)

= E

1∑
i=0

1∑
j=0

I((xn, yn) ∈ F, (xn+m, yn+m) ∈ G)I(yn = i)I(yn+m = j)

= E

1∑
i=0

1∑
j=0

I((xn, i) ∈ F, (xn+m, j) ∈ G)I(yn = i)I(yn+m = j)

and

P ((xn, yn) ∈ F ) = EI((xn, yn) ∈ F )
1∑

i=0

I(yn = i),
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implying that

|P ((xn, yn) ∈ F, (xn+m, yn+m) ∈ G)− P ((xn, yn) ∈ F )P ((xn+m, yn+m) ∈ G)|

≤
1∑

i=0

1∑
j=0

|EI((xn, i) ∈ F, (xn+m, j) ∈ G)I(yn = i)I(yn+m = j)

−EI((xn, i) ∈ F )I(yn = i)EI((xn+m, j) ∈ G)I(yn+m = j)|.
For the case yn = 1, yn+m = 1, we now have, defining Fn = σ(vn, vn−1, . . .) for vn = (un, x′n)′,

|EI((xn, 1) ∈ F )ynI((xn+m, 1) ∈ G)yn+m − EI((xn, 1) ∈ F )ynEI((xn+m, 1) ∈ G)yn+m|
= |EI((xn, 1) ∈ F )yn[E(I((xn+m, 1) ∈ G)yn+m|Fn)− EI((xn+m, 1) ∈ G)yn+m]|
≤ E|E((I(xn+m, 1) ∈ G)yn+m|Fn)− E(I((xn+m, 1) ∈ G)yn+m)|,

and convergence to zero with m of the last expression constitutes the L1-mixingale condition
for I((xn, 1) ∈ G)yn with respect to Fn; see for example Pötscher and Prucha (1997) for a
definition on an L1-mixingale. Now I((xn, 1) ∈ G)yn is a sequence that is bounded and near
epoch dependent on vn, implying that it is an L1-mixingale, which in turn implies that

E|E(I((xn, 1) ∈ G)yn|Fn−m)− E(I((xn, 1) ∈ G)yn)|
≤ C(ν(m) + α(m)).

The cases yn = 1, yn+m = 0; yn = 0, yn+m = 1; and yn = 0, yn−m = 0 are analogous, which
then proves the result. ¤

For the proof of Theorem 3, we need the following two lemmas. Let wn = (yn−1, ..., yn−p, x
′
n)′.

Lemma 1 Under the conditions of Theorem 3, and B being compact, E supb∈B |ln(b)| < ∞.

Proof of Lemma 1:

Note that Ewnw′
n exists by Assumption A1. Existence of Ewnw

′
n and the probit specification

imply the result. The reasoning is similar to the result for cross-section probit, see Newey
and McFadden (1994, page 2125, Example 1.2). ¤

Lemma 2 Under the conditions of Theorem 3, (i) Ewnw′
n is positive definite and (ii) Eln(b)

is uniquely maximized at b = β.
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Proof of Lemma 2:

Note that Ewnw
′
n exists by Assumption A1. The assumptions of Theorem 1 are satisfied so

that (x′n, yn)′ is strongly stationary. The assumption that distribution of wn is not contained
in any linear subspace of Rp+q implies that Ewnw

′
n is nonsingular so that Ewnw′

n is positive
definite. Let b 6= β so that E[(w′

n(b − β))2] = (b − β)′Ewnw′
n(b − β) > 0, implying that

w′
n(b − β) 6= 0 on a set with positive probability, implying that w′

nb 6= w′
nβ on a set with

positive probability. Both Φ(z) and Φ̄(z) = 1 − Φ(z) are strictly monotonic, and therefore
w′

nb 6= w′
nβ implies that both Φ(w′

nb) 6= Φ(w′
nβ) and Φ̄(w′

nb) 6= Φ̄(w′
nβ). Thus, the density

p(yn|wn, b) = Φ(w′
nb)ynΦ̄(w′

nb)1−yn 6= p(yn|wn, β)

on a set with positive probability. Note that Eln(b) is concave so that it is uniquely minimized
at b = β.

¤

Proof of Theorem 3:

For convergence in probability, we check the conditions of Theorem 2.7 of Newey and Mc-
Fadden (1994). The objective function Ln(b) is concave. The stationarity and strong mixing
assumptions imply ergodicity, see White (2001, theorem 3.34). This implies pointwise con-

vergence, Ln(b)
p−→ Eln(b) for all b. Lemma 1 proves that Eln(b) is uniquely maximized

at β. Therefore, all conditions of Theorem 2.7 of Newey and McFadden (1994) are satis-
fied and consistency follows. For almost sure convergence, note that it is easily seen from
Lemma 1 and Lemma 2 that all the conditions of Theorem A1 of Wooldridge (1994) are
satisfied, except for the condition of uniform convergence in probability of LN(b). Note that
Wooldridge’s Theorem A1 can be extended to include a strong convergence result if instead
of uniform convergence in probability of LN(b), uniform almost sure convergence LN(b) is
assumed. To show this uniform convergence, we use the generic uniform law of large num-
bers of Andrews (1987). To show strong uniform law of large numbers, this theorem requires
compactness of the parameter space, and in addition it needs to be verified that the sum-
mands qn(wn, b) are such that qn(wn, b), q∗n(wn, b) = sup{qn(wn, b̃) : b̃ ∈ B, |b̃ − b| < ρ} and
qn∗(wn, b) = inf{qn(wn, b̃) : b ∈ B, |b̃ − b| < ρ} are well-defined and satisfy a strong law of
large numbers, and that for all b ∈ B,

lim
ρ→0

sup
n∈Z

|N−1

N∑
n=1

Eq∗n(wn, b)− Eq∗n(wn, b)| = 0.
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The latter condition follows from stationarity of (yn, xn), continuity, and the envelope con-
dition of Assumption A. In addition, qn(wn, b), q∗n(wn, b) and qn∗(wn, b) are well-defined and
strong mixing random variables, so that we can apply the strong law of large numbers of The-
orem 4 of de Jong (1995), from which it follows that if α(m)+ν(m) ≤ Cm−η for some positive
constants C and η, these variables will satisfy a strong law of large numbers. This is because
under the condition that E|ln(b)|1+δ < ∞, the summands will be an L1+δ/2-mixingale. ¤

Lemma 3 Under the conditions of Theorem 4,

(N − p)1/2(∂LN(b)/∂b)|b=β
d−→ N(0, I).

Proof:

Note that by assumption, E((∂Ln(b)/∂b)|b=β|wn) = 0 so that E(∂Ln(b)/∂b)|b=β = 0. More-
over, (∂Ln(b)/∂b)|b=β is a martingale difference sequence that is strong mixing and strictly
stationary. In particular, the version of Bierens (2004, Theorem 7.11) of a central limit
theorem of McLeish (1974) yields asymptotic normality. Applying the information matrix
equality yields the result. ¤

Proof of Theorem 4:

We prove Theorem 4 by checking the conditions of Newey and McFadden (1994, theorem
3.1). Consistency was shown in Theorem 3. Condition (i) was assumed. Condition (ii),
twice differentiability of the log likelihood, follows from the probit specification. Condition
(iii) was shown in Lemma 3. Note that stationarity and strong mixing imply ergodicity, see
White (2001, theorem 3.34). Condition (iv) then follows from the probit specification and
reasoning similar to Newey and McFadden, page 2147, example 1.2. Nonsingularity follows
from the probit specification and Ewnw′

n being positive definite so that condition (iv) is
satisfied. ¤

For the proof of Theorem 5, we need the following lemmas.
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Lemma 4 For all a ∈ R, if 0 ≤ zn ≤ 1 and (zn, xn) is strictly stationary and strong mixing,
then

sup
b∈B

|N−1

N∑
n=1

(znI(b′xn ≤ a)− EznI(b′xn ≤ a))| p−→ 0.

In addition, if α(m) ≤ Cm−η for positive constants C and η, the convergence is almost
surely.

Proof of Lemma 4:

We will apply the generic uniform law of large numbers of the Theorem of Andrews (1987). It
requires compactness of the parameter space B (which is assumed), and in addition it needs
to be verified that the summands qn(wn, b) are such that qn(wn, b), q∗n(wn, b) = sup{qn(wn, b̃) :
b̃ ∈ B, |b̃ − b| < ρ} and qn∗(wn, b) = inf{qn(wn, b̃) : b ∈ B, |b̃ − b| < ρ} are well-defined and
satisfy a (respectively weak or strong) law of large numbers, and for all b ∈ B,

lim
ρ→0

sup
n∈Z

|N−1

N∑
n=1

Eq∗n(wn, b)− Eq∗n(wn, b)| = 0.

To show the last result, note that (zn, xn) is strictly stationary under the conditions of the
theorem, and therefore

lim
ρ→0

sup
n∈Z

|N−1

N∑
n=1

Eq∗n(wn, b)− Eq∗n(wn, b)|

= lim
ρ→0

sup
n∈Z

|EznI( sup
b̃:|b−b̃|<ρ

b′xn < a)− EznI( inf
b̃:|b−b̃|<ρ

b′xn < a)|

≤ lim sup
K→∞

lim
ρ→0

sup
n∈Z

|Ezn(I(b′xn < a + ρ|xn|)− I(b′xn < a− ρ|xn|))I(|xn| ≤ K)

+ lim sup
K→∞

lim
ρ→0

sup
n∈Z

|Ezn(I(b′xn < a + ρ|xn|)− I(b′xn < a− ρ|xn|))I(|xn| > K))|

≤ lim sup
K→∞

lim
ρ→0

|P (b′xn < a + ρK)− P (b′xn < a− ρK)|+ lim sup
K→∞

P (|xn| > K) = 0,

because x1n has a continuous distribution. Furthermore, note that qn(zn, b),

q∗n(wn, b) = znI( sup
b̃:|b−b̃|<ρ

b′xn < a)
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and

q∗n(wn, b) = znI( inf
b̃:|b−b̃|<ρ

b′xn < a)

are well-defined and strong mixing random variables, implying that weak law of large num-
bers for mixingales of Andrews (1988) applies; or alternatively we can apply the strong law of
large numbers of Theorem 4 of de Jong (1995), from which it follows that if α(m) + ν(m) ≤
Cm−η for some positive constants C and η, these variables will satisfy a strong law of
large numbers (note that because of boundedness of the summands, the summands are L2-
mixingales). ¤

Lemma 5 Under Assumptions 1,2, 3, 4 and 5,

sup
b∈B

|SN(b, σN)− ESN(b, σN)| p−→ 0.

In addition, if α(m) ≤ Cm−η for positive constants C and η, the convergence is almost
surely.

Proof of Lemma 5:

First note that Horowitz’ proof of his Lemma 4 (i.e. supb∈B |SN(b, σN)−S∗N(b)| as−→ 0 ) goes
through as it stands, except for the proof of uniform convergence of the term in his Equation
(A4), which uses a uniform law of large numbers for i.i.d. random variables. To show that

sup
b∈B

|N−1

N∑
n=1

(I(|
p∑

j=1

rjyn−j + c′xn| < α)− EI(|
p∑

j=1

rjyn−j + c′xn| < α))|

satisfies a strong or weak law of large numbers, we can use Lemma 4. To do so, note that

N−1

N∑
n=1

(I(|
p∑

j=1

rjyn−j + c′xn| < α)

=
1∑

j1=0

. . .

1∑
jp=0

N−1

N∑
n=1

I(yn−1 = j1) . . . I(yn−p = jp)I(|
p∑

i=1

riji + c′xn| < α)

22



and note that I(yn−1 = j1) . . . I(yn−p = jp) is strong mixing, because it is the product of
strong mixing random variables. It now only remains to be proven that

sup
b∈B

|S∗N(b)− S(b)| p−→ 0 or
as−→ 0,

which Horowitz shows by referring to Manski (1985). This can be shown by noting that

S∗N(b) = N−1

N∑
n=1

(2 · I(yn = 1)− 1)I(b′xn ≥ 0)

= 2N−1

N∑
n=1

ynI(b′xn ≥ 0)−N−1

N∑
n=1

I(b′xn ≥ 0),

and by Lemma 4, both terms satisfy a (weak or strong) uniform law of large numbers. ¤

Lemma 6 Under Assumptions 1,2, 3 and 4, S(b) ≤ S(β) with equality holding only if b = β.

Proof of Lemma 6:

This result follows by noting that all conditions from Lemma 3 of Manski (1985) are satisfied.
¤

Proof of Theorem 5 :

The proof of the theorem now follows from Theorem A1 of Wooldridge (1994) and the results
of Lemma 5 and Lemma 6. ¤

Let zn =
∑p

j=1 ρjyn−j + γ′xn. The following lemma shows that Horowitz’ Lemma 5 holds as
it stands in our setting:

Lemma 7 Under Assumptions 1’ and Assumptions 2-14,

lim
N→∞

E[σ−h
N TN(β, σN)] = A;

lim
N→∞

Var[(NσN)1/2TN(β, σN)] = D.
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Proof of Lemma 7:

The only adjustment to Horowitz’ Lemma 5 that needs to be made is to show that the
covariance terms in Var[(NσN)1/2TN(β, σN)] are asymptotically negligible. To prove this, we
show that for all vectors ξ such that |ξ| = 1,

lim
N→∞

σN

∞∑
m=1

|cov(ξ′(x̃n/σN)K ′(zn/σN), ξ′(x̃n−m/σN)K ′(zn−m/σN))| = 0.

By the covariance inequality for mixingales, for the same s as in Assumption 6, (see Davidson
(1994, p. 212, Corollary 14.3)),

σNcov(ξ′(x̃n/σN)K ′(zn/σN), ξ′(x̃n−m/σN)K ′(zn−m/σN))

≤ σNCα(m)1−2/s(E|ξ′(x̃n/σN)K ′(zn/σN)|s)1/s(E|ξ′(x̃n−m/σN)K ′(zn−m/σN)|s)1/s

= σ−1
N Cα(m)1−2/s(

∫
|ξ′x̃|s|K ′(z/σN)|sp(z|x̃)dzdP (x̃))2/s

= Cα(m)1−2/sσ
2/s−1
N (

∫
|ξ′x̃|s|K ′(ζ)|sp(σNζ|x̃)dζdP (x̃))2/s

by substituting ζ = z/σN . The last term is smaller than C ′σ2/s−1
N α(m)1−2/s for some constant

C ′. In view of the fact that summing the latter expression over m will give a term that
diverges as N →∞, we also need to use a second bound. To obtain this second bound, note
that by Horowitz’ arguments, under the conditions of the theorem,

σNEξ′(x̃n−m/σN)K ′(zn−m/σN) = O(σN),

implying that

σNcov(ξ′(x̃n/σN)K ′(zn/σN), ξ′(x̃n−m/σN)K ′(zn−m/σN))

= O(σN) + σNE(σNξ′(x̃n/σN)K ′(zn/σN)ξ′(x̃n−m/σN)K ′(zn−m/σN))

= O(σN) + σ−1
N

∫
ξ′x̃nK

′(zn/σN)ξ′x̃n−mK ′(zn−m/σN)dP (xn, xn−m, zn, zn−m)

= O(σN) + σ−1
N

∫
ξ′x̃nK

′(zn/σN)ξ′x̃n−mK ′(zn−m/σN)dp(zn, zn−m|xn, xn−m)dzndzn−mdP (xn, xn−m)

= O(σN) + σN

∫ ∫
K ′(ζn)K ′(ζn−m)p(σNζn, σNζn−m|xn, xn−m)dζndζn−mξ′x̃n−mξ′x̃ndP (xn, xn−m)
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= O(σN)

under the assumptions of the theorem. Therefore for any κ ∈ (0, 1),
∞∑

m=1

|cov(ξ′(x̃n/σN)K ′(zn/σN), ξ′(x̃n−m/σN)K ′(zn−m/σN))|

≤ C

∞∑
m=1

(σN)κ(α(m)(1−2/s)σ
2/s−1
N )1−κ,

and by choosing κ = (s − 2)/(2s − 2) + η and η > 0 small enough, the last term can be
bounded by

C(
∞∑

m=1

α(m)(s−2)/(2s−2)−η(s−2)/s)σ
(2s−2)η/s
N = O(σ

(2s−2)η/s
N ) = o(1),

where the finiteness of the summation follows from the assumptions. ¤

Horowitz’ Lemma 6 now holds as follows:

Lemma 8 Under Assumptions 1’ and Assumptions 2-14, (a) If Nσ2h+1
N → ∞ as N → ∞,

σ−h
N TN(β, σN)

p−→ A. (b) If Nσ2h+1
N has a finite limit λ as N →∞, (NσN)1/2TN(β, σN)

d−→
N(λ1/2A, D).

Proof of Lemma 8:

The modification of Horowitz (1992) that is needed is to show that for all vectors ξ such
that |ξ| = 1,

(σN/N)1/2ξ′
N∑

n=1

(tNn − EtNn)
d−→ N(0, ξ′Dξ),

where

tNn = (2yn − 1)(x̃n/σN)K ′(zn/σN).

Since tNn is strong mixing, Theorem 2 of de Jong (1997) for strong mixing arrays can now
be applied to show this result under the conditions of the lemma. Note that the condition
α(m) ≤ Cm−s/(s−2)−η from that theorem follows from the assumptions of the lemma. ¤

For reproving Horowitz’ Lemma 7 for the case of strong mixing data, we need the following
lemmas:
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Lemma 9 (Azuma(1967)) If ηn is a martingale difference sequence with respect to
Fn and |ηn| ≤ CN , then

P (|N−1

N∑
n=1

ηn| > δ) ≤ 2 exp(−Nδ2/C2
N).

Proof of Lemma 9:

See Azuma (1967). ¤

An mN -fold application of the above lemma now gives the following result:

Lemma 10 If Fn is a sequence of sigma-fields such that ηn − E(ηn|Fn−1) is a martingale
difference sequence with respect to Fn and |ηn| ≤ CN , then for any integer-valued sequence
mN such that mN ≥ 1,

P (|N−1

N∑
n=1

(ηn − E(ηn|Fn−mN
))| > δ) ≤ 2mN exp(−δ2/(m2

NC2
N)).

Proof of Lemma 10:

Obviously

N−1

N∑
n=1

(ηn − E(ηn|Fn−mN
)) =

mN−1∑
j=0

N−1

N∑
n=1

(E(ηn|Fn−j)− E(ηn|Fn−j−1)),

and therefore

P (|N−1

N∑
n=1

(ηn − E(ηn|Fn−mN
))| > δ)

≤
mN−1∑
j=0

P (|N−1

N∑
n=1

(E(ηn|Fn−j)− E(ηn|Fn−j−1))| > δ/mN)

≤ 2mN exp(−δ2/(m2
NC2

N))
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by mN applications of Lemma 9. ¤

Analogously to Horowitz (1992), define

gNn(θ) = (2 · I(yn = 1)− 1)x̃nK
′(zn/σN + θ′x̃n)

The following result is now the analogue2 of Horowitz’ Lemma 7.

Lemma 11 If (yn, xn) is strong mixing with strong mixing sequence α(m), and there exists
a sequence mN ≥ 1 such that

σ
−3(p+q−1)
N σ−2

N N1/sα(mN) + (log(NmN))(N1−2/sσ4
Nm−2

N )−1 → 0,

then

sup
θ∈ΘN

|(Nσ2
N)−1

N∑
n=1

(gNn(θ)− EgNn(θ))| p−→ 0.

Note that the second part of Horowitz’ Lemma 7 will hold without modification. Also note
that the case of i.i.d. (yn, xn) is a special case, because then α(m) = 0 for m ≥ 1, and we
could set mN = 1 for that case.

Proof of Lemma 11:

Consider

gCN
Nn(θ) = (2 · I(yn = 1)− 1)x̃nK

′(zn/σN + θ′x̃n)I(|x̃n| ≤ CN)

and note that obviously,

gNn(θ)− EgNn(θ) = (gCN
Nn(θ)− EgCN

Nn(θ))

2Note that Horowitz’ Lemma 7 only holds for bounded regressors, and that the truncation argument at
the start of Lemma 8 appears to be in error. Horowitz does not explicitly consider the remainder statistic
containing the summation elements for which |x̃n| exceeds a. Horowitz’ Lemma 9 appears to have a similar
problem in its proof. Therefore, Lemma 11 also serves to correct this aspect of Horowitz’ proof. This is
because the conditioning on the event Cγ does not appear relevant; while Horowitz’ x̃ stands for a random
variable distributed identically to any x̃n, the conditioning should be with respect to every x̃n, n = 1, . . . , N ,
in order for this argument to work. However, unless x̃n is almost surely bounded, such a conditioning set
Cγ would depend on N , and will not have the desired property that lim supγ→∞ lim supN→∞ P (Cγ) = 0.
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+(gNn(θ)− gCN
Nn(θ)− EgNn(θ) + EgCN

Nn(θ)). (41)

Now define CN = η−1/sN1/s(E|x̃n|s)1/s for any η > 0. Then because CN → ∞ as N → ∞,
following the reasoning as in the proof of (A16) of Horowitz (1992, page 525-526), it follows
that

sup
θ∈Θ

|EgNn(θ)− EgCN
Nn(θ)| → 0. (42)

In addition,

P (sup
θ∈Θ

|
N∑

n=1

(gNn(θ)− gCN
Nn(θ))| = 0) ≤ P (∃n : |x̃n| > CN) ≤ NE|x̃n|sC−s

N ≤ η, (43)

and we can choose η arbitrarily small. For the case s = ∞, it is trivial that these two terms
disappear asymptotically for some constant CN not depending on N . To deal with the first
part of Equation (41), note that

gNn(θ)− EgNn(θ) = (gNn(θ)− E(gNn(θ)|Fn−mN
)) + (E(gNn(θ)|Fn−mN

)− EgNn(θ)). (44)

To deal with the first part of the right-hand side of Equation (44), we can copy the argument
on page 525 of Horowitz (1992), except that now, by Lemma 10,

ΓN∑
i=1

P ((Nσ2
N)−1|

N∑
n=1

(gNn(θNi)− EgNn(θNi))| > ε/2)

≤ 2ΓNmN exp(−ε24−1Nσ4
NC−2

N m−2
N ).

where ΓN is as defined in Horowitz (1992). Since ΓN = O(σ
−3(p+q−1)
N ), this term will converge

to zero if

(log(NmN))(Nσ4
NC−2

N m−2
N )−1 → 0, (45)

which is assumed. For dealing with the second part of the right-hand side of Equation (44),
note since gNn(θ) is strong mixing, it is also an L1-mixingale (see for example Davidson
(1994, p. 249, Example 16.3), implying that

E|E(gCN
Nn(θ)|Fn−mN

)− EgCN
Nn(θ)| ≤ 6CNα(mN).

Using Horowitz’ reasoning of page 525, it now suffices to show that for all ε > 0,

ΓN∑
i=1

P ((Nσ2
N)−1|

N∑
n=1

E(gCN
Nn(θNi)|Fn−mN

)− EgCN
Nn(θNi)| > ε) → 0.
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By the Markov inequality,

ΓN∑
i=1

P ((Nσ2
N)−1|

N∑
n=1

E(gCN
Nn(θNi)|Fn−mN

)− EgCN
Nn(θNi)| > ε)

≤
ΓN∑
i=1

ε−1σ−2
N N−1

N∑
n=1

E|E(gCN
Nn(θ)|Fn−mN

)− EgCN
Nn(θ)|

= O(σ
−3(p+q−1)
N σ−2

N CNα(mN)) = o(1)

by assumption. ¤

Lemma 12 Under Assumptions 1’ and Assumptions 2-14, (b̃N − β̃)/σN
p−→ 0.

Proof of Lemma 12:

This follows from Lemma 11 and the reasoning3 of Horowitz’ (1992) Lemma 8. ¤

The following lemma corresponds4 to Horowitz’ Lemma 9.

Lemma 13 Let {βN} = {βN1, β̃N} be such that (βN−β)/σN
p−→ 0 as N →∞. Then under

Assumptions 1’ and Assumptions 2-14,

QN(βN , σN)
p−→ Q.

3See footnote 2.
4Note that Horowitz’ conditioning on XN appears to be in error, and note that when Horowitz uses his

Lemma 8 in the proof of his Theorem 2, a uniform law of large numbers appears to be needed rather than
the result of his Lemma 8.
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Proof of Lemma 13:

Remember that

QN(βN , σN) = [σ−2
N N−1

N∑
n=1

(2yn − 1)x̃nx̃′nK
′′((

p∑
j=1

rjyn−j + c′xn)/σN)]b=βN
.

Since P (b1 = β1) → 1 and by the assumption that (βN − β)/σN
p−→ 0 as N →∞, it suffices

to show that for all η > 0 and any vector ξ such that |ξ| = 1,

sup
|θ̃|≤η

|N−1

N∑
n=1

rnN(θ̃)− ErnN(θ̃)| ≡ sup
|θ̃|≤η

|σ−2
N N−1

N∑
n=1

(2yn − 1)(ξ′x̃n)2K ′′(zn/σN + θ̃′x̃n)

−E(2yn − 1)(ξ′x̃n)2K ′′(zn/σN + θ̃′x̃n)| p−→ 0. (46)

Note that Horowitz (1992) shows the continuity of ErnN(θ̃) in θ̃ uniformly in N . To show
the result of Equation (46), note that

P (sup
|θ̃|≤η

|N−1

N∑
n=1

rnN(θ̃)I(|rnN(θ̃)| > CN)| = 0)

≤
N∑

n=1

P ((ξ′x̃n)2 > CN) ≤ NE|ξ′x̃n|sC−s/2
N

and the last term can be made smaller than ε by choosing C
−s/2
N = N−1ε(E|ξ′x̃n|s)−1. In

addition, it is easily verified that

sup
|θ̃|≤η

|N−1

N∑
n=1

E(rnN(θ̃)I(|rnN(θ̃)| > CN))| → 0.

Because of these two results, it suffices to show uniform convergence to zero in probability
of

RN(θ̃) = N−1

N∑
n=1

(rnN(θ̃)I(|rnN(θ̃)| ≤ CN)− ErnN(θ̃)I(|rnN(θ̃)| ≤ CN)

+CNI(|rnN(θ̃)| > CN)− ECNI(|rnN(θ̃)| > CN)).
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Now note that since θ̃ ∈ Rp+q−1, we can cover the parameter space {θ̃ : |θ̃| ≤ η} with

O(σ
−2(p+q−1)/µ
N ) balls of size σ

2/µ
N and with centers θ̃j. Now note that, by Assumption 14,

sup
N≥1

E sup
|θ̃−θ̃′|<δσ

2/µ
N

|RN(θ̃)−RN(θ̃′)|

≤ sup
N≥1

E(ξ′x̃n)2L sup
|θ̃−θ̃′|<δσ

2/µ
N

|θ̃ − θ̃′|µσ−2
N → 0 δ → 0.

Using Lemma 11 and following the same reasoning as in the proof of that lemma, we can
now argue

lim sup
n→∞

P (sup
|θ̃|≤η

|RN(θ̃)− ERN(θ̃)| > ε)

≤ lim sup
n→∞

P (max
j
|RN(θ̃j)− ERN(θ̃j)| > ε/2)

≤ lim sup
n→∞

∑
j

P (|RN(θ̃j)− ERN(θ̃j)| > ε/2)

= O(σ
−2(p+q−1)/µ
N [2mN exp(−Nε2/(4σ4

NC2
Nm2

N)) + ε−1CNα(mN)])

and because CN = O(N2/s), the last term converges to 0 if

σ
−2(p+q−1)/µ
N N2/sα(mN) + (m−2

N σ−4
N N1−4/s)−1 log(NmN) → 0,

which is assumed. ¤

Proof of Theorem 6:

This proof is identical to the proof of Horowitz’ Theorem 2, where we need to use our Lemma
12 and Lemma 13 instead of Horowitz’ Lemma 8 and Lemma 9. ¤
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Proof of Theorem 7:

Part (a) now follows exactly5 as in Horowitz’ proof of his Theorem 3, where our Lemma 12
and Lemma 13 replace Horowitz’ Lemma 8 and Lemma 9. Part (c) follows from Lemma 13.

¤

5To show part (b), one can use a uniform law of large numbers result of the type

sup
|θ̃|≤η

|σ−1
N N−1

N∑
n=1

(ξ′x̃n)2K ′(zn/σN + θ̃′x̃n)− E((ξ′x̃n)2K ′(zn/σN + θ̃′x̃n)| p−→ 0

for all ξ such that |ξ| = 1. Under the conditions of our theorem, this result can be proven analogously to
the proof of Lemma 13, using the same CN and ball size sequences. Note that K ′(.) is Lipschitz-continuous
with µ = 1, since K ′′(.) is assumed to exist and to be uniformly bounded.
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