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Summary Economic variables are often measured with an error and may be endogenous.
In this paper, we give new identification results for the ratio of partial effects in linear
index models with measurement error and endogeneity. The identification restrictions include
independence of covariates and error terms, and the derivative of some conditional mean
functions being nonzero. We propose a local polynomial regression estimator to estimate the
single-index parameters. We apply these tools to estimate the labour-supply elasticity and find
that the labour-supply elasticity for married men is positive, while the coefficients for married
women are negative for the full sample and positive for the working sample.

Keywords: Endogeneity, Labour-supply elasticity, Measurement error, Nonclassical
measurement error.

1. INTRODUCTION

In many applied problems in economics, some variables are measured with error and/or are
endogenous. For example, when estimating the labour-supply elasticity, it is likely that the wage
and the number of hours worked are measured with errors. In this paper, we use the estimation of
the labour-supply elasticity as a leading example, but the estimation procedure is more general
than that. We consider the models with the combination of measurement error and endogeneity.
The model takes the following semiparametric form,

y =m(@x* +w,n), (LD
x=x"+g, (1.2)
x* =gz, w)+u, (1.3)

where we observe {y, x, z, w}. The model involves a dependent variable y, a true regressor x*,
a mismeasured regressor x, a correctly measured regressor w and an instrument z, while the
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unobservables are 7, ¢ and u. The error terms (7, €, u) in (1.1)—(1.3) are independent of z, w with
the following conditional mean assumptions: Elu|z, w] = 0 and E[e|z, w] = 0. In particular,
there is no restriction about the dimension of the disturbance 7 in the regression function. The
true regressor x* is endogenous in the sense that it is determined by g(z, w) + u and u and 7 are
generally correlated. The measurement error ¢ may be correlated with 7 so that the procedures
by Hu (2008) and Hu and Schennach (2008) do not apply. Horowitz (1998) gives a nice review
of the single-index model with exogenous regressors and the techniques reviewed by him do not
apply either.

The parameter of interest is 6, which measures the relative effects for continuous variables
x* and w. If x* and w are independent of 7, then 8 can be regarded as the ratio of partial effects
corresponding to x* and w on y because

. om@x* +w, n)/ox*
T amOx* 4+ w, n)/dw

Chesher (2003) and Schennach et al. (2012) also use ratios of derivatives to identify quantities
on nonseparable models.’

In the next section, we show that the parameter 6 is identified. One of the many models
that fit this framework is a new model for labour supply that allows for measurement error and
endogeneity. Let y be log hours and let x* be log wage. Then, the parameter 6 represents the
ratio of labour-supply elasticity over the partial effect of w on y. We present and estimate this
model to illustrate our methodology but we also view this elasticity as an important parameter
for policy analysis. Also, we allow the wage to be measured with error for those who work and to
be unobserved for those who do not work. Thus, we allow labour force participation to change as
the wage changes. In general, we allow (1.2) to be replaced by the requirement that the function
g(z, w) in (1.3) is identified.

If we ignore measurement error in (1.2), i.e., x = x*, then the proposed model becomes a
single-index control function model, which is closely related to Imbens and Newey (2009).
They use the conditional cumulative distribution function of the endogenous variable, given
the instruments, as a control variable to identify and estimate nonseparable models. Another
related paper is Schennach (2007), which provides a closed-form solution for the identification
of nonparametric regression models in the presence of measurement error. Her approach for
nonlinear error-in-variables models can handle the case where the true regressor is continuously
distributed. The proposed model in (1.1)—(1.3) differs in two respects from the model considered
by Schennach (2007). One is that the true regressor x* may be correlated with the disturbance n
and the other is that the measurement error £ may also be correlated with 1. These changes allow
the method to be used for economic models with endogeneity.

The estimation of the labour-supply elasticity has been of considerable interest in labour
economics. For example, Ashenfelter and Heckman (1974), Killingsworth and Heckman (1986),
Pencavel (1986, 2002) and Blundell et al. (1998) provide estimates, and Blundell and MaCurdy
(1999) give a general review. Card and Hyslop (2005) estimate a related quantity, the effect of
a subsidy for people leaving welfare. Borjas (2009) gives an overview of empirical studies that

! The appendix contains an example that illustrates the fact that using a linear approximation may yield the wrong sign
for the causal effect.

2 There may exist a correlation between x* and 7 in (1.1) and the nonseparable term g(z, w) can also be regarded as a
control function because g(z, w) is independent of 1 and a correlation between x* and 7 should come from a correlation
between u and 7.
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estimate the labour-supply elasticity, and also discusses the problems caused by measurement
error. Keane (2011) reviews the literature on the effects of taxes on labour supply. Our paper
introduces a new methodology that allows for measurement error. We find that the labour-supply
elasticity for married men is positive, while the coefficients for married women are negative for
the full sample and positive for the working sample.

This paper is organized as follows. We discuss identification and estimation of the model in
Section 2. We present a simulation study in Section 3. Then, in Section 4, we show how these
tools can be used to determine whether the labour-supply elasticity is positive or negative. We
conclude in Section 5.

2. SINGLE-INDEX MODELS
In this section, we first introduce conditions for the identification of 6 and establish the result.
Then, we extend the result of the identification in a variety of useful directions.

ASSUMPTION 2.1. The observables 7 and w are independent of the error terms (u, n, €) in
(1.1)—~(1.3). The error terms u and ¢ satisfy the conditional mean restrictions E[u|z, w] = 0 and
Ele|z, w] = 0, respectively.

By (1.3), taking the expectation of x conditional on z and w yields
Elx|z, w] = E[x* + ¢|z, w]
= E[g(z, w) +u +¢elz, w]
= g(z, w).
Also, by independence between u and z, w we have

Ely|z, w] = E[m(0g(z, w) + 0u + w, n)|z, w]
= /m(@g(z, w) +0u +w, n) fi,(u, n)dudn.

We need the following regularity condition for the identification result.

ASSUMPTION 2.2. The instruments (z, w) each contain a continuous element and the functions
m(-, ) and g(-, -) are differentiable.

Taking the derivative of the conditional mean function E[y|z, w] with respect to z, w, we
have

dE[ylz, w] , 3
—— = | m(0g(z,w) +w +0u, )@ —g(z, w) + 1) fu ,(u, n)dudn
ow w
a
= (9@3’(2, w) + 1)/m/(9g(z, w)+w + 0u, n) fu,(,n)dudn, (2.1)
and
IE[y|z, / 3
[yalzz wl _ /m (Og(z, w) + w + Ou, n)a—zeg(z, W) fu.n(, m) dudn

= 9(%8(2, w) / m'(0g(z, w) + w + Ou, n) fy.,(u, n) dudn. (2.2)
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Here, we use the notation m'(-, -) to denote the partial derivative of the regression function in the
first argument.

ASSUMPTION 2.3. There exists a set Z in support of (z, w) such that Pr(Z) > 0 and for any
(z,w) € Z,(3/3z)E[y|z, w] # 0 and
dE[y|z, w] 0E[x|z, w] 0E[y|z, w] IE[x|z, w]
- # 0.
ow 0z 0z ow
Because (0/0z)E[y|z, w] # 0 in Assumption 2.3, we can divide (2.1) by (2.2) to eliminate
[ m'(0g(z, w) + w + Ou, n) f,..,(u, n) du dn. This yields
(@/0w)E[ylz, w]  6(3/0w)g(z, w) + 1
(0/02)Elylz, w] 0(3/92)8(z, w)
_ 0(0/0w)E[x|z, w]+1
© 0(/3)Elx|z, w]

It follows that
g — (0/92)Elylz, w] ’
(0/0w)E[ylz, wl(8/92)E[x|z, w] — (8/92)E[y|z, w](3/dw)E[x|z, w]
where the denominator is nonzero by Assumption 2.3.

We can easily adjust our method to the following model with a vector of multiple regressors
W = (w;, W):

y = m@x* + w, + (W), n), (2.3)
x=x"te, (2.4)
x* =gz, W)+ u. 2.5)

Following a similar manner as in the previous derivation, we can obtain

90— (0/02)E[ylz, W]
(0/0w1)E[ylz, W1(3/3z)E[x|z, W] — (3/02)Ely|z, W1(3/dw)E[x|z, W]’

The last equality holds for every (z, w) € R2. In order to estimate #, one can use a weighted
average over (z, w) using, for example, the density of (z, w) as the weighting function.

2.1. Multivariate case

Note that the method developed in this section can be applied to a more general case containing
more than two mismeasured independent variables.

ASSUMPTION 2.4. Assume El¢e|z,Z] and Elu|z, Z] are all equal to zero and the vector of
unobservables (n, uy, uz, &1, &) is independent of (z, 7).

ASSUMPTION 2.5. An i.i.d. random sample {y, x, w, z, 7} satisfies
y = m@x* + w*, n),

x=x"+¢,
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'x* = gl(Z7 Z)+ula
w=w"+ &,
w* = g(z,2) + us,

where (x,w) are the measurement of the latent explanatory variables (x*, w*), (z,7) are
instruments, the functions m(-, -), g1(-, -) and g»(-, -) are unknown, 0 is the unknown parameter
of interest, and the unobservables (n, €1, €2, U1, u,) are jointly independent of (z, 7). The errors
(n, uy, uy) are normalized to have zero expectation.

In Assumption 2.5, we can replace x = x* 4 ¢; by the assumption that g;(z, Z) is identified
and replace w = w* + &, by the assumption that g,(z, 7) is identified. This allows us to deal with
the fact that for some the wage is measured with error while for others (who do not work) the
wage is not observed at all. We take an expectation of x conditional on z, 7

Elx|z,Z] = E[x* + €1z, Z]
= Elg1(z,2) +ui + &1z, Z]
= 81z, 2).
Similarly,
Elwlz, Z] = g2(z, 2).
Note that, by independence between u = (u, u;) and z, Z,

Elylz,Z] = E[m(0g1(z, 2) + g2(z, 2) + Ouy + u2, n)lz, Z]
= /m(Ggl(z, )+ g2(z,2) +0uy + uz, ) fu, upnu1, uz, n) duy dus dn.

We further assume the following.

ASSUMPTION 2.6. The instruments (z, 7) each contain a continuous element and the functions
m(-, ), g1(-, -) and g,(-, -) are differentiable.

Taking the derivative of the above equation with respect to z, Z, we have

JdIE[y|z, Z] 0 5 0 5 , B 5
9EDkz. 2] =(0—gi1z, )+ —glz, z))/m (0g1(z,2) + g2(z,2) + Ouy +uz, m)
0z 0z 9z
X fur iy (U1, 2, n) duy dus dn. (2.6)
and
JdE[y|z, Z] 0 - ad - , - -
;—; = (Oa—zgl(z,z)+ a_ng(Z’ z))fm (0g1(z,2) + g2(z,2) + Ouy +uz, m)

X fur (U1, w2, m)duy dus dn, 2.7

ASSUMPTION 2.7. There exists a set Z in support of (z, Z) such that Pr(Z) > 0 and for any
(z,2) € Z,(0/02)Ely|z,Z] # 0 and
dE[ylz, 2] 9E[x|z, 2]  0E[ylz,Z] 9E[x|z, Z]
0z 0z 9z 07

£0.
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Notice that this assumption is imposed on observables and is directly testable from the
sample. A condition that we impose to ensure that a denominator is nonzero is excluding the
case where E[y|z,Z] =aE][x|z,Z] + b for some a, b, which rarely happens. Dividing (2.6)
by (2.7) to eliminate [ m'(0g1(z, 2) + &2(z, 2) + Ouy + w2, 0) fu, ur.n (U1, 2, ) duy dus dn, we
obtain

(0E[ylz, Z1/9z) _ 6(8/32)81(z,Z) +(3/92)82(z, 2)
(0E[ylz,21/02)  0(3/32)g1(z, 2) +(9/02)82(2, 2)
_ 0(0/02)Elx|z, 2] +(9/02)Elw]z, Z]
~ 0(0/02)E|x|z, 2] + (3/02)E[w|z, 2]

Under Assumption 2.7, we can then solve for 8. We summarize the results as follows.

THEOREM 2.1. Suppose that Assumptions 2.4-2.7 hold. Then, the parameter of interest 0 is
identified. In particular,

_ (0Elylz, 21/9z)(0E[wlz, 2]/0Z) — (0Ely|z, 2]/02)(0 E[w]z, 2]/02)
~ (DE[yl|z,21/92)(dE[x|z, 21/0z) — (DE[y|z, Z1/02)(DE[x|z, 21/0Z)

Notice that the result degenerates to the previous case when there is no measurement error in
w (i.e., w = 7 = w*). If the denominator in the last expression is nonzero, then we can replace
the derivatives of the expectations by consistent estimators, which yields a consistent estimator
for 6.

The results presented so far can be extended in a more general framework for handling more
than two variables. Consider the following model with a vector of mismeasured regressors X =

(x1, ..., x) for a true regressor X* = (xj, ..., x):
y=m@ix] + ...+ 6x; +w", n); (2.8)
xi=x'+4eg, i=1,...,k 2.9
x' =gz, )+ u; (2.10)
w=w*+& 2.11)
w* = g(z, %) +i. (2.12)
Here, z = (z1, . . ., 1) and 7 are instruments, the functions m(-, -), g; (-, -) and g(-, -) are unknown,
01, ..., 0 are the unknown parameters of interest and (7, &;, ..., &, Ui, ..., Uy, &, ii) are the

unobservables jointly independent of (z, Z). The unobservables are normalized to have zero
expectation. Under this setting, the variable w* is treated as a base variable and the parameter 6;
represents the ratio of partial effects corresponding to x; and w* on y.

Similar derivations can be applied to this general model using the inverse of some k x k
matrix of partial derivatives of conditional expectations. First, we set u = (u1, ..., uy), and so
we have

Elxi|z,Z1 = gi(z,2), fori=1,...,k,
Elw|z, 2] = &(z, 2),
Elylz, 2]l = E[m®:1x} + ...+ Ox{ + w*, n)lz, 2]
- /m(elgl(Z, DA .+ 0z, 7))+ 82,2+ 61wy + ...+ Gy + i, n)
Xfu,ﬁ,n(’/h i, n)du dii di’).

© 2015 Royal Economic Society.
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Partially differentiating with respect to z; or Z on the conditional expectation E[y|z, 7] yields

oE ,Z d , 2 d 4 09(z, 2
[ylz, Z] — (s, 81z, 2) Y 8k(z, %) n 8(z,2)
32,‘ 82,‘ BZ,‘ 3Zi

X /m/(é’lgl(z, D+ + 0z, D)+ 8z, 2+ 0+ ...+ Oup +ii,n)
X fuiay(u, i, n)dudiidn,

and

0Elylz, 2] _ (91 081(z,2)

0z

0gr(z,2) 08(z,2)
46
3z T T s

x /m’(é’lgl(z, Dt ...+ gz 2+ 8z, 2 + 0y + ... + Ouy + i, n)
X fuay(u, @, n)dudiidn.
The quotient of these two conditional expectations gives
(OE[ylz,21/0z:))  01(081(z,2)/02:) + ... + 6 (08k(2,2)/0z;) + (3§(z, 2)/02:)

(3E[ylz, 21/8%) ~ 61(3g1(z, 2)/3%) + ... + Ou(dgi(z, 2)/3%) + (38(z, 2)/37%)

_ 01(0E[x1z,21/02i) + . .. + OB E[x¢|z, 21/92:) + (9E[wlz, 21/92:)
 61(0E[x|z,21/82) + ... + 6 (DE[xt|z, Z1/8%) + (DE[w]z, Z1/0Z)
fori=1,...,k.

Cross-multiplying the above quotient terms yields

0E[x|z,Z] 0E[y|z,Z] 0E[x1|z,Z] 0E[ylz, Z]
01 ~ — =
07 0z; 0z 07

0E[xi|z,Z1 0E[ylz,Z]  0E[x|z,Z]1 0Elylz, Z]
+...+ 6 — — —
0z az; 0z; 97
0E[w|z,Z] 0E[y|z,Z] OdE[w|z,Z] dE[y]z, 7] )
= - — — ~ fori=1,...,k.
0z az; 0z; 9%
Let A denote a k x k matrix whose (i, j)th element is
0E[xjlz, Z] 0E[ylz.Z]  0Elx;lz, 2] 9E[ylz, 2]
a7 0z; 0z; 0z
and let B denote a k£ x 1 vector whose ith element is
_ 0E[w|z,Z] 0E[ylz, Z] . 0E[w|z,Z] 0E[ylz, Z]
07 9z, 9z; a7 )
Using these notations, we can express the k equations as Af = B, where 6 = ©1,...,6). If

the k x k matrix of partial derivatives A is invertible, then the vector of parameters of interest is
identified by § = A~'B.

© 2015 Royal Economic Society.
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2.2. Estimation

The main result in Theorem 2.1 is expressed in terms of the first derivatives of the conditional
expectations and we propose the use of local polynomial regression methods to estimate these
derivatives. Fan and Gijbels (1996) provide an overview of local polynomial estimators for such
derivatives and we state an estimator in this section.

The main result in Theorem 2.1,

6 = (8/02)Elylz, ]
(0/0w)ELy|z, wl(0/02) ELx|z, w] — (39/92) Elylz, wl(®/dw) Elx|z, w]’

works for the domain of (z, w). As such, we can use

- ff (0/02)E[ylz, w]
(3/0w)E[ylz, w](9/92)E[x|z, w] — (3/02)E[y|z, w](d/0w)E[x|z, w]
xQ(z, w)dzdw, (2.13)

where Q(z, w) is a weighting function and one can choose Q(z, w) = fzw(z, w)n(z, w)
including the density fzy and some other weighting n(z, w).

Given a random sample of data, {y;,x;,z;, w;}7, we can apply local polynomial
estimators for the derivatives of the conditional expectations, (3/9z)E[y|z, w], (3/0w)E[y|z, w],

(0/9z)E[x|z, w] and (3/0w)E[x]|z, w]. Let

IElylz,wl  9E[ylz,wl  OE[x|z, w] and IE[x|z, w]
9z ’ ow ’ 9z ow

be local polynomial estimators for these derivatives. This suggests a sample counterpart estimator
of the parameter of interest in (2.13),

=y BE[ylz, w;1/92)
~ DE[y|z:, w1/dw)@E[x|zr, wi1/92) — DEy|zr, wil/02)@E[x |z, w;1/dw)
(e ). (2.14)

Set (Z, w) is the sample mean of {z;, w;}?. Our choice of the weight function with the bandwidth

h, is the following:
Nh hl

1

where T is the tri-cube weight function such that

1 —ul?)? if <1,
T(w) = (I —ul?y if Ju| <
0 else.

The distance || - || is defined by

o -2\ wi — )
Gz, wi) =, W)l = <var(z-)> + (var(w')> 7

and Ny, is the number of points in {z;, w;}; close to the sample mean (Z, w) within the distance
hy defined by T and || - ||. The weight function n(z;, w;) is supposed to pick up points close to
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the sample mean (Z, w). If we assume that the denominator term in (2.14) is bounded away from
zero at the sample mean (Z, w), by continuity the weight function removes the points that make
the denominator term close to zero. Hence, the weight function can be regarded as a trimming
function and prevents so-called ratio bias, as discussed by Hoderlein and Sherman (2015).

The proposed local polynomial estimator should be consistent under general conditions and
we analyse it using Monte Carlo study in the next section. In the rest of this section, we illustrate
how we apply local polynomial regression to two-dimensional functions. We start with a local
quadratic approximation for a function E[y|z, w] around a point (zg, wy),

Ely|z, w] = Bo + Bi(z — z0) + Bo(w — wo) + B3(z — zo)(w — wp)
+B4(z — 20)” + Bs(w — wo)*.

Let h, be a positive value for the bandwidth. To obtain the local polynomial regression
estimate, we try to find the vector of parameters 8 = (B9, B1, B2, B3, Ba, B5) that minimizes the
following objective function:

l(zi, wi) — (2o, wo)||>

30— Bo — Bilzi — 20) — Baw; —wo) — ... — Bs(w; — wp))’T ( .

This is a weighted least-squares problem where the weights are given by the functions 7'(-). The
estimation gives (d/9z) E[y|zo, wo] = B1 and (9/0w)E[y|z0, wol = B>-

3. SIMULATION

In this section, we study the finite sample performance of the proposed local polynomial
regression estimator for the parameter of interest 8. The simulation models in this study are
based on nonparametric estimation of derivatives by the method presented in Section 2. The data-
generating process (DGP) for single-index models with measurement error and endogeneity in
the Monte Carlo experiments are generated according to the wage equation and the hours-worked
equation. Consider the wage equation

x* =gz, w) +u,
and the hours-worked equation
y = m(@x* + w, n).
The wage is observed with measurement error ¢,
x=x"+e.
There are two DGPs in the experiment:
DGPIL: g(z,w) =z,
m@x* +w,n) =exp@x* +w + 1),
DGPII: g(z,w) =2+0.1z> + w,
m@Ox* +w, n) = @x* + w)® + 1,

© 2015 Royal Economic Society.
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Table 1. Finite sample performance of the local polynomial regression estimator.

0=-038 0=-1 0=-12
N =500
DGP1 Mean —0.965 —1.116 —1.334
Median —0.879 —1.110 —1.304
Std dev. 0.460 0.815 0.502
DGPII Mean —0.783 —0.987 —1.160
Median —-0.817 —1.013 —-1.172
Std dev. 0.802 0.570 1.050
N = 1000
DGP1I Mean —0.850 —1.065 —-1.292
Median —0.839 —1.075 —1.299
Std dev. 0.108 0.163 0.324
DGPII Mean —0.813 —0.994 —-1.137
Median —0.805 —1.005 —1.180
Std dev. 0.738 0.114 0.850
N =2000
DGPI Mean —0.827 —1.048 —1.267
Median —0.820 —1.042 —1.256
Std dev. 0.068 0.086 0.104
DGPII Mean —0.811 —-1.017 —1.163
Median —0.809 —1.005 —1.202
Std dev. 0.316 0.185 0.464

Note: Standard deviations of the estimators are computed by using the sample standard deviation of 200 replications.

where z ~ N(0, 1), w ~ N0, 1), u ~ N(0,0.2), e ~ N(0,0.2), n ~ N(0, 1) and these normal
distributions are jointly independent. These two DGPs have nonlinear functional forms for the
hours-worked equation: DGP I is an exponential function and DGP 1II is a polynomial. We
consider three different values of # in the experiments: 6 = —0.8, —1 and —1.2. In addition,
three different sample sizes N are considered: 500, 1000 and 2000. We used 200 simulation
replications for each sample size in order to estimate the standard errors.

Table 1 presents the simulation results of the proposed local polynomial estimator. The
simulation results of DGP I (the exponential case) show a small downward bias. In DGP 1, the
mean and median of the coefficients are almost the same. In addition, the standard errors of 6
are larger if the absolute value of 6 is larger, except for the case N = 500. As for DGP II, when
6 = —1, the bias and standard error are relatively small compared to the other two values of 6.
Nevertheless, the mean and median estimation values are closer to the true values and standard
errors decrease as sample sizes grow. Therefore, the Monte Carlo simulation in this study shows
that the proposed local polynomial estimator works very well.
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4. EMPIRICAL APPLICATION: THE LABOUR-SUPPLY ELASTICITY

A major difficulty for estimating the labour-supply elasticity is that both the wages and the
number of hours worked may be measured with error. For example, people may not recall the
exact amount that they earned per hour in the last year; see, e.g., Chapter 2 of Borjas (2009).
The tools of the previous sections are exactly designed to deal with a measurement error problem
like this. Consider the following model, which has a wage equation, a participation equation and
an hours equation.

The wage equation is

In(wage;) = schooling; 8 + Hiy + ¢&;, 4.1

where the error term ¢; is assumed to be independent of the exogenous regressors in the vector
H; and also independent of the instrument Z;. Let the potential wage (i.e., the wage that
somebody could earn if that person would work) be denoted by x*. Note that for some, but
not all, individuals we observe both predicted log wage and the potential wage measured with
error. Next, consider the participation equation. The probability that somebody participates in the
labour force is a function of the potential wage x*,

labour supply; =10, - x + S;8, T:), 4.2)

where S; is a vector of exogenous regressors. Note that using x;* solves the problem that (a) we do
not observe the wage for those who do not work and (b) we have a measurement error problem,
even if we do observe the wage.

The hours-worked equation is also a function of the potential wage,

In(hours;) = m(® - x; + Wik, n;),

where W; is a vector of exogenous regressors. Traditional labour models use a wage equation,
a participation equation and an hours equation. The hours equation is then written as a function
of the observed wage rather than the potential wage. Our methodology allows us to write the
participation equation and the hours equation in terms of potential wage (i.e., the wage that
somebody could earn if that person would work). Therefore, we can express the labour-supply
elasticity directly as a function of this potential wage that is unobserved for some and measured
with error for others. In particular, an increase in this wage has a direct effect on the hours (e.g.,
from zero hours to a positive number of hours). Thus, using x* yields a very natural approach
to deal with the intensive and extensive margin. Alternatively, one could only consider the wage
equation and the participation equation but we do not pursue that strategy here. Also, note that
measurement error plays a role in both the labour-supply equation and in the hours-worked
equation.

In the rest of this section, we report empirical estimates of the model presented using data in
the US Panel Study of Income Dynamics (PSID). The advantage of our methodology is that it
allows the wage variable to be measured with error and/or to be endogenous. Many survey data
have these features.

We use Wave 35 of the Michigan PSID 2007 as the source of data for the empirical work.
Our sample consists of 880 married couples, age 25-55 in 2007. Other sample restrictions
include eliminating observations where the husband or the wife reported that he or she was
disabled, removing observations where the couple reports self-employment or farm income,
and elimination of observations with missing data. Hours of work is measured in terms
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Table 2. Sample statistics.

Variables Full sample Working women subsample
Mean Std dev. Mean Std dev.
Husband
Age 40.316 8.849 40.760 8.827
Participation 0.966 0.182 0.965 0.185
Hours of work 2217.176 528.480 2200.583 512.658
Wage rate 26.804 20.570 26.848 19.300
Nonlabour income 488.285 1879.806 511.137 1945.202
Black 0.168 0.374 0.166 0.372
Education 5.526 1.513 5.535 1.520
Father’s education 4.713 1.738 4.699 1.751
Wife
Age 38.881 8.876 39.310 8.830
Participation 0.896 0.305 1.000 0.000
Hours of work 1698.382 662.855 1756.705 622.529
Wage rate 21.255 14.943 21.717 15.212
Nonlabour income 396.992 1605.627 410.303 1649.953
Black 0.161 0.368 0.160 0.366
Education 5.752 1.478 5.780 1.478
Father’s education 4.902 1.790 4.877 1.812
Sample size 880 789

Notes: Standard errors are in parentheses. Wage rate is calculated by dividing labour income by hours of work. Nonlabour
income is calculated by summing income from rent, dividends, interest, trust funds and royalties. Education is imputed
from the following categorical scheme: 1 = 0-5 grades (2.5 years); 2 = 6-8 (7 years); 3 = 9-11 (10 years); 4 = 12 (12
years); 5 = 12 plus non-academic training (13 years); 6 = some college (14—15 years); 7 = college degree, not advanced
(16 years); 8 = college advanced degree (17 years).

of hours on all jobs held in 2007. This variable was the product of weeks worked times
average hours worked per week over all jobs. Wage rate is calculated by dividing labour
income by hours of work. Nonlabour income is calculated by summing income from rent,
dividends, interest, trust funds and royalties. Also, we use the education of the father as an
instrument.

Descriptive statistics for the variables used in the labour-supply estimation are presented in
Table 2. There are two samples including the full sample and the subsample of working women.
Because the data are fairly recent (2007), the labour force participation rate for both men and
women is high: 0.966 for men and 0.896 for women. It follows that the subsample of families in
which the wife works does not seem to vary significantly from the full sample in terms of hours
of work or the wage rate of either spouse. Worker characteristics, including age, education and
race, were included to represent human capital factors. Husbands and wives both had 13 years of
education on average, but the wives were about one and half years younger than their husbands in
the full sample. For simplicity, we consider the variable w to be a scalar. Therefore, the empirical
model becomes
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Table 3. Estimation results of relative effects.

Full sample Working subsample
Men Mean —3.595 —2.345
Median —3.575 —3.090
Std dev. (7.199) (17.285)
Women Mean 0.084 —1.146
Median 1.037 —1.146
Std dev. (4.377) (0.948)

Note: The estimates reported here are the relative effect of the potential wage and the nonlabour income on hours worked.
We use Silverman’s rule of thumb, i.e. h; = ¢ - n'/5 fori = 1, 2. The constant ¢ = 2 in this table. As a robustness check,
we also use ¢ = 4 in Table 4 and refer to it as double bandwidth. The instrumental variable in these specifications is the
father’s education.

Table 4. Estimation results of relative effects (double bandwith).

Full sample Working subsample
Men Mean —15.231 —22.170
Median —8.515 —11.200
Std dev. (36.997) (74.714)
Women Mean 42.923 —7.942
Median 23.258 —7.942
Std dev. (54.092) (2.288)

Note: The estimates reported here are the relative effect of the potential wage and the nonlabour income on hours worked.
We use the bandwidths as the Silverman’s rule of thumb, i.e. h; = ¢ - n!/3 fori = 1, 2. The constant ¢ = 2 in Table 3. As
a robustness check, we use ¢ = 4 in this table. The instrumental variable in these specifications is the father’s education.

yi = m(0x* + wi, n;),
xi =x'+¢,
x; = g(zi, w;) + u;.
In this empirical application, the dependent variable y is the natural logarithm of hours of work
plus one, the covariate x is the natural logarithm of the wage rate plus one, z is the education
level of the father and w is nonlabour income. Using the tools that we introduced in the earlier
sections to estimate the labour-supply elasticity, we can only estimate the ratio of partial effects
corresponding to x* and w on y, and we need to know the direction of the effect of w to know
the direction of the effect of x*. In the present empirical example, the choice of w is nonlabour
income of each sample member. An increase in nonlabour income reduces the number of hours
that one works so that the sign of the effect of w is negative. This implies that the sign of the
effect of x* is the opposite sign of the estimated 6. In other words, an increase in the wage has an
income and a substitution effect but an increase in nonlabour income only has an income effect
so that we can use the direction of this effect.

Tables 3 and 4 show the results of the estimation of the parameter §. The mean and median
estimates present similar results in terms of directions of the relative effects and estimated
coefficients. Given the flexible nature of the estimation approach, it is hard to compare the size of
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Table 5. Estimated signs of the labour supply elasticities.

Full sample Working subsample
Men Mean + +
Median + +
Women Mean - +
Median - +

Note: Because the direction of the effect of the nonlabour income w on hours of working is negative, the sign of the
effect of potential wage x* on hours of working is the opposite sign of the estimated 6.

the estimated coefficients. Therefore, we focus on the sign of the labour-supply elasticity. Table 5
presents the estimated sign of the labour-supply elasticities by assuming that the effect of the
nonlabour income on hours of work is negative. The coefficients for married men are positive,
while the coefficients for married women are negative for the full sample and positive for the
working sample. Thus, for men, the number of hours worked is increasing in the wage; that is,
the income effect (‘buy more leisure’) is smaller than the substitution effect (‘leisure is more
expensive if the wage increases’). For women, the income effect is smaller than the substitution
effect in the working sample while the income effect is larger than the substitution effect in the
full sample.

5. CONCLUSION

This paper gives new identification results for the ratio of partial effects in the single-index
model with measurement error and endogeneity, and also shows how to estimate the single-
index parameter by a local polynomial regression estimator. We apply these tools to estimate the
labour-supply elasticity, and find that the labour-supply elasticity for married men is positive,
while the coefficients for married women are negative for the full sample and positive for the
working sample. The new estimator allows for endogeneity and measurement error, a situation
that often has to be dealt with in empirical work. An aspect that was not explored in this paper is
the use of additional restrictions. For example, if, in a subset of the data, a substantial fraction of
the women do not work, then it may still be possible to estimate the median income for the whole
subset. This gives the applied researcher additional restrictions and more precise estimates.
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APPENDIX A

The following example shows that a naive regression of y on x may yield the wrong sign on the causal
effect. In other words, the measurement error and/or endogeneity may reverse the sign of the effect. We
thank an anonymous referee for suggesting that we include an example to illustrate this. Consider the
following linear version of the proposed model

y=06x"4+w+n,
x =x"+e,

x* = g(z, w) + u.
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This implies that y =0x* +w+n=60x +(w +n —0¢). Set v=w +n —O¢ and then y =0x +v. A
naive regression of y on x yields the following estimator for 6:
> — WX —X) —64 > = X) (v — D)

Zi(-xi - j)z Zi(xi - x)z ’

By the definition of v, we have v; — v = (w; — W) + (; — 77) — 6(¢; — &). Plugging the relationship back
into the above equation yields

D

2 =) (w — ) + ( — 1) — O(e; — &)

0=6+ S (%7

In large samples 6 converges in probability to

cov(x, w) + cov(x, n) — Ocov(x, &)

0
+ var(x)

Because x = g(z, w) + ¢ + u and (7, &, u) are independent of z, w, the probability limit g is

cov(x, w) + cov(e +u, n) — Ocov(e + u, €)

0
+ var(x)

This shows that the bias of the naive regression depends on several factors including the covariance of x
and w, the covariances of the measurement error ¢ between the disturbance n and the endogenous error
u, and the endogenous term cov(u, n). It is easy to see that the sign of € is not identified by the naive
regression. If the measurement error ¢ is uncorrelated to the disturbance 1 and the endogenous error # with
small variation, and if the covariance between x and w is small, then the probability limit is

cov(u, n)
var(x)

In this case, the endogeneity (nonzero covariance between u and 1) is strong enough to reverse the sign of
the effect under the following conditions:

VWD i g,
var(x)

VU o1 otherwise.
var(x)
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