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THE SINGULARITY OF THE INFORMATION MATRIX
OF THE MIXED PROPORTIONAL HAZARD MODEL

BY GEERT RIDDER AND TIEMEN M. WOUTERSEN1

This paper presents new identification conditions for the mixed proportional hazard
model. In particular, the baseline hazard is assumed to be bounded away from 0 and ∞
near t = 0. These conditions ensure that the information matrix is nonsingular. The pa-
per also presents an estimator for the mixed proportional hazard model that converges
at rate N−1/2.

KEYWORDS: Duration, semi-parametric efficiency bound, mixed proportional haz-
ard model, duration dependence, heterogeneity, root N convergence.

1. INTRODUCTION

WE RECONSIDER THE EFFICIENCY BOUND for the semi-parametric mixed proportional
hazard (MPH) model with parametric baseline hazard and regression function. This
bound was first derived by Hahn (1994). One of his results is that if the baseline hazard
is Weibull, the information matrix is singular, even if the model is semi-parametrically
identified.2 This implies that neither the Weibull parameter nor the regression coeffi-
cients can be estimated at a N−1/2 rate3 (Ishwaran (1996a) and Van der Vaart (1998,
Theorem 25.32)).

Hahn’s result had an impact on the use of MPH models in empirical research.
The singularity of the information matrix seems to confirm the results of simulation
studies (see, e.g., Baker and Melino (2000)) that suggest that it is difficult to esti-
mate both the baseline hazard and the distribution of the random effects (or unob-
served heterogeneity) with a sufficient degree of accuracy with the sample sizes that
one encounters in practice. Indeed Honoré’s (1990) estimator for the parameters of
a semi-parametric Weibull MPH model converges at a rate slower than but arbitrarily
close to N−1/3. Ishwaran (1996b) shows that the Weibull parameter can be estimated
at a rate N−d/(2d+1) if the moments of the unobserved heterogeneity up to d + 1 are
bounded. Altogether these results seem to imply that although the MPH model is semi-
parametrically and even nonparametrically identified, the estimation of the parameters
of a semi-parametric MPH model requires a larger dataset than usual.

In this note we show that this impression is false. In particular, we show that the
information matrix is singular if and only if the parametric model of the integrated
baseline hazard is closed under the power transformation. A set of integrated baseline
hazards H is closed under the power transformation ifΛ(t) ∈ H implies {Λ(t)}α ∈ H for
every α > 0
 The Weibull baseline hazard is the most prominent member of this class

1We are grateful to three referees and especially to a co-editor for helpful comments. We thank
Guido Imbens who urged us to write this paper. We thank Marcel Voia and Bing Zheng for their
research assistance. The second author acknowledges financial support from the Social Science
and Humanities Council in Canada. All errors are ours.

2The singularity holds if we have single-spell duration data. Hahn shows that the efficiency
bound is nonsingular, if we have two or more spells for the same individual, provided that the
individual random effect is the same for both spells.

3That is by a regular estimator sequence (for a definition see Van der Vaart (1998, p. 115)).
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of models. All models that are closed under the power transformation have a baseline
hazard that is either 0 or ∞ for t = 0, so that the restriction that the baseline hazard at 0
is bounded away from 0 and ∞ rules out closedness under the power transformation.
Under this restriction the information matrix is nonsingular.

We also show that the MPH model is semi-parametrically identified if we restrict
the baseline hazard near t = 0 to be bounded away from 0 and ∞. Hence, there are
(at least) two restrictions that are sufficient for semi-parametric identification: (i) the
restriction that the mean of the unobserved multiplicative random effect is finite (El-
bers and Ridder (1982)4), and (ii) the restriction that the baseline hazard near t = 0
is bounded away from 0 and ∞. The first restriction does not preclude that the infor-
mation matrix is singular; the second restriction does. Hence, if we impose the second
restriction, there may exist estimators that are N−1/2 consistent. Under the first re-
striction, the upper bound of the rate of convergence is a logarithmic rate (Ishwaran
(1996a)).

Is there empirical and theoretical support for the assumption that the baseline haz-
ard is bounded away from 0 and ∞ near t = 0? Let a function satisfy boundedness if it is
bounded away from 0 and ∞ near t = 0
 First, it should be noted that boundedness of
the hazard of the duration given the covariates, i.e. ignoring unobserved heterogene-
ity, implies the same property of the baseline hazard in the MPH model. This makes
the assumption on the baseline hazard testable (the boundedness from ∞ by testing
whether one over the hazard is significantly different from 0). Second, the MPH model
has been used frequently in empirical studies. Strictly, the assumption that the base-
line hazard satisfies boundedness is not testable without further assumptions, because
the MPH model may not be identified if this assumption does not hold. However, if
the baseline hazard is specified such that its value near t = 0 is estimated without re-
strictions, e.g. by using a piecewise constant hazard, one can construct a confidence
interval for that value (and its inverse). Meyer (1990, 1996) estimates such an MPH
model for unemployment durations and his estimates show that the baseline hazard
satisfies boundedness. The same conclusion can be drawn from Kennan’s (1985) study
of strike durations. He does not use an MPH, but a discrete hazard model, but the daily
settlement hazards are clearly positive from the start and, although the hazard is de-
creasing/increasing, the hazard near t = 0 is not exceptionally large. From a search of
the empirical literature we conclude that there is prima facie evidence that the assump-
tion that the baseline hazard satisfies boundedness holds in most, but not all, studies.5

Third, if we think of the MPH model as a reduced form approximation of a hazard
model that is derived from economic theory, then it is important to check whether the-
oretical models have hazards that satisfy boundedness. We can refer to Van den Berg’s
(1990) study of nonstationary job search. In his model the reservation wage path is
bounded and this implies that if the arrival rate of job offers satisfies boundedness, then
the re-employment hazard also has that property. Blau and Robins (1986) estimate the
offer arrival rate and from their estimates we conclude that it satisfies the assumption.

4See also Jewell (1982) and Heckman and Singer (1984) who consider an alternative identi-
fying assumption that allows for an infinite mean, but assumes that the power transformation is
fixed.

5References can be found on our webpages, www-rcf.usc.edu/~ridder/ and www.sscl.uwo.ca/
economics/faculty/Woutersen.
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Yoon (1985) derives a closed form solution of the nonstationary job search model that
satisfies boundedness.

The MPH model can be expressed as a transformation model with a scale normaliza-
tion. Horowitz (1996) derives a semi-parametric estimator for transformation models,
and Horowitz (1999) proposes an estimator of the scale parameter that, if the first three
moments of the multiplicative unobserved heterogeneity are bounded, converges at a
rate that is arbitrarily close to N−2/5. We develop an estimator for the scale parameter
under the assumption that the baseline hazard near t = 0 is constant and bounded away
from 0 and ∞, but no parametric assumptions are imposed on the baseline hazard for
other values of t. This estimator converges at rate N−1/2. Combining this estimator of
the scale parameter with Horowitz’ (1996) estimators of the other parameters in the
MPH model yields estimators for the integrated baseline hazard and the regression
coefficients that converge at rate N−1/2.

This paper is organized as follows. In Section 2 we discuss the semi-parametric MPH
model and its efficiency bound as obtained by Hahn (1994). We also give an example
that shows that if we change the Weibull baseline hazard slightly so that it is bounded
away from 0 and ∞ at t = 0, then the information matrix becomes nonsingular. Sec-
tion 3 contains the main result. Section 4 discusses the implications for estimation and
Section 5 concludes.

2. THE SEMI-PARAMETRIC MPH MODEL:
IDENTIFICATION AND EFFICIENCY BOUND

2.1. The Semi-parametric MPH Model

We consider the semi-parametric MPH model for the conditional distribution of T
given a vector of nonconstant covariates X:

θ(t|X�U;α�β)= λ(t�α)eβ
′XeU(1)

with parametric baseline hazard λ(t�α)� regression function eβ
′X� and (α�β) in a pa-

rameter space that is an open subset of a Euclidean space. The unobserved covariates
are captured by the random effect U . For example, for the Weibull model we have
θ(t|X�U;α�β)= αtα−1eβ

′XeU where α > 0
 The unconditional (on U) integrated haz-
ard at the population values of the parameters is defined as

S =Λ(T�α0)e
β′

0X(2)

with Λ(t�α)= ∫ t

0 λ(s�α)ds. In Appendix 1, we show that

S
d= W

eU
(3)

with W a standard exponential random variable that is independent of U�X and
d= means that the random variables on both sides have the same distribution.

2.2. Semi-parametric Identification

Elbers and Ridder (1982) show that this MPH model is semi-parametrically identi-
fied if the following assumptions hold.
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(A1) Λ(t0�α0)= 1 for some t0 > 0, and Λ(∞�α0)= ∞.
(A2) E(eU) <∞.
(A3) There are x1� x2 in the support of X with β′

0x1 �= β′
0x2 and there is no constant

in X; U and X are independent.
(A4) If λ(t�α0)= λ(t� α̃0) for all t > 0, then α0 = α̃0, and if β′

0x= β̃′
0x for all x in the

support of X, then β0 = β̃0.

The first part of Assumption A1 and the absence of a constant in X are normaliza-
tions. Assumption A4 ensures parametric identification of α0�β0.

We propose an alternative for Assumption A2.

(A2*) 0< limt↓0 λ(t�α0)= λ(0�α0) <∞.

Ishwaran (1996a) shows that there exist a nonnegative random variable U1 and a
σ > 0 such that

W

eU
d= W σ

eσU1



If we omit covariates, the observationally equivalent MPH model has integrated base-
line hazard Λ(t�α0)

1/σ which does not satisfy A2*. Hence A2* precludes Ishwaran’s
construction of an observationally equivalent MPH model. Assumptions A1, A2*, A3,
and A4 are sufficient for the semi-parametric identification of the MPH model.

PROPOSITION 1: If the conditional distribution of T given X has a distribution with a
(conditional) hazard as in (1) and if assumptions A1, A2*, A3, and A4 are satisfied, then
α0�β0 and the distribution of U are identified, i.e. there are no observationally equivalent
α̃0� β̃0.

PROOF: See Appendix 2.

Although both sets of conditions ensure that the semi-parametric MPH model is
identified, they have different implications for the information bound of this model.
In particular, with the finite mean assumption the information matrix can be singular,
while with Assumption A2* this cannot be the case.

Examples of parametric models where Assumption A2* holds for all parameter val-
ues are the Gompertz baseline hazard, the rational log specification (Lancaster (1990)),
and the normal hazard. See Klein and Moeschberger (1997) for a discussion of these
specifications. Examples of models in which Assumption A2* is a parametric restric-
tion are the piecewise-constant baseline hazard and the Box–Cox baseline hazard of
Flinn and Heckman (1982).6 Finally, the lognormal hazard does not satisfy A2* for all
parameter values.

6The logarithm of this hazard model has the following form:

ln{λ(t�α)} = γ1
tλ1 − 1
λ1

+ γ2
tλ2 − 1
λ2

where λ2 > λ1 ≥ 0; condition A2* holds if and only if λ1 > 0. With this restriction the baseline
hazard still can be nonmonotonic, e.g. ‘bathtub’ shaped.
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2.3. The Information Bound of the MPH Model

Hahn (1994, p. 610) derives the efficient score of the MPH model using the following
assumptions.

(B1) λ(t�α) and Λ(t�α) are continuously differentiable with respect to α on an open
set that contains α0.

(B2) E(X ′X) < ∞ and there exist nonnegative functions ζi(T�X)� i = 1�2�3, such
that ∣∣∣∣∂ lnλ(T�α)

∂α

∣∣∣∣ ≤ ζ1(T )�∣∣∣∣eβ′X ∂Λ(T�α)

∂α

∣∣∣∣ ≤ ζ2(T�X)�∣∣Xeβ′XΛ(T�α)
∣∣ ≤ ζ3(T�X)�

with E(ζ1(T )
2) <∞, E(e2Uζi(T�X)

2) <∞� i= 2�3.

The variance matrix of the efficient score at the population parameters α0�β0 is the
information matrix. The efficient score is

l=
[
lα
lβ

]
=

[
a11 − a12S · E[eU |S]
a2 − a2S · E[eU |S]

]
(4)

with

a11 = ∂ lnλ(T�α)
∂α

− E
[
∂ lnλ(T�α)

∂α

∣∣∣S]
�

a12 = ∂ lnΛ(T�α)
∂α

− E
[
∂ lnΛ(T�α)

∂α

∣∣∣S]
�(5)

a2 =X − E(X|S)=X − E(X);
see Hahn (1994, Theorem 1).7 Without loss of generality we assume that E(X)= 0.

For the Weibull baseline hazard λ(t�α)= αtα−1 we have

a11 = a12 = lnT − E(lnT |S)(6)

and by (2) lnT = (lnS−β′
0X)/α0 so that

a11 = a12 = −β′
0

α0
X
(7)

Substitution in (4) yields

l= (
1 − SE(eU |S))[−β′

0

α0
X

X

]
(8)

7The efficient score is well-defined even if E(V )= ∞; the proof is available at our webpages.
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so that the distribution of the efficient score is singular at the population parameter
values as is its variance matrix. This is the argument given by Hahn (1994, p. 614).

Note that this argument is not restricted to the Weibull baseline hazard. It applies to
all integrated baseline hazards of the form λ(t� γ�α)= h(t� γ)α with h a strictly increas-
ing function of t with h(0� γ)= 0. However, a small modification of the Weibull base-
line hazard gives a nonsingular information matrix. Consider the translated Weibull
with integrated baseline hazard Λε(t�α)= (t + ε)α − εα with ε > 0 a known constant.
Note that this class of integrated baseline hazard models is not closed under the power
transformation. Also the baseline hazard of this model is bounded away from 0 and ∞
if ε > 0. A direct calculation shows that the information matrix is nonsingular.

3. NECESSARY AND SUFFICIENT CONDITIONS FOR THE SINGULARITY
OF THE INFORMATION MATRIX

Our main result is Proposition 2.

PROPOSITION 2: Under Assumptions A1, A3–A4, and B1–B2 the information matrix
is singular if and only if the integrated baseline hazard is of the form Λ(t�α)= h(t)d(α) for
α in some open neighborhood of α0 with h a strictly increasing continuous function with
h(0)= 0, h(∞)= ∞, and with d(α) > 0.

PROOF: See Appendix 3.

The proof of Proposition 2 can be extended to the case of two or more parameters.8
The baseline hazard that corresponds to Λ(t�α)= h(t)d(α) is

λ(t�α0)= d(α0)h(t)
d(α0)−1h′(t)
(9)

Note that the proposition only restricts d(α0) to be positive. In particular, it can be ei-
ther smaller or larger than 1. If d(α0) < 1, then by (9) limt↓0 λ(t�α0)= ∞. If d(α0) > 1,
then limt↓0 λ(t�α0)= 0; see Appendix 4 for details. Only if d(α0)= 1, can the baseline
hazard at 0 be bounded away from 0 and ∞. Hence we have the following theorem.

THEOREM: If the assumptions for Proposition 2 hold, then 0< limt↓0 λ(t�α0) <∞ im-
plies that the information matrix of the semi-parametric MPH model in (1) is nonsingular.

4. IMPLICATIONS FOR ESTIMATION

A consequence of the theorem is that if we impose A2* there may exist estimators
of the regression coefficients and the parameters of the integrated baseline hazard that
converge at a rate N−1/2. In this section we discuss some estimators for semi-parametric
MPH models that satisfy A2*. We also develop an estimator for the case that the base-
line hazard is constant near 0, but nonparametric for other values of t. In both cases
the parameters are estimated at rate N−1/2.

If the baseline hazard is specified for all t ≥ 0, estimation starts from the observa-
tion that if we define Λ(T�α)exp(β′X)= S(X�α�β), then under weak conditions the

8The proof is available at our webpages.



MIXED PROPORTIONAL HAZARD MODEL 1585

distribution of S is independent of X if and only if α= α0, β = β0. Estimators as the
quantile censoring estimator (Ridder and Woutersen (2002)) and the linear rank es-
timator (Bijwaard and Ridder (2002)) use this observation to formulate (potentially a
continuum of) moment conditions. A proof that their moment conditions identify the
parameters of the semi-parametric MPH model, even if the durations are censored,
is beyond the scope of the present paper. Note that these moment conditions cannot
identify the parameter σ of a power transformation of Λ(t�α) and corresponding scale
of β. However, by Assumption A2* there are no observationally equivalent models
with σ �= 1.

Next consider the case that the baseline hazard is only specified near 0. Taking the
logarithm of (2) gives, by Appendix 1,

lnΛ(T�α)= −β′X −U + lnW 
(10)

This is essentially a transformation model with transformation H = lnΛ and random
error −U + lnW . Horowitz (1996) suggests using existing single index estimators for
β and he proposes a nonparametric estimator for H . This estimator (and the single
index estimator) estimate ln(Λ(t)) (and β) up to a multiplicative scale parameter σ .
In the MPH model this scale parameter is identified either by an assumption on the
moments of eU or by Assumption A2*. Horowitz (1999) proposes an estimator for
the scale parameter that converges at rate arbitrarily close to N−2/5. Now assume,
as in Meyer (1990), that the baseline hazard is constant over a small interval near 0,
i.e. 0 < λ(t) = λ(0) < ∞ for 0 ≤ t ≤ 2ε. Moreover, suppose that Assumptions 1–9
of Horowitz (1996) hold and that we can estimate the transformation (up to scale)
over the interval [ε� τ] where τ > 2ε. Denote the estimator of the transformation by
Ĥ(t). This estimator converges at rate N−1/2 (Horowitz (1996, Theorem 1)). Because
H(t)= σ lnΛ(t), we have H(2ε)−H(ε)= σ ln 2, so that we estimate the scale para-
meter σ by

σ̂N = Ĥ(2ε)− Ĥ(ε)

ln 2

(11)

The integrated baseline hazard and the regression parameters can be estimated us-
ing σ̂N . All these estimators converge at rate N−1/2.

5. CONCLUSION

The condition that the baseline hazard is bounded away from 0 and ∞ near t = 0 is
sufficient for semi-parametric identification of the mixed proportional hazard model.
This condition is also sufficient for a nonsingular information matrix. Hence, if the
parametric baseline hazard is bounded away from 0 and ∞ near t = 0, there may exist
(regular) estimators of the parameters of the semi-parametric MPH model with a para-
metric baseline hazard and regression function that are N−1/2 consistent. In particular,
we develop an estimator for the scale parameter in the MPH model (and hence the
integrated baseline hazard and the regression parameters) under the assumption that
the baseline hazard is constant and bounded away from 0 and ∞ in a small interval
near zero. This estimator converges at rate N−1/2.

The restriction on the baseline hazard is testable. A sufficient (but not necessary)
condition for the boundedness of the baseline hazard from 0 and ∞ near t = 0 is that
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the conditional hazard given the covariates (but not the unobserved heterogeneity) and
the inverse of this conditional hazard are different from 0 near t = 0.
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APPENDICES

APPENDIX 1: Distribution of S =Λ(T�α0)e
β′

0X

This distribution is derived from the relation between the (conditional on X�U) integrated
hazard and the (conditional on X�U) survivor function of T . This relation is given by the product
integral of the conditional integrated hazard, which is an additive interval function. A survey of
the theory of product integration is given by Gill and Johansen (1990) with a useful summary in
Andersen, Borgan, Gill, and Keiding (1993). If the integrated hazard exists, which in our case
means that the baseline hazard is integrable, and if it is finite for finite t, then9 by Theorem 11
of Gill and Johansen (1990), the product integral of the integrated hazard is the survivor func-
tion of a random variable T (all conditional on X�U). Moreover, because the integrated hazard
is absolutely continuous, i.e. it is the integral of a function, the product integral is equal to the
exponent of minus the integrated hazard, i.e. Pr(T > t|X�U) = exp(−Λ(t�α0)e

β′
0XeU). Hence

Pr(Λ(T�α0)e
β′

0X >s|X�U)= Pr(T >Λ−1(se−β′
0X�α0)|X�U)= e−seU . Because U and X are inde-

pendent, we have Pr(S > s|X)= E(e−seU ) and Pr(S > s)= E(e−seU ).

APPENDIX 2: Proof of Proposition 1

By (2) and (3) we have for all t > 0

Pr(T ≤ t|X)= FV
(
Λ(t�α0)e

β0X
)

(12)

where V =W/eU is distributed as a mixture of exponential distributions and hence has a strictly
increasing cdf FV . We can assume that Λ(t�α0) is strictly increasing in t without loss of generality.
If α̃0� β̃0� Ũ are observationally equivalent, then for all t > 0

FV
(
Λ(t�α0)e

β0X
) = FṼ

(
Λ(t� α̃0)e

β̃0X
)

(13)

We denote Λ(t�α0) = Λ(t), Λ(t� α̃0) = Λ̃(t), e−β′
0x1 = φ1, e−β′

0x2 = φ2, e−β̃′
0x1 = φ̃1, e−β̃′

0x2 = φ̃2

with x1� x2 as in A3 and without loss of generality 1 =φ1 >φ2, 1 = φ̃1 > φ̃2.
The inverse of a strictly increasing function exits and from (13) for all t > 0

FV

(
Λ

(
Λ̃−1(tφ̃2)

) 1
φ2

)
= FṼ (t)= FV

(
Λ

(
Λ̃−1(t)

))

(14)

If we denote K =Λ(Λ̃−1(t)) with K(t) strictly increasing and K(0)= 0, then (14) implies that

K(tφ̃2)=φ2K(t)(15)

9This assumption can be relaxed, e.g. if the end of the spell coincides with a transition to an ab-
sorbing state (see Andersen et al. (1993)). That would allow us to deal with duration distributions
with a finite support. The argument can be easily extended to that case.
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and by iteration for all n≥ 1

K(tφ̃n
2)=φn

2K(t)
(16)

If we take the derivative of (15) we obtain

φ2

φ̃2

K′(t)=K′(φ̃2t)(17)

and by iteration for all n≥ 1(
φ2

φ̃2

)n

K′(t)=K′(φn
2 t)
(18)

Taking the ratio of (18) and (16) we obtain, because

K′(t)= λ(Λ̃−1(t))

λ̃(Λ̃−1(t))

with λ(t)= λ(t�α0), λ̃(t)= λ(t� α̃0),

K′(t)
K(t)

= 1
t

lim
n→∞

K′(φ̃n
1 t)

K(φ̃n
1t)/φ̃

n
1 t

= lim
n→∞

1
t

λ(Λ̃−1(φ̃n
1t))/λ̃(Λ̃

−1(φ̃n
1 t))

K(φ̃n
1t)/φ̃

n
1 t

= 1
t

(19)

by Assumption A1. Because K(0)= 0 this implies that K(t)= t and hence λ(t�α0)= λ(t� α̃0) for
t > 0 so that α0 = α̃0 by A4. By (15) β′

0x2 = β̃0x2 for all x2 in the support of X and hence β0 = β̃0

by A4.

APPENDIX 3: Proof of Proposition 2

We first rewrite the efficient score in (4) and (5) to reflect the dependence on T�X�S and the
parameters,

l=
[
lα

lβ

]
=

[
a11(T� S�α0)− a12(T� S�α0)HU(S)

X(1 −HU(S))

]
(20)

with Z =β′
0X and HU(S)= SE(eU |S). Note that by (3) HU does not depend on the parameters.

Because S and Z are independent we have

a11(T� S�α0)= ∂ lnλ(T�α)
∂α

∣∣∣∣
α=α0

− EZ

[
∂{lnλ(Λ−1(Se−Z�α0)�α)}

∂α

∣∣∣∣
α=α0

]
�

a12(T� S�α0)= ∂ lnΛ(T�α)
∂α

∣∣∣∣
α=α0

− EZ

[
∂{lnΛ(Λ−1(Se−Z�α0)�α)}

∂α

∣∣∣∣
α=α0

]
�

where by (2) the variables T�S�Z are related by

lnΛ(T�α0)+Z = lnS
(21)

By Assumptions B1 and B2 the information bound is continuous in α0. If the information matrix
has a rank equal to the number of regressors in X , i.e. one less than full rank, for some value α0 ,
then by continuity it has the same rank for population parameters in a small neighborhood of α0 ,
B(α0). Note that T depends on X only through β′

0X . By Assumption A4 the linear combination
that makes the score singular must contain lα. Because lα depends on X only through β′

0X , loss
of rank occurs if and only if lα is proportional to β′

0X , i.e. there is a c(α) �= 0 on B(α0) such that

c(α)a11(T� S�α)− c(α)a12(T� S�α)HU(S)=Z{1 −HU(S)}(22)
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for α in B(α0), and S ≥ 0, Z�T that satisfy (21). From (22) it follows that for α ∈ B(α0)

a11(t� s�α)= a12(t� s�α)(23)

for if this equality does not hold for some α ∈ B(α0), it does not hold on some open interval,
because of B1 and B2. Moreover, there is a t such that a11(t� s�α)� a12(t� s�α) are not constant in
α on that interval by Assumption A4. Hence only if the equality holds can we find a function c(α)
such that the left-hand side does not depend on α.

Substitution in (23) gives that for all α ∈ B(α0) and s ≥ 0 and t that satisfy (21) for some z in
the support of Z

∂ lnλ(t�α)
∂α

− EZ

[
∂ lnλ(Λ−1(se−Z�α)�α)

∂α

]
(24)

− ∂ lnΛ(t�α)
∂α

− EZ

[
∂ lnΛ(Λ−1(se−Z�α)�α)

∂α

]
= 0


Note that both a11 and a12 are identically equal to 0 if Z takes only one value. If Z takes two (or
more) values, then (24) holds if and only if for α ∈ B(α0) and t > 0

∂ lnλ(t�α)
∂α

− ∂ lnΛ(t�α)
∂α

= f (α)
(25)

Integrating first with respect to α and next with respect to t gives (using the initial value
Λ(t0� α)= 1)

lnΛ(t�α)= e
∫ α
α0

f (γ)dγ

∫ t

t0

ek(s)ds(26)

for α ∈ B(α0) and with k(t) the integration constant for the integration with respect to α.
Also

∫ 0
t0
ek(s)ds = −∞ and

∫ ∞
t0
ek(s)ds = ∞. If we define h(t) = exp(

∫ t

t0
ek(s)ds) and d(α) =

exp(
∫ α

α0
f (γ)dγ), we find for α ∈ B(α0)

Λ(t�α)= h(t)d(α)

with h an increasing function with h(0)= 0 and h(∞)= ∞. This completes the proof.

APPENDIX 4

This argument requires that 0 < h′(0) < ∞. In the proof of Proposition 2 in Appendix 3,
we have by (26) and because d(α0) = 0 that Λ(t�α0) = h(t)
 Hence 0 < λ(0� α0) < ∞ implies
0< h′(0) <∞.
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