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ABSTRACT

Observations in a dataset are rarely missing at random. One can control
for this non-random selection of the data by introducing fixed effects or
other nuisance parameters. This chapter deals with consistent estimation
the presence of many nuisance parameters. It derives a new orthogonality
concept that gives sufficient conditions for consistent estimation of the
parameters of interest. It also shows how this orthogonality concept can
be used to derive and compare estimators. The chapter then shows how to
use the orthogonality concept to derive estimators for unbalanced panels
and incomplete data sets (missing data).

Keywords: Missing data; panel data; causal inference; information
orthogonality

JEL classifications: C30; C33; C35

INTRODUCTION

When one has a dataset where some data are missing, then it is rarely the case
that one can argue that the data are missing at random. In particular, the
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individuals or firms in the population of interest may differ in unobserved
ways and this unobserved heterogeneity is likely to determine which
individuals or firms we observe (see Moffitt & Ridder, 2007). Therefore,
controlling for unobserved heterogeneity is a powerful tool to deal with
missing data. Unfortunately, controlling for unobserved heterogeneity
introduces a large number of nuisance parameters in the model. Suppose
oneusesalikdihoodmodel.Thenaxeseveralwaystoeliminate nuisance
from the likelihood. One approach is elimination of the nuisance
ters through integration. Some recent articles, Berger, Liseo, and
Wolpert (1999) and Lancaster (2000), have focused on favorable properties of
thisapproaeh.AnotherwaytoeliminatzthenuisancepuametzNisthe
conditional profile likelihood approach, as discussed in Cox and Reid (1987,
1993). Cox and Reid show that the estimates of the parameters of interest can
dependontheparametzﬁm'onoftheﬁkdihood.myargmthatthcbea
multsareobtainedifonechoosesapmmetrizaﬁonthatisonhogonalinthe
information matrix sense.

of interest. Lancaster (2002) gives examples of cases where
the profile likelihood docs not yield consistent estimates, but the mode of the
integrated likelihood does. This seems to suggest that, in terms of consistency,
the integrating out method does very well compared to other methods.

In this chapter, we show that orthogonality in the information matrix
sense is not enough to ensure consistency of the mode of the integrated
likelihood. We give an example of a likelihood that is orthogonal in the
information matrix sense but in which the mode of the integrated likelihood
is an inconsistent estimator for the parameters of interest. In this example, a
score-based, method-of-moments estimator is consistent.

These examples and counterexamples lead naturally to the question:
Which properties must the likelihood possess to make consistent estimation
possible for the parameters of interest? An established result is that
consistent inference is possible when we can choose a parametrization that is
exactly orthogonal. It is not always possible to choose such a parametriza-
tion. Tibshirani and Wasserman (1994) give an overview of orthogonality
concepts. We introduce a new orthogonality concept whose conditions are
weaker than exact orthogonality. We call it exact orthogonality in expec-
tation (EOE). A parameterization is exactly orthogonal in expectation if the
log likelihood has the following property: The cross-derivatives of
parameters of interest and the nuisance parameters are zero in expectation
for all values of the parameter space. If the parametrization of the likelihood
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is exactly orthogonal in expectation and if a mild regularity condition is
satisfied, then consistent inference is possible. The regularity condition is
that the likelihood function is specified in such a way that consistent
inference is possible if we would know the true values of the nuisance
parameters. So the new orthogonality concept ensures the existence of a
consistent estimator. In particular, it formalizes the notion that consistent
estimation of the parameter of interest requires some separation between
parameters of interest and the nuisance parameters.

The new orthogonality concept can be used to derive new estimators. For
example, some of the estimators for duration models with fixed effects in
Woutersen (2000a, 2000b) were found with the help of this orthogonality
concept. Moreover, we use the new orthogonality concept to explain the
consistency problem of the integrating out approach at a more general level
than that of example and counterexample.

This chapter is organized as follows. The second section gives terminology.
The third section gives the new orthogonality concept and relates it to two
existing ones. The fourth section discusses properties of the likelihood that
ensure the existence of a consistent estimator for the parameters of interest.
The fifth section gives an example where the mode of the integrated
likelihood is an inconsistent estimate - although the properties of the
likelihood are such that a consistent estimate exists. The consistent method-
of-moments estimator is provided as well. The sixth section concludes.

PRELIMINARIES AND NOTATION

Let L(6) denote the log likelihood, which is a function of 8 for given data x.
Assume that only a part of the entire parameter vector @ is of interest to us
and that we therefore choose a parameterization 6 = (8, 1), where B is the
parameter of interest, and A is the nuisance parameter. The nuisance
parameter can play a role in determining which observations we can
observe. For example, it could be that observations for which A< are
missing. The parameter A could also determine which observations are
censored, for example, that observations for which 0<i<1 are censored
with probability 1/2. This chapter shows when we can recover despite
these missing data problems that are covered by 4. In order to be completely
flexible in this respect, we assume that the dimension of A is large. In
particular, suppose that the number of nuisance parameters is proportional
to the number of observations, N. Neyman and Scott (1948) describe that in
such cases the incidental parameter problem arises: Given that the number
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of nuisance parameters is proportional to N, it is impossible to estimate all
nuisance parameters consistently. Therefore, the maximum likelihood
estimator for f is inconsistent. The nuisance parameters cause the problems
of the maximum likelihood method. Several authors have proposed to
remove the nuisance parameters from the likelihood before maximizing with
respect to the parameters of interest. We discuss three ways to eliminate
nuisance parameters.

One approach is to eliminate the nuisance parameters by integration; this
gives the integrated likelihood.

P [ explL(B. AdA

where exp{L(B,4)) denotes the likelihood. The mode of the integrated
likelihood can be used as an estimator for the parameters of interest. We
refer to this estimator as the integrated likelihood estimator. A good
reference is Berger et al. (1999).

The conditional profile likelihood approach eliminates the nuisance
parameters by replacing them with some value 4g, which is sometimes
referred to as the conditional MLE value of A:

£"() = sup L(B,4)

Cox and Reid (1987) develop this approach and prefer to apply it to
parametrizations that are orthogonal in the information matrix sense.

A third way to eliminate the nuisance parameters is by differentiation
with respect to the parameter of interest, p. This approach requires that the
parametrization of the log likelihood, L(B, A), is such that the expectation of
Lg does not depend on the nuisance parameters. In that case the *score” Lp
can be used as a moment function. We call the resulting estimator tho
orthogonal score estimator. We discuss orthogonality concepts in the third
section and use these concepts to explain this approach in the fourth section:

THE LIKELIHOOD FUNCTION: THREE
ORTHOGONALITY CONCEPTS

The idea behind orthogonality concepts is to “‘separate” the parameters of
interest from the nuisance parameters. In this chapter, we discuss thres
degrees of “separation.” The strongest form of separation is obtained whed
it is possible to write the log likelihood function as the sum of two function®

.
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the first function depends on the parameters of interest and the second on
the nuisance parameters:

LB, 2 = G(B)+ H(A)

If it is possible to write the log likelihood in such a way, then the
parameterization is called exactly orthogonal. The term likelihood factoriza-
tion is used as well (see, Tibshirani & Wasserman, 1994). We use the following
notation for the derivatives and cross-derivatives. Assume that the parameter
! of interest, 8, is a vector with K elements and that the nuisance parameter, 4, is
| a vector with M clements. Then the derivative of the likelihood function, .
L(B.1), with respect to the parameter of interest, is a vector with X elements. - 1
With an abuse of notation we write it as Lg(8, A). The cross-derivatives can be
. written as the K x M matrix, Lg;. A parameterization of the likelihood is f
| exactly orthogonal if this matrix consists only of zeros:

sFoEAE

Lsi(B,A) =0 forall B, V)

g8 &8

An established result is that consistent inference is possible when we
choose a parametrization that is exactly orthogonal (see, ¢.g., Anscombe,
1964). It is not always possible to choose this parametrization. Therefore, we
discuss two orthogonality concepts with weaker conditions.

In a weaker concept of orthogonality, the latter condition holds in
' expectation,

o) ELg(8,4)=0 forall §,A @ f
ie.

R

e

Imax
/ Lgi(B, )eibo/o)dy = 0 for all B, A
tia

BERrafd s

where ¢ denotes the dependent variable, and ¢ € [!min, /max}- We call this
A exactly orthogonal in expectation and denote it by EOE. We use this
S ' nsw orthogonality concept extensively in the next section. A third concept is
orthogonality in the information matrix sense, also called information
' arthogonality, which requires that the information matrix be block diagonal.
1 is, the cross-derivatives of the parameters of interest and the nuisance

3

P9 parameters are zero in expectation if we evaluate these cross-derivatives at
" the true values of the parameter.

sof
e
e ELpi(B,2) =0at i, 4 3)
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ie.

/ ™ Lix(Bo, o) dt = 0

where ¢ denotes the dependent variable, and ¢ € {foun» 'max] and Bo, Ao denote
the true value of the parameters. Cox and Reid (1987) use this concept and
refer to it as “orthogonality.” We prefer the term information orthogonality
to distinguish it from the other two orthogonality concepts and to stress that
it is defined in terms of the properties of the information matrix. Jeffreys
(1961) provides an extensive discussion of this orthogonality concept.

The relationship between the orthogonality concepts of this section is as
follows: Exact orthogonality implies EOE, and EOE implies information
orthogonality. If a parametrization is not orthogonal, one can try 8
reparametrization. Lancaster (2000) shows how a fixed effect model of
Poisson count data can be reparameterized such that it is exactly
orthogonal. Jeffreys (1961) and Lancaster (1999, 2000, 2002) give examples
of models where it is possible to find a parameterization that is information
orthogonal. It is not always possible to find a parameterization of ths
likelihood that is orthogonal in the sense of any of the above orthogonality
concepts. We show in Appendix A how a parameterization is found that is
information orthogonal for the single index model with fixed effects. Two
key assumptions for this result are that the model have a single index form
and that unobserved heterogeneity be a nonstochastic function of the
parameters of interest, the nuisance parameters, and the strictly exogenous =
covariates. Tibshirani and Wasserman (1994) give an overview of the
literature that is related to orthogonality and reparametrizations. :

INFERENCE BASED ON THE SCORE

In this section, we show that the existence of an EOE parametrization of the
likelihood ensures that a score-based estimator is consistent. We compare
this estimator with the integrated likelihood estimator and show how tas =
EOE concept can be used to derive a new estimator for the exponential
hazard model. -

An established result is that the expectation of the score equals zero, that i

ELg(8o) = ELg(Bo, 40) =0

where Ly is a vector with K + M elements. As noted before, o and Jo Bat <
lengths K and M, respectively. In the case that the nuisance
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denotes a fixed effect. the dimension of 4, equals N. Let the first X elements
of Ly be denoted by Ly. With a slight abuse of notation, we refer to Ly as the
score.” Obviously, for these first K elements, the zero expectation property
holds as well:

An important property of EOE parametrizations is that the expectation
of Ly does not vary with 4.

OELy(B.4) _ EaLy(ﬁ. A)
oL oA

This implies that the *zero score’ property also holds at values other than
the true 4. That is

= ELy(B,4) =0 @)

ELp(ﬂo,l) =0 Vi

That the expectation of Lg(By, A) does not depend on the value of A
suggests that we could plug any value for 4 into the moment function and
then equate the moment function to zero. For example, elements of can be
replaced with guesses of the value of A. That these guesses are not consistent
estimates is not a problem because the expected value of Ly(f,, 4) is zero for
values of A. Intuitively, better guesses for should yield a more efficient
estimator for f. But lacking good information on A, we could give equal
weight to all possible values of 4, giving rise to the weighted score procedure
discussed in subsection **Weighted Score.” A method that avoids integration
is discussed in subsection “Consistency with Exact Orthogonality in
Expectation.”

Weighted Score
The weighted score is the derivative of the likelihood with respect to the
parameter of interest and gives equal weight to all possible values of the

unknown, but bounded, A. We denote the weighted score by $"(f) and
calculate it by an M-dimensional integration:

s*(p) = /L,;(/f,/l)wd,i (5)

In this subsection, we assume that either the bounds for / are finite and
known or that the integral in 5 has an analytical form.' The value of the
‘onstant « is such that fwd = 1. The expectation of the weighted score.
ES™(B). is zero at the true parameter value f.
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ES*(Bo) = E / Ly(Bo, o

- / { / Ly (o, ).)wd).}e""’“‘”dt

Note that kA4 does not depend on 4. Therefore, we can change the
order of integration:

ES” (Bo) = / { / Ly(Bo. J.)e“"’""’dt}wd}.

= / (ELy(Bo, D}
= 0 since ELg(Bo, 4) = 0vi ©)

Using the weighted score as a moment function gives the following
estimating equation:

/ Ly(B, oA = 0 ™

In the next subsection, we show that the weighted score gives consistent
estimate for B. Since the weighted score resembles the integrated likelihood,

some remarks about their differences seems justified. The integrated
likelihood uses the mode of the integrated likelihood as an estimator:

¥ = argm?xL'(p) = argmax {ln/e“”’dl}
This gives the following first-order condition (FOC):

aL'B) _
B

That is

oln [ e0NdA _ Ly(B, e A .
op - / Jel6Ada di=0

or equivalently

LgB, V) ess di=0
G P

o ——
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Comparing Eqs. (7) and (8) gives some insight into the difference between
the weighted score and the integrated likelihood approach. The estimating
equation of the weighted score, Eq. (7), gives equal weight to all values of A;
that is, the “weighting function”  is flat and the weighted score is obtained
by uniform integration over 4. The estimating function of the integrated
{ikelihood, however, does use a nontrivial “weighting function™ that varies
with . From Eq. (8), it follows that the weighting function equals
/(f 4804 }). This weighting function is always positive and integrates
to one. It can be interpreted as the posterior for A for a given value of f (using
@iat priors for all elements of 4 and f). In this interpretation, we condition on
§ without knowing its true value. In other words, we use the same data to
derive both the score of beta, Lg(8,4), and the weighting function for the
unknown A. In the next section, we show algebraically that the interaction
between the score of beta and the weighting function causes the inconsistency
of the integrated likelihood estimator. There is no such interaction for the
weighted score and the next subsection shows that consistent inference is a

general property of that method.
Consistency with Exact Orthogonality in Expectation

As noted earlier, it is not always possible to find a parametrization that is
" BOB. However, if we have such an EOE parametrization, we only need a
. mild regularity condition to make consistent estimation possible. The
' regularity condition is that the likelihood function is specified in such a way
" that consistent inference is possible if we would know the true values of the
" puisance parameters. The only function of this condition is to preciude some
- of the likelihood functions that are formulated in terms of unknown
expoctation of random variables. The regularity condition ensures that
" Inference based on Lg(B, 4o) gives a consistent estimate for . We do not
" know 4, but fortunately there are other functions that have the same
" expectation as Lg(B, A). The parametrization is EOE. Therefore,

B

= ELy(B,3) = ELy(B, Jo) VA ©
 and for bounded A,
LS

bt ES*(B) = ELg(B. ) (10)
. Ses Appendix B for details. So the expectations of Ls(8, 4) and s¥(B) do

80t depend on knowledge of . The incidental parameter problem inhibits
estimation of io. Therefore, it is attractive to base inference on a
mt function whose expectation does not depend on 4. To understand
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these moment functions, an analogue with the theory of adaptive estimation
can be helpful. Adaptive estimation is concerned with the efficient
estimation of the parameter of interest, B, in the presence of the nuisance
r, A. The dimension of A is either fixed or increases at a slower
rate than the number of observations so that § and 4 can be consistently
estimated. Adaptive estimation is possible if the Cramer-Rao bound for f§
does not change if the true values of the nuisance parameters, Ao, are
replaced by consistent estimates, A. The condition for the Cramer-Rao
boundforpammetetsofintemtobethesamewhenmﬂsancepam
are known as when they are estimated is information orthogonality. Indeed,
information orthogonality is a necessary condition for adaptive estimation
(see, ¢.g., Newey, 1990, Theorem 3.3 and Stein, 1956). This chapter does not
wanttomuictitselftothecases.whete).canbeconsistentlyesﬁmaud.
Therefore, we need a stronger orthogonality concept than the one that is
used for adaptive estimation. Indeed, Eqs. (9) and (10) do not depend on
estimates of the nuisance parameters being close to the truth, and therefors
a stronger orthogonality concept is needed. For this stronger orthogonality
concept, EOE, we can derive the following theorem. Theorem 1 proves that
inference based on the sample analogues of Eqgs. (9) and (10) gives consistent
estimates for the parameters of interest. Let Ls(B,4) be a score ofa
likelihood that is EOE. Suppose that we could evaluate this score at the trus o
value of the nuisance parameter 4o and could use L(8, &) as a moment ;}3&
function. In particular, suppose B = arg maxgLp(B,40)Ls(B.%0) is &
eonsistentestimatorforﬁo.lnthatcase,weeouldusethefaatm
Lg(B, 4) and S™(§) have the same expectation as Ly(B, &) and use them &3 =
moment functions, Theorem 1 proves that the resulting moment estimator i
consistent. It thereby proves that EOE is a sufficient condition for the '
existence of a consistent estimator. We assume the following.

Assumption 1. Let (i) wii = 1,2,...) beii.d. (i) fo € ©, which is compast
and, for all i, o € ©;, which is compact; (iii) E{Ls(B, Ao, w1)} = Oonlyif
B = Bo; (iv) Lg(B, A;, wi) be continuous with probability one for all pe®
and 4; € ©,; (iv) E[suppce 10, La(B, A1 Wil <00] for all i. ;

Note that Assumption 1 allows for fixed or random effects and allows
that the data on an individual is missing as a function of the random or SA#¢ '
effect 4, Note that the identification condition, E{L(B, 4o, )} = 0 only i
B = Bo, only needs to hold for a known realization of the fixed or random =
effect ;. In particular, it is instructive to compare this condition to the conditios:
for identification of a model with no heterogeneity, 4 = 42 = ... =4 :Int

Q

>aw>a s E g



Consistent Estimation and Orthogonality 165

case. the condition for identification is £ {Lp(B, A wi)) =0 only if {#= o and
3 = 7o) while the other conditions are the same. Thus, Assumption 1 is strictly
weaker than identifying {f, 4} through their score equations. This is possible
through the parameter separation of EOE. Moreover, the estimator estimates
minimizes over B, 7. while the conditions imply that this yields a unique
By, but not necessarily a unique 3. In other words, fo is point identified while 7o
is not required to be point identified. The score function Lg(B.7) uses 4 =
ja=...=7and LB, =L .Li(B A)l; = This gives.

Theorem 1. Let Assumption | hold and let L(B.4) be a log likelihood
whose parametrization is EOE. Let

{Beok. TeoE) = :rg min{Ly(B,7) Lp(B.7) + L.(B. yYL(B.7) and

€0.2€0,

Bruscore = argmin S* (8YS" (B)
Be®

Then R
Beoe = Bo + 0p(1)

Moreover. if supgcolS" (B)l <oo. then

Blm&‘on =fo + op(l)

Proof: See Appendix C

Let Ly(B. Ao) be @ moment function where the true value of the nuisance
parameter, i, is known. If inference based on the moment function
Ly(B. #) gives a consistent estimate for B, then inference based on Lg(B, %)
gives a consistent estimate for B under regularity conditions. Moreover,
under the additional condition that the integral of the score is well behaved,
the moment estimator based on SY(p) is also consistent.

We illustrate the weighted score method with an example.

Example

Consider the exponential hazard model with fixed effects and exogenous
regressors. Suppose we observe T, possibly censored. spells for N individuals
and that the hazard has the following form:

0, (1) =e"#t, i=1..N, s=0L1....T

where v, denotes the vector of regressors and v; the fixed effect. We
Suppress the subscript i of the fixed effect. Suppose the observed duration
¥u is the minimum of the duration f;, and the censoring time ;. That 1s,
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y;, = min(fs,cis). Let the indicator d,; be zero if censoring took place and
otherwise be equal to 1. The log likelihood of this model is

uﬂa V) = %El Ll(p’ V) .].
where f;
LB =Y du(v+xuP) - Y ety T

This parametrization of the likelihood does not satisfy any of the H
orthogonality conditions of the third section. However, we can reparame-
terize the likelihood. In particular, we need a parametrization {8, 4} for B~
which the condition of EOE holds:

E%:O for all values of § and 4

The easiest way to solve this equation is to write the old fixed effect asa
function of the new fixed effect, beta and the regressors; that is, ves
wB,4, x;). So L(B, v) is a function of v, f, and the omitted x; and vis g
function of B, A, and x,, that is, L(B, (8, 4, x,)). Similarly, we can think of A
as a function of B, v, x,, that is, A(8, v, x,). For the general linear model, wo
can solve the last differential equation. In Appendix A we show that "
implicit solution for A(8, v, x)) is: 3

st

""Xhﬂ

A= Z/ EL,du

—00

where u = v + xp, and L,, = &#L/(3). Differentiating gives the follc
two expressions:

OA
- .
¥
and -
av ;quLm.
B~ TELuw

In our model, EL,, = e"**«Ey,. After the differential equation i§ s0ive
we can base our inference on either the score, Lg, whose expected value G0
not vary with 4, or on the weighted score, Sp = 3, [ Lpd/N.
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Differentiating L,(8, W(B. 4, x;)) with respect to B yields the following:
ov oy v,
L,‘y = ZS: (’,‘,- (% + .\',‘_,) o Z(a—p + .\’,‘_‘-)t‘ Vis
= 2—;{;(1,3 = Z e"*""”_\'i,} + Z diXis — Z xe' Ty (1)

Appendix D shows that, for the exponential hazard model,
s¥ = -1:72 s¥
where
sy = / Ligdi
Using Eq. (11) gives the following expression for S/

S,”‘ / [{ Z dy } Z .\',',6’"“"”5)'.3 + {Z ‘lis-\'is} Z er+.\-..ﬂE_\‘,-s
K] 5 d

{Z dy } E xise"tPEy. + {Z disxiy } Z et PEy, (12)

The last expression involves Ey;,. Since we usually do not know Ey;, we
replace them with unbiased estimators, for example, the realization of y;,.
Chamberlain (1985) argues that the relevant limiting distribution has the
number of individuals increasing but not the time dimension. The resulting
estimating function gives a consistent estimate for .

di
-(’—V- dv

INCONSISTENCY OF THE INTEGRATED
LIKELIHOOD ESTIMATOR

Berger et al. (1999) review the profile likelihood methods and conclude that

“use of these methods tends to be restricted to rather special
frameworks.” Like Lancaster (1999 and 2000), Berger et al. argue in favor
of the integrated likelihood approach. However, consistency is not a general
Property of this method. Consider the same problem as in the last
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subsection, estimating the fixed effect exponential hazard model with
censored observations. The log likelihood of this model is

L =5 3 LB a3
[}

where

L(.v) = z dy(v + xuB) — Z ey,

We can integrate the likelihood with respect to the EOE fixed effect, 4,
Appendix E shows that the integrated likelihood has the following form: ¥ i
1

U=y , {:(xuﬂ)d.ﬁln(z:e""’b‘y,,)—(Edu+l)ln(2e‘“’y,,)} ,}i_
“w

Differentiating the integrated likelihood with respect to B gives the
following FOC:

'@ _ 1 Zxue " Eya = xue'e
a2t i e~ () o
a9

This FOC resembles to some extent the FOC of the weighted scofs. i
However, in this case, Eq. (15), the stochastic yu, s = l,...,Taplzumtiml\ti -,
denominator. This causes the expectation of (3L'())/(@P) to be nonzeroat =
the truth (see Appendix F for details). This nonzero expectation at the truth
causes the inconsistency of the integrated likelihood. We summarize thess
findings in a theorem. v

Theorem 2. EOE is not a sufficient condition for consistency of the

integrated likelihood estimator. :

Corollary. Information orthogonality is not a sufficient condition for
consistency of the integrated likelihood estimator. o

Proof Corollary: EOE implies information orthogonality.
The example of the exponential hazard model is analytical
However, simulations with the panel probit model show that the
sistency problem is not confined to the exponential
that, by Theorem 1, EOE ensures the existence of a consistent &
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Indeed, the orthogonal score estimator of the last section is consistent for

the exponential hazard model of Eq. (13). So consistency is not a general

. of the integrated likelihood, but EOE ensures that the score

> estimator is consistent. Since the expectation of the orthogonal score

: estimator, ELp, is not a function of the nuisance parameter, we can say,

intuitively, that the orthogonal score estimator “ignores” the nuisance

. However, “ignoring” the nuisance parameters is only possible if

we can find a parametrization that is EOE. Suppose, however, that we can

only find an information orthogonal parametrization.’ In that case

“ignoring” the nuisance parameters is not possible and we have to rely on

~ cither the integrating out method or the profile likelihood approach. The

%  consistency problems of the profile likelihood approach are well documen-

~ fted, and this chapter shows that consistency is not a general property of the

" inlegrating out method either. Characterizing the inconsistencies of the

latter while using an information orthogonal parametrization seems an
interesting research area.

i
R -
.
i
.

CONCLUSION

The Integrated likelihood technique is an elegant tool to eliminate nuisance
 pammeters. This chapter, however, shows that the mode of the integrated
siihood need not be a consistent estimator for the parameter of interest.
introduced a new orthogonality concept that ensures consistency and
introduce the concept of the “weighted score.” In our view, both are
tools to think about consistency and the integrating out approach.
Dver, the new orthogonality concept can suggest consistent score
tors and formalizes the notion that we need some ‘‘degree of
#eparation” to ensure consistent estimation of the parameters of interest in
i8¢ presence of nuisance parameters.

NOTES

Mlllumpﬁommdroppedinthenext subsection.
_& An information orthogonal parametrization was used; depending on the values
effects and the regressors, the ratio 3/8, varied between 0 and 3. The
u:'meinoonﬁmncyofthisandothermodehwﬂlbeexploredina
& mwtvariableswithﬂxedeﬁmitisalwayspossiblewﬁndan
SHeation orthogonal parametrization, see Jeffreys (1961).
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APPENDIX A: ORTHOGONALITY IN THE SINGLE
INDEX MODEL

Consider the following classes of panel data models:

1. Let the observations for a single agent be stochastically independent and
depend on unknowns only through g, = v + xup, where v; denotes an
individual specific fixed effect and x, a vector of strictly exogenous
regressors. The panel Poisson, logit and probit models are of this single

; index form.

2. Let y, = G(xup + v)) + 6u, Where &, ~ N(©,0%); G( ) is twice continu-

~ ously differentiable and v, and x,, are defined as above.

- We show how information orthogonality can be obtained for these classes
~ of panel data models; for some models, the information orthogonal
9 ization suggests (or is) an EOE parametrization. The parameters

' and A, are information orthogonal if the following condition is satisfied:

*L
Eallap 1Bapoimic = 0

 where L denotes the conditional log likelihood function (conditional on x)

and A, the individual parameter in information orthogonal reparametriza-
EI6°L)/(04,08) has to hold at {fo. do}. We can rewrite L(Bv) as
Lpg, ..o pr) Where pt, = xf + v; then (we omit the subscript i):

oL ovoL _ Ove~0LOu, Ove0L
5= 3% = o, 727,
~ We can rephrase the information orthogonality condition as:

oL
F] —
L _ov FL_v, {Z:a,.,

E

3poA " oA opav oA FT]
_ov d(OL/ou,}0p, _ dv O,
=GEl "o W aAE{Z"“"- FT]
gives
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oy, ov
E{Z‘: Ly, 35} = E{Z Ly, (J‘: + 55) } =0
which gives, omitting subscripts for u:
ov EY Lyxs _ _ 3 *sELu

aﬂ EZ:LN‘ Z::ELW‘

The solution for this differential equation is the following:
r+xf

1=Z/ EL,dp
.

00

This solution can be easily checked by total differentiation. We calculate i
(numerically) the integrated log likelihood:

1 ®
L’=;L{=2,:ln/o e"d).:Zln/_we"g—idv

where 1 =Y, [ EL,dp. |

If the regressor x; is a (K x 1) vector, then we want to (information) !
orthogonalize the fixed effects (incidental parameters) to all common
parameters. This gives us the following differential equations:

PL '
E——=0 forj=1,...K -

oA, ! L
And the solution is similar to above (but now x, is a vector): “:’? i

vi+xap .f‘

A= / EL,d, R
Z o uud h B
and t "1 T
ai 'ﬁ] 1
Pl ZELM(W + xuB) _ )i i

For some models, this procedure yields a parametrization that is EOE.
We illustrate this with the example in the text, the exponential hazard moded
with fixed effects (as discussed in section “Consistency with Ezscl -y 1
Orthogonality in Expectation™). Using 4 =3, f:':"’p EL,duy gves & =
parametrization that is EOE; in particular, '
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v+xf vxuf .y
A=Y / EL,dp=Y_ / e+ PEy. du
3 J—00 s J-00

where we omitted the subscripts for v;. Note that
ov EY,Lyyxs S xue*PEy
._ Bl 7Y i . S AP _ﬁ_.‘.__-“
EE.IL‘“‘ 2.‘“" Ey is

Therefore, &v/(9p4) = 0.
We now check whether the parametrization is indeed EOE. As was shown
in the text, the log likelihood contribution of individual i has the following

expression:
L{(B,v) = Z du(v+ xiuf) — Ee"""‘"yi,

Differentiating with respect to f gives

Lg= Zdu(?ﬁ+xu) Z(ap* x ) erxeby,
[ ]
= %}; dy + Z duxi - 532 exeby, ~ Z xue™*y,

2 xue“"Ey,_,
Lg= - Z':e'“th Zd +Zd¢,x¢,

i + Lkl P Eyy G~ roneb r+xuB
e Z:e"b Ey, Z el —Zx;,e Y

e
E wePEy, rxuP rxuf
=GR D

3

where dv/oA =S, [ ELdp=T, e+*8Ey,, which is not stochastic.

ore,

iy
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) DO aiid 5 rexif
ELp, = a{ 3= e PEy, Ze Ey, que Ey;

a P4X,
= a_:{zx“eﬂ»xuﬁEyu - ZX;,C + hﬁEy“} =0
L] 3
This yields

1
ELg = ﬁzl: ELg =0 forall B,A ,

Therefore, the parametrization is EOE.

APPENDIX B

{

]

First, note that it follows from EOE that %1
ELg(B, ) = ELg(B, %) VA A

Next, also note that

ES*(B)=E / Ly(8, wodd = ELg(B, ) VA

ESYB)=E A 1:: Lg(B, Hwda j
] i i :
= A l::u,,(p, Delboldrdi

- [ ™ (EL(B, w2

=
= [ (L donod
- Amax

= ELg(P, A) since wdi=1
A_min
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APPENDIX C (PROOF OF THEOREM 1)

{BrorFroe) = arg anlL,:(/i- WY LB) + LABYL (B} and
11€0.2€0,

i‘lnlScur: = arg min S" (Ii)’snl(ﬁ)
e®

Note that by Newey and McFadden (1994. Lemina 2.4), we have that
Lytf.) LAB.7). and S"(B) converge uniformly to their expectations. Also
note that Assumption | part (iii) and EOE imply that E{Lg(f.;)} = 0 only if
= Bo. Also note that the expectation of L.(B.7) does not depend on B so
that the limit of the objective function {Lg(B.;) Lg(B.) + LAB.Y L (B} is
minimized at f=p,. The remainder of the proof tollows Newey and
McFadden (1994. Theorem 2.6).

APPENDIX D

st = /L,,;(U.=/L,,(;Ii§dv
- v RS _ et di
_/[(:'—{Z:dn_z‘ ""}+{Z'I"‘"i>‘—z:“"" + Vi m‘h

L Ad

Note that
v _ ZA.\‘,\EL,.,. _ Z.\..\',,c"“" FEv,
(‘\ﬁ Z\ELIU‘ Z.\(‘.“:\-”I‘Eri\
and
S bl = e,
6"' ¥ " s o
Theretore,

st = / [{Z (I,\} Z WP EY {Z (I,-,‘-.\',-,} Z 1"'“””5";.\] dv

¥ ¥ »

= {Z (I,\} Z.\'he‘ PR+ {Z (I;_\.\'i_\} Z c"*"""'l:',r,-\

N
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Note that 3™y, xue " Ey, = T xuet Py, 3 e P Ey,.
Therefore,

- / [{2; a‘,} Z xue™ P Ey, + {Z d;,x,,} Z e"""‘"Ey‘,] dv
= {2 dt.} que'""”b'y.. + {z': duxu} 2e"”"' Ey,

One can derive the same moment function by using the score Lyg :

> xue™ Ey, {z dy— Z e'*"'"’y,,} +Z - Z xpe™ by,

Le=- et Ey, 7

Note that EL;g(8o) = 0. The zero expectation property is maintained if
one multiplies L by 3_,e™Ey,.

APPENDIX E
1
=5 2 LD
L= / eHAd)
= 3%
= tn [P a

where Li(B,4) = Yo, (r+ xuf)d — E‘eﬂ'xuﬁ Vis
Use diA/dv = E.e‘hﬁ*"Eyh

L=k / el (z e“'""Ey‘,) dv
= ln/e“‘”) (Z(“'“'Ey'a) ;f:df

where f=e" and dv/df=1/f: use L{8,3) = L (nf + xsB)dis — 5 €P7u
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L’—ln/le""“’ N b,
i=In [ 2e09S P Ey, iy
In/fz Z:("uﬂ)du/z: ey, (Z"‘"ﬂEh )df
el.,' - ez,(\‘aﬂ)dn / lellu ez‘(\'uﬁ)tlh JE‘!""‘J'., (Z P E.Vi.y) df

SR (Z e""”Ey,-,) / Sl Tetvage

Note that the expression under the int
gamma distribution.
Therefore,

(S )
i (5, (50

This gives

Li= 3 (xuBMdy +In (Ze‘“’sy,-,) > (Zd,-, + l) ln( e‘*”yu)
6L’ (ﬂ) 2 xuePEy, 2o xue by,
= Zx,,d,, St B, Zd,, +1

egral sign implies that f has a

2 ewby,
t
i APPENDIX F

This FOC resembles the FOC of the welghted score. However, in this
Case we have stochasts, y,, s=1,...,T in the denominator. This causes

@L'(B))/(3B) 1o be nonzero at the truth We define
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W =Sy, Y xudi + Zg-ﬂy“;é_"f;:@i
3 3 3 E:e“' E}",
- (z; dot 1) T sy,

The expectation of h(f) equals the expectation of the weighted
score: Eh(B) = Eg(f). This equality also holds at the true value: ElB,) =
Eg(B,) =0 However, k() is correlated with 1 /(TP Ey,). Therefore,

E(g(B)1 /(3 €%%y,)} %0. Thus, in general, E{(OL(8,))/(38)} #0.




