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1 Introduction

In many economic and financial markets, the rights to implement and control projects

(assets) that generate future cash flows are sold through auctions. Examples are ubiquitous,

including highway-building auctions, corporate takeovers, venture-capital financing, govern-

ments’ sales of oil, gas, timber, and spectrum leases, and individuals’ sales of publishing rights.

Auctions of this type share three fundamental characteristics. First, the future revenue of the

auctioned project can be verified ex-post, and, thus, can be used to determine the winner’s

payment to the seller. In other words, the project’s revenue can be used to securitize bids.

Second, the allocation of the project requires a long-term contractual commitment from the

winning bidder, which involves significant uncertainty regarding future cash flows. And third,

multiple sellers compete for a limited number of bidders due to the large-scale nature of the

projects auctioned and the high costs associated with due diligence.

The complexity of these auctions demands several strategic decisions from bidding firms

because they need to decide whether or not to enter a given auction, how much to bid upon

their entry, and when to implement the project in case they win the auction. Additionally,

the revenue generated by the project typically depends on uncertain economic interactions in

a downstream market. For example, in oil-lease auctions, bidders face the uncertainty entailed

by the fluctuation of oil prices during the term of the lease; and in highway-building auctions,

construction firms face the uncertainty of potential cost overruns in several of the contracted

tasks.

All of these elements make firms’ participation in such auctions potentially risky invest-

ments. Hence, it is crucial to incorporate firms’ risk attitudes to analyze their strategic deci-

sions in the different stages of the induced game. Furthermore, the presence of risk aversion

makes sellers’ competition through families of securities more relevant, as sellers need to con-

sider both the ex-post extraction of each family and the inherent interim uncertainty introduced

to bidders.

In this paper, we analyze a model in which two risk-neutral sellers compete for (possibly

heterogeneously) risk-averse bidders to allocate two ex-ante identical projects. Sellers choose

a family of securities and commit to run a second-price auction under the selected family. We

assume auctions are run simultaneously, and, thus, bidders decide which auctions to enter

(possibly randomly) given their risk aversion and the sellers’ choice of design. Then, given the
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endogenous number of competitors in each auction, bidders choose a security bid once they

learn their own signals about the future revenue of the project. Our focus on a second-price

auction simplifies the equilibrium analysis in the sequential game because the bidding game of

the second stage is dominance solvable, enabling us to concentrate on studying the effects that

drive bidders’ entry decisions in a more transparent way.1

When bidders are risk-averse, one crucial aspect that sellers need to consider is the effect

that the steepness of the chosen family has on bidders’ interim payoffs.2 On the one hand,

steeper securities extract greater surplus because they are more sensitive to bidders’ true types,

and, thus, are less attractive to bidders ex-ante DeMarzo et al. (2005). On the other hand,

they provide bidders with greater insurance because they allow them to smooth payoffs across

realizations, asking for lower payments when the marginal disutility of money is high and

for higher payments when the marginal disutility is low. Such insurance is relatively more

valuable for more-risk-averse bidders, making them bid relatively more aggressively (Fioriti

and Hernandez-Chanto, 2022). Therefore, the implications of extraction and insurance effects

for bidders’ entry and bidding decisions depend on bidders’ risk aversion.

Sellers also face a trade-off in the steepness of the chosen family, but in the opposite direction.

Under risk-neutral bidders, if a seller chooses a steeper family than the one selected by his

opponent, he will attract fewer bidders to the auction but will extract greater surplus ex-

post (Gorbenko and Malenko, 2011). When bidders are risk-averse, there are other effects to

consider. On the one hand, the insurance provided by steeper securities mitigates the negative

impact of the extraction effect on entry; on the other hand, the bidders more prone to enter

would be the most risk-averse, which are also the less competitive, since they are the ones

that shave their bids by more relative to what they would have bid had they been risk-neutral.

Therefore, when selecting a security design, sellers need to assess the impact that a given

family of securities has on (i) the number and composition of bidders in the auction; (ii) the

aggressiveness of bidders; and (iii) the surplus extraction and insurance provided. These effects

are multi-causal and take place at different stages of the game: the first one takes place at the

1Although the post-entry game is dominance solvable, the presence of risk aversion plays a fundamental role
for the competition of the project because its revenue is given by a lottery that depends on a “price” determined
by the losing bidder.

2Steepness refers to a partial order introduced by DeMarzo et al. (2005) to compare different securities. A
security is steeper than another if the expected payment that it yields to the seller grows more rapidly with the
winner’s signal—i.e, with a steeper slope—starting at a signal level at which the seller’s expected revenue is the
same under both securities.
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entry stage, the second one at the bidding stage, and the third one during the implementation

of the project.

Our contribution is to characterize bidders’ and sellers’ equilibrium behavior in all stages of

the game, providing sufficient conditions for sellers to separate (concentrate) in the steepness

spectrum to take advantage of bidders’ incentives. That is, we provide conditions for when it

is optimal for bidders to soften competition by using “product differentiation,” linking funda-

mental results in the industrial organization literature to the competition for financial assets

by risk-averse bidders.

The (a)symmetry of risk aversion among bidders plays a fundamental role in the equilib-

rium characterization. When bidders are homogeneously risk-averse, we show that, in every

equilibrium, bidders’ entry strategies are totally mixed and seller’s strategies are symmetric,

despite the fact that we allow for asymmetric strategies. Furthermore, we show that any family

can be chosen in equilibrium. Nonetheless, because the presence of risk aversion reinforces

sellers’ preferences for choosing steeper families of securities—as the higher insurance provided

mitigates the negative effect on bidders’ entry—we need to impose additional conditions on

the ones considered by Gorbenko and Malenko (2011) to obtain an equilibrium under families

flatter than a call-option.

In turn, when bidders are heterogeneously risk-averse, we can prove a result that is novel

to the auction literature. We show the existence of different equilibria in which sellers separate

in the spectrum of steepness to serve different populations of risk-averse bidders. Specifically,

one seller chooses a flatter family to serve the less-risk-averse bidders, while the other chooses a

steeper family to serve the more-risk-averse bidders. We argue that this equilibrium resembles a

Hotelling-location equilibrium in the order induced by steepness. In addition, we note that when

bidders are sufficiently heterogeneous in their risk-aversion, sellers do not tend to concentrate

in the middle of their steepness spectrum, in the spirit of the classical paper by d’Aspremont

et al. (1979). In fact, one seller always chooses the steepest family allowed by the strategy that

his opponent plays.

The distinctive features of security-bid auctions make sellers’ optimal strategies more com-

plicated vis-à-vis the strategies in standard second-price auctions under risk-neutral bidders.

In the latter, sellers compete by choosing different reserve prices, and bidders care only about

the expected probability of winning (McAfee, 1993; Peters, 1997; Burguet and Sákovics, 1999;
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Hernando-Veciana, 2005; Damianov, 2012). In contrast, in our environment sellers have to

choose their security design from a complex space and bidders face competition through dif-

ferent channels. Furthermore, following Gorbenko and Malenko (2011), we show that reserve

prices are less useful in this realm because whenever they are binding, sellers can always opti-

mally adjust their security design to a steeper family with no reserves, provided that they are

choosing a family flatter than a call option.

Firms’ risk aversion One key element that drives our results is the presence and hetero-

geneity of risk aversion among bidding firms, which is normally neglected in auction theory.

Hence, it is worth discussing the factors that determine firms’ risk aversion. One strand of the

finance literature relates firms’ risk aversion to their willingness and ability to engage in corpo-

rate risk management. Firms might engage in risk management to overcome credit rationing

(Froot et al., 1993; Holmström and Tirole, 2000), hedge against volatile cash flows (Smith and

Stulz, 1985), and avoid convex structures in taxation (Graham and Smith, 1999). Managers

can also use hedging as a vehicle to signal their private ability to the market (DeMarzo and

Duffie, 1995; Breeden and Viswanathan, 2015).

Another strand of the literature focuses on analyzing how firms’ risk aversion is associated

to their executives’ risk aversion. Here, there could be a potential misalignment of incentives if

managerial claims to the firm are not easily diversifiable, leading risk-averse managers to reduce

their exposure by hedging, even when this decision is not optimal from the perspective of well-

diversified shareholders. Moreover, Bodnar et al. (2019) show empirically that the relationship

between managers’ risk aversion and corporate hedging strategies is more prominent among

young, highly-educated, and short-tenure-job executives. In turn, Schosser (2019) shows that

when executives have uncertain tenure horizons, they tend to hedge by making investments

that yield returns in the short run but that are frequently misaligned with the firm’s long-term

objectives.

Therefore, given the diversity of channels that can drive firms’ risk aversion, it is important

to analyze how risk aversion affects firms’ behavior in the bidding of large-scale projects, which

could be integrated in a broader analysis of firms’ investment portfolios.
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1.1 Examples of auctions with competing sellers

To illustrate the interplay among all described channels when multiple sellers compete for

risk-averse bidders, we elaborate on the details of three examples.

Oil-lease auctions Governments frequently use security auctions to sell the rights to exploit

their oil fields, competing with each other for a limited number of drilling firms. The predomi-

nant mechanism used is a royalty plus bonus auction—also known as a fixed-equity auction. In

this mechanism, bidding firms compete in cash; the lease is allocated to the highest bidder; and

the final payment to the government corresponds to an upfront cash payment—i.e., a bonus

determined by the auction format—plus a fixed equity of future revenues. Once a firm is allo-

cated a lease, its decision to invest and drill depends on many factors, including how variable

costs and prices evolve. It also depends on the upfront cash paid in the auction, which becomes

a sunk cost in the implementation stage. Hence, in an environment with high volatility of oil

prices, higher cash payments leave the firm more exposed to unfavorable shocks. Consequently,

if a firm is sufficiently risk-averse, it may prefer to join an auction with a higher equity, even

though the seller will extract greater surplus ex-post.3

Highway- and bridge-building auctions Another context that features competition in

auctions with risk-averse bidders corresponds to procurement auctions to build highways. In

the US, departments of transportation use either standard cash auctions or scaling auctions to

procure the provision of these goods (Bolotnyy and Vasserman, 2023). In the latter, bidders

submit unit-price bids for each task specified in a contract to complete a given project.4 The

winning bid corresponds to the lowest sum of each unit bid multiplied by the corresponding

quantity estimated by the designers of the project. After the project is completed, the winner

is paid the unit bid times the effective quantity used. The design of the auction incentivizes

bidders to skew their bids according to their beliefs: bidding higher prices for tasks that they

believe will overrun the designer’s estimates, and bidding lower prices for tasks that they believe

will underrun the estimates. Hence, scaling auctions give bidders the flexibility to adjust costs

3Although oil firms are large, they are not as well diversified as similar firms in other industries. Furthermore,
oil-extraction projects are large and complex, and, thus, have a considerable effect in the portfolio position of
the firms that undertake them.

4For instance, they might submit a bid for the structural design, another bid for the pavement settlement,
and so on.
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across tasks, providing them more insurance and inducing them to bid more competitively. In

contrast, when the designer uses a standard auction with cash upfront payments, bidders are

exposed to all shocks in unexpected costs. This induces risk-averse bidders to charge higher

prices because the project is less attractive.

The pool of bidders that compete for these contracts is limited and normally stable. This is

so because there are increasing returns to scale of having contracts in the same geographical area

due to the costs of mobilizing machinery and the need to save on seismic studies. The incentive

of bidders to establish in certain areas induces fierce competition among local governments to

attract those companies to contract their services.

Publishing-rights auctions The previous two examples involve governments allocating

large projects among few firms. However, security-bid auctions are also used in contexts in

which sellers are individuals and the pool of biding firms is large and heterogeneous. An ex-

ample of this are auctions used to sell the rights for publishing a book (Skrzypacz, 2013).

This happens when an agent representing an author with celebrity status organize an auction

among publishing houses to sell the rights of a book that stands out for its marketability or

newsworthiness. Different agents manage large lists of clients, and, thus, it is not uncommon

to observe agents competing to entice publishing houses (with heterogeneous sizes and diverse

project portfolios) to enter their auction. To soften the competition and make their auction

distinctive, agents differ in their choice of security designs: some of them choose royalties (i.e.,

equity), while others choose flatter securities like debt, and some others prefer upfront payments

in cash.

1.2 Related literature

The steepness of the security design plays a dual role when bidders are risk averse: on the

one hand, it allows seller to extract higher surplus, and, on the other hand, it provides bidders

with higher insurance. The extraction role of steepness has been well studied in the literature.

For instance, DKS show that, under identical opportunity costs, the use of steeper securities

increases sellers’ expected revenue because they are tied more tightly to the winner’s true

type. This finding generalizes the early results by Hansen (1985), Riley (1988), and Rhodes-

Kropf and Viswanathan (2000), who were the first to discover this relationship by comparing
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cash and equity auctions. Other studies have analyzed the relationship between the steepness

of the security design used and the seller’s expected revenue in alternate frameworks, these

include: Che and Kim (2010) and Liu and Bernhardt (2019) under adverse selection; Kogan

and Morgan (2010) under moral hazard; Sogo et al. (2016) when entry is endogenous and costly;

and Hernandez-Chanto and Fioriti (2019) under negative externalities.

The study of security-bid auctions with risk-averse bidders is more recent and less abundant.

Abhishek et al. (2015) show that when bidders are homogeneously risk-averse and signals are

ranked according to the first-stochastic-order, the notion of steepness is not sufficient to rank

securities in revenue, and, instead, a notion called “strong steepness” is needed. Meanwhile,

Fioriti and Hernandez-Chanto (2022) show that the insurance provided by steeper securities

levels the field for more-risk-averse agents, inducing them to bid more aggressively and, thus,

increasing their competitiveness in the auction they participate.

Regardless of bidders’ risk attitudes, most of the literature has focused on the analysis of

monopolistic auctions; yet the most natural applications occur under competition. To account

for this possibility, Gorbenko and Malenko (2011) extended the framework in DeMarzo et al.

(2005) to include the possibility of having multiple sellers competing for a group of risk-averse

buyers.

We add to this literature by considering both competing sellers and risk-averse bidders. In

this context, sellers compete with each other by implicitly inducing different combinations of

insurance and surplus extraction, and bidders endogenously enter to each auction based on

their differentiated values of the insurance provided and the extraction exercised.

This paper differs from Gorbenko and Malenko (2011) in a number of ways. First, we

consider two risk-neutral sellers that compete for a set of risk-averse bidders, whereas they

study the case of multiple risk-neutral sellers that compete for a set of risk-neutral bidders.

Hence, in general, our setting is not contained, neither contains, their framework; except when

the number of sellers is restricted to two, in which case, their framework is a particular case

of our setting. Second, we allow for the possibility of having asymmetric equilibria, instead of

exclusively focusing on symmetric equilibria. Third, we consider two-dimensional types that

are sequentially learned by bidders, which are fundamental for the existence of asymmetric

strategies in the entry stage. And fourth, we add the insurance and aggressiveness effects to

the competition and extraction effects present in their model.
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Methodologically, we prove the uniqueness of symmetric equilibria when there are only two

sellers by means of an increasing-differences argument, instead of comparing the marginal value

of attracting an additional bidder vis-à-vis the marginal cost of having lower ex post extraction,

as in Gorbenko and Malenko (2011).

It is worth highlighting that Gorbenko and Malenko (2011) do not dismiss the existence

of asymmetric equilibria. Nonetheless, they are agnostic about the type of equilibria that

could emerge when sellers choose different security designs. We instead prove the uniqueness

of a symmetric equilibria with two sellers, which can be seen as a strong robust check for

the symmetry of equilibria when competition is duopolistic. The restriction to two sellers

is important because with more than two sellers the increasing-difference condition between

bidders’ entry probability and the steepness of the security design is not sufficient to rule out

the existence of asymmetric equilibria, and, thus, more research is needed to characterize such

potential equilibria.

Contemporaneously to our paper, Breig et al. (2023) experimentally implement the com-

petition of sellers in second-price, security-bid auctions when sellers can choose their security

designs between debt and equity, and buyers select auctions based on sellers’ choices. The

authors focus on the comparison between monopolistic and competitive auctions. They find

that an auction’s security design has limited influence on revenue in monopolistic auctions,

whereas equity substantially increases revenue in the competitive auctions. This is mainly due

to equity’s effectiveness in attracting more bidders, given the preference of bidders for a linear

payment structure. Despite this fact, sellers’ rate of choosing equity does not differ between

the monopolistic and competitive treatments.

More broadly, our framework constitutes a general approach to the study of risk-averse

bidders in security-bid auctions, and, thus, complements the analysis conducted under monop-

olistic cash auctions in previous papers, such as, Matthews (1987). In this case, we show that

risk aversion has first-order effects as it induces sellers to specialize in their security designs.

This result contributes, thus, to the literature that studies the allocation of indivisible objects

under competing designers, including, Biais et al. (2000), Ellison et al. (2004), and Epstein and

Peters (1999).
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Organization of the paper The rest of the paper is organized as follows. Section 2 lays out

the model. Section 3 determines sellers’ and bidders’ optimal strategies. Section 4 discusses

the different channels of competition in the auction. Section 5 characterizes the equilibrium

when bidders are homogeneously risk-averse, while Section 6 does the same when bidders are

heterogeneously risk-averse. Section 7 illustrates the main results of the paper through a

numerical simulation. Section 8 discusses several different extensions of our model, including

the presence of reserve prices, and proposes future research avenues. Section 9 concludes. All

proofs are relegated to the Appendix.

2 The model

Two risk-neutral sellers seek to allocate two ex-ante identical and indivisible projects. Each

seller uses an auction to allocate exactly one project.5 Any winning bidder i P t1, . . . , Iu

must incur a cost κ ą 0 for the acquired project to generate a stochastic revenue Zi. The

implementation cost κ is commonly known by all agents.

After selecting an auction, bidders receive a private signal V P V “ rvL, vHs of the stochastic

revenue Z.6 Bidders learn their signals after entering the auction since due diligence is costly.

For any signal realization V “ v, the revenue Z has a conditional distribution Qpz|vq with a

positive everywhere and continuous density qpZ|vq on Z “ r0,8q. We assume that densities

can be ordered by the strict Monotone-Likelihood Ratio (sMLR). Thus, the ratio qpz|vq{qpz|v1q

is strictly increasing in z for all v ą v1.7

All bidders are expected-utility maximizers with Bernoulli utility functions up¨, rq param-

eterized by the risk-aversion level r P R “ rrN , rHs with rH ă 8. Here, the lower bound rN

denotes risk neutrality. We assume that, for all r ą rN , up¨, rq is strictly increasing and strictly

concave, and it satisfies up0, rq “ 0. We say that for any two bidders i ‰ j, bidder i is more

risk-averse than bidder j if ri ą rj. In particular, for any ri ą rj, there exists a strictly concave

transformation φpri, rjq such that up¨, riq “ φpri, rjq ˝ up¨, rjq. If ri “ rj bidders are equally

risk-averse and φpri, rjq becomes the identity function. A bidder’s type is represented by the

5For the sake of simplicity, we will refer to the seller as “he” and the bidder as “she.”
6The distribution of signals is independent of the auction selected by bidders.
7Furthermore, we assume that (i) the conditional density function qpz|vq is twice differentiable in z and

v; and (ii) the functions zqpz|vq, |zqvpz|vq|, and |qvvpz|vq| are integrable on z P p0,8q. These assumptions
guarantee that the expectations and derivatives discussed in the paper are well-defined.
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pair θ “ pv, rq P V ˆR fi Θ. Each bidder’s type is drawn independently from a full-support dis-

tribution H “ pF ˆGq, which is assumed to be absolutely continuous, bounded, and atomless.

All distributions are common knowledge.

We assume that both sellers use a second-price security-bid auction as a selling mechanism.

Hence, bids correspond to securities that are tied to the project’s ex-post revenue Z. We

consider a class S of indexed families of securities S fi tSp¨, sq : s P rsL, sHsu, where S :

Z ˆ rsL, sHs Ñ R` maps the revenue of the project Z and the index s to the payment received

by the seller.8

Assumption 1. For all s P rsL, sHs,

i) Spz, sq and z ´ Spz, sq are continuous and increasing in z.

ii) 0 ď Spz, sq ď z for all z.

Assumption 1 states that the expected payoffs obtained by sellers and bidders are increasing

in the revenue of the project for all security bids. Moreover, bidders cannot promise to pay

more than the revenue of the project, and the seller cannot finance its implementation. Thus,

sellers and bidders face double limited liability, since they can share only the resources generated

by the project.9

Assumption 2. For any bidder with type θ “ pv, rq,

i) EUSpθ, sq fi ErupZ ´ κ ´ SpZ, sq, rq|vs is continuous and strictly decreasing in s, and

non-positive for s “ sH .

ii) ESpθ, sq fi ErSpZ, sq|vs is continuous and strictly increasing in s.

Assumption 2 states that each family of securities is completely ordered from the perspective

of bidders and sellers. Securities that satisfy both assumptions are called feasible securities.

Our definition is comprehensive and encompasses standard types of securities, which include:

• Equity: In this case, the seller receives a fraction s P r0, 1s of the project’s revenue. Thus,

the seller’s payment is given by Spz, sq “ sz.

8As an illustration, the family S could refer to the family of, say, equity functions that are parameterized
by the indices s P r0, 1s. For other securities (e.g., debt and call options) it is always possible to find a bijective
mapping between rsL, sH s and the relevant index space (e.g., R`).

9This last assumption is crucial to rule out the critique of Crémer (1987), who shows that if the seller could
finance the project’s implementation cost, he would be able to extract the whole surplus.
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• Debt: With debt securities, the seller receives a fixed amount s P R if the project’s

revenue surpasses such threshold. Otherwise, the seller retains the entire revenue. Hence,

the payment is given by Spz, sq “ mintz, su.

• call options: In the case of call options, the seller has the right to “call back” the project

when its revenue exceeds a specified strike price s P R. If the call option is exercised, the

seller must pay the strike price to the bidder and retains the remaining revenue. However,

if the project’s revenue is below the strike price, the seller does not call back the project

and obtains a payoff of zero. Thus, the payment is given by Spz, sq “ maxt0, z ´ su.

These examples illustrate the different types of securities that fall within the scope of our

definition.

Timing Figure 1 depicts the timeline of the game. First, each seller chooses a feasible family

of securities S P S to run his second-price auction. Then, bidders observe the sellers’ choice,

learn their risk aversion—but not their signal—and make auction-entry decisions. Once bidders

enter an auction, they learn their signal about the future revenue of the project, observe the

number of competitors in their chosen auction, and submit their bids. Then, a winner is

determined in each auction. Finally, projects’ revenues are realized and payments are made.

Sellers choose
security families

1
Bidders learn

their risk aversion and
make entry decisions

2

Bidders learn
their signals and
submit their bids

3
Winners are
determined

4

Projects revenues
are realized and

payments are made

5

Figure 1: Timing of the auction.

2.1 Steepness

Following DeMarzo et al. (2005), we rank securities using the notion of steepness. For that

purpose, let ES1pv, sq be the partial derivative of ESpv, sq with respect to the bidder’s signal

v.
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Definition 1 (DeMarzo et al. (2005)). The security S 1p¨, s1q is steeper than the security S2p¨, s2q,

if ES 1pv, s1q “ ES2pv, s2q implies that ES 1
1pv, s

1q ą ES2
1 pv, s2q.10

That is, a security is steeper than another if the seller’s expected payment has a “greater

slope” under the steeper security, starting at the signal level at which both securities yield

the seller the same expected payment. If all securities S 1p¨, s1q in family S 1 are steeper than all

securities S2p¨, s2q in family S2, we say that family S 1 is steeper than S2 and write, occasionally,

S 1 ą S2. Intuitively, steeper securities compensate the lower payments under low realizations

with higher payments under high realizations, providing risk-averse bidders with a better way

to smooth payments.

Lemma 1 (DeMarzo et al. (2005)). We can say that S 1p¨, s1q is steeper than S2p¨, s2q if for any

s1 P rsL, sHs and any s2 P rsL, sHs, the function S 1ps1, zq´S2ps2, zq is quasi-monotone in z—that

is, if there exists a point z˚ such that S 1pz, s1q ď S2pz, s2q for all z ď z˚ and S 1pz, s1q ą S2pz, s2q

for all z ą z˚.

Notably, for the vast majority of securities—in particular for standard securities—steepness

implies the existence of a single crossing point, and, thus, this relationship is a two-way street

(see DeMarzo et al., 2005).

z
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Asset Payoff z

Figure 2: Single-crossing property across standard securities. The figure depicts the payment
structure of debt (d), equity (e), and a call option (co).

10For any family S and any bid s, the partial derivative ES1pv, sq is well-defined by virtue of the assumptions
on the conditional density qpz|vq and the application of the Dominated Convergence Theorem.
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Steepness induces a partial order to compare families of securities. In particular, a call

option is steeper than equity, which is steeper than debt. Moreover, debt and call option are,

respectively, the flattest and steepest feasible securities. As we will show later, the notion of

steepness drives many of the fundamental results in the paper.

3 Optimal strategies

In this section, we determine the optimal strategies of bidders and sellers in the sequential

game of incomplete information induced by the environment of Section 2.

3.1 Bidding strategies

Consider a bidder who enters an S-auction in which there are already k ´ 1 ě 0 bidders.

Given that there will be k active bidders in the auction after she joins, her bidding strategy

corresponds to a mapping from her type space into the relevant family of securities, conditional

on the number of participants k; that is, σSp¨|kq : Θ Ñ S.

Proposition 1. [Fioriti and Hernandez-Chanto (2022)] The unique symmetric Bayes-Nash

equilibrium in the second-price auction, when there are k active bidders, is for each bidder with

type θ “ pv, rq to submit a security-bid σSpθ|kq such that

EUSpθ, σSpθ|kqq “ ErupZ ´ κ ´ SpZ, σSpθ|kqq, rq|vs “ 0 (1)

when EUSpθ, sLq ě 0, and to submit a bid σSpθ|kq “ sL otherwise.

Given a seller’s family choice, the optimal strategy in (1) corresponds to a bid that sets

to zero the certainty equivalent of the lottery induced by the bidder’s type when the expected

utility is non-negative at the lowest security index of the corresponding family. As a convention,

we assume that if the bidder obtains a negative utility when she gets the project at the lowest

security, she bids the lowest possible security. Nonetheless, the latter case would be off the

equilibrium path, as we will see later.

Lemma 2. [Fioriti and Hernandez-Chanto (2022)] For any family S and any 1 ď k ď I, the

equilibrium bid σSpθ|kq determined in (1) is continuous, strictly increasing in the signal v, and

strictly decreasing in r.
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Lemma 2 allows us to characterize equilibrium bids in a second-price auction by a family

of indifference curves in the space pv, rq. As such, it is possible to obtain the marginal rate of

substitution between the signal and the risk-aversion level such that a bidder submits the same

equilibrium bid. The continuity of bids in risk-aversion is crucial to determine the existence of

mixed strategies when bidders are homogeneously risk-averse and cutoff strategies when bidders

are heterogeneously risk-averse.

Because the selling mechanism is a second-price auction, the optimal strategy is independent

of the number of participants. Hence, in what follows, we suppress the dependence of strategies

on the number of bidders when there is no risk of confusion for the reader.

3.2 Entry strategies

We assume that bidders are ex-ante identical and focus on a symmetric equilibrium in the

entry stage. Thus, when sellers’ family choices are S 1 and S2, bidders’ entry strategy is given by

the mapping γp¨|S 1,S2q : R Ñ ∆ptS 1,S2uq. Write γ1pr|S 1,S2q as the probability that a bidder

with risk aversion r joins the S 1-auction and γ2pr|S 1,S2q as the probability that she joins the

S2-auction.

Definition 2. For any two families S 1 and S2, the entry strategy γp¨|S 1,S2q satisfies individual

rationality (IR) if γ1pr|S 1,S2q “ 0 whenever

EV rEUS1pθ, sLqs “

ż

V
EUS1ppv, rq, sLqdF pvq ă 0, (IR)

and likewise for γ2pr|S 1,S2q.

That is, the (IR) condition requires that, for any sellers’ family choices, bidders will never

join an auction in which they would obtain a negative expected utility when paying the lowest

possible security-bid within the corresponding family.

We can define the set of risk-averse types that can become active in an auction by means

of the correspondence R` : S Ñ R, where R`pSq “ tr P R : EV rEUSppv, rq, sLqs ě 0u.

Assumption 3. For all S P S , ESpθ, sLq “ 0 and the seller retains the project when all bids

are equal to sL.
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Assumption 3 is satisfied by all standard securities (e.g., debt, equity, and call options).

As such, this assumption implies that R`pSq is the same for any family S P S . Hence, let

R` fi R`pSq and relabel rH “ supR` and Θ` fi V ˆ R`.11

Using the definition of conditional entry probabilities, we can compute the unconditional

probabilities as follows:

γ1
pS 1,S2

q “

ż

R`

γ1
pr|S 1,S2

qdGprq (2)

γ2
pS 1,S2

q “

ż

R`

γ2
pr|S 1,S2

qdGprq “ 1 ´ γ1
pS 1,S2

q.

Then, the expected number of bidders that would join each auction in equilibrium is given

by I 1pS 1,S2q “ Iγ1pS 1,S2q and I2pS 1,S2q “ Iγ2pS 1,S2q “ I ´ I 1pS 1,S2q.

Losing types Denote θk “ pθ1, . . . , θkq P Θk as a profile of types with length k. For any type

θ, the set of types that lose against it in the S-auction is denoted as

Lk
Spθq fi tθk P Θ`k

|σSpθjq ă σSpθq : θj P θku.

Furthermore, for a given profile θk P Lk
Spθq define

σ̂Spθkq fi maxtσSpθjq : θj P θku

as the maximum bid among the k-losing types against type θ.

We follow the convention used in the mechanism design literature and decompose a given

profile of types θk, containing θi as pθi,θk´1,´iq, for any k ď I and any i P I. Further-

more, we write the distribution of types in Θk as Hkpθkq “
śk

j“1 F pvjqGprjq. By the vector

decomposition introduced above, we can also write Hkpθkq “ Fkpvi,vk´1,´iqGkpri, rk´1,´iq “

śk
j“1 F pvjqGprjq.

The interim expected utility that bidder i with risk aversion ri obtains by joining the S 1-

11Equation (1) and Assumption 3 imply that, for any family S, a bidder who submits the lowest security
index sL never wins the auction.
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auction, conditional on facing k opponents, is given by

EUpS 1
|ri, kq “

$

&

%

ş

V EUS1pθi, sLqdF pviq if k “ 0
ş

V

ş

Lk
S1 pθiq

EUS1pθi, σ̂S1pθk,´iqqdHkpθk,´iqdF pviq if 1 ď k ď I ´ 1.
(3)

The interim expected utility can be separated in two cases. The first case corresponds to the

utility that bidder i obtains when she faces zero opponents—i.e., when she is the only participant

in the S 1-auction. In such a case, bidder i pays the lowest feasible security sL, and the utility

of implementing the project becomes EUS1pθi, sLq for any realization of the signal vi. In the

second case, bidder i faces k ě 1 opponents, and, thus, the auction features competition. Here,

bidder i’s expected utility is obtained by integrating the profile of types θk,´i “ pvk,´i, rk,´iq

over the region Lk
S1pθiq in which the types of her opponents lose against her type θi “ pvi, riq.

Now, because bidder i only knows her risk-aversion level ri before joining the auction, the region

Lk
S1pθiq depends on the draw of the signal vi. By independence, the probability of obtaining the

profile pθi,θk,´iq, conditional on ri, is given by dFk`1pvi,vk,´iqdGkprk,´iq “ dHkpθk,´iqdF pviq.

Therefore, the expression inside the integral gives the interim expected utility for bidder i when

she pays the second-highest bid σ̂S1pθk,´iq.

The unconditional interim expected utility of joining the S 1-auction can be written as

EUpS 1
|ri,S2

q “

I´1
ÿ

k“0

ˆ

I ´ 1

k

˙

γ1
pS 1,S2

q
kγ2

pS 1,S2
q
I´1´kEUpS 1

|ri, kq, (4)

and similarly for the S2-auction.

Therefore, if bidder i with risk aversion ri uses a non-degenerate mixed strategy γ1pri|S 1,S2q,

the following equality must be satisfied:

řI´1
k“0

`

I´1
k

˘

pγ1qkp1 ´ γ1qI´1´kEUpS 1|ri, kq “
řI´1

k“0

`

I´1
k

˘

p1 ´ γ1qkpγ1qI´1´kEUpS2|ri, kq.

(MS)

Here, we dropped the dependence of γ on S 1 and S2 for simplicity.
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3.3 Sellers’ security design

The expected payment to a seller who chooses family S 1, conditional on k bidders joining

his auction, is given by

ESpS 1
|kq “

$

&

%

ş

Θ` ES 1pθi, sLqdHpθiq if k “ 1

k
ş

Θ`

ş

Lk´1
S1 pθiq

ES 1pθi, σ̂S1pθk´1,´iqqdHkpθi,θk´1,´iq if k ě 2.
(5)

The expected payment to a seller who chooses S 1, when k bidders joins his auction, can be

separated into two cases. The first term corresponds to the case in which only one bidder joins

the auction, and, thus, the seller receives the lowest feasible security sL. The second term corre-

sponds to the case in which exactly k ě 2 bidders participate. To compute the seller’s expected

payment in the second case, we obtain the expected payment from bidder i and then multiply

it by k. This can be done because types are independent and the mechanism is anonymous. In

turn, to compute the seller’s expected payment for bidder i, we compute the probability that

she wins the auction by integrating the profile of types θk´1,´i “ pvk´1,´i, rk´1,´iq over the re-

gion Lk´1
S1 pθiq. In this region, the seller receives ES 1pθi, σ̂S1pθk´1,´iqq. We integrate over bidder’s

i type in the exterior integral because payoffs are computed from an ex-ante perspective.

The expected payment for a seller that chooses the family S 1 when his opponent chooses

the family S2 is given by

ESpS 1
|S2

q “

I
ÿ

k“1

ˆ

I

k

˙

γ1
pS 1,S2

q
kγ2

pS 1,S2
q
I´kESpS 1

|kq. (6)

For any seller j P t1, 2u, a mixed strategy is denoted by ζj P ∆pS q. Hence, the expected

payoff for seller j of choosing family S 1, when his opponent ´j follows the strategy ζ´j, corre-

sponds to

ÊSpS 1
|ζ´jq “

ÿ

S2PS

ESpS 1
|S2

qζ´jpS2
q. (7)

Sellers’ family choices take into account the interplay across the different competition effects

that are produced by bidders’ optimal behavior. In order to ensure the existence of an interior

equilibrium strategy, it is necessary that EUpSd|r, I ´ 1q ´ EVrEUScoppv, rq, sLqs ă 0, where Sd

is the debt family and Sco is the call-option family. This condition guarantees that the value
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of the ex-ante insurance offered by the steepest family—when participation is maximal—does

not compensate the lower extraction featured by the flattest family under no competition.

4 Channels of competition

The family choices of both sellers affect bidders’ equilibrium behavior through three chan-

nels: (i) the insurance and surplus extraction; (ii) the induced bidders’ aggressiveness; and (iii)

the number and composition of participating bidders. For instance, auctions under steeper

securities extract higher surplus ex-post, but also provide higher insurance from an interim

perspective. Furthermore, depending on bidders’ level of risk aversion, they attract less (more)

entry, which, in turn, features lower (higher) competition. In particular, if bidders are suf-

ficiently risk-averse, so that the insurance provided by the steeper-family auction more than

offsets its higher surplus extraction, they might prefer to join such an auction to take advan-

tage of the low competition and to exercise their higher aggressiveness, as we will see later.

Conversely, if bidders have low risk aversion, then, even if they have to face higher competition

and get lower insurance, they might prefer to join a flatter-family auction to avoid the higher

surplus extraction exercised by the alternate seller.

4.1 Extraction and insurance

Because bidders are risk-averse, it is important to decompose the extraction and the in-

surance effects embedded in each security design when comparing the expected utility that a

bidder will get by joining alternate auctions under different families of securities.

For any region Z̃ Ă Z, and families S 1 and S2 with s1, s2 P rsL, sHs, define

∆Z̃EUps1, s2, θq fi EUS1pθ, s1
|z P Z̃q ´ EUS2pθ, s2

|z P Z̃q

as the difference in the expected utility between securities S 1p¨, s1q and S2p¨, s2q over Z̃.

Definition 3. Fix a bidder with type θ “ pv, rq and consider the families S 1 and S2, such that S 1

is steeper than S2. Let s1
1, s

1
2, s

2 P rsL, sHs be the security bids such that ES1pv, s1
1q ą ES2pv, s2q

and ES1pv, s1
2q “ ES2pv, s2q. Additionally, let z˚

1 be the single-crossing point between Sp¨, s1
1q

and Sp¨, s2q, and z˚
2 be the single-crossing point between Sp¨, s1

2q and Sp¨, s2q. The insurance
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effect between S 1p¨, s1q and S2p¨, s2q is defined as

∆r0,z˚
2 sEUpθ, s1

2, s
2
q ´ ∆pz˚

2 ,8qEUpθ, s2, s1
2q, (IE)

and the extraction effect between S 1p¨, s1q and S2p¨, s2q is defined as

∆ZEUpθ, s1
1, s

1
2q. (EE)

Notice that the bid s1
2 P rsL, sHs equalizes the seller’s expected payment under the steeper

security S 1 with the expected payment under the flatter security S2 when the bid is s2 P rsL, sHs.

By Theorem 1 in Stiglitz and Rothschild (1970), any risk-averse bidder would prefer to deliver

the same expected payment to the seller using a steeper security because flatter securities induce

lotteries that are mean-preserving spreads of lotteries induced by steeper securities (Fioriti and

Hernandez-Chanto, 2022). Then, the insurance effect in (IE) is determined by the difference

between the gain in utility over the region where the flatter security extracts more surplus,

∆r0,z˚
2 sEUpθ, s1

2, s
2q, net of the loss in utility over the region where the steeper security extracts

more surplus, ∆pz˚
2 ,8qEUpθ, s2, s1

2q. The strict concavity of the utility function guarantees that

the marginal utility over the first region is greater than the marginal disutility over the second

region. Meanwhile, because S 1p¨, s1
1q and S 1p¨, s1

2q belong to the same family, the insurance effect

is mute. Moreover, the payment yielded by the former security is greater than the one yielded

by the latter over the entire region Z. Hence, the difference in expected utility ∆ZEUpθ, s1
1, s

1
2q

corresponds to the pure extraction effect (EE).

4.2 Aggressiveness

Because bidders can be heterogeneously risk-averse, they value the insurance embedded

in each security design differently. In particular, more-risk-averse bidders value the insurance

provided by steeper securities more highly—in relative terms.

Definition 4. For any family of securities S and any type θ “ pv, rq, define

Ψpθ,Sq fi
ESpv, σSppv, rNqqq ´ ESpv, σSppv, rqqq

ESpv, σSppv, rNqqq
. (8)

We say that a bidder with type θ is more aggressive under family S 1 than under family S2 if
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Ψpθ,S 1q ă Ψpθ,S2q.

Definition 4 states that for any bidder’s type θ “ pv, rq, the gap between her equilibrium

bid and the bid she would have submitted under risk neutrality decreases with the steepness

of family S.

Proposition 2. For any two families of securities S 1 and S2 such that S 1 is steeper than S2,

we have that:

i) any bidder with type θ “ pv, rq is more aggressive under S 1 than under S2; and

ii) for any signal v, a more-risk-averse bidder is relatively more aggressive under S 1 than

under S2—i.e.,

Ψppv, r̂q,S 1
q ´ Ψppv, rq,S 1

q ą Ψppv, r̂q,S2
q ´ Ψppv, rq,S2

q

for all r̂ ą r .

When bidders are risk-averse, their equilibrium bids are “handicapped” with respect to what

their bids would have been had they been risk-neutral. Proposition 2 states that this handicap

decreases when steeper securities are used, and that such a decrement is greater for more-risk-

averse bidders. This stems from the fact that as bidders become more risk-averse, their utility

functions correspond to a sequence of strict concave transformations, which implies that the

insurance provided by steeper securities becomes relatively more valuable. In other words,

the more risk-averse is a bidder, the relatively more aggressive is her bidding in the auction.

Technically speaking, for any signal v, the function Ψpθ,Sq satisfies increasing differences in

the order induced by steepness and the risk-aversion level.

4.3 Number of competitors

For any fixed security design, increasing the number of bidders always increases the seller’s

expected revenue when bidders are risk-neutral. Furthermore, for standard cash auctions,

increasing the number of bidders by one dominates any other mechanism under the original

number of bidders (Bulow and Klemperer, 1996). However, when bidders are heterogeneously

risk-averse, the composition of bidders—and not only their number—matters for determining

20



the seller’s expected revenue. In particular, a seller might find it optimal to choose a security

design that induces a lower number of bidders if they bid more aggressively and the seller can

extract higher surplus ex-post. Hence, each seller must consider the interplay of all these effects

when choosing his optimal security design.

5 Homogeneously risk-averse bidders

In this section, we present a full characterization of how bidders and sellers separate endoge-

nously in equilibrium when bidders are homogeneously risk-averse. That is, when all bidders

share the same risk-aversion parameter, which is drawn from a distribution G with support R`.

Importantly, once the risk-aversion level is drawn, it is fixed and becomes common knowledge.

Lemma 3. If bidders are homogeneously risk-averse, then, for any family S, (i) the bidder’s

interim expected utility EUpS|r, kq is decreasing and convex in k for any r; and (ii) the seller’s

interim expected payment ESpS|kq is increasing and concave in k.

Lemma 3 determines bidders’ and sellers’ expected payoffs as a function of the competitors

in the selected auction. As expected, the marginal benefit (cost) of having an extra competitor

for the seller (bidders) is decreasing (increasing). The next proposition establishes how the

entry strategy is affected by bidders’ level of risk aversion.

Proposition 3. Suppose that bidders are homogeneously risk-averse. For any sellers’ choice

of families S 1 and S2, the entry strategy γ1pr|S 1,S2q satisfies the following properties:

(i) Bidders use a mixed strategy γ1pS 1,S2q that is uniquely defined by (MS).

(ii) If S 1 “ S2, then γ1pr|S 1,S2q “ 1
2
for all r P R`.

(iii) If S 1 is steeper than S2, then γ1pr̂|S 1,S2q ě γ1pr|S 1,S2q for all r̂, r P R` such that r̂ ą r.

(iv) If S 1 is steeper than S2, there exists a cutoff value rpS 1,S2q such that if r ď rpS 1,S2q,

then γ1pr|S 1,S2q ď γ2pr|S 1,S2q; and if r ą rpS 1,S2q, then γ1pr|S 1,S2q ą γ2pr|S 1,S2q.

Part (i) states that, in any equilibrium, bidders’ strategies are totally mixed. The existence

and uniqueness of an equilibrium under mixed strategies is guaranteed by the continuity of

bidding strategies in signals and risk-aversion levels. Part (ii) says that when both sellers choose
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the same family of securities, bidders randomize equally between the two auctions, given our

focus on bidders’ symmetric equilibria. In this case, only the competition effect prevails, and,

so, bidders’ optimal strategy is to balance the expected number of bidders in each auction.

In turn, part (iii) says that when sellers choose different families, the probability of joining

the auction under the steeper family is increasing in bidders’ risk aversion. Finally, part (iv)

establishes the existence of a security-dependent threshold in the risk-aversion level that drives

bidders’ incentives to join each auction. Specifically, if bidders’ risk aversion exceeds the given

threshold, they enter the auction under the steeper family with a higher probability; otherwise,

they enter the auction under the flatter family with a higher probability.

Remark 1. If agents are homogeneously risk-averse, the expected revenue of a seller that

chooses family S 1 when his opponent chooses family S2 depends only on the expected number

of bidders that join his auction. Thus, abusing notation, we let ESpS 1|S2q “ ESpS 1|γ1pS 1,S2qq.

Therefore, without loss of generality, we can define the expected payment for a seller who chooses

family S in terms of the probability with which a bidder joins the S-auction as ESpS|γq.

Using the simplification derived in the previous remark, it is possible to determine the shape

of the seller’s expected revenue as a function of bidders’ entry probability.

Proposition 4. Any equilibrium under homogeneous risk aversion must be symmetric for sell-

ers.

γp¨, ¨q

ESpS|¨q

1{2

S 1

S2

Figure 3: Nonexistence of asymmetric equilibria.

Proposition 4 establishes the symmetry of all equilibria when there are only two sellers and

bidders are risk-averse; thus, showing that the focus on symmetric equilibria in duopolistic
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auctions is without loss of generality. Figure 3 provides a graphic intuition of this result

by depicting the seller’s expected revenue as a function of bidders’ entry probability. For

concreteness, we pick two arbitrary families S 1 and S2, such that S 1 is steeper than S2, and

suppose that one seller (say, Seller 1) chooses family S 1, while his opponent (Seller 2) chooses

S2.12 For this to be an asymmetric equilibrium, neither seller must have an incentive to mimic

his opponent. Seller 2 does not have an incentive to mimic Seller 1 if the probability with

which bidders enter his auction is sufficiently high, such that ESpS2|1´ γ1q ě ESpS 1|1{2q. This

condition is satisfied in the dashed segment of Seller 2’s expected revenue curve in Figure 3. If

this is the case, Seller 1’s expected revenue must lie in its dashed segment as well, by virtue of

the strictly increasing property between steepness and the entry probability (see Lemma A.1

in the Appendix). But now, if Seller’s 1 expected revenue lies in the dashed segment, he has an

incentive to mimic Seller 2 and choose family S2. The analogous argument applies if Seller 1’s

expected revenue lies in the solid segment. In such a case, Seller 1 does not have an incentive

to deviate, but Seller 2’s expected revenue would lie in its corresponding solid segment, where

a deviation is profitable.

Notably, the strictly increasing property between steepness and bidders’ entry probability

precludes having asymmetric equilibria, despite sellers have a large spectrum of security designs.

Proposition 5. For any feasible family S, if r “ rN (i.e., if bidders are risk-neutral), there

exists an equilibrium in which both sellers choose family S. If S is flatter than a call option,

there exists a cutoff rpSq P R` such that if r ą rpSq, the equilibrium does not survive. The

only equilibrium prescribed under risk neutrality that is robust to any increment in the level of

risk aversion is the one in which both sellers choose a call-option family.

Under risk neutrality, it is always possible to define an equilibrium in which both sellers

choose a family flatter than a call option (Gorbenko and Malenko, 2011). Nonetheless, when

bidders become sufficiently risk-averse, the equilibrium is broken because the insurance provided

by steeper securities reinforces the incentives of sellers to choose steeper families. Thus, under

some caveats, Proposition 5 extends to a competitive environment the result in Fioriti and

Hernandez-Chanto (2022), which shows that when bidders are sufficiently risk-averse the only

family that guarantees Pareto optimality is a call option. In our environment, the existence of

12Because S 1 is steeper than S2, the expected revenue curve corresponding to S 1 must lie entirely above the
corresponding curve of S2.
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a symmetric equilibrium under a call option requires the level of risk aversion to be just high

enough so that the insurance effect makes bidders enter such an auction with a probability

higher than the one with which they would enter any other symmetric auction. This is so

because when bidders are sufficiently risk-averse, the incentives of bidders and sellers are aligned

in the steepness of the family utilized.

6 Heterogeneously risk-averse bidders

We show that when bidders are heterogeneously risk-averse, there exists an equilibrium

in which sellers’ family choices in the steepness spectrum are analogous to sellers’ choices of

location in a Hotelling model. To characterize such an equilibrium we rely on the theory of

monotone games under private information (e.g., Athey, 2001). This allows us to determine

bidders’ pure strategies for each level of risk aversion, and, in particular, to characterize their

switching behavior across families of securities.

6.1 Bidders’ optimal strategy

For any two families S 1 and S2, such that S 1 is steeper than S2, we adopt the convention of

calling the “high action” the one that corresponds to choosing the S 1-auction and calling the

“low action” the one that corresponds to choosing the S2-auction.

Definition 5. A bidder’s pure strategy ηp¨|S 1,S2q : R` Ñ tS 1,S2u is said to be non-decreasing

if bidders (weakly) join steeper families of securities as they become more risk-averse.

When the action set is finite, any non-decreasing strategy is a step function. Hence, if

a bidder i is deciding between two auctions run under families S 1 and S2, her strategy is

determined by a cutoff value r0i at which the bidder “jumps” from S2 to S 1. That is,

ηpri|S 1,S2
q “

$

&

%

S2 if ri ă r0i

S 1 if ri ě r0i .
(9)

Following Athey (2001), any strategy that follows this “jumping behavior” at r0i—even if

there were more cutoff values—is said to be consistent at r0i . In addition, because bidders are
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ex ante equal, we have that r0i “ r0 for all i.13

In order to guarantee the existence of a cutoff equilibrium, it is necessary that the actions

of any bidder at r0 do not affect other players’ best responses. This is satisfied in our model

because risk types are jointly distributed with respect to a bounded and atomless measure, and,

thus, bidders’ actions at any point have zero measure. Furthermore, bidders’ utility functions

are well defined for any entry action played by other bidders, since their interim expected

utilities are bounded for all number of competitors and risk aversion parameters lie in a convex

set. Therefore, if all bidders play a non-decreasing strategy consistent with r0, the interim

expected utility that a given bidder i with risk aversion ri obtains by joining the S 1-auction

corresponds to

EUpS 1
|ri, r

0
q “

ż

V

ż

LI´1
S1 pθiq

EUS1pθi, σ̂S1pθI´1,´iqqdHI´1pr
0
qpθI´1,´iqdF pviq, (10)

where HI´1pr
0q represents the distribution of a profile of types consistent with the cutoff r0.14

When bidders are heterogeneously risk-averse and follow a cutoff strategy, the event that a

bidder has zero opponents in a given auction has zero measure. Thus, we cannot separate the

conditional interim expected utility. Nonetheless, bidders’ ex-ante utility is analogous to the

expression in (4).

The following proposition shows the existence of a cutoff equilibrium in pure strategies,

where all bidders jump at a threshold that depends on sellers’ family choices.

Proposition 6. Suppose that bidders are heterogeneously risk-averse. For any sellers’ choices

S 1 and S2, with S 1 steeper than S2, there exists a pure-strategy Nash equilibrium such that

ηpri|S 1,S2
q “

$

&

%

S2 if ri ă rpS 1,S2q

S 1 if ri ě rpS 1,S2q
(11)

for some rpS 1,S2q “ rpS2,S 1q.

The details of the proof are presented in the Appendix, but here we give a sketch of it and the

intuition behind it. First, given sellers’ family choices xS 1,S2y, and assuming that all bidders

13When sellers choose the same family of securities, we can relabel the families using sellers’ identities such
that S1 corresponds to the family chosen by Seller 1 and S2 to the one chosen by Seller 2. Hence, we can redefine
the set of actions such that the “higher” action corresponds to choosing Seller 2’s auction and the “lower” one
corresponds to choosing Seller 1’s auction.

14The types’ joint distribution depends only on the number of bidders since they are identical ex-ante.
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(a) Best-response correspondence.
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(b) Non-decreasing selection δpri|S 1,S2q consistent
with r̃.
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0|S 1,S2q
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(c) Non-decreasing selection δpri|S 1,S2q consistent
with the fixed point r˚.

Figure 4: Best-response correspondence and non-decreasing selections. Panel 4a displays bid-
ders’ best-response correspondence as a function of the risk-aversion parameter. The values
r̃ and r0 represent, respectively, the lowest and greatest jumping points. The arrows indi-
cate convex combinations of such points, which are also jumping points. Panel 4b depicts a
non-decreasing selection consistent with r̃. In turn, Panel 4c shows a non-decreasing selection
consistent with the fixed point r˚.
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other than i follow a cutoff strategy consistent with a risk-aversion level r0, we determine bidder

i’s best-response correspondence BRpri, r
0|S 1,S2q—i.e., the set of optimal jumping points for

bidder i. Then, we show that there always exists a non-decreasing selection δipri|S 1,S 1q from

bidder i’s best-response correspondence. Finally, we show proof—via Kakutani’s Fixed Point

Theorem—that since bidders’ interim utility functions satisfy a “single-crossing condition,” the

set of non-decreasing selections always have a fixed point: this corresponds to the equilibrium

jumping threshold. Figure 4 depicts the steps of the procedure.

Using (11), we can compute the expected number of bidders that join each auction in

equilibrium. For any ri P R`, let 1rpS1,S2qpriq be equal to one if ηpri|S 1,S2q “ S 1 and zero

if η1pri|S 1,S2q “ S2. Then, the expected number of bidders that enter each auction can be

computed as

I 1
pS 1,S2

q “

I
ÿ

i“1

ż

R`

1rpS1,S2qpriqdGprq and I2
pS 1,S2

q “ I ´ I 1
pS 1,S2

q. (12)

The expected number of bidders is instrumental to characterize sellers’ equilibrium with respect

to bidders’ risk-aversion types, as it can be seen later.

6.2 Sellers’ optimal strategy

Given the strategy prescribed by (11), we can define the seller’s expected revenue from

choosing family S 1—when his opponent chooses S2—as

ESpS 1
|rpS 1,S2

qq “ I

ż

Θ`

ż

LI´1
S1 pθiq

ES 1
pθi, σ̂S1pθI´1,´iqqdH 1

IprpS 1,S2
qqpθq. (13)

Here, H 1
IprpS 1,S2qq represents the distribution of a profile of types that enter the S 1-auction

when bidders follow a non-decreasing strategy consistent with rpS 1,S2q, and analogously for

H2
I prpS 1,S2qq. The derivation in (13) is used to compute the change in payoffs as a result of

deviations from a prescribed strategy.

Proposition 7. Let S 1 and S2 be two different families of securities. If (i) rH is sufficiently

bounded; (ii) S 1 is sufficiently steep and S2 is sufficiently flat; (iii) the survival functions F̄ fi

1´F and Ḡ fi 1´G are concave; and (iv) there exist constants c̄ℓpI 1pS 1,S2qq and cℓpI2pS 1,S2qq,
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for ℓ P t1, 2u, such that

c̄ℓpI 1
pS 1,S2

qq ě lim
IÑI 1pS1,S2q`

∣∣∣∣BErV pℓ:Iqs

BI

∣∣∣∣ ě lim
IÑI2pS1,S2q´

∣∣∣∣BErV pℓ:Iqs

BI

∣∣∣∣ ě cℓpI2
pS 1,S2

qq, (14)

where ErV pℓ:Iqs corresponds to the expected ℓ-highest order statistic of a sample of size I; then

there exists a subgame perfect Nash equilibrium in which (i) one seller chooses S 1 and the

other seller chooses S2; and (ii) bidders separate themselves in both auctions such that those

bidders with a risk-aversion parameter lower than rpS 1,S2q join the S2-auction, and those with

a risk-aversion parameter greater than rpS 1,S2q join the S 1-auction, for some rpS 1,S2q P R`.

Proposition 7 shows that it is always possible to sustain an equilibrium in which sellers

separate themselves in the steepness of their security design to serve the heterogeneous pop-

ulation of bidders, provided that the upper bound of risk aversion is sufficiently low, so that

the value of insurance does not grow unbounded; the security designs are sufficiently distant

in the steepness spectrum; and the distribution of the risk aversion parameter and the first

two order statistics of the signals are sufficiently concave in the number of participant bidders.

The concavity of the survival function F̄ stated in condition (iii) is only necessary to assure

the concavity of the expected second-highest (i.e., the I ´ 1 smallest) order statistic, since the

first order statistic is always concave in the sample size. Meanwhile, condition (iv) implies

that the negative effect in the expected order statistics that come from a decrement in bidders’

participation below I2pS 1,S2q—the expected number of bidders who join the auction under

the steeper family—is greater in magnitude than the potential increment that comes from the

increase in bidder’s participation beyond the I2pS 1,S2q—the expected number of bidders who

join the auction under the flatter family. In other words, Assumption (iv) imposes discipline

in the concavity of the expected first and second order statistics on the equilibrium path.

Although the assumption of the concavity of the survival functions seems high level, it can

be related to the behavior of the hazard rate as it is shown in Lemma A.4 in the Appendix.

Figure 5 depicts an equilibrium in which sellers’ separate themselves in the steepness spec-

trum by choosing families xS1,S2y = xS 1,S2y such that Sco ą S 1 ą S2 ą Sd. Bidders follow

a pure-strategy cutoff equilibrium at rpS 1,S2q in which bidders with risk aversion lower than

rpS 1,S2q joins the flatter auction, and those with risk aversion higher than than rpS 1,S2q join

the steeper auction. In this case, the flatter auction, features a lower mass of bidders who are
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Figure 5: Example of a separating equilibrium in steepness.

more competitive than their counterparts in the steeper auction. However, the steeper auction

provides enough insurance to more-risk-averse bidders to help them mitigate both the higher

surplus extraction and the higher aggressiveness exhibited by their competitors in their auction.

Notice that if insurance were lower, the cutoff point would be at the right, and more bidders

would join the flatter auction.

7 Numerical simulation

In this section, we numerically explore how firms’ risk-aversion levels affect equilibrium

strategies in all stages of the game.

Assume the environment in Section 5. There are two sellers that compete for I ě 2 bidders.

The signal of each bidder Vi is represented by the net present value of the project (NPV).

Signals are independently distributed across bidders from a uniform distribution with support

V “ r0, 2s. The upfront investment is set at κ “ 0.8. If the project is undertaken by a bidder

with signal Vi “ vi, it yields a stochastic revenue of Zi, which is drawn from a log-normal

distribution with mean κ ` vi and volatility pκ ` 1q{2 “ 0.9. To secure the payment from the

winning bidder, sellers can use one of three standard families of securities to organize their

auctions. Thus, S “ tSd,Se,Scou. Hence, we consider a larger set of securities, relative to
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the simulation in Gorbenko and Malenko (2011), which makes the characterization of equilibria

more challenging.

Example 1: Homogeneously risk-averse agents Bidders are homogeneously risk-averse

and seek to maximize their expected utility. Bidders’ Bernoulli utility function is given by

upm, rq “ p1 ´ e´rmq{r, where m denotes monetary prizes and r denotes bidders’ realized

absolute level of risk aversion. The risk-aversion parameter is fixed and commonly known. The

description of the algorithm used to simulate the game is presented in the Appendix.15

Entry probabilities We run our algorithm for different numbers of bidders to analyze how the

market size affects bidders’ entry probabilities for any given sellers’ family choices.
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Figure 6: Bidders’ entry probability as a function of the market size when they have a risk-
aversion level of r “ 0.5.

Figure 6 shows that when the number of bidders is lower than 13, for any seller’s profile,

the probability of entering the auction under the flatter family is always between 0.5 and 0.55.

This implies that when the number of bidders is low, the competition effect dominates because

bidders try to balance the opposition they face in both auctions. The probability of entering

the flatter auction increases with the number of bidders, although not monotonically. This

15It is worth highlighting that, unlike in Gorbenko and Malenko (2011), in which any equilibrium can be
characterized by the probability with which a bidder enters a given auction our algorithm must compute the
interim expected utility of each bidder for each possible pair of families in S , making the implementation more
challenging.
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reflects the fact that, as the competition gets sufficiently high in both auctions, bidders’ entry

probabilities are driven by their relative valuation of the insurance and the extraction effects.

Furthermore, the gap between the entry probability to the flatter auction increases in the

difference of steepness between the two families chosen by the seller. Thus, it is maximal when

one seller chooses a call option and the other chooses debt.

Seller’s expected revenues We now inspect the sellers’ choice of security when the market is

large.16 Similar to our determination of entry probabilities, we distinguish between the cases

when bidders are risk-neutral and when they are risk-averse.
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(a) Risk-neutral bidders (r “ 0).
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(b) Risk-averse bidders (r “ 0.5).

Figure 7: Seller’s expected revenue and bidder’s entry probability.

Figure 7 depicts the expected revenue and the entry probability corresponding to a seller

that chooses the family S 1, conditional on the opposing seller choosing the family S2. The

dashed circles depict those situations in which the chosen family is a best response to the op-

ponent’s choice. In particular, the circles in thick black correspond to the Nash equilibrium.

Furthermore, arrows indicate the direction of profitable deviations. When bidders are risk-

neutral—i.e., Panel 7a—the equilibrium is given when both sellers choose equity. Nonetheless,

as soon as bidders become risk-averse—i.e., Panel 7b—the insurance provided by steeper secu-

rities reinforces sellers’ incentives to choose a steeper security (due to the greater extraction),

and, thus, the equilibrium transitions towards one in which both sellers choose a call-option

family, which is the steepest family.

16For illustration purposes, we depict the case when there are 50 bidders.
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Interestingly, the equilibrium under risk-averse bidders yields the sellers greater expected

revenue, although bidders shave their bids relative to what they bid when they are risk-neutral.

The reason is that the insurance provided to risk-averse bidders makes them more prone to

choose an auction run under a steeper family, and, as a consequence, lets sellers coordinate on

choosing the steepest family. Furthermore, the presence of more aggressive bidders diminishes

the bid premium when bidders are risk-neutral, mitigating the loss in surplus extraction.

Example 2: Heterogeneously risk-averse agents We now consider heterogeneously

risk-averse bidders whose risk-aversion parameter follows a uniform distribution with support

r0.5, 1.5s. We compute bidders’ equilibrium in cutoff strategies following a novel algorithm

presented in the Appendix.

Sd,Sd Se,Se Sd,Sc Medianrrs Sc,Sc Sd,Se Se,Sc

rp¨, ¨q 0.63 0.76 0.78 1 1.14 1.24 1.35

Table 1: Bidders’ pure-strategy cutoff equilibrium.

Cutoff values In Figure 1, we depict how bidders separate in equilibrium following a cutoff

pure strategy. First, when sellers choose the same family of securities, bidders separate in an

unbalanced way, with a skewness towards the right tail of the distribution—i.e., the mass of

more-risk-averse bidders that join a given auction is greater. The reason is that both auctions

offer the same insurance, but less-risk-averse bidders are more competitive; thus, the auction in

which they participate must feature lower participation to balance the payoffs. This contrasts

with the outcome in the homogeneous case, in which bidders join both auctions in an even

fashion whenever both sellers choose the same family. Second, when sellers continue to choose

the same family, but now steeper, the equilibrium cutoff moves to the right. This follows from

the result in Proposition 2, since, as the steepness increases, more-risk-averse bidders become

relatively more aggressive, and so, the mass of competitors must decrease to balance payoffs.

Finally, when sellers choose different families, there is always an equilibrium in which bidders

separate themselves in both auctions following the rule in Proposition 6: the more-risk-averse

bidders join the steeper auction, while the less-risk-averse join the flatter auction. Furthermore,

notice that, as the difference in steepness between the families chosen by sellers enlarges, the

proportion of the market taken by the seller who chooses the steeper family increases.
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Figure 8: Sellers’ expected revenue for different security-design choices when bidders are het-
erogeneously risk-averse.

Sellers’ expected revenues We now depict sellers’ expected revenue for all possible combina-

tions of securities in S when the market is large.17 In this case, the unique subgame perfect

Nash equilibrium corresponds to one in which one seller chooses a call-option family and the

other chooses an equity family. Meanwhile, bidders endogenously separate themselves, so, that,

those with risk-aversion parameter lower than rpSe,Scoq join the equity auction, while those

with a risk aversion greater than rpSe,Scoq join the call-option auction. The threshold rpSe,Scoq

is computed according to Proposition 6.

It is worth noticing that the asymmetry of bidders’ risk aversion induces asymmetry in the

sellers’ payoffs even when both sellers choose the same family. This, in turn, affects the possible

profitable deviations of each seller, as depicted in Figure 8. In the equilibrium above, we assume

that if the seller who chooses equity deviates to the call option, he will obtain the lowest payoff

among the ones available. This can be justified by assuming a focal equilibrium in line with

the literature that compares behaviors relative to an “industry benchmark.” Interestingly, in

this equilibrium, the seller choosing the steepest family obtains lower expected revenue.

17The necessity of a large market is due only to the fact that, for tractability in the simulation, we impose
a uniform distribution of the signals. The same results can be obtained in a small market under asymmetric
distributions, provided that the sufficient conditions in Proposition ?? are met.
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8 Discussion and extensions

We present some ways in which our model can be enriched, identifying the main changes to

our framework and suggesting topics for future research.

8.1 Reserve prices

The literature that studies competing sellers in standard auctions focuses on competition via

reserve prices, which arise either exogenously or as part of the design of an optimal mechanism

(McAfee, 1993; Peters, 1997; Burguet and Sákovics, 1999; Hernando-Veciana, 2005; Damianov,

2012). The reason is that, in standard auctions, all payments are made upfront using cash;

thus, holding constant the auction format, reserve prices become the only practical design

instrument available to sellers in order to induce a different composition of participants in

their auction. In contrast, security-bid auctions provide considerable flexibility in the auction’s

design, allowing the equilibrium constraints associated with reserve prices to be embedded

within the different security designs. We characterize equilibria under reserve prices when

bidders are homogeneously risk-averse.

Definition 6. For any auction run under the family of securities S “ tSp¨, sq : s P rsL, sHsu,

a reserve price is a security index spSq P rsL, sHs such that the seller disregard any security bid

Sp¨, sq with s ď spSq.

A reserve price plays the role of an exclusion restriction for bidders with low valuations.

As such, it entails a trade-off for the seller between the probability of allocating the project

and the revenue obtained conditional on the allocation of the project. Specifically, if no bidder

submits an admissible bid, the seller does not allocate the project. In contrast, if at least one

bidder places an admissible bid, the seller proceeds with the project allocation, and the winning

bidder is required to pay with a security that is indexed by the higher value between the reserve

price, spSq, and the second-highest bid.

Because bidders decide which auctions to enter before learning their signals, we can define

bidders’ marginal type—i.e., the type who is indifferent between entering the auction and

staying away—as the risk-aversion cutoff rpspSqq P R` such that

ż

V
EUSppv, rpspSqqq, spSqqsdF pvq “ 0. (15)
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Given that bidders with risk-aversion types r ą rpspSqq have utility functions that are strict

concave transformations of the utility function that corresponds to rpspSqq, it is optimal for

those bidders to stay away from the auction. Hence, for any auction under the security design

pS, spSqq, the set of risk-aversion types that induce entry can be written as R`pspSqq fi tr P

R` : r ď rpspSqqu. Therefore, whenever a seller uses a reserve price spSq P psL, sHq, we need

to redefine accordingly the notion of individual rationality.

Definition 7. For any S 1 with respective reserve price spS 1q, the entry strategy γp¨|S 1,S2q

satisfies individual rationality (IR) if, for any S2 with reserve price spS2q, γ1pr|S 1,S2q “ 0

whenever r ą rpspS 1qq.

Hence, the unconditional entry probabilities become

γ1
pS 1,S2

q “

ż

R`pspS1qq

γ1
pr|S 1,S2

qdGprq (16)

γ2
pS 1,S2

q “

ż

R`pspS2qq

γ2
pr|S 1,S2

qdGprq “ 1 ´ γ1
pS 1,S2

q.

Now, for any reserve price spSq, define θpspSqq “ pvpspSqq, rpspSqqq P V ˆ R`pspSqq such

that

EUSpθpspSqq, spSqq “ 0.

That is, θpspSqq corresponds to the type of a bidder who enters the auction and is indifferent

between winning the project at the reserve price or losing the project with certainty. Notice

that vpspSqq corresponds to the lowest upper bound of the set of signals that induce the bidder

with risk aversion rpspSqq to submit an admissible bid. By the same argument as in Lemma 2,

θpspSqq can be thought as the representative of an equivalence class given by the corresponding

indifference curve.

Proposition 8. Consider an auction organized under the security design pS, spSqq, and let

ΘpspSqq fi tθ P V ˆ R`pspSqq : EUSpθ, spSqq ě 0u. Bidders’ bidding strategy σSpθ|kq is such

that:

(i) if k “ 1, then σSpθ|kq “ spSq if θ P ΘpspSqq, and σSpθ|kq “ 0 otherwise; and
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(ii) if k ą 1, then σSpθ|kq is such that EUSpθ, σSpθ|kqq “ 0 if θ P ΘpspSqq, and σSpθ|kq “ 0

otherwise.

Proof. The proof follows from immediately from Proposition 1 and the definition of ΘpspSqq.

Proposition 9. If bidders are homogeneously risk-averse, then when sellers’ choice of security

designs consist of a family of securities S and a reserve price spSq, the only possible equilibria

that can arise are such that:

(i) both sellers choose pS, spSqq, where S ‰ Sco is an equilibrium choice in the baseline model,

and spSq is a non-binding reserve price, i.e., s “ sL; or

(ii) both sellers choose pSco, spScoqq, where Sco is an equilibrium in the baseline model and

spScoq is a binding reserve price, i.e., spScoq P psL, sHq.

That is, Proposition 9 states that a reserve price is relevant as an instrument to increase

seller’s revenue only when the seller is constrained by the upper bound of the steepness in the

securities spectrum.

8.2 Auction format

We analyze a second-price auction because it induces a dominance-solvable game, allowing

us to focus on bidders’ entry strategies and sellers’ choice of security design. For the first-price

auction, characterizing the equilibrium is more difficult because it depends on bidders’ beliefs

about other competitors’ multidimensional types. Nonetheless, for the case of homogeneously

risk-averse bidders, Fioriti and Hernandez-Chanto (2022) obtained the equilibrium by assuming

a single-crossing property in the Bernoulli utility function. The effect of the auction format

when bidders are risk-averse is more noticeable, since, for any family of securities S, the winner

pays the deterministic security associated with her type in the first-price auction, whereas in the

second-price auction she pays a random security determined by the bid of the second-highest

bidder. Nonetheless, bidders’ maximization problem in the second-price auction can be put in

correspondence with the maximization problem in the first-price auction if the bidder chooses

a security in the convex hull of S.
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For super-convex families (e.g., a call option), a first-price auction offers more insurance to

risk-averse bidders relative to a second-price auction.18 The reason is that the deterministic

security in the first-price auction will be steeper than the random security in the second-price

auction yielding the same expected payment to the seller. Hence, for super-convex families,

the deterministic environment and the higher insurance provided in the first-price auction

reinforces the higher ex-post extraction obtained by using a steeper security. Therefore, when

sellers commit to use a second-price auction and bidders are homogeneously risk-averse, if there

exists an equilibrium in which both sellers choose a family flatter than a call option, there will

exist an equilibrium in which they choose a weakly steeper family if they commit to use a

first-price auction.

For subconvex families (e.g., debt), the random security in the second-price auction is steeper

than the corresponding deterministic security in the first-price auction. Thus, sellers face a

trade-off between decreasing bidders’ uncertainty (by providing a deterministic environment)

and using a steeper security to extract higher surplus. As a consequence, it is not possible to

guarantee the monotonicity of equilibrium in steepness across formats when the sellers choose

a sub-convex family in the original equilibrium.

8.3 Risk-averse competing sellers

We analyzed risk-neutral sellers because we were interested in investigating how they com-

pete for a population of (potentially heterogeneously) risk-averse bidders by means of their

security designs, but abstracting from insurance concerns. Nonetheless, introducing risk-averse

sellers would be realistic in settings in which sellers are small and not well-diversified, such as

auctions to sell publishing rights or in class-action settlements. When sellers are risk-averse, the

insurance goes in the opposite direction of surplus extraction in the steepness spectrum. Indeed,

from the seller’s perspective, debt and call options are the securities that provide, respectively,

the highest and lowest insurance. Hence, when sellers are risk-averse, their incentives to “co-

ordinate” on steeper families are weaker, as they need to balance the featured competition in

the auction with the ex-post extraction and the insurance provided by the security design. A

natural conjecture is that if there is an equilibrium in which sellers separate in their security

18A family S is super-convex (sub-convex) if it is steeper (flatter) than any nontrivial convex combination
of the securities in S—that is, if S is steeper (flatter) than its convex hull CopSq. In turn, S is convex if its
steepness is equal to the one of any other security in CopSq.

37



design under risk neutrality, they would also do it under risk aversion. Nonetheless, this has

to be formally studied as a generalization of our theoretical model and is suggested as future

research.

9 Concluding remarks

Our paper provides a framework for studying how sellers compete for risk-averse bidders

in security-bid auctions by means of their security-design choices. Such competition is more

complex than the exhibited by sellers in standard cash auctions—in which sellers typically

compete by choosing different reserve prices.

In our setup, each seller simultaneously chooses a feasible family of securities to conduct

a second-price auction and commits to it. In turn, upon observing their risk-aversion type,

bidders decide which auctions to join, and submit a security-bid within the family chosen by

the corresponding seller.

We focus on a second-price auction, as it has the advantage that the induced game in the

bidding stage is dominance-solvable. In particular, we show that each bidder’s optimal strategy

is to submit a security-bid that is equal to its reservation value (i.e., a security-bid such that

the certainty equivalent of the induced lottery is equalized to zero), regardless of the family

chosen by the seller and the number of competitors in the auction. This restriction buys us

the necessary tractability to disentangle the different channels in which sellers’ choices affect

bidders’ entry strategies; namely: (i) the number and composition of bidders in the auction;

(ii) the ex-post surplus extracted and the insurance provided by the chosen security; and (iii)

bidders’ aggressiveness. To characterize the equilibrium we decouple these three effects and

determine their feedback on seller’s optimal strategies.

The interplay of these effects implies that bidders’ entry strategies need to balance not only

the competition effect that comes from the number of bidders in the auction (which has been

largely studied in cash auctions), but also the extraction and the insurance provided by each

security design. This is particularly important when bidders are heterogeneously risk-averse,

since more-risk-averse agents become relatively more aggressive when a seller uses a steeper

security design. In such a case, not only the number of competitors matter, but also their

composition in terms of risk-aversion levels.
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We show that equilibrium sellers’ choice of securities depends on bidders’ heterogeneity of

risk aversion. In particular, when bidders are homogeneously risk-averse, the only equilibrium

that survives is the one in which both sellers choose the same security design. That is, despite

the fact that we do not force a symmetric equilibrium ex-ante, sellers are better off by “coordi-

nating” on the steepness of the family chosen than by separating themselves in “steepness” to

entice bidders through different combinations of insurance and surplus extraction. The reason

for this result is that, under homogeneity, bidders are interested only in balancing the compe-

tition effect across auctions. Furthermore, we show that the steepness of the family in which

sellers coordinate is increasing in bidders’ risk aversion.

Meanwhile, when bidders are heterogeneously risk-averse, sellers separate themselves in

the steepness spectrum to exploit bidders’ different valuations of the insurance provided by

each security design relative to its ex-post surplus extraction. Specifically, we show that one

seller chooses a steeper security design to serve the more-risk-averse bidders—since they care

more about the value of the insurance provided—whereas the other chooses a flatter design to

serve the less-risk-averse bidders because they care more about the lower surplus extraction.

To determine bidders’ entry strategies when sellers totally separate we rely on the theory

of monotone games under private information. This allows us to conclude that for any two

families of securities, the probability of entering the auction run under the steeper family is

weakly monotone in the risk-aversion level.

Finally, we discuss the role played by reserve prices in security-bid auctions and propose

directions in which our analysis can be extended. In particular, we point out how our framework

can be enriched by including risk-averse sellers and diverse auction formats. The further insights

that might be captured in the analysis of such extensions would contribute to a more complete

understanding how sellers compete in security-bid auctions.
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Appendices

A Proofs

A.1 Proof of Proposition 2

The first part of the Proposition can be found in Fioriti and Hernandez-Chanto (2022).

For the second part, it suffices to show that

ES 1
pv, σS2ppv, r̂qqq ´ ES2

pv, σS2ppv, r̂qqq ă ES 1
pv, σS2ppv, rqqq ´ ES2

pv, σS2ppv, rqqq. (A.1)

Let z˚ be the single-crossing point of S 1p¨, s1q and S2p¨, s2q. Because more-risk-averse bidders

suffer a greater marginal disutility when higher payoffs must be delivered under lower revenue

realizations, and such marginal disutility is decreasing by the strict concavity of the utility

function, we have that

EZrupz ´ S 1
pz, s1

q; r̂q|z ă z˚, vs ´ EZrupz ´ S2
pz, s2

q; r̂q|z ă z˚, vs

ą EZrupz ´ S 1
pz, s1

q; rq|z ą z˚, vs ´ EZrupz ´ S2
pz, s2

q; rq|z ą z˚, vs.

Therefore, because sellers’ expected revenue is continuous and increasing in the index of the

security-bid—by virtue of Assumption 2—the result in (A.1) follows.

A.2 Proof of Lemma 3

For any profile of signals vk “ pvi : i “ 1, . . . , kq, denote by v
pℓq
k its ℓ-th order statistic.19

We suppress the dependence on k, henceforth, to avoid cluttered notation. Because bidders are

homogeneously risk-averse, for any family S and any r P R`, we have that:

Lk
Sppv, rqq “ tpθk P Θ`k

|vj ă v @j “ 1, . . . , ku, and

σ̂S1pθkq “ σSppvp1q, rq|vp1q
ă vq.

19When there is only one bidder, she will be the winner by default, and, so, will pay zero to the seller. This
is equivalent to have the winning bidder who bids a security Sp¨, sq with s ą sL, and an artificial losing bidder

with a type θ̂ “ pv̂, rHq such that the induced bid is equal to sL.
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Because signals are independent, a winning bidder with signal v, who participates in an

auction with k`1 bidders, has to pay the bid associated with the maximum signal vp1q|vp1q ă v

among his k losing opponents. Thus, we can write the bidder’s interim expected utility as

EUpS|r, kq “

ż vH

vL

„
ż v

vL

EUSppv, rq, σSppvp1q, rqqqdpF pvp1q
q
k
q

ȷ

dF pvq.

Differentiating the expression, we have

EUkpS|r, kq “

ż vH

vL

„
ż v

vL

EUSppv, rq, σSppvp1q, rqq

ˆ

1

k
` logpF pvp1q

qq

˙

dpF pvp1q
q
k
q

ȷ

dF pvq.

(A.2)

Now, since F pvp1qqk is the distribution of the first-order statistic of k independent signals,

ż vH

vL

dpF pvp1q
q
k
q “ 1.

Taking its first derivative with respect to k yields:

ż vH

vL

F pvp1q
q
k´1dF pvp1q

q ` klogpF pvp1q
qqF pvp1q

q
k´1dF pvp1q

q “ 0 (A.3)

ñ

ż vH

vL

ˆ

1

k
` logpF pvp1q

qq

˙

dpF pvp1q
q
k
q “ 0.

Now, notice that

ż v

vL

ˆ

1

k
` logpF pvp1q

qq

˙

dpF pvp1q
q
k
q ă 0, (A.4)

by virtue of (A.3) and the fact that F pvp1qq is an increasing function of vp1q. Thus, (A.2) is neg-

ative, for any v, because σSppvp1q, rqq is also increasing in vp1q—by Lemma 1—and EUSppv, rq, sq

is decreasing in s “ σSppvp1q, rqq.

Differentiating (A.2) again, EUkkpS|r, kq becomes

ż vH

vL

„
ż v

vL

EUSppv, rq, σSppvp1q, rqqqlogpF pvp1q
qq

ˆ

2

k
` logpF pvp1q

qq

˙

dpF pvp1q
q
k
q

ȷ

dF pvq. (A.5)

Because logpF pvp1qqq ď 0 for any signal v, (A.5) is positive if vp1q ă F´1pe´2{kq and and negative
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if vp1q ą F´1pe´2{kq.

Now, deriving (A.3) with respect to k yields

ż vH

vL

logpF pvp1q
qq

ˆ

2

k
` logpF pvp1q

qq

˙

dpF pvp1q
q
k
q “ 0.

This, along with the fact that (A.5) is negative if vp1q ą F´1pe´2{kq, implies that

ż v

vL

logpF pvp1q
qq

ˆ

2

k
` logpF pvp1q

qq

˙

dpF pvp1q
q
k
q ě 0

for any signal v. Hence, since EUSppv, rq, σSppvp1q, rqqq is decreasing in vp1q, the above inequality

implies that EUkkpS|r, kq ą 0.

We can proceed analogously for the seller’s expected revenue. Because bidders are homoge-

neously risk-averse, for any r P R`, we can write

ESpS 1
|kq “ k

ż vH

vL

ż v

vL

ESppv, rq, σS1ppvp1q, rqqqdpF pvp1q
q
k´1

q¨

Deriving this expression with respect to k, ESkpS 1|kq becomes

ż vH

vL

ż v

vL

ESppv, rq, σS1ppv, rqqq

„ˆ

2k ´ 1

k ´ 1
` klogpF pvp1q

qq

˙

dpF pvp1q
q
k´1

q

ȷ

dF pvq ą 0, (A.6)

since

ż vH

vL

ˆ

1

k ´ 1
` logpF pvp1q

qq

˙

dpF pvp1q
q
k´1

q “ 0.

This proves that ESpS 1|kq is increasing for k ą 1, and, in conjunction with Assumption 3, that

ESpS 1|kq is increasing for all k ě 1.

Deriving (A.6) again yields

ESkkpS 1|kq “
şvH
vL

şv

vL
ESppv, rq, σS1 ppvp1q, rqqq

”´

´ 1
pk´1q2

` logF pvp1qq

¯

dpF pvp1qqk´1q

ı

dF pvq

+
şvH

vL

şv

vL
ESppv, rq, σS1 ppvp1q, rqqq

”´

2k´1
k´1 ` klogpF pvp1qqq

¯ ´

1
k´1 ` logF pvp1qq

¯

dpF pvp1qqk´1q

ı

dF pvq.

The first term is negative for any k ě 1. Combining (A.4) and (A.6) with the fact that the

seller’s expected payment is increasing in vp1q, it is possible to see that the second term is also
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negative. Then, ESkkpS 1|kq ă 0.

A.3 Proof of Proposition 3

We can express the equation (MS), which gives the condition for the use of mixed strategies

as

I´1
ÿ

k“0

ˆ

I ´ 1

k

˙

“

γ1k
p1 ´ γ1

q
I´1´kEUpS 1

|r, kq ´ p1 ´ γ1
q
kγ1I´1´kEUpS2

|r, kq
‰

“ 0. (A.7)

(We drop the dependence on S 1 and S2 for simplicity.)

Denote the left-hand side of equation (A.7) by Φpγ1,S 1,S2q and notice that

Φp0,S 1,S2
q “ EVrEUS1ppv, rq, sLqs ´ EUpS2

|r, I ´ 1q ą 0 (A.8)

Φp1,S 1,S2
q “ EUpS 1

|r, I ´ 1q ´ EVrEUS2ppv, rq, sLqs ă 0.

The first inequality in (A.8) follows immediately, while the second comes from Assumption

3. Differentiating Φpγ1,S 1,S2q with respect to γ1, we have

Φγ1pγ1,S 1,S2
q “

I´1
ÿ

k“0

ˆ

I ´ 1

k

˙ „

γ1k
p1 ´ γ1

q
I´1´k

ˆ

k

γ1
´
I ´ 1 ´ k

p1 ´ γ1q

˙

EUpS 1
|r, kq

ȷ

(A.9)

`

I´1
ÿ

k“0

ˆ

I ´ 1

k

˙ „

p1 ´ γ1
q
kγ1I´1´k

ˆ

I ´ 1 ´ k

γ1
´

k

1 ´ γ1

˙

EUpS2
|r, kq

ȷ

.

Notice that

I´1
ÿ

k“0

ˆ

I ´ 1

k

˙

γ1k
p1 ´ γ1

q
I´1´k

“

I
ÿ

k“1

ˆ

I ´ 1

k ´ 1

˙

γ1k´1
p1 ´ γ1

q
I´k

“ 1.

Hence, deriving with respect to γ1 on both sides, we have that

I´1
ÿ

k“0

ˆ

I ´ 1

k

˙ „

γ1k
p1 ´ γ1

q
I´1´k

ˆ

k

γ1
´
I ´ 1 ´ k

p1 ´ γ1q

˙ȷ

“ 0.

This sum is negative for all k ă γ1pI´1q, and positive otherwise. Then, because EUpS 1|r, kq is a

decreasing function of k, the first term in (A.9) is negative. By the same argument, the second
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term in (A.9) is also negative. Therefore, Φγ1pγ1,S 1,S2q is a continuous and strictly decreasing

function of γ1, which implies that there is a unique value of γ1 that solves (MS). This proves

part (i).

For part (ii), observe that when S 1 “ S2, EUpS 1|r, kq “ EUpS2|r, kq for each k. Hence,

setting γ1pr|S 1,S2q “ γ1pS 1,S2q “ 1{2 uniquely solves equation (A.7).

To prove part (iii), notice that as the risk aversion increases, the insurance embedded in

steeper securities is more valuable to bidders. Thus, for any two families S 1 and S2, such that

S 1 is steeper than S2, we have that

EUpS 1
|r̂, kq ą EUpS 1

|r, kq and EUpS2
|r̂, kq ă EUpS2

|r, kq

for any r̂, r P R` with r̂ ą r. Hence, using the uniqueness of the solution of equation (A.7), it

is straightforward to see that γ1pr̂|S 1,S2q ą γ1pr|S 1,S2q.

Finally, to prove part (iv), notice that when bidders are risk-neutral—i.e., when their risk-

aversion level corresponds to the lower bound rN—EUpS 1|rN , kq ă EUpS2|rN , kq for each k.

Hence, there exist γ1prN |S 1,S2q ă 1{2 ă γ2prN |S 1,S2q that uniquely solves equation (A.7).

Now, by Proposition 5 in Fioriti and Hernandez-Chanto (2022), we can guarantee the existence

of a cutoff rLpS 1,S2q P R` for any two families S 1 and S2. This cutoff corresponds to the lowest

level of risk aversion such that the insurance effect surpasses the extraction effect in equilibrium

under monopoly. When there are two sellers, the cutoff rLpS 1,S2q becomes weakly lower due to

the presence of competition, and, so, the same argument holds. Then, EUpS 1|rLpS 1,S2q, kq ă

EUpS2|rLpS 1,S2q, kq for each k. Thus, setting

γ1
prLpS 1,S2

q|S 1,S2
q ą 1{2 ą γ2

prLpS 1,S2
q|S 1,S2

q

uniquely solves equation (A.7).

Combining the result of (iii) with the continuity of γp¨|S 1,S2q guarantees the existence of

rN ă rpS 1,S2q ă rH such that γ1prpS 1,S2q|S 1,S2q “ γ2prpS 1,S2q|S 1,S2q, by an application of

the Intermediate Value Theorem.

A.4 Proof of Proposition 4

Towards proving the main result, it is useful to first prove the following lemma.
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Lemma A.1. For any family S, the seller’s expected revenue as a function of the expected

number of bidders, ESpS|γq, is always concave and strictly increasing in γ. Furthermore, it

satisfies increasing differences between γ and the steepness of the security. That is, ESγpS 1|γq´

ESγpS2|γq ą 0 for any family S 1 steeper than S2.20

Proof. Taking the derivative of the seller’s expected revenue in (6) with respect to γ we obtain

ESγpS|γq “

I
ÿ

k“1

ˆ

I

k

˙

γk´1
p1 ´ γq

I´k´1
pk ´ IγqESpS|kq. (A.10)

Notice that
řI

k“1

`

I
k

˘

γk´1p1 ´ γqI´k´1pk ´ Iγq “ 0. Thus,

ESγpS|γq “

tIγu
ÿ

k“1

ˆ

I

k

˙

γk´1
p1 ´ γq

I´k´1
pk ´ Iγq pESpS|kq ´ ESpS|tIγuqq

`

I
ÿ

k“tIγu`1

ˆ

I

k

˙

γk´1
p1 ´ γq

I´k´1
pk ´ Iγq pESpS|kq ´ ESpS|tIγuqq . (A.11)

Given that ESpS|kq is increasing in k, it follows that ESγpS|γq ą 0.

Recall that for any S 1 steeper than S2, ESppv, rq, σS1ppv, rqqq ą ESppv, rq, σS2ppv, rqqq.

Hence, using (A.6), ESkpS 1|kq ą ESkpS2|kq, which implies that

ˇ

ˇESpS 1
|kq ´ ESpS 1

|rIγsq| ą
ˇ

ˇESpS2
|kq ´ ESpS2

|rIγsq
ˇ

ˇ.

As a consequence, using (A.11), we can directly verify that ESγpS 1|γq ´ ESγpS2|γq ą 0.

Deriving again with respect to γ, we obtain

ESγγpS|γq “

I
ÿ

k“1

λpγ, I, kqESpS|kq, (A.12)

where

λpγ, I, kq “

ˆ

I

k

˙

γkp1 ´ γq
I´k

˜

ˆ

k

γ
´
I ´ k

1 ´ γ

˙2

´
k

γ2
´

I ´ k

p1 ´ γq2

¸

.

20The differentiability of ESpS|γq with respect to γ is satisfied by the assumptions on the distribution H.
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Now, consider the following probability distribution functions:

PM1pK “ kq “

$

’

&

’

%

λpγ,I,kq
ř

kăk1,kąk2
λpγ,I,kq

if k ă k1 and k ą k2

0 otherwise

PM2pK “ kq “

$

’

&

’

%

´λpγ,I,kq
ř

kăk1,kąk2
λpγ,I,kq

if k P pk1, k2q.

0 otherwise

Following the techniques introduced by Gorbenko and Malenko (2011, p. 1837), it is straight-

forward to show that M2pkq second-order stochastically dominates M1pkq. Thus, for any con-

cave transformation φp¨q,

I
ÿ

k“0

λpγ, I, kqφpkq ď 0. (A.13)

By Lemma 3, ESpS|kq is concave in k. Hence, using (A.12) and (A.13) it follows that

ESγγpS|γq ď 0.

Uniqueness We prove the uniqueness of the symmetric equilibrium by contradiction. Sup-

pose, without loss of generality, that Seller 1 and Seller 2 choose, respectively, S 1 and S2 with

S 1 steeper than S2. Let γ̃1pS 1,S2q be the minimum entry probability such that Seller 1 does

not have an incentive to deviate to choose family S2. If Seller 1 were to deviate, then, by

Proposition 3, bidders’ optimal strategy would be to enter both auctions with probability 1{2.

Hence, γ̃1pS 1,S2q satisfies

ESpS 1
|γ̃1

pS 1,S2
qq “ ESpS2

|1{2q. (A.14)

Similarly, γ̃2pS 1,S2q corresponds to the minimum entry probability such that Seller 2 does

not have an incentive to deviate to choose S 1. Thus,

ESpS2
|γ̃2

pS 1,S2
qq “ ESpS 1

|1{2q. (A.15)
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As a consequence, sellers’ choices constitute an equilibrium if and only if

γ1
pS 1,S2

q ě γ̃1
pS 1,S2

q and γ2
pS 1,S2

q ě γ̃2
pS 1,S2

q. (A.16)

Now, by Lemma A.1, ESpS|γq satisfies increasing differences between γ and the steepness

of the security. Hence, we have that

ESpS 1
|1{2q ´ ESpS 1

|γ1
pS 1,S2

qq ě ESpS2
|1{2q ´ ESpS2

|γ1
pS 1,S2

qq.

Using the equivalence in (A.14), this implies that

ESpS2
|γ̃2

pS 1,S2
qq ´ ESpS2

|1{2q ě ESpS 1
|γ1

pS 1,S2
qq ´ ESpS2

|γ1
pS 1,S2

qq. (A.17)

Proceeding analogously for γ̃1pS 1,S2q we obtain that

ESpS 1
|1{2q ´ ESpS 1

|γ̃1
pS 1,S2

qq ď ESpS 1
|γ2

pS 1,S2
qq ´ ESpS2

|γ2
pS 1,S2

qq. (A.18)

Subtracting (A.18) from (A.17), we have

rESpS2
|γ̃2

pS 1,S2
qq ´ ESpS2

|1{2qs ´ rESpS 1
|1{2q ´ ESpS 1

|γ̃1
pS 1,S2

qs

ě rESpS 1
|γ1

pS 1,S2
qq ´ ESpS2

|γ1
pS 1,S2

qqs ´ rESpS 1
|γ2

pS 1,S2
qq ´ ESpS2

|γ2
pS 1,S2

qs .

The second line in the inequality above is positive by the increasing-differences property of

ESpS|γq between the steepness of S and the entry probability γ. Thus,

ESpS2
|γ̃2

pS 1,S2
qq ´ ESpS2

|1{2q ě ESpS 1
|1{2q ´ ESpS 1

|γ̃1
pS 1,S2

q.

Therefore, because S 1 is steeper than S2 and ESpS|γq is concave in γ, we have that

γ̃2
pS 1,S2

q ´ 1{2 ě γ̃1
pS 1,S2

q ´ 1{2.
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γpS 1,S2q

ESpS|¨q

1{2 γ̃2γ̃11 ´ γ̃2

S 1

S2

Figure A.1: Increasing differences between steepness and bidders’ entry probability.
By the increasing difference argument, the distance between γ̃2pS 1,S2q and 1{2 is greater than
the distance between γ̃1pS 1,S2q and 1{2.

Therefore,

γ̃2
pS 1,S2

q ą 1 ´ γ̃1
pS 1,S2

q.

Consequently, if γ2pS 1,S2q ě γ̃2pS 1,S2q, it follows that:

γ2
pS 1,S2

q ą 1 ´ γ̃1
pS 1,S2

q.

By definition, γ2pS 1,S2q “ 1 ´ γ1pS 1,S2q, which implies that

1 ´ γ1
pS 1,S2

q ą 1 ´ γ̃1
pS 1,S2

q and

γ̃1
pS 1,S2

q ą γ1
pS 1,S2

q,

which contradicts the equilibrium condition in (A.16). The argument of the proof is illustrated

in Figure A.1.
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A.5 Proof of Proposition 5

Let us consider a strategy profile in which both sellers choose the same family S. Hence,

the net payoff of deviating to a (weakly) steeper family S 1 can be expressed as follows:

ξ̄pS 1
|Sq “ ESpS 1

|γ1
pS,S 1

qq ´ ESpS|1{2q.

Similarly, the net payoff of deviating to a (weakly) flatter family S2 can expressed as:

ξpS2
|Sq fi ESpS 1

|γ2
pS,S2

qq ´ ESpS|1{2q.

Following Proposition 2 in Gorbenko and Malenko (2011), there always exists an equilibrium

in which all sellers choose the same family of securities S which can be either interior (i.e.,

stepper than a debt family or steeper than call option family) or lying on the boundary. Hence,

by definition, ξ̄pS 1|Sq ď 0 for all S 1 ą S and ξpS2|Sq ď 0 for all S2 ą S.

We first consider an interior equilibrium under risk neutrality. By Proposition 3, we

have that, as bidders’ risk aversion increases starting from rN , the induced entry probabil-

ity, γpr|S,S 1q, increases for all S 1 steeper than S. Analogously, γpr|S,S2q decreases for all S2

flatter than S. In addition, the seller’s expected payment decreases relatively less for steeper

families because bidders behave relatively more aggressively as they become more risk averse

(cf. Proposition 2). This implies that, for any S 1 ą S2, the distance between ESpS 1|γq and

ESpS2|γq increases in the entry probability γ, and consequently, ξpS2|Sq decreases, while ξ̄pS 1|Sq

increases. Therefore, if any interior symmetric equilibrium is no longer sustainable due an in-

crease in bidders’ risk aversion, a new equilibrium under a steeper family would emerge.

We will now show that any interior symmetric equilibrium can fail for some sufficiently high

r P R`. Fix a symmetric equilibrium under a family S that is steeper than debt and flatter

than a call option. Following Proposition 3, there exists an r P R` sufficiently high, such that

γpr|S,S 1q ă 1{2, which by definition implies that ξ̄pS 1|Sq ą 0 and, in turn, that the equilibrium

can be no longer sustained. Importantly, such level of risk aversion corresponds to an upper

bound, since the “destruction of the equilibrium” can happen at lower levels of risk aversion

because the distance between ESpS 1|¨q and ESpS|¨q increases in r. Indeed, if this distance

becomes high enough, it could be the case that, despite having γpr|S,S 1q ą 1{2, ξ̄pS 1|Sq ą 0,

giving bidders an incentive to deviate to S 1.
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Now, if the symmetric equilibrium under risk neutrality occurs when both sellers select a

debt family, we can easily replicate the previous analysis by disregarding ξ. Finally, if the

equilibrium occurs when both sellers choose a call-option family, it can survive when the level

of risk aversion increases due to two effects: (i) the entry probability increases by virtue of

the higher insurance provided to bidders; and (ii) the seller’s expected payment is less affected

by the loss of bidders’ competitiveness due to their risk aversion, since they become more

aggressively under steeper families.

A.6 Proof of Proposition 6

A key concept in our proof is the notion of the Single-Crossing Condition (SCC) in the

auction-entry game, which, in turn, depends on the Single-Crossing Property (SCP) on bidders’

unconditional interim expected utility. We define both below.

Definition A.1. Bidders’ unconditional interim expected utility satisfies the Single-Crossing

Property (SCP) if for all r1 ą r2, EUpS 1|r2,S2q ´ EUpS2|r2,S 1q ě 0 implies EUpS 1|r1,S2q ´

EUpS2|r1,S 1q ě 0.

Definition A.2. The auction-entry game is said to satisfy the Single-Crossing Condition

pSCCq if for each bidder i, whenever every opponent j uses a strategy ηj that is non-decreasing,

bidder i’s unconditional interim expected utility in (10) satisfies the Single-Crossing Property

(SCP).

That is, the unconditional interim expected utility satisfies the SCP if SCC holds whenever

the bidders’ follow a threshold strategy in their risk-aversion type.

Lemma A.2. For any two families S 1 and S2, such that S 1 is steeper than S2, the auction-entry

game satisfies the SCC.

Proof. Suppose that all bidders j ‰ i play non-decreasing strategies described by the vector

of cutoff values r´i. We need to analyze two cases. The first one is trivial and occurs when

either EUpS 1|ri, r´iq ą EUpS2|ri, r´iq or EUpS 1|ri, r´iq ă EUpS2|ri, r´iq for all ri P R`. In such

a case, it is easy to verify that the SCP is satisfied since the preference of one auction over

the other is preserved as r increases. The second case is more interesting. Here, depending on

the value of ri, EUpS 1|ri, r´iq can be either higher or lower than EUpS2|ri, r´iq. Nonetheless,
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by continuity, there exists a value r̃i such that EUpS 1|r̃i, r´iq “ EUpS2|r̃i, r´iq. Additionally,

due to the presence of the insurance effect, there exists a value ϵ ą 0 sufficiently small such

that EUpS 1|r̃i ` ϵ, r´iq ą EUpS2|r̃i ` ϵ, r´iq and EUpS 1|r̃i ´ ϵ, r´iq ă EUpS2|r̃i ´ ϵ, r´iq. Now,

by Proposition 2, the handicap in competitiveness of any risk-averse bidder decreases when

steeper securities are used; and the absolute value of such a decrement is increasing in the

bidder’s risk aversion. Consequently, EUpS 1|r̃i, r´iq decreases less (more) than EUpS2|r̃i, r´iq

as the risk aversion increases (decreases). Therefore, our previous argument can be extended—

via continuity—to show that EUpS 1|ri, r´iq ą EUpS2|ri, r´iq for all ri ą r̃i and EUpS 1|ri, r´iq ă

EUpS2|ri, r´iq for all ri ă r̃i.

The intuition behind Lemma A.2 hinges on the interplay among the extraction, competition,

and insurance effects. Indeed, bidders follow a non-decreasing strategy if there exists a risk-

aversion threshold such that for bidders with risk-aversion types greater than the threshold,

the insurance effect surpasses the other two effects. If this holds, it is immediate to notice that

the unconditional interim expected utility satisfies the SCP .

Now, for any two families S 1 and S2, we define

BRpri, r
0
|S 1,S2

q fi argmax
SPtS1,S2u

EUpS|ri, r
0
q (A.19)

as the best-response correspondence of a bidder with risk aversion ri, conditional on her op-

ponents following a cutoff strategy consistent with r0. By Lemma 1 in Milgrom and Shannon

(1994), BRpri, r
0|S 1,S2q is non-decreasing in the strong set order, which implies that there is

a non-decreasing selection

δpri|S 1,S2
q P BRpri, r

0
|S 1,S2

q

for all ri P R`.21 This selection can be represented by a cutoff r̃ such that bidders follow a non-

decreasing strategy consistent with r̃. Therefore, the set of of all cutoff values that represent

best-response non-decreasing strategies can be defined as follows:

Hpr0|S 1,S2q fi tr̃ P R` | Dηp¨|S 1,S2q consistent with r̃ : @ri P R`, ηpri|S 1,S2q P BRpri, r
0|S 1,S2qu.

21For two sets of real numbers A and B, we say that A ěsso B, which is read as “A is greater than or equal
to B in the Strong Set Order (SSO)” if for any a P A and b P B, minta, bu P B and maxta, bu P A.
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Following Athey (2001), for any two families S 1,S2, with S 1 steeper than S2, Hp¨|S 1,S2q :

R` Ñ R` is convex if BRp¨, ¨|S 1,S2q is non-decreasing in the strong set order. Furthermore,

given that R` is a compact and convex set, Kakutani’s fixed point theorem can be applied.

Hence, because H is non empty and convex, it is necessary to only show that H has a closed

graph to apply the theorem. By definition, EUpS|ri, rq is continuous in r, and, thus, SSC

holds in our environment in virtue of Lemma A.2. Then, consider a sequence trk1 , r
k
2u that

converges to pr1, r2q such that rk2 P Hprk1q for all k. Since rk2 converges to r2, there exists a

K such that, for all k ą K, EUpS 1|ri, r
k
1q ě EUpS2|ri, r

k
1q for some ri ą rK2 . Therefore, by

continuity, EUpS 1|ri, r1q ě EUpS2|ri, r1q for any ri ą r2. By the same argument, for all k ą K,

EUpS 1|ri, r
k
1q ď EUpS2|ri, r

k
1q for any ri ă rK2 , which implies that EUpS 1|ri, r1q ď EUpS2|ri, r1q

if ri ă r2. It follows that r2 P Hpr1q, and, thus, H has a closed graph. As a consequence, there

exists a fixed point rpS 1,S2q such that for all bidder i, BRpri, rpS 1,Sq|S 1,S2q “ rpS 1,S2q.

A.7 Proof of Proposition 7

We first state and prove two lemmas regarding the behavior of (i) survival functions, and

(ii) the first- and second-order statistics of random vectors.

Concavity (convexity) of the survival function

Lemma A.3. For any distribution Λ of a random variable x P rxL, xHs, that is absolutely

continuous with density λ, we have that:

(i) if the hazard rate ψpxq fi
λpxq

1´Λpxq
is decreasing, the survival function Λ̄ is both convex and

log convex; and

(ii) if the hazard rate is increasing, the survival function Λ̄ is log concave; if, additionally,

there exists a value x˚ P pxL, xHq : d
dx
ψpxq ą ψpxq2, then Λ̄ is concave for all x ą x˚, and

otherwise convex.

Proof.

Notice that the distribution Λ can be written in terms of its hazard rate ψ as follows:

Λpxq “ 1 ´ exp

ˆ

´

ż x

xL

ψpxqdx

˙

.
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This implies that

logpΛ̄pxqq “ ´

ż x

xL

ψpxq.

Applying Leibinz derivation rule, we obtain that

d

dx
logpΛ̄pxqq “ ´ψpxq (A.20)

d2

dx2
logpΛ̄pxqq “ ´

d

dx
ψpxq.

From the last expression, we can conclude that if the hazard rate is decreasing (increasing), the

survival function Λ̄ is log-convex (log-concave).

Now, we can express the second derivative of Λ̄pxq as follows:

d2

dx2
Λ̄pxq “ Λ̄pxq

d2

dx2
(A.21)

“ logpΛ̄pxqq `
1

Λ̄pxq

ˆ

d

dx
Λ̄pxq

˙2

“ Λ̄pxq

«

d2

dx2
logpΛ̄pxqq `

ˆ

1

Λ̄pxq

d

dx
Λ̄pxq

˙2
ff

“ Λ̄pxq

«

d

dx2
logpΛ̄pxqq `

ˆ

d

dx
logpΛ̄pxqq

˙2
ff

“ ´Λ̄pxq

„

d

dx
ψpxq ´ ψpxq

2

ȷ

.

Then, if the hazard rate ψpxq is increasing, we can define

x˚
“ inf

"

x P pxL, xHq :
d

dx
ψpxq ą ψpxq

2

*

. (A.22)

Therefore, the survival function is concave for all values x ą x˚, and, otherwise, convex.

We can use this result to show how the expected number of participant bidders change when

sellers change their security design.

Lemma A.4. Let Xpℓ:Iq be the ℓ-highest order statistic of I random variables X1, X2, . . . , XI

drawn independently and identically from a distribution Λ. Hence, the highest-order statistic is
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concave in I. Furthermore, if the survival function Λ̄ is sufficiently concave, or the sample I is

sufficiently large, the second-highest order statistic is also concave in I.

Proof. Let ErXpℓ:Iqs be the expected value of the ℓ-smallest order statistic (conversely, the

I ´ ℓ` 1-largest statistic) for ℓ “ 1, . . . I. Hence, following Lemma 2 in David (1997), we have

that:

ErXpℓ`1:Iq
s ´ ErXpℓ:I´1q

s “

ˆ

I ´ 1

ℓ

˙
ż xH

xL

Λℓ
pxqp1 ´ Λpxqq

I´ℓdx. (A.23)

Hence, setting ℓ “ I ´ 1 we have that:

ErXpI:Iq
s ´ ErXpI´1:I´1q

s “

ˆ

I ´ 1

I ´ 1

˙
ż xH

xL

ΛI´1
pxqp1 ´ Λpxqqdx.

Applying the same recursion with a sample size of I ` 1 we have that:

ErXpI`1:I`1q
s ´ ErXpI:Iq

s “

ˆ

I

I

˙
ż xH

xL

ΛI
pxqp1 ´ Λpxqqdx.

Therefore, since Λ is a distribution,

ż xH

xL

ΛI
pxqp1 ´ Λpxqqdx ă

ż xH

xL

ΛI´1
pxqp1 ´ Λpxqqdx,

and, thus, ErXpI:Iqs is increasingly concave in the sample size I.

Repeating the process by replacing ℓ “ I ´ 2 in (A.23), and then, augmenting the sample

size by one observation, we get that

ErXpI´1:Iq
s ´ ErXpI´2:I´1q

s “

ˆ

I ´ 1

I ´ 2

˙
ż xH

xL

ΛI´2
pxqp1 ´ Λpxqq

2dx

ErXpI´1:I`1q
s ´ ErXpI´1:Iq

s “

ˆ

I

I ´ 1

˙
ż xH

xL

ΛI´1
pxqp1 ´ Λpxqq

2dx.

Hence, ErXpI´1:Iqs is concave in I if and only if

I

ż xH

xL

ΛI´1
pxqp1 ´ Λpxqq

2
ă pI ´ 1q

ż xH

xL

ΛI´2
pxqp1 ´ Λpxqq

2dx. (A.24)

Condition (A.24) is satisfied if the survival function Λ̄pxq is sufficiently concave (equivalently,
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if the value x˚ in (A.22) is sufficiently low) or if the sample size, I, is sufficiently large.

Lemma A.3 shows the sufficient conditions for the concavity (convexity) of an arbitrary

survival function. Similarly, A.4 shows the conditions for the concavity of the first- and second-

order statistics of a random vector. Proposition 7 provides those conditions, and, thus, guar-

antees the concavity of Ḡ and F̄ , and also the concavity of V p1:Iq and V p2:Iq. Additionally, the

statement of the proposition requires that for ℓ P t1, 2u

c̄ℓpI 1
pS 1,S2

qq ě lim
IÑI 1pS1,S2q`

∣∣∣∣BErV pI´ℓ`1:Iqs

BI

∣∣∣∣ ě lim
IÑI2pS1,S2q´

∣∣∣∣BErV pI´ℓ`1:Iqs

BI

∣∣∣∣ ě cℓpI2
pS 1,S2

qq.

(A.25)

Condition (A.25) indicates that the expected first- and second-order statistics are bounded

within certain limits when the expected number of bidders decreases below I2pS 1,S2q—i.e., the

expected number of entrants attracted by the S2-auction—but remains within the range of the

number of bidders attracted by the S 1-auction, I 1pS 1,S2q. These bounds are defined by the

constants c̄pIpS 1,S2qq and c̄pIpS 1,S2qq. Consequently, the competition effect is more sensitive

in this region.

Seller’s competition and extraction effects As we decomposed bidders’ expected payoffs

between the extraction and insurance effects, it is also useful to decompose sellers’ expected

payoffs between the extraction and competition effects.

Definition A.3. Suppose that sellers are playing the initial profile of strategies xS1,S2y. The

extraction effect that Seller j P t1, 2u obtains by deviating and choosing the family Ŝj is defined

as

∆ESe
pSj, Ŝj|xS1,S2yq fi ESpŜj|rpS1,S2qq ´ ESpSj|rpS1,S2qq, (EES)

and the competition effect is defined as

∆ESc
pSj, Ŝj|xS1,S2yq fi ESpŜj|rpŜj,S´jqq ´ ESpŜj|rpSj,S´jqq. (CE)

The extraction effect fixes the “population” of bidders corresponding to the original profile

of strategies xS1,S2y and computes the difference in extraction for seller j P t1, 2u when he
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switches from the family Sj to the family Ŝj. Meanwhile, the competition effect computes the

difference in extraction under the new family due to the change in the population of bidders.

To determine sellers’ equilibrium strategies, suppose that they play the strategy profile

xS1,S2y “ xS 1,S2y where S 1 is steeper than S2. By Proposition 6, there exists a threshold

rpS 1,S2q such that bidders with risk aversion lower than rpS 1,S2q join the S2-auction, and

those with risk aversion greater than rpS 1,S2q join the S 1-auction.

Notice that if rH is sufficiently bounded, the effects on bidder’s expected utility that come

from the competition and extraction effects are stronger than the effect that comes from insur-

ance. This is important to take into account at the time to analyze deviations, since we need

to consider how the extraction, insurance, and competition effects must change to make the

marginal bidder indifferent in the new alleged equilibrium.

Seller 1’s possible deviations If Seller 1 (the one choosing the steeper family) decides to

deviate from the prescribed strategy, there are three possible cases we must analyze.

1.i) Deviation to a family Ŝ 1 that is steeper than S 1. In this case, the new cutoff value rpŜ 1,S2q

requires to lower the competition coming from the most risk-averse bidders to balance

the higher surplus extraction—net of the greater insurance provided. This leads Seller

1 to lose all bidders with risk aversion types r P rrpS 1,S2q, rpŜ 1,S2qs. That is, Seller 1

would lose, in expectation, ∆I 1pŜ 1,S 1q “ GprpŜ 1,S2qq ´ GprpS 1,S2qq bidders.

1.ii) Deviating to a family S̆ 1 that is flatter than S 1 but steeper than S2. In this case, the new

cutoff value, rpS̆ 1,S2q, must increase the competition from the most risk-averse bidders

to balance the lower surplus extraction—net of the lower insurance provided. This leads

Seller 1 to gain all bidders with risk aversion r P rrpS̆,S2q, rpS 1,S2qs, and, thus, to gain,

in expectation, ∆I 1pS̆ 1,S 1q “ GprpS 1,S2qq ´ GprpS̆ 1,S2qq bidders.

1.iii) Deviating to a family S̃ 1 that is flatter than S2. Here, the cutoff value rpS̃,S2q re-

quires to balance the greater competition from the least-risk averse bidders (i.e., the

most competitive bidders) and the lower insurance provided, with the lower surplus ex-

traction. This leads Seller 1 to gain all bidders with risk aversion r P rrN , rpS̃ 1,S2qs

and to lose all bidders with with risk aversion r P rrpS 1,S2q, rHs. Hence, in expec-

tation, the change in the number of bidders that join Seller 1’s auction is given by

∆I 1pS̃ 1,S2q “ GprpS̃ 1,S2qq ´ r1 ´ GprpS 1,S2qqs.
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Deviation 1.i) is not profitable for Seller 1 because the expected number of bidders decrease,

the base of bidders become less competitive, and the original security choice is sufficiently steep.

Indeed, in the profile xS 1,S2y, Seller 1 has already a small expected number of participants,

which becomes even smaller by the magnitude ∆IpŜ 1,S 1q. Hence, by the concavity of the

expected first- and second-largest statistic in the sample size, the effect on the competition effect

∆ESc
pS 1, Ŝ 1|xS 1,S2yq is large.22 Furthermore, the base of bidders will consist of the most risk-

averse bidders (i.e., the least competitive), which will not be sufficiently aggressive given that the

risk-aversion parameter is sufficiently bounded. Therefore, because the family S 1 is sufficiently

steep, any additional gain that comes from the higher extraction effect, ∆ESe
pS 1, Ŝ 1|xS 1,S2yq,

will not be enough to compensate the loss that comes from the competition effect.

Meanwhile, deviation 1.ii) is not profitable since the expected first- and second-highest order

statistics of the valuation distribution are sufficiently concave in the sample size—in virtue of

condition (A.25)—and the survival function of the risk-aversion parameter is also sufficiently

concave. The former feature of the valuations distribution, in combination with the fact that

the deviation is toward a flatter security, imply that the effect of the greater expected number

of bidders on the expected revenue, captured by the competition effect ∆ESc
pS 1, S̆ 1|xS 1,S2yq,

is moderate. Additionally, the concavity of the survival function implies that the increase

in bidders’ competitiveness is also moderate. This is so because the cutoff value rpS̆,S2q

that induces the new expected number of bidders I 1pS̆ 1,S2q is sufficiently close to the original

cutoff rpS 1,S2q. Additionally, as bidders become less risk-averse, they become relatively less

aggressive, making the lower extraction effect strong enough to offset the positive competition

effect.

Finally, deviation 1.iii) is not profitable due to two reasons. First, the deviation would

be towards a significantly flatter security, taking into account the opponent’s chosen security.

Second, the expected number of bidders attracted would be such that I 1pS̃ 1,S2q ď I2pS 1,S2q.

This can be observed by comparing the profiles in which sellers choose, respectively, xS 1,S2y

and xS̃ 1,S2y. In both cases, selecting the flatter security attracts more bidders, in expectation,

because the risk-aversion parameter is bounded, and, so is the insurance benefit. However,

when the profile played is xS̃ 1,S2y, Seller 2 (the one choosing the steeper security in this

22When discussing the relevant effects of the expected first- and second-order statistics, we do it relative to
the lower bound implied by the Jensen’s inequality. This is possible since our interest is on providing sufficient
conditions to determine the overall effect of the competition, extraction, and insurance channels.
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profile) attracts a greater expected number of bidders compared to Seller 1 when the profile

played is xS 1,S2y. This is so because the marginal value of insurance when seller choose xS̃ 1,S2y

is greater than when they choose xS 1,S2y, making the steeper family relatively more appealing

in the former case. This feature, in combination with condition (A.25), implies that the lower

extraction effect ESc
pS 1, S̆ 1|xS 1,S2yq more than offsets the greater competition effect.

Seller 2’s possible deviations Similarly, if Seller 2 (the one choosing the flatter family)

decides to deviate from the prescribed strategy, there are also three possible cases to analyze,

which have different implications for the set of bidders that join his auction.

2.i) Deviation to a family Ŝ2 that is flatter than S2. In this case, the new cutoff rpS 1, Ŝ2q

requires to balance the lower extraction—net of the lower insurance—with a higher com-

petition from the least risk-averse bidders, which are the most competitive. Then, Seller 2

will gain all bidders with risk aversion r P rrpS 1,S2q, rpS 1, Ŝ2qs, and, thus, in expectation,

will attract ∆I2pŜ2,S2q “ GprpS 1, Ŝ2qq ´ GprpS 1,S2qq bidders.

2.ii) Deviating to a family S̆2 that is steeper than S2 but flatter than S 1. In this case, the new

cutoff value rpS 1, S̆2q, decreases the competition from the moderate risk-averse bidders

to compensate for the higher surplus extraction—net of the higher insurance provided.

This leads Seller 2 to lose all bidders with risk aversion r P rrpS̆,S2q, rpS 1,S2qs. Thus, in

expectation, he loses ∆I2pS̆2,S2q “ GprpS 1,S2qq ´ GprpS̆ 1,S2qq bidders.

2.iii) Deviating to a family S̃2 that is steeper than S 1. Here, the cutoff value rpS 1, S̃2q requires

to balance the greater surplus extraction, net of the higher extraction, with a lower

competition from the most risk-averse bidders—i.e., the least-competitive bidders. This

leads Seller 2 to lose all bidders with risk aversion r P rrN , rpS 1,S2qs and to gain all

bidders with with risk aversion r P rrpS 1, S̃2q, rHs. Hence, in expectation, the change

in the number of bidders that join Seller 2’s auction is given by ∆I2pS̃2,S2q “ r1 ´

GprpS 1, S̃2qs ´ GprpS 1,S2qq.

Deviation 2.i) is not profitable since Seller 2’s original security choice is sufficiently flatter

and, by condition (A.25), the expected first- and second-largest order statistics are sufficiently

concave for any expected number of bidders greater than I2pS 1,S2q. Then, the positive com-
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petition effect ESc
pS2, Ŝ2|xS 1,S2yq is not strong enough to offset the negative extraction effect

ESe
pS2, Ŝ2|xS 1,S2yq.

Similarly, deviation 2.ii) is not profitable, since condition (A.25) implies that the loss coming

from the competition effect is higher in magnitude, starting from a expected number of bidders

of I2pS 1,S2q, and, thus, it is strong enough to offset the greater extraction effect.

Finally, deviation 2.iii) is not profitable since by the same argument as before I2pS 1, S̃2q ď

I 1pS 1,S2q. Hence, by condition (A.25), the decrease in the expected first- and second-order

statistic is large. Furthermore, the base of bidders become less competitive and are moderately

aggressive, which makes the greater extraction effect insufficient to offset the losses that come

from the competition effect.

A.8 Proof of Proposition 9

We use Proposition 1 in Sogo et al. (2016), and a similar argument in Proposition 4, to show

that any equilibrium must exhibit symmetry, even sellers can use reserve prices as part of their

security design. This implies that pS 1, spS 1qq “ pS2, spS2qq, as long as the increasing-differences

condition between the entry probability and the steepness of the selected family is satisfied.

Now, suppose by contradiction that both sellers choose a security design pS 1, spS 1qq, where

S 1 ‰ Sco and the “reserve price” spS 1q P psL, sHq. Then, because a binding reserve price

excludes bidders that otherwise were willing to enter the auction in its absence, it is always

possible to find a security S̃ steeper than S 1, and a reserve price s, pS̃q ă spS 1q such that

γ̃prN |S̃,S 1q “ γ1prN |S̃,S 1q. Indeed, if S 1 belongs to a sub-convex family of securities, S̃ can be

selected from the convex hull of S̃. Otherwise, S̃ can be constructed as a convex combination

between debt and a call option. The entry probabilities can be equalized since—from the

bidder’s perspective—the auction under the steeper security induces a higher probability of

allocating the project, but extract a greater surplus conditional on allocation; whereas the

flatter security offers a lower probability of trading but extract a lower surplus ex-post.

Now, since steeper securities provide more insurance to risk-averse bidders, we have that

γ̃pr|S̃,S 1q ą γ1pr|S̃,S 1q for all r ą rN . Therefore, because steeper securities attract more entry

and extract higher surplus ex-post, sellers that choose a binding reserve price and a family of

securities flatter than a call option would have a profitable deviation. The same logic can be

applied up to the point where both sellers choose a call option. At that point, there could be
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a symmetric equilibrium with binding reserve prices. In particular, we could find the highest

binding reserve price that can be part of a symmetric equilibrium. Such a price is the one that

makes sellers indifferent between choosing a call option under that price and deviating to the

closest flatter security under a no-binding reserve price.

B Numerical Simulation

B.1 Homogeneously risk-averse bidders

We describe the simulation algorithm using backward induction.

• Step 3: Interim expected utility in the auction stage. For each number of bidders

I and each number 1 ď k ď I´1, we simulate the empirical distribution of the first-order

statistic with respect to bidders’ signals for each family S, by making one million draws

from the uniform distribution. This empirical distribution is necessary to compute the

maximum highest bid from a group of k participants. With this empirical distribution on

hand, we compute the winning probability and the expected utility for any bidder i with

risk aversion r. (See equation (3)).

• Step 2: Bidders’ entry strategies. For any seller’s strategy profile xS 1,S2y, we com-

pute bidders’ entry probability strategies γ1pr|S 1,S2q using the interim expected utility

obtained in Step 1. Specifically, we solve the non-linear equation defined in (MS).

• Step 1: Sellers’ expected revenue. Having computed γ1pr|S 1,S2q in the previous step,

we construct an auxiliary random index ω to implement the entry strategy prescribed by

γ1pr|S 1,S2q. The random index ω is drawn from a uniform distribution with support

r0, 1s, and is used to randomize bidders across auctions. Specifically, we draw an index

ωi for each bidder i and then follow a threshold rule: if ωi ď γ1pr|S 1,S2q, then bidder

i goes to the auction with the steeper family; otherwise, she goes to the auction with

the flatter family. Once we distribute bidders across auctions in a random fashion, we

compute the sellers’ revenue using equation (5). We repeat this process one million times,

and compute sellers’ expected revenue in (6) as the average revenue over all iterations.

• Step 0: Sellers’ choice of design. We repeat Steps 2-3 for each possible strategy
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profile xS 1,S2y. Then, we obtain the Nash equilibrium relative to the computed matrix

of payoffs.

B.2 Heterogeneously risk-averse bidders

• Step 1: Jumping strategies. Fix a sellers’ strategy profile xS 1,S2y and an arbitrary

bidder i with a fixed risk-aversion level ri P R`. Then, for each I and k such that

1 ď k ď I ´ 1, we assume that the strategy of bidder i’s opponents is determined by

the rule of Proposition 6 relative to a cutoff determined, precisely, by bidder’s i risk

aversion, ri.
23 Then, we make one thousand draws of the signals and risk-aversion levels.

For any realization of bidder’s i signal vi, we compute the distribution of the losing bids

against the type θi “ pvi, riq. With this distribution in hand, we compute the ex-ante

expected utility of joining each auction, i.e., EUpS 1, ri, riq and EUpS2, ri, riq (cf equation

10). These correspond to the expected utilities of a bidder i with risk aversion ri of joining

each auction when all other bidders “jump” exactly at the value ri.

• Step 2: Candidate equilibrium cutoff. We repeat Step 1 for every ri P R` until

finding a type r̂ of indifference, which is a type such that EUpS 1, r̂, r̂q “ EUpS2, r̂, r̂q. The

value r̂ constitutes the candidate for the equilibrium cutoff value—i.e., r̂ “ rpS 1,S2q.

• Step 3: Verification of the proposed equilibrium. To check the validity of r̂ as an

equilibrium candidate, we first compute Step 1 relative to the cutoff value r̂. Then, we

verify that the rule embedded in Proposition 6 is satisfied in an ϵ-neighborhood, for ϵ ą 0

sufficiently small. That is, we we check that for any ri ‰ r̂, |EUpS 1, ri, r̂q´EUpS2, ri, r̂q| ă

ϵ.

• Step 4 Seller’s expected revenue. For a fixed seller’s strategy profile xS 1,S2y, we

distribute bidders across auctions following the rule of Proposition 6, relative to the

cutoff rpS 1,S2q found in Step 2. We make one million draws of signals and risk-aversion

levels, and compute the seller’s expected revenue for each family in the sellers’ profile.

Sellers’ expected revenue is computed as the average revenue over all iterations.

23In the case of a strategy profile where both sellers choose the same family—i.e., xS1,S2y “ xS,Sy for some
S—we define a focal point so that all bidders j ‰ i with risk aversion rj ď ri join the S1-auction and all bidders
with risk aversion rj ą ri join the S2-auction.
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• Step 5: Sellers’ Nash equilibrium. We repeat step 4 for each possible strategy profile

xS 1,S2y. Then, we obtain the Nash equilibrium relative to the computed matrix of payoffs.

65


	Introduction
	Examples of auctions with competing sellers
	Related literature

	The model
	Steepness

	Optimal strategies
	Bidding strategies
	Entry strategies
	Sellers' security design

	Channels of competition
	Extraction and insurance
	Aggressiveness
	Number of competitors

	Homogeneously risk-averse bidders
	Heterogeneously risk-averse bidders
	Bidders' optimal strategy
	Sellers' optimal strategy

	Numerical simulation
	Discussion and extensions
	Reserve prices
	Auction format
	Risk-averse competing sellers

	Concluding remarks
	Proofs
	Proof of Proposition 2
	Proof of Lemma 3
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Proposition 5
	Proof of Proposition 6
	Proof of Proposition 7
	Proof of Proposition 9

	Numerical Simulation
	Homogeneously risk-averse bidders
	Heterogeneously risk-averse bidders


