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Abstract

We examine the impact of price caps in oligopoly markets with endogenous

entry. In the case of deterministic demand and constant marginal cost, reducing a

price cap yields increased total output, consumer welfare, and total welfare. This

result falls in line with classic results on price caps in monopoly markets, and with

recent results for oligopoly markets with a fixed number of firms. However, when

demand is deterministic and marginal cost is increasing, a welfare improving price

cap may not exist. We also show that a welfare-improving cap need not exist

in the case where demand is stochastic. The fact that a welfare-improving cap

cannot be guaranteed in these two cases points to a sharp difference in results

between an endogenous entry model and oligopoly models with a fixed number

of firms. Finally, we provide sufficient conditions that ensure the existence of a

welfare-improving cap in the case of stochastic demand.
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1 Introduction

Price ceilings or caps are relevant in many areas including: wholesale electricity mar-

kets, interest on loans and credit, telecommunications services, taxi services, and hous-

ing in densely populated areas. For instance, regulators have imposed price caps in

a number of U.S. regional wholesale electricity markets, including ERCOT (Texas),

New England, and PJM. A key goal for price caps in wholesale electricity markets is

to limit the exercise of market power. The principle that a price cap can limit market

power is well understood in the case of a monopolist with constant marginal cost in

a perfect-information environment. A price cap increases marginal revenue in those

situations where it is binding and incentivizes the monopolist to increase output. Total

output, consumer surplus, and total welfare are decreasing in the price cap.

Recent papers by Earle, Schmedders and Tatur [2007] and Grimm and Zottl [2010]

examine the effectiveness of price caps in Cournot oligopolies with constant marginal

cost. Earle et al. [2007] show that while the classic monopoly results for price caps carry

over to oligopoly when demand is certain, these results do not hold under demand un-

certainty. In particular, they demonstrate that when firms must make output decisions

prior to the realization of demand, total output, welfare, and consumer surplus may

be locally increasing in the price cap. This result raises into question the effectiveness

of price caps as a welfare-enhancing policy tool. On the other hand, Grimm and Zottl

[2010] demonstrate that, within the framework of Cournot oligopoly with uncertain

demand analyzed by Earle, et al., there exists an interval of prices such that any price

cap in this interval increases both total market output and welfare compared to the

no-cap case. Thus, while the standard comparative statics results of price caps do not

hold with uncertain demand, there always exists a welfare-improving price cap.

Importantly, prior analyses of oligopoly markets with price caps assume that the

number of firms is held fixed. In this paper we explore an additional margin upon

which a price cap may operate; firm entry decisions. We modify the analyses of Earle

et al. [2007] and Grimm and Zottl [2010] by introducing an initial market entry period

prior to a second period of product market competition. Market entry requires a firm

to incur a sunk cost prior to period two product market competition. The inclusion

of a sunk entry cost introduces economies of scale into the analysis. This would seem

to be a natural formulation, since an oligopolistic market structure in a homogeneous

product market may well be present because of economies of scale.1

1Cottle and Wallace [1983] consider a possible reduction in the number of firms in their analysis
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Our model of endogenous entry builds on results and insights from Mankiw and

Whinston [1986] and Amir and Lambson [2000]. Mankiw and Whinston show that

when total output is increasing in the number of firms but per-firm output is decreasing

in the number of firms (the term for the latter is the business-stealing effect), the

socially optimal number of firms will be less than the free-entry number of firms when

the number of firms, n, is continous. For discrete n the free entry number of firms

may be less than the socially optimal number of firms, but never by more than one.

Intuitively, when a firm chooses to enter, it does not take into account decreases in

per-firm output and profit of the other active firms. Thus, the social gain from entry

may be less than the private gain to the firm. Amir and Lambson [2000] provide a

taxonomy of the effects of entry on output in Cournot markets. In particular, they

provide a very general condition under which equilibrium total output is increasing in

the number of firms. Our analysis relies heavily on their approach and results. We

demonstrate that Amir and Lambson’s condition under which total output is increasing

in the number of firms is also a sufficient condition for total output to be increasing in

the number of firms when their is a price cap.

Our objective is to analyze the impact of price caps in oligopoly markets in which

entry decisions are endogenous. Given the prominent use of price ceilings or caps as a

regulatory tool in settings with multiple suppliers, we believe that an analysis that fails

to consider their impact on market entry decisions may be missing a potentially vital

component. We show that when entry is endogenous, demand is deterministic, and

marginal cost is constant, the standard comparative statics results continue to hold.

In this case, a price cap may result in fewer firms, but the incentive provided by the

cap to increase output overwhelms the incentive to withold output due to a decrease in

competition. It follows that, regardless of the number of firms that enter the market,

output will always increase as the cap is lowered. Welfare gains are realized on two

fronts. First, the cap increases total output. Second, the cap may deter entry, and in

doing so, reduce the total cost associated with entry.

We also consider the case of increasing marginal costs of production. Given our

assumption of a sunk cost of entry, this case implies U-shaped average cost curves for

firms. We show that when demand is deterministic and marginal cost is increasing,

the standard comparative statics results do not hold when entry is endogenous. In

contrast to results for a fixed number of firms, it may be the case that any price cap

of a price ceiling in a perfectly competitive market subject to demand uncertainty. Our interest is in
the impact of price caps in oligopoly markets in which entry is endogenous.
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reduces total output and welfare (i.e., there does not exist a welfare improving cap).

Moreover, we demonstrate that if marginal cost is increasing sufficiently fast, it may

be the case that the standard comparative statics results are reversed; that is, welfare

and output are increasing in the price cap.

Finally, we demonstrate that a welfare-improving price cap may not exist when

demand is uncertain and entry is endogenous (for constant marginal cost). Thus,

the results of Grimm and Zottl do not generalize to the case of endogenous entry.

We provide sufficient conditions for existence of a welfare-improving price cap. These

conditions restrict the curvature of inverse demand, which in turn influences the extent

of the business-stealing effect when an additional firm enters the market. We also

consider a version of the model with disposal; firms do not have to sell the entire

quantity they produced, but instead may choose the amount to sell after demand

uncertainty has been resolved. We show that the sufficient condition for existence of a

welfare improving price cap for the no-disposal model carries over to the model with

disposal.

2 The Model

We assume there is an arbitrarily large number, N ∈ N, of symmetric potential market

entrants. We formulate a two period game. The N potential entrants are ordered in

a queue and make sequential entry decisions in period one. Each firm’s entry decision

is assumed to be observed by the other firms. We assume that there is a cost of entry

K > 0 which is sunk if a firm enters. If a firm does not enter it receives a payoff of

zero.

Each of the n market entrants produces a homogeneous good in period two. Each

firm has a convex production cost function C : R+ → R+. Output decisions are made

simultaneously. The inverse demand function is given by P (Q, θ) which depends on

total output, Q, and a random variable, θ. θ is continuously distributed according

to CDF F with corresponding density f . The support of θ is bounded and given by

Θ ≡ [θ, θ] ⊂ R. Each firm knows the distribution of θ but must make its output

decision prior to its realization. We assume that a regulator may impose a price cap,

denoted p. The following assumption is in effect throughout the paper.
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Assumption 1.

(a) P is continuous in Q and θ, strictly decreasing in Q for fixed θ, and strictly in-

creasing in θ for fixed Q.

(b) limQ→∞[P (Q, θ)− C ′(Q)] < 0

(c) max
Q∈R+

E[QP (Q, θ)− C(Q)] > K

Assumption (1a) matches the assumptions imposed by Earle et al. [2007]; Grimm and

Zottl [2010] additionally assume differentiability of inverse demand in Q and θ. As-

sumption (1b) insures that a profit-maximizing quantity exists for period two decisions.

Earle et al. [2007] assumed that E[P (0, θ)] > c (they assume that marginal cost is

a constant, c). Their assumption ensured that “production is gainful”; that is, given a

fixed number, n > 0, of market participants, there exist price caps such that equilibrium

market output will be strictly positive. Our assumption (1c) is a “profitable entry”

condition which guarantees that there exist price caps such that at least one firm enters

the market and that equilibrium output will be strictly positive. We let P denote the

set of price caps which induce at least one market entrant. That is

P ≡
{
p > 0 | max

Q∈R+

E [Qmin{P (Q, θ), p} − C(Q)] ≥ K

}
In this paper we are only concerned with price caps p ∈ P. In the analysis that follows,

we restrict attention to subgame-perfect pure strategy equilibria and focus on period

two subgame equilibria that are symmetric with respect to the set of market entrants.

For a given price cap and a fixed number of firms, there may exist multiple pe-

riod two subgame equilibria. As is common in the oligopoly literature we focus on

extremal equilibria - the equilibria with the smallest and largest total output levels -

and comparisons between extremal equilibria. So when there is a change in the price

cap we compare equilibrium outcomes before and after the change, taking into account

the change (if any) in the equilibrium number of firms, while supposing that subgame

equilibria involve either maximal output or minimal output.

One other point to note. Imposing a price cap may require demand rationning.

When rationning occurs, we assume rationning is efficient; i.e., buyers with the lowest

WTPs do not receive output. This is consistent with prior analyses of oligopoly with

price caps.
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We denote by Q∗n(p), period two subgame extremal equilibrium total output2 when

n firms enter and the price cap is p. We let q∗n(p) be per-firm output in this equilibrium

and let π∗n(p) denote each firm’s expected period two profit in this equilibrium. We

let Q∞n = Q∗n(∞) be the period two equilibrium total output when n firms enter with

no price cap and let q∞n denote the corresponding per-firm output. Let π∞n denote

each firm’s expected period two profit in this equilibrium. Firms are risk neutral and

make output decisions to maximize expected profit. That is, each firm i takes the total

output of its rivals, y, as given and chooses q to maximize

π(q, y, p) = E[qmin{P (q + y, θ), p} − C(q)]

After being placed in the queue, firms have an incentive to enter as long as their

expected period two equilibrium profit is at least as large as the cost of entry. We

assume that firms whose expected second stage profits are exactly equal to the cost

of entry will choose to enter. As mentioned above, we restrict attention to subgame-

perfect equilibria. For a fixed price cap, p, subgame perfection in the entry stage (along

with the indifference assumption) implies that the equilibrium number of firms, n∗, is

the largest positive integer less than (or equal to) N such that π∗n∗(p) ≥ K. Clearly,

n∗ exists and is unique. Moreover, for any p ∈ P we also have 1 ≤ n∗ ≤ N , due to

Assumption (1c).

For convenience and clarity, we will define Q∗(p) ≡ Q∗n∗(p), q
∗(p) ≡ q∗n∗(p), and

π∗(p) ≡ π∗n∗(p). Similarly, we define Q∞ = Q∞n∗ , q
∞ = q∞n∗ , and π∞ = π∞n∗ .

3 Deterministic Demand

We begin our analysis by considering a deterministic inverse demand function. That

is, the distribution of θ places unit mass at some particular θ̃ ∈ Θ. In this section, we

supress the second argument in the inverse demand function and simply write P (Q).

3.1 Constant Marginal Cost

Consider the case in which marginal cost is constant; C(x) = cx, where c ≥ 0. For a

given number, n ∈ N, of market participants Earle et al. [2007] prove the existence of

2We do not introduce notation to distinguish between maximal and minimal equilibrium output.
In most cases our arguments and results are identical for equilibria with maximal and minimal total
outputs. We will indicate where arguments and/or results differ for the two types of equilibrium.
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a period two equilibrium that is symmetric for the n firms. Our main result in this

section demonstrates that the classic results on price caps continue to hold when entry

is endogenous. We first state three lemmas that are used in the proof of this result; all

proofs are in the Appendix.

Lemma 3.1. For fixed p, extremal subgame equilibrium total output, Q∗n(p) is non-

decreasing in the number of firms, n. Moreover, extremal subgame equilibrium profit

π∗n(p) is non-increasing in the number of firms, n.

Lemma 3.2. For fixed n, extremal subgame equilibrium profit π∗n(p) is non-decreasing

in the price cap p.

Lemma 3.3. In equilibrium the number of firms is non-decreasing in the price cap, p.

Proposition 1. Restrict attention to p ∈ P. Then in equilibrium, total output, total

welfare, and consumer surplus are non-increasing in the price cap.

Proposition 1 is similar to Theorem 1 in Earle, et al.3 However, our model takes

into account the effects of price caps on firm entry decisions. This is an important con-

sideration, given that Lemma 3.1 ensures that for a fixed price cap, total equilibrium

output is non-decreasing in the number of firms. This fact, along with the fact that

a lower price cap may deter entry, suggest that a reduction in the cap could have the

effect of hindering competition and reducing total output. Our result shows that with

constant marginal cost and non-stochastic demand, even if entry is reduced, the incen-

tive for increased production with a cap dominates the possible reduction in output due

to less entry. There are two sources of welfare gains. First, total output is decreasing

in the price cap, so a lower price cap yields either constant or reduced deadweight loss.

Second, a lower price cap may reduce the number of firms, and thereby decrease the

total sunk costs of entry.

Assumption 1 allows for a very general demand function, and because of this, there

may be multiple equilibria. Proposition 1 provides results for extremal equilibria of

period two subgames for cases with multiple equilibria. With an additional restriction

on the class of demand functions the equilibrium is unique and we achieve a stronger

result on the impact of changes in the price cap.

3As suggested by the discussion in Section 2, an equilibrium referred to in Lemma 3.3 and Propo-
sition 1 involves period two subgames in which firms play either maximal or minimal subgame equi-
librium output.
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Proposition 2. Suppose P is log-concave in output. Then for any p ∈ P there exists

a unique symmetric subgame equilibrium in the period 2 Cournot game. Moreover,

equilibrium output, welfare, and consumer surplus are strictly decreasing in the cap for

all p < P (Q∞) and p ∈ P.

The intuition behind Proposition 2 is straightforward. When inverse demand is

log-concave, there is a unique symmetric period two subgame equilibrium for each n

and p . If p is less than the equilibrium price when there is no cap then p must be

binding in the subgame equilibrium. In addition, the subgame equilibrium price when

there is no cap is non-decreasing in n, from Amir and Lambson [2000]. So any price cap

below the no-cap free-entry equilibrium price is strictly binding in equilibrium, since

the number of firms that enter will be no greater than the number of firms that enter

in the absence of a cap. A reduction in the cap will therefore yield strictly greater total

output.

A consequence of our results for constant marginal cost is that the welfare-maximizing

price cap is the lowest cap which induces exactly one firm to enter. Imposing such a

cap both increases output and reduces entry costs. Since marginal cost is constant,

the total cost of producing a fixed total output does not depend on the number of

firms that enter. By contrast, if marginal cost is increasing, the total production cost

associated with a given level of output is decreasing in the number of firms. Thus, a

price cap which increases output and reduces entry may result in a significant increase

in production costs. Finally, note that with constant marginal cost, a shortage will

never arise in equilibrium. This is driven solely by the fact that p > c for any level

of production. However, if marginal cost is strictly increasing in output, then firms

will produce no more than the quantity at which their marginal cost is equal to the

price cap, and this could result in a shortage in the market. In the next sub-section we

examine the impact of price caps in an environment in which firms have an increasing

marginal cost of production.

3.2 Increasing Marginal Cost

In this section, we assume that the cost function, C : R+ → R+, is twice continuously

differentiable with C ′(x) > 0 and C ′′(x) > 0 for all x ∈ R+. While our focus in this

paper is on models with endogenous entry, we begin this section with results for games

with a fixed number of firms, since there do not appear to be results of this type in the
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literature for increasing marginal costs.4 This will provide a benchmark against which

our results for endogenous entry may be compared.

Our first result below demonstrates that when the number of firms is fixed, there

exists a range of caps under which extremal equilibrium output and associated welfare

are monotonically non-increasing in the cap. This range of caps consists of all price

caps above the n-firm competitive equilibrium price. Intuitively, price caps above this

threshold are high enough that marginal cost in equilibrium is strictly below the price

cap for each firm. A slight decrease in the price cap means the incentive to increase

output created by a lower cap outweighs the fact that marginal cost has increased

(since the cap still lies above marginal cost).

Proposition 3. Suppose that, in addition to Assumption 1, P is differentiable in

Q. Fix n ∈ N and define the n-firm competitive price as the unique price satisfying

p̂ = P (nC
′−1(p̂)). Then for extremal equilibria:

(i) Total output is non-increasing in the price cap for all p > p̂.

(ii) Welfare is non-increasing in the price capfor all p > p̂.

A price cap equal to p̂ maximizes welfare.

The proof that total output and welfare are non-increasing in the price cap for

the case of constant marginal cost is based on showing that payoff function π(q, y, p)

satisfies the single crossing property in (q,−p) for all y (Lemma 2 in Earle, et al.). The

SCP property does not carry over to the general case of convex production cost. Our

proof of Proposition 3 establishes that SCP in (q,−p) holds for a modified game with

a restricted choice set, and then shows that an output level is a symmetric equilibrium

of the modified game if and only if it is a symmetric equilibrium of the original game.

In contrast to the result above with a fixed number of firms, we now provide an

example which demonstrates that when entry is endogenous, a welfare-improving price

cap may fail to exist.

4Neither Earle et al. [2007] nor Grimm and Zottl [2010] devote significant attention to the issue
of increasing marginal cost. Both papers state that their main results for stochastic demand hold for
increasing marginal cost as well as for constant marginal cost. Neither paper addresses whether the
classical monotonicity results hold for a fixed number of firms, deterministic demand, and increasing
marginal cost.
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Example 1. Consider the inverse demand, cost function and entry cost given below:

P (Q) = 17−Q, C(q) =
4

3
q2 and K = 21

In the absence of a price cap, it may easily be verified that two firms enter with each

producing 3 units of output. This results in an equilibrium price of 11 and equilibrium

period two profit equal to the entry cost, 21. Equilibrium welfare with no cap is

therefore given by:

W nc =

∫ 6

0

(17− t) dt− 2

(
4

3
32 + 21

)
= 18

Any price cap less than the equilibrium price of 11 results in at most one entrant. In

order to ensure entry of at least one firm, the price cap must be greater than or equal

to minimum of average total cost (ATCm) ≈ 10.58. So, any price cap p ∈ [ATCm, 11)

results in the entry of exactly one firm. It is straightforward to show that all such price

caps require rationing of buyers and yield strictly lower total output, total welfare and

consumer surplus than the no-cap equilibrium. A welfare-improving price cap does not

exist for this example. In fact, total output and welfare are increasing in the price

cap for p ∈ [ATCm, 11). A welfare improvement could be achieved by a policy that

combines an entry subsidy - to encourage entry - with a price cap - to incentivize

increased output.

A key feature of Example 1 is that marginal cost rises sharply enough with output

so that the output at which MC equals the price cap is less than the quantity demanded

at the cap. So by reducing the number of firms from two to one, imposition of a price

cap also results in a discrete reduction in total output. Note that this effect is absent

when marginal cost is constant.

Proposition 4 below provides general conditions under which price caps yield out-

comes like those illustrated by Example 1; that is, equilibrium output and welfare are

monotonically increasing in a price cap. Prior to stating the Proposition, we state and

prove two lemmas used in its proof. In what follows, we will let p∞ = P (Q∞).

Lemma 3.4. Fix p ∈ P. Then extremal equilibrium total output is non-decreasing in

the number of firms. Moreover, extremal equilibrium profit is non-increasing in the

number of firms.
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Lemma 3.5. Suppose, n∞ ≥ 2 and π∞ = K. Consider a price cap p ∈ [ATCm, p∞).

Then 1 ≤ n∗ < n∞.

Proposition 4. Suppose π∞ = K. If C ′
(

Q∞

n∞−1

)
> p∞, then for all p ∈ [ATCm, p∞):

(i) The equilibrium number of firms is n∞ − 1

(ii) Total output is strictly increasing in p

(iii) Total output under the price cap is strictly lower than in the absence of a cap

(iv) Welfare is strictly increasing in p

Proposition 4 is based on two conditions. The first is that firms earn zero economic

profit in the free entry equilibrium with no cap. This implies that when a binding price

cap is imposed, at least one less firm will enter (using Lemmas 3.4 and 3.5). The second

is that if total output in the free entry equilibrium in the no-cap case is equally divided

among one less firm then marginal cost exceeds the equilibrium price in the no-cap

case. Clearly this condition is satisfied only if marginal cost rises relatively rapidly as

output increases. The introduction of a price cap in this case must reduce total output

since no firm will produce output in excess of the quantity q where C ′(q) = p. The

result is demand rationing and a market shortage. This shortage creates deadweight

loss which grows as the price cap decreases.

Still, a comparison of welfare before-and-after the introduction of the price cap is

ambiguous in general, as the introduction of a cap may decrease the number of firms.

Example One satisfies the hypotheses of Proposition 4 and illustrates a case in which

any binding price cap reduces welfare. On the other hand, one can construct examples

which satisfy the hypotheses of Proposition 4 and for which a welfare-improving price

cap exists. Under the hypotheses of Proposition 4 there are three competing forces

which affect welfare. First, a decrease in the number of firms results in welfare gains

associated with entry-cost savings. Second, as described above, the introduction of a

price cap creates deadweight loss and decreases welfare. Third, the combination of a

decrease in output and a decrease in the number of firms has an ambiguous impact on

firms’ production costs. The effect on welfare depends on the interplay of these three

forces.
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4 Stochastic Demand

We now investigate the impact of price caps when demand is stochastic. We assume

that marginal cost is constant and given by c ≥ 0. For the fixed n model Grimm and

Zottl [2010] demonstrate that under a generic distribution of demand uncertainty, there

exists a range of price caps which strictly increases output and welfare as compared

to the case with no cap. Their result is driven by the following observation. Fix

an extremal symmetric equilibrium of the game with n firms and no price cap. Let

ρ∞ = P (Q∞, θ) denote the lowest price cap that does not affect prices; i.e., ρ∞ is

the maximum price in the no-cap equilibrium. And let MR
∞

be a firm’s maximum

marginal revenue in this equilibrium. If firms choose their equilibrium outputs and a

cap is set between MR
∞

and ρ∞ then the cap will bind for an interval of high demand

shocks; for these shocks marginal revenue will exceed what marginal revenue would

have been in the absence of a cap, and for other shocks marginal revenue is unchanged.

Firms therefore have an incentive to increase output relative to the no cap case for caps

between MR
∞

and ρ∞.5 Earle et al. [2007] provide a quite different result for price

caps when demand is stochastic. They show that raising a price cap can increase both

total output and welfare. This is a comparative static result, in contrast to Grimm

and Zottl’s result on the existence of welfare improving price caps.

We begin this section by providing an example which demonstrates that a welfare

improving price cap may not exist when entry is endogenous.

Example 2. Consider the following inverse demand, costs and distribution for θ:

P (Q, θ) = θ + exp(−Q), K = exp(−2), c = 1, θ ∈ {0, 10}, P rob[θ = 10] = 0.1

With no cap, each firm has a dominant strategy in the period 2 subgame to choose

an output of 1. This leads to 2 market entrants; each earning second period profit

exactly equal to the cost of entry. This results in total output of 2 units, total welfare

of approximately 0.59, and ρ∞ = 10 + exp(−2). Consider a price cap slightly less

than ρ∞. Clearly such a cap will deter at least one firm from entering as the profit

constraint is binding in the absence of a cap. Indeed it may be verified that one firm

enters in equilibrium, and per-firm output increases (slightly) to approximately 1.04.

5When there are multiple equilibria of the game with no cap, the argument of Grimm and Zottl
[2010] is tied to a particular equilibrium. It is possible that there is no price cap that would increase
output and welfare across multiple equilibria.
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The impact of the price cap is to reduce total output from 2 to 1.04, and to reduce

total welfare from 0.59 to 0.51. It may be verified for this example that any price cap

p ∈ (c, ρ∞) will deter entry, reduce total output, and reduce total welfare.

Example 2 demonstrates that when demand is stochastic and entry is endogenous,

there need not exist a welfare improving price cap. There are two important features

of this example. First, the particular inverse demand and marginal cost selected imply

that firms have a dominant strategy to choose an output of exactly one unit. Hence,

the business-stealing effect is absent and total output increases linearly in the number

of firms.6 Thus, a price cap can lead to lower total output by reducing the number of

market entrants, as long as the cap doesn’t stimulate too much output per firm. This is

where the second feaure comes in. As explained in Earle et al. (p.95), when demand is

uncertain firms maximize a weighted average of profit when the cap is non-binding (low

demand realizations) and profit when the cap is binding (high demand realizations).

These two scenarios provide conflicting incentives for firms. The first effect is that a

higher price cap creates an incentive to expand output as the benefits of increasing

quantity increase when the cap is binding (and are not affected when the cap is not

binding). The second effect is that a higher price cap may reduce the probability that

the cap will bind, and this reduces the incentive to increase quantity. For Example 2,

when the price cap is set slightly below p∞ output per firm increases slightly compared

to the duopoly no-cap equilibrium; this increase in output per firm is much smaller

than the reduction in total output due to fewer market entrants. Further reductions

in the price cap in the interval (c, p∞) result in monotonic reductions in output as the

first effect outlined above dominates the second effect for the distribution of demand

shocks in this example.7

Example 2 suggests that a zero or weak business stealing effect is one source of

failure of existence of welfare improving price caps. The Proposition below provides

sufficient conditions on demand that ensure the existence of a welfare-maximizing cap.

These conditions ensure that the business stealing effect is relatively strong, so that

reduced entry does not have a large effect on total output. Assumption 2 is in effect

for the remainder of the paper.8

6The same result holds for similar examples with a small business-stealing effect.
7The probability that the price cap is binding is constant at 0.1 for p ∈ (c, ρ∞). So the second

effect is zero for this example. This is an artifact of our use of a two-point distribution coupled with
a low value for the low demand shock. However, analogous results are possible with a continuous
distribution, provided that the second effect is smaller than the first.

8Part (d) may be viewed as a normalization of the support of θ; it is used only for the free disposal
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Assumption 2.

(a) f(θ) is positive and continuous for all θ ∈ Θ

(b) P is additively separable in Q and θ with: P (Q, θ) = θ + p(Q)

(c) p(·) is twice continuously differentiable with p′ > 0 and p′′ ≤ 0

(d) θ + p(0) = 0

Lemma 4.1. For fixed p ∈ P, extremal subgame equilibrium total output, Q∗n(p) is

non-decreasing in the number of firms, n, and extremal equilibrium profit π∗n(p) is non-

increasing in the number of firms, n.

Proposition 5. There exists a price cap which strictly increases equilibrium welfare.

Assumption 2 provides sufficient conditions for existence of a welfare improving

price cap. This assumption places strong restrictions on the form of inverse demand,

but no restrictions other than a positive and continuous density on the form of demand

uncertainty. The business-stealing effect is relatively strong when demand is concave

in output. As demonstrated in Mankiw and Whinston [1986], when the business-

stealing effect is present and n is continuous, the free-entry number of firms entering a

market exceeds the socially optimal number of firms.9 The proof of Proposition 5 first

establishes that, when the entry constraint is not binding in the absence of a cap, then

there is an interval of prices such that a price cap chosen from this interval will yield

the same number of firms, but higher total output and welfare. This follows directly

from Theorem 1 in Grimm and Zottl [2010]. The proof proceeds to show that when the

entry constraint is binding (i.e., zero equilibrium profit in the endogenous entry game)

in the absence of a cap, then a reduction in the number of firms by one will increase

total welfare. Indeed, it may be shown that when the entry constraint is binding (for

n ≥ 2) and there is no price cap, the socially optimal number of firms is strictly less

than the free-entry number of firms. The imposition of a price cap in this case has two

welfare-enhancing effects. First, the cap deters entry, and entry deterrence (by exactly

one firm) is welfare enhancing. Second, the cap increases total output and welfare

case. This assumption was made in Grimm and Zottl [2006]. Lemma 4.1 is used in the proof of
Proposition 5.

9Their result is for a model in which n is a continuous variable, whereas out analysis restricts n to
whole numbers. Nonetheless, we are able to apply the intuition on excess entry to prove our result.
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relative to what output and welfare would be in the new entry scenario (i.e., with one

less firm) in the absence of a cap.10

4.1 Free Disposal

We now examine a variation of the game examined in the previous sections. This

model is a three period game. In the first period, firms sequentially decide whether

to enter or not (again, with each firm’s entry decision observed by the next). Entry

entails a sunk cost K > 0. In the second period, before θ is realized, firms that entered

simultaneously choose capacities, with xi designating the capacity choice of firm, i;

capacity is built at constant marginal cost c > 0. In the third period, firms observe θ

and simultaneously choose outputs, with firm i choosing output qi ∈ [0, xi]; output is

produced at zero cost.11 Versions of this model with a fixed number of firms have been

analyzed by Earle et al. [2007] and Grimm and Zottl [2010].

This model with free disposal may be interpreted as one in which the firms that

have entered make long run capacity investment decisions prior to observing the level

of demand, and then make output decisions after observing demand. Under this in-

terpretation, c is the marginal cost of capacity investment, and the marginal cost of

output is constant and normalized to zero. As with the proof of Proposition 5, we will

demonstrate that in the absence of a price cap, if the free-entry constraint binds (ie

π∞n = K), then welfare is strictly higher if entry is reduced by one.

Before stating the main result for free disposal we introduce some of the key ex-

pressions. In the absence of a price cap, in the third period each firm solves:

max
qi

(θ + P (qi + y))qi − cxi such that qi ≤ xi

Let n denote the number of entrants in the first period in the absence of a price cap.

Under Assumption 2, there exists a unique symmetric subgame equilibrium level of

capacity for any n ∈ N (see Grimm and Zottl [2006]). Denote by Xn > 0 the total

10The assumption of additively separable demand shocks is important for the second effect. It
implies that the maximum marginal revenue in symmetric subgame equilibria is invariant to the
number of firms. So if n is the equilibrium number of firms with no cap, maximum marginal revenue
in a subgame with n− 1 firms and no cap is less than the maximum equilibrium price in a subgame
with n firms and no cap (ρ∞). This means that a price cap between maximum marginal revenue and
ρ∞ will both reduce the number of entrants and induce the firms that enter to produce more output
than they would in the absence of a cap.

11In the version of the model examined by Earle et al. [2007], output is produced at marginal cost
δ which may be positive or negative. Our results continue to hold in this case.
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equilibrium capacity and let xn = Xn

n
denote the equilibrium capacity per firm. Let

Qn(θ) denote the total equilibrium output in the third period. Let θ̃(Xn) satisfy:

θ̃(Xn) + p(Xn) + p′(Xn)xn = 0

θ̃(Xn) is the lowest value of the demand shock at which the price cap binds in equi-

librium, given total capacity Xn. Assumption (2d) above ensures that θ̃(Xn) > θ and

Assumptions (2a) and (2d) ensure that θ̃(Xn) is single-valued. Then for θ ∈ [θ, θ̃(Xn)),

it holds that no firm is constrained in equilibrium. In the unconstrained case, our as-

sumptions above are sufficient to guarantee that a unique equilibrium exists in the third

period. let Q̃n(θ) denote the total equilibrium output in this case and let q̃n(θ) = Q̃n(θ)
n

denote the equilibrium per-firm output. Note that for each θ ∈ [θ, θ̃(Xn)), Q̃n(θ) is

given by the first-order condition:

θ + p(Q̃n(θ)) + p′(Q̃n(θ))q̃n(θ) = 0

So, total equilibrium output in the third stage is given by:

Q∗n(θ) =


Q̃n(θ), θ ≤ θ < θ̃(Xn)

Xn, θ̃(Xn) ≤ θ ≤ θ

We may write equilibrium profit per firm as:

π∗n =

∫ θ̃(Xn)

θ

q̃n(θ)(θ + p(Q̃n(θ))) dF (θ) +

∫ θ

θ̃(Xn)

xn(θ + p(Xn)) dF (θ)− cxn

Grimm and Zottl [2006] prove that equilibrium capacities satisfy the following condi-

tion:

∫ θ

θ̃(Xn)

[ θ + p(Xn) + xnp
′(Xn)] dF (θ) = c

This can be interpreted as saying that the expected marginal revenue for capacity is

equal to the marginal cost of capacity in a symmetric equilibrium. Since c > 0 and F

contains no mass points, it must be that θ̃(Xn) < θ.

Lemma 4.2. Let m,n ∈ N and let Xm and Xn denote total equilibrium output when
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m and n firms enter, respectively. Then θ̃(Xm) = θ̃(Xn).

Lemma 4.3. Fix n ≥ 2. Then for all θ ∈ Θ

(i) Q∗n(θ) > Q∗n−1(θ)

(ii) q∗n(θ) < q∗n−1(θ)

(iii) π∗n < π∗n−1

Proposition 6. The statement of Proposition 5 remains valid in the version of the

model with disposal.

5 Conclusion

This paper has analyzed the welfare impact of price caps, taking into account the

possibility that a price cap may reduce the number of firms that enter a market.

The vehicle for the analysis is a two period oligopoly model in which product market

competition in quantity choices follows endogenous entry with a sunk cost of entry.

First, we analyzed the impact of price caps when there is no uncertainty about demand

when firms make their output decisions. For this case, we showed that when marginal

cost is constant, the standard comparative statics results remain true. That is, output,

welfare, and consumer surplus all increase as the price cap is lowered. We then showed

that when demand is known but marginal cost is strictly increasing, it may be the

case that welfare is lower under any price cap than in the absence of a cap. We also

demonstrated that if marginal cost increases sufficiently fast, welfare and output may

be monotonically increasing in the price cap.

Next we analyzed the impact of price caps when demand is stochastic and firms

must make output decisions prior to the realization of demand. We showed that, once

again the existence of a welfare-improving price cap cannot be guaranteed. We then

provided sufficient conditions on demand under which a range of welfare-improving

price caps will always exist. The sufficient conditions restrict the curvature of the

inverse demand function, which in turn influences the welfare impact of entry. We also

extended this result to an environment with free disposal. This type of environment

can be viewed as one in which there is endogenous entry, capacity investment decisions

are made prior to observing demand, and output decisions are made after observing

demand.

16



Appendix

Proof of Lemma 3.1

By Assumption (1c) there exists some M > 0 such that a firm’s best response is

bounded by M . As in Amir and Lambson [2000], we can express a firm’s problem as

choosing total output, Q, given total rivals’ output, y. Define a payoff function,

π̃(Q, y, p) = (Q− y)[min{P (Q), p} − c], (1)

and a lattice,

Φ ≡ {(Q, y) : 0 ≤ y ≤ (n− 1)M, y ≤ Q ≤ y +M}. (2)

First we show that π̃ has increasing differences (ID) in (Q, y) on the lattice Φ.

Consider Q1 ≥ Q2 and y1 ≥ y2 such that the points (Q1, y1), (Q1, y2), (Q2, y1), (Q2, y2)

are all in Φ. Since y1 ≥ y2 and P (Q2) ≥ P (Q1), we have,

(y2 − y1) min{P (Q1), p} ≥ (y2 − y1) min{P (Q2), p}. (3)

Add (Q1 − Q1) min{P (Q1), p} = 0 and (Q2 − Q2) min{P (Q2), p} = 0 to the left and

right hand sides of (3), respectively, to yield,

((Q1 − y1) min{P ((Q1), p} − (Q1 − y2) min{P ((Q1), p} ≥
(Q2 − y1) min{P (Q2), p} − (Q2 − y2) min{P (Q2), p}.

(4)

Subtracting c(y1 − y2) from both sides of (4) yields,

π̃(Q1, y1, p)− π̃(Q1, y2, p) ≥ π̃(Q2, y1, p)− π̃(Q2, y2, p),

which is equivalent to,

π̃(Q1, y1, p)− π̃(Q2, y1, p) ≥ π̃(Q1, y2, p)− π̃(Q2, y2, p). (5)

Inequality (5) establishes that π̃ has increasing differences in (Q, y) on Φ.

Note that the choice set Φ is ascending in y and π̃ is continuous in Q and satisfies

ID in (Q, y). Then as shown in Topkis [1978], it follows that the maximal and minimal

selections of argmax{(Q− y)[min{P (Q), p}− c] : y ≤ Q ≤ y+M} are nondecreasing
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in y. The remainder of the proof follows almost directly from the proofs of Theorems

2.1 and 2.2 in Amir and Lambson [2000]. A symmetric equilibrium exists for the

subgame, via the same argument employed in Amir and Lambson [2000]. However,

asymmetric subgame equilibria may exist for our formulation, since the price function,

min{P (Q), p}, is not strictly decreasing in Q. For symmetric equilibria, extremal total

output is non-decreasing in n and extremal profit per firm is non-increasing in n.

Proof of Lemma 3.2

Fix n ∈ N. Let p1 > p2 and let q∗n(pi) and Q∗n(pi) be minimal extremal equilibrium

output per firm and total output, respectively, in the subgame with n firms and cap

pi. Then,

π∗n(p1) = q∗n(p1)(min{P (Q∗n(p1)), p1} − c)
≥ q∗n(p2)(min{P (q∗n(p2) + (n− 1)q∗n(p1)), p1} − c)
≥ q∗n(p2)(min{P (q∗n(p2) + (n− 1)q∗n(p1)), p2} − c)
≥ q∗n(p2)(min{P (q∗n(p2) + (n− 1)q∗n(p2)), p2} − c) = π∗n(p2)

The first inequality follows from the fact that q∗n(p1) is a best response to (n−1)q∗n(p1).

The second inequality follows since p1 > p2. For fixed n Earle et al. [2007] prove (in

Theorem 1) that minimal equilibrium output per firm is non-increasing in the price

cap, so that q∗n(p2) ≥ q∗n(p1). Since P (·) is decreasing, the third inequality holds. The

argument for maximal extremal equilibrium subgame output is analogous.

Proof of Lemma 3.3

Let p1 > p2. Assume that firms play minimum extremal equilibrium output in each

possible subgame. Let ni be the equilibrium number of firms under pi, i ∈ {1, 2}.
We will establish the claim by contradiction. So, suppose n2 > n1. By definition,

ni must satisfy π∗ni
(pi) ≥ K and π∗m(pi) < K for m > ni. Since n2 > n1, we must

have π∗n2
(p1) < K. But by Lemma 3.2 we must have π∗n2

(p1) ≥ π∗n2
(p2) ≥ K which is

a contradiction. The argument for maximal extremal equilibrium subgame output is

identical.

Proof of Proposition 1

Let p1 > p2. Let ni be the equilibrium number of firms under pi, i ∈ {1, 2}. From

Lemma 3.3 we know that n1 ≥ n2. Let Q̂i = P−1(pi). We must have Q∗ni
(pi) ≥ Q̂i,
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otherwise any one firm could increase output slightly and increase profit. Moreover,

since p1 > p2 Assumption (1a) implies that Q̂2 > Q̂1.

Part (i) We must show that Q∗n2
(p2) ≥ Q∗n1

(p1). Earle et al. [2007] prove in their

Theorem 1 that the desired result holds if n1 = n2. So the remainder of part (i)

deals with the case n1 > n2. The arguments for the equilibrium with the smallest

subgame outpus are different from those for the equilibrium with the largest subgame

outputs. We provide the argument for the smallest subgame outputs first, followed by

the argument for the largest subgame outputs.

We will proceed by contradiction. That is, suppose that Q∗n2
(p2) < Q∗n1

(p1). Imme-

diately we have Q∗n1
(p1) > Q∗n2

(p2) ≥ Q̂2 > Q̂1. Now, consider the subgame with price

cap p2 and n1 active firms; let q be any non-negative output.

πn1(q
∗
n1

(p1), (n1 − 1)q∗n1
(p1), p2) = q∗n1

(p1)(min{P (Q∗n1
(p1)), p2} − c)

= q∗n1
(p1)(min{P (Q∗n1

(p1)), p1} − c)
≥ q(min{P (q + (n1 − 1)q∗n1

(p1)), p1} − c)
≥ q(min{P (q + (n1 − 1)q∗n1

(p1)), p2} − c)
= πn1(q, (n1 − 1)q∗n1

(p1), p2)

The first equality follows from the definition of subgame payoffs. The second equality

follows from the fact that Q∗n1
(p1) > Q̂2 > Q̂1 (ie, the price cap is not binding under

either cap). The first inequality follows by definition of q∗n1
(p1). The second inequality

clearly holds since p1 > p2. This establishes that Q∗n1
(p1) is an equilibrium total

quantity in the subgame with cap p2 and n1 firms. In addition we know that (1)

Q∗n1
(p2) is the extremal (minimum) equilibrium total output in this subgame, and (2)

Q∗n1
(p2) ≥ Q∗n1

(p1) by the result on price caps in Earle et al. [2007] for a fixed number

of firms. Taking these results together yields Q∗n1
(p2) = Q∗n1

(p1).

Now since Q∗n1
(p2) = Q∗n1

(p1) and Q∗n1
(p1) > Q̂2 > Q̂1 this means that the equilib-

rium payoff for the subgame with n1 firms and price cap p2 satisfies the following:

π∗n1
(p2) = q∗n1

(p2)
[
min{P (Q∗n1

(p2)), p2} − c
]

= q∗n1
(p1)

[
min{P (Q∗n1

(p1)), p2} − c
]

= q∗n1
(p1)

[
min{P (Q∗n1

(p1)), p1} − c
]

= π∗n1
(p1)

≥ K
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But this contradicts the fact that n2 < n1 is the equilibrium number of entering firms

when the price cap is p2; the subgame equilibrium payoff for n1 firms and price cap p2

must be less than K. So we have the result, Q∗n2
(p2) ≥ Q∗n1

(p1).

The argument above explicity relies on the fact that the equilibrium under consid-

eration is the smallest equilibrium output level. We now provide an alternative proof

of this result for the largest equilibrium output level. As before, let p1 > p2. Let Q∗n(p)

be the maximal equilibrium output when the cap is p and n firms are active. We aim

to show that Q∗n2
(p2) ≥ Q∗n1

(p1). We will proceed by contradiction. So, assume that

Q∗n2
(p2) < Q∗n1

(p1). Immediately we have that Q̂1 < Q̂2 ≤ Q∗n2
(p2) < Q∗n1

(p1)

Claim. Q∗n1
(p2) is an equilibrium output level in the subgame with n1 firms and price

cap p1

Proof of Claim: All subgames dealt with in this Claim have n1 firms; so n = n1 and

we drop the n subscript in the proof of the Claim. We proceed by contradiction. So,

suppose Q∗(p2) is not an equilibrium in the subgame with cap p1 and n1 firms. By EST

it must be that Q∗(p2) > Q∗(p1). Let y∗(pk) ≡ (nk − 1)q∗(pk). Now, as in the proof of

Lemma 3.1, let π̃(Q, y, p) ≡ (Q−y)[min{P (Q), p}− c]. We may again think of a single

firm choosing total output, Q, when the other n1 − 1 firms choose y. Let Q(y, p) be

the maximal selection from the best response for a firm when the total output of the

other n1 − 1 firms is y and the price cap is p.

Since Q∗(p2) is not an equilibrium in the subgame with cap p1 and n1 firms, we

have:

π̃(Q∗(p2), y
∗(p2), p1) < π̃(Q(y∗(p2), p1), y

∗(p2), p1) (6)

The inequality Q∗(p1) < Q∗(p2) implies that y∗(p1) < y∗(p2). Recall from the proof

of Lemma 3.1 that Q(y, p) is nondecreasing in y for fixed p. Hence, we must have

Q(y∗(p1), p1) ≤ Q(y∗(p2), p1). But since Q∗(p1) is maximal subgame equilibrium total

output, we must have Q(y∗(p1), p1) = Q∗(p1). Hence:

Q∗(p1) ≤ Q(y∗(p2), p1) (7)

Recall that Q̂1 < Q̂2 < Q∗(p1) < Q∗(p2). Equation (7) therefore implies Q̂1 < Q̂2 <

Q(y∗(p2), p1). But then (6) implies,

π̃(Q∗(p2), y
∗(p2), p2) < π̃(Q(y∗(p2), p1), y

∗(p2), p2)
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since neither cap binds under either output level. The above equation contradicts the

definition of Q∗(p2) . Hence, the claim is established.

The Claim establishes that Q∗n1
(p2) is an equlibrium total output for the subgame

with n1 firms and cap p1. This output cannot exceed maximal equilibrium output for

this subgame, so Q∗n1
(p2) ≤ Q∗n1

(p1). By Theorem 1 in EST, we must have Q∗n1
(p2) ≥

Q∗n1
(p1). Combining these two inequalities yields, Q∗n1

(p2) = Q∗n1
(p1). As in the proof

for the minimal equilibrium output level, we can use this equality to show that n1

firms would have an incentive to enter when the cap is p2, contradicting the condition

n1 > n2.

Part (ii) Let W (p) be total welfare in the equilibrium with the lowest output when the

price cap is p. Let Q∗i = Q∗ni
(pi), i ∈ {1, 2}. Now note:

W (p2) =
∫ Q∗2
0

[P (z)− c] dz − n2K

≥
∫ Q∗2
0

[P (z)− c] dz − n1K

≥
∫ Q∗1
0

[P (z)− c] dz − n1K

= W (p1)

The first inequality follows since n1 ≥ n2. The second inequality follows from the fact

that Q∗2 ≥ Q∗1 and that P (Q∗2) ≥ c (otherwise any firm could increase its period two

profit by reducing output).

Part (iii) Let CS(Q, p) denote consumer surplus when total production is Q and the

price cap is p.

CS(Q, p) =

∫ Q

0

[P (z)−min{P (Q), p}] dz

Note that CS(Q, p) is increasing in Q and is decreasing in p. Since Q∗n2
(p2) ≥ Q∗n1

(p1)

and p2 < p2, immediately we have that CS(Q∗n2
(p2), p2) ≥ CS(Q∗n1

(p1), p1).

Proof of Proposition 2

Let p < P (Q∞) such that p ∈ P. We first claim that equilibrium output under the cap

satisfies P (Q∗(p)) = p.

To establish the claim we proceed by contradiction. So, suppose not. Then we

must have P (Q∗(p)) < p or equivalently, Q∗(p) > Q̂(p). Now, consider the subgame
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with no cap and n∗ firms. Since n∗ ≤ n∞ it must be that Q∞n∗ ≤ Q∞ < Q̂. It follows

that Q∗(p) > Q̂ > Q∞n∗ .

Let π̃L(Q, y) ≡ ln(π̃(Q, y)). Where π̃(Q, y) = (Q − y)(P (Q) − c). Note that since

P is log-concave this implies π̃L is strictly concave in Q for all Q such that P (Q) > c.

Let Q(y) ≡ arg maxQ≥y π̃L(Q, y). Since π̃L is strictly concave in Q, clearly Q(y) is a

single-valued function. In the subgame with n∗ firms and no cap, using standard results,

we must have a unique equilibrium since P is log-concave. This means Q∗(p) cannot be

an equilibrium output level with no cap and n∗ firms. Let y∗(p) =
(
n∗−1
n∗

)
Q∗(p). Then

since Q∗(p) is not an equilibrium output in the absence of a price cap it follows that

Q(y∗(p)) 6= Q∗(p). In particular, it must be that Q(y∗(p)) < Q̂ < Q∗(p). If Q(y∗(p)) ≥
Q̂ then Q(y∗(p)) would also be the best response to y∗(p) under the price cap as well.

This would contradict the definition of Q∗(p). Then since in any equilibrium price

must be strictly above marginal cost, the strict concavity of π̃L implies:

π̃L(Q(y∗(p)), y∗(p)) > π̃L(Q̂, y∗(p)) > π̃L(Q∗(p), y∗(p))

This implies that π̃(Q̂, y∗(p)) > π̃(Q∗(p), y∗(p)). But since P (Q̂) = p and P (Q∗(p)) < p,

we have:

(Q̂− y∗(p))(min{P (Q̂), p} − c) > (Q∗(p)− y∗(p))(min{P (Q∗(p), p} − c)

This contradicts the definition of Q∗(p) and establishes the claim. Now under any

relevant cap, equilibrium output must satisfy P (Q∗(p)) = p. Clearly, this means there

may exist only one symmetric equilibrium.

Consider two caps p2 < p1 < P (Q∞) such that pi ∈ P for each i ∈ {1, 2}. By

the claim established in the first part of the proof, we must have p1 = P (Q∗(p1)) >

P (Q∗(p2)) = p2. Obviously, since P is strictly decreasing Q∗(p1) < Q∗(p2) The result

is immediate.

Proof of Proposition 3

As in Proposition 1, Assumption (1b) implies that each firm’s output choice can be

restricted to a convex set, [0,M ], for some large positive M . We refer to the original

game as the n player game in which each firm chooses output q from [0,M ] to maximize

π(q, y, p), where y is total output of rivals. However, a formulation of the output choice

game with this choice set implies a payoff function that does not satisfy SCP in (q,−p).
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Define q̂ ≡ C ′−1(p̂), and consider a modified game in which each firm’s output choice

is restricted to [0, q̂].

Claim 1: An output level q′ is a symmetric Nash equilibrium of the original game if

and only if it is a symmetric Nash equilibrium of the modified game.

(⇐) Let q∗∗ be a symmetric Nash equilibrium of the original game. Suppose that

q∗∗ > q̂. Then C ′(q∗∗) > p̂ since C ′(·) is strictly increasing. Also, P (nq∗∗) < P (nq̂) = p̂

since P (·) is strictly decreasing. We have the following payoff relationships:

π(q∗∗, (n− 1)q∗∗, p) = q∗∗min{P (nq∗∗), p} − C(q∗∗)

= q∗∗P (nq∗∗)− C(q∗∗)

≤ q̂P (nq∗∗)− C(q̂)

< q̂P (q̂ + (n− 1)q∗∗)− C(q̂)

= q̂min{P (q̂ + (n− 1)q∗∗), p} − C(q̂)

= = π(q̂, (n− 1)q∗∗, p)

The first equality is definitional. The second equality holds since P (nq∗∗) < p̂. The

first inequality holds since P (nq) < C ′(q) for all q ∈ [q̂, q∗∗]. The second inequality

holds since P (·) is strictly decreasing and q̂ < q∗∗. The next equality holds since

P (q̂ + (n− 1)q∗∗) < p̂ ≤ p, and the final equality holds by the definition of the payoff

function. These inequalities establish that q∗∗ is not a best response to y = (n− 1)q∗∗

and so q∗∗ cannot be a symmetric Nash equilibrium output. The supposition that

q∗∗ > q̂ has led to a contradiction; if q∗∗ is a symmetric Nash equilibrium of the original

game then q∗∗ ≤ q̂. From this it follows that q∗∗ is a symmetric Nash equilibrium of

the modified game.

(⇒) Let q∗ be a symmetric Nash equilibrium of the modified game and let q∗∗ be a

symmetric Nash equilibrium of the original game. Suppose that q∗ is not a symmetric

Nash equilibrium of the original game. Then there exists q̃ > q̂ such that,

π(q̃, (n− 1)q∗, p) > π(q∗, (n− 1)q∗, p) (8)

Since q̃ is a feasible choice for the original game, and q∗∗ is an equilibrium output for

the original game, we have:

π(q∗∗, (n− 1)q∗∗, p) ≥ π(q̃, (n− 1)q∗∗, p) (9)
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And, since q∗∗ ≤ q̃ (established in proving the only-if part of the Claim) and therefore

a feasible choice for the modified game, we have:

π(q∗, (n− 1)q∗, p) ≥ π(q∗∗, (n− 1)q∗, p) (10)

Combining inequalities (8) - (10) yields,

π(q̃, (n−1)q∗, p)−π(q̃, (n−1)q∗∗, p) > 0 ≥ π(q∗∗, (n−1)q∗, p)−π(q∗∗, (n−1)q∗∗, p) (11)

Recall that for any q and any p, π(q, y, p) is non-increasing in y. Then the left-hand

side of (11) implies that (n−1)q∗ < (n−1)q∗∗, while the right-hand side of (11) implies

that (n − 1)q∗ ≥ (n − 1)q∗∗ which is a contradiction. Hence, it must be that q∗ is an

equilibrium output choice of the original game. This demonstrates Claim 1.

Claim 2: The payoff function π(q, y, p) for the modified game satisfies the single cross-

ing property (SCP) in (q,−p) for all y ≥ 0.

Proof of Claim 2: Let p′ > p > p̂ and let q < q′ ≤ C
′−1(p̂). Assume that π(q′, y, p′) >

π(q, y, p′). We will show that this implies π(q′, y, p) > π(q, y, p). To do this, we will

seperately examine three cases.

(a) First, suppose that the price cap p binds for both quantities q and q′. Then since

p > p̂ immediately it must be that C
′
(q) < C

′
(q′) ≤ p̂ < p. Hence, π(z, y, p) =

zp − C(z) is strictly increasing in z for all z ∈ [q, q′]. This immediately implies

that π(q′, y, p) > π(q, y, p)

(b) Next, suppose that the price cap, p binds for q but not for q′. Since, the lower cap

does not bind for output q′, the higher cap must not have been binding either. So,

π(q′, y, p) = π(q′, y, p′) > π(q, y, p′) ≥ π(q, y, p).

(c) If the cap does not bind for either quantity, then the profits are the same under p

as they were under p′. This establishes Claim 2.

The arguments that establish that total output in symmetric equilibria of the mod-

ified game with the smallest and largest outputs are nonincreasing in the price cap are

analogous to the arguments used in Earle et al. [2007] in their proof of Theorem 1;

because the arguments are so similar to those in Earle et al., we do not include them

here. These arguments rely on the payoff function satisfying SCP in (q,−p). Our
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Claim 1 then extends the result to the original game. The welfare result follows from

the result for total output. Finally, for fixed n, welfare is maximized when each firm

chooses output so that its marginal cost equals the price determined via the inverse

demand function. A price cap equal to p̂ implements these output choices by firms.

Proof of Lemma 3.4

In Lemma 3.1 we show that the payoff function has increasing differences (ID) in total

output Q and rivals’ output y for the constant marginal cost case. For the case of

strictly increasing marginal cost, the payoff function can be viewed as the sum of the

payoff in the constant marginal cost case (with c = 0) and −C(Q − y). Each of the

two payoff functions in this sum satisfy ID; for the latter function, this holds since

−C(·) is strictly convex in output. Then since the sum of two functions that satisfy

ID also satisfies ID, the payoff function for the increasing marginal cost case satisfies

ID in (Q, y) on Φ. The remainder of the proof is identical to the proof in Lemma 3.1

for constant marginal cost.

Proof of Lemma 3.5

First, note that since p ≥ ATCm it is profitable for at least one firm to enter. Lemma

3.4 implies that it suffices to show that in the subgame with n∞ firms and a price cap

p ∈ [ATCm, p∞), equilibrium profit is strictly less than the cost of entry.

Let Q∗ be the equilibrium total output in the subgame with n∞ firms with price

cap p and let q∗ = Q∗

n∞
and π∗ be the associated output per firm and profit per firm,

respectively. First, suppose q∗ > q∞. Then we have:

K = q∞P (Q∞)− C(q∞)

≥ q∗P (q∗ + (n∞ − 1)q∞)− C(q∗)

> q∗P (Q∗)− C(q∗)

≥ q∗min{P (Q∗), p} − C(q∗)

= π∗

The first inequality follows by definition of q∞, while the strict inequality follows since

q∗ > q∞. Now suppose that q∗ ≤ q∞. See that:
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K = q∞P (Q∞)− C(q∞)

≥ q∗P (Q∞)− C(q∗)

> q∗p− C(q∗)

≥ q∗min{P (Q∗), p} − C(q∗)

= π∗

To see why the first inequality holds, note that Q∞ must satisfy P (Q∞) ≥ C ′(q∞).

Since C ′(·) is strictly increasing, we must have P (Q∞) > C ′(x) for all x ∈ [0, q∞).

Hence, the function xP (Q∞) − C(x) is strictly increasing in x for x ∈ [0, q∞). Since

q∗ ≤ q∞, the inequality holds. Finally, note that the strict inequality follows since

p < P (Q∞).

Hence, we must have π∗ < K.

Proof of Proposition 4

First note that since the entry constraint is binding, by Lemma 3.5 any price cap,

p ∈ [ATCm, p∞), results in the entrance of at least one firm and at most n∞− 1 firms.

First, consider the subgame with n∞− 1 firms under a price cap p ∈ [ATCm, p∞). We

will then show that maximal equilibrium profit in this subgame is at least as large as

the cost of entry.

Let π(Q, y, p) = (Q−y) min{P (Q), p}−C(Q−y) be profit for a firm if total output

is Q, rivals’ output is y, and the price cap is p ∈ [ATCm, p∞). Initially we suppose

that y = (n∞ − 2)C ′−1(p); that is, each rival firm sets its output such that marginal

cost is equal to the price cap. Note that π(Q, y, p) is continuous in Q. Also

∂π(Q, y, p)

∂Q
=

{
p− C ′(Q− y), Q < P−1(p)

P (Q)− (Q− y)P ′(Q)− C ′(Q− y), Q > P−1(p)

For Q > P−1(p) we have the following inequalities:

∂π(Q, y, p)

∂Q
< p− C ′(Q− y) < 0, (12)

where the first inequality follows because the inverse demand function is strictly de-

creasing in Q. The second inequality is due to the following argument. First, the

assumption that C ′( Q∞

n∞−1) > p∞ implies that, Q∞ > (n∞ − 1)C ′−1(p∞) ≥ (n∞ −
1)C ′−1(p) = y + C ′−1(p). Second, Q > P−1(p) implies Q > Q∞ so, Q − y > C ′−1(p).

Third, this implies that p− C ′(Q− y) < 0, which is the second inequality in equation
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(12) above.

Since the payoff function is strictly decreasing in Q for Q > P−1(p), it must be

that the best response Q to y is in the interval, [y, P−1(p)]. Strict convexity of the cost

function implies that the payoff function is strictly concave in Q in this interval. The

unique best response to y satisfies, p = C ′(Q − y); that is, it is optimal for a firm to

set its output such that marginal cost is equal to the price cap when each of its rivals

follows the same policy. The optimal choice of Q is in the interior of [y, P−1(p)] since

(by assumption) C ′( Q∞

n∞−1) > p∞. q∗ = C ′−1(p) is equilibrium output per firm in the

subgame with n∞− 1 firms. A proof-by-contradiction can be used to show that this is

the unique subgame equilibrium. Equilibrium profit is given by π∗(p) = q∗p− C(q∗)

To demonstrate (i), we show that in the subgame with n∞ − 1 firms for all p ∈
[ATCm, p∞) we have π∗(p) ≥ K. Let qm solve minxATC(x). Then see that:

π∗(p) = q∗p− C(q∗)

≥ qmp− C(qm)

≥ qmATCm − C(qm) = K

The first inequality follows by the optimality of q∗ and the second follows since p ≥
ATCm. Hence, the equilibrium number of firms is n∞−1. Then since C ′′ > 0, we have

that q∗ is increasing in p. Moreover, since p < p∞, we must have P
(
(n∞ − 1)C

′−1(p)
)
>

P
(
(n∞ − 1)C

′−1(p∞)
)
> p∞. So, (n∞ − 1)C

′−1(p) < Q∞. This establishes (i)− (iii).

Finally, note that for any relevant cap, equilibrium welfare is given by:

W ∗(p) =

∫ (n∞−1)C′−1(p)

0

P (z) dz − (n∞ − 1)C(C
′−1(p))− (n∞ − 1)K

Now see that

W ∗′(p) =
n∞ − 1

C ′′(C ′−1(p))

[
P
(

(n∞ − 1)C
′−1(p)

)
− p
]
> 0

,

which establishes (iv).

Proof of Lemma 4.1

As in Lemma 3.1 we define a firm’s payoff function in terms of total output Q and

rivals’ output y:
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π̃(Q, y, p) = E [(Q− y) min{P (Q, θ), p} − (Q− y)c]

Let θb(Q, p) satisfy P (Q, θb(Q, p)) = p. So when total output is Q and the cap is p the

price cap will bind for shocks θ ≥ θb(Q, p). Now define

P̃ (Q, p) = E[min{P (Q, θ), p}] =

∫ θb(Q,p)

θ

P (Q, θ) dF (θ) +

∫ θ

θb(Q,p)

p dF (θ)

Since f(θ) > 0 for all θ ∈ (θ, θ], and andP1(Q, θ) < 0 for all Q ≥ y, θ ∈ Θ we have:

P̃1(Q, p) =

∫ θb(Q,p)

θ

P1(Q, θ) dF (θ) ≤ 0

Then π̃(Q, y, p) = (Q−y)
(
P̃ (Q, p)− c

)
. The cross partial derivative of π̃ with respect

to Q and y on Φ is given by −P̃1(Q, p) ≥ 0. This establishes that π̃ has ID in (Q, y)

on Φ. The remainder of the proof is analogous to Lemma 3.1.

Proof of Proposition 5

For notational convenience, in this proof we let n∞ ≡ n. Concavity of p(·) implies the

existence of a unique symmetric period two subgame equilibrium. Also, concavity of

p(·) implies that, for a fixed number of firms, equilibrium profit is continuous in the

price cap. If π∞ > K then by the continuity of period two profit in p, there is an

interval of price caps below ρn such that the equilibrium number of entrants remains

at n. For a fixed number of firms, Grimm and Zottl [2010] establish that any price

cap p ∈ [MRn, ρn) both increases output and total welfare. Thus, a price cap in the

intersection of [MRn, ρn) and the set of price caps for which n firms enter will leave

the equilibrium number of firms unchanged and will increase both output and welfare.

If π∞ = K then there exists a range of price caps below ρ∞ such that the equilibrium

number of firms decreases by exactly one. Also, if π∞ = K then by Assumption (1d)

we must have n ≥ 2. We let Qm denote equilibrium total output in the absence of a

price cap when m firms enter in the first stage. We also define per-firm output and

profit analogously. We begin by demonstrating that πn−1 > K.

In a subgame with no cap and m firms, the symmetric equilibrium condition is

given by:
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µ− c+ p(Qm) +
Qm

m
p′(Qm) = 0 (13)

where µ = E[θ]. Given that p(Q) is strictly decreasing and concave, equation (13)

implies that Qn−1 < Qn and qn−1 > qn. The inequality for total output implies that

p(Qn−1) > p(Qn), and this inequality combined with the inequality for output per firm,

implies that πn−1 > πn = π∞ = K.

We now demonstrate that in the absence of a price cap, total equilibrium welfare

is higher in the subgame with n − 1 firms than with n firms. Let ∆Q ≡ Qn − Qn−1.

We claim that ∆Q ≤ 1
n
qn. To establish the claim, we will proceed by contradiction.

Suppose that ∆Q > 1
n
qn. Equivalently, Qn−1 < g where g ≡ Qn − 1

n
qn.

Now , since g > Qn−1 and since p is decreasing and concave, equation (13) implies

that:

0 > µ− c+ p(g) +
g

n− 1
p′(g) (14)

Moreover, the concavity of p implies that:

p(g) ≥ p(Qn)−
(

1

n
qn

)
p′(g) (15)

Then equations (14) and (15) together imply that

0 > µ− c+ p(Qn) + qnp
′(g)

Note that g < Qn =⇒ p′(g) ≥ p′(Qn). So,

0 > µ− c+ p(Qn) + qnp
′(Qn)

But this contradicts (13) for m = n. So we must have 0 ≤ ∆Qn ≤ 1
n
qn.

Now, let

B(z) ≡ E

[∫ z

0

P (s, θ) ds

]
= µz + b(z)

where

b(z) ≡
∫ z

0

p(s) ds

Let W (z,m) = B(z)−cz−mK denote total welfare when total production is z and
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m firms enter. Let ∆W ≡ W (Qn−1, n−1)−W (Qn, n) denote the change in equilibrium

welfare when the number of firms decreases by one in the absence of a cap. Note that

πn = K implies that

∆W = − [B(Qn)−B(Qn−1)− (∆Qn)c] + πn

Note that the term in square brackets above is given by

(µ− c)∆Q+

∫ Qn

Qn−1

p(s) ds

Now, let T (s;x) = p′(x)s + p(x) − p′(x)x denote the equation of the line tangent

to p at output x. Note that since p is concave and decreasing, for all s ∈ [Qn−1, Qn],

p(s) ≤ T (s,Qn). This means∫ Qn

Qn−1

p(s) ds ≤
∫ Qn

Qn−1

T (s;Qn) ds = ∆Qp(Qn)− 1

2
(∆Q)2p′(Qn)

Plugging this back into the expression for ∆W we see that:

∆W ≥ 1

2
p′(Qn)(∆Qn)2 − (p(Qn) + µ− c) ∆Q+ πn

Then, from (13), it follows that p(Qn) + µ − c = −p′(Qn)qn and πn = −p′(Qn)(qn)2.

Combining this with the fact that ∆Q ≤ 1
n
qn, p′ < 0 and n ≥ 2 yields:

∆W ≥ 1
2
p′(Qn)(∆Q)2 + p′(Qn)qn∆Q− p′(Qn)(qn)2

≥ 1
2
p′(Qn)( 1

n
qn)2 + p′(Qm) 1

n
(qn)2 − p′(Qn)(qn)2

= p′(Qn)q2n
(

1
2n2 + 1

n
− 1
)
> 0

Thus we see that, in the absence of a price cap total welfare increases when the num-

ber of firms that enter decreases by one. Let MRm denote the maximal equilibrium

marginal revenue when m firms enter and there is no price cap. Clearly, by assumptions

placed on P ,

MRm = θ + p(Q∞m ) + p′(Q∞m )q∞m
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By the first order equilibrium conditions, it follows that p(Q∞m ) + p′(Q∞m )q∞m = c − µ.

Hence, independent of m it is clear that

MRm = θ + c− µ

and since p′ < 0:

MRm < θ + p(Q∞m ) = ρm

Since MRm is independent of m, we drop this subscript and write MR. Let ρm =

P (Q∞m , θ). Now, since π∞ = K and πn−1 > K, there exists a range of price caps strictly

less than ρn such that the equilibrium number of firms will decrease by exactly one12.

Let p̂1 denote the smallest of these price caps. Let p̂ ≡ max{p̂1,MR}. Then since

MR < ρn and p̂1 < ρn we have p̂ < ρn. Also see that under any price cap p ∈ [p̂, ρn)

the equilibrium number of firms is n− 1. Finally note that by lemma (4.1) it is clear

that ρn ≤ ρn−1.

Choose p ∈ [p̂, ρn). Then since p ∈ [MR, ρn−1) by Grimm and Zottl [2010] Theo-

rem 1, it follows that equilibrium welfare under the price cap is strictly greater than

equilibrium welfare in the subgame with n− 1 firms and no cap. Since welfare in the

absence of a cap when n − 1 firms enter is strictly higher than welfare when n firms

enter, the result follows.

Proof of Lemma 4.2

Recall that the necessary condition for equilibrium capacities is:

∫ θ

θ̃(Xn)

[ θ + p(Xn) + xnp
′(Xn)] dF (θ) = c (16)

By the definition of θ̃(Xm) and θ̃(Xn) this necessary condition may be re-written as:

∫ θ

θ̃(Xm)

[
θ − θ̃(Xm)

]
dF (θ) =

∫ θ

θ̃(Xn)

[
θ − θ̃(Xn)

]
dF (θ) = c

Let G(s) =
∫ θ
s
[θ − s ]dF (θ) and note that G′(s) =

∫ θ
s
−1 dF (θ). Note that G′(s) < 0

for all s < θ. Then, the first-order conditions imply that G(θ̃(Xm)) = G(θ̃(Xn)). Since

12Once again, this follows since concavity of P implies the continuity of equilibrium profit in the
price cap
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θ̃(Xm) < θ and θ̃(Xn) < θ it must be that θ̃(Xm) = θ̃(Xn).

Proof of Lemma 4.3

By Lemma 4.2 it follows that θ̃(Xn) = θ̃(Xn−1) = θ̃. First, fix θ < θ̃. In this case we

have Qn(θ) = Q̃n(θ) and Qn−1(θ) = Q̃n−1(θ). Both output choices must satisfy their

respective first-order conditions:

θ + p(Q̃n(θ)) + q̃n(θ)p′(Q̃n(θ)) = 0

and

θ + p(Q̃n−1(θ)) + q̃n−1(θ)p
′(Q̃n−1(θ)) = 0

From the first-order conditions, the concavity of p together with the fact that p′ < 0

implies that Q̃n(θ) > Q̃n−1(θ) and q̃n(θ) < q̃n−1(θ)

Now, since θ̃(Xn) = θ̃(Xn−1) = θ̃ it follows from the definitions of θ̃(Xn) and

θ̃(Xn−1) that

θ̃ + p(Xn) + xnp
′(Xn) = 0

and

θ̃ + p(Xn−1) + xn−1p
′(Xn−1) = 0

Once again, these equations together with our assumptions on p ensure that Xn > Xn−1

and xn < xn−1. This establishes (i) and (ii).

Note that the first-order condition given in (16) implies that(∫ θ

θ̃(Xn−1)

[θ + p(Xn−1) ]dF (θ)− c

)
> 0 (17)

Then by parts (i) and (ii) above, we have:
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πn−1 =
∫ θ̃(Xn−1)

θ
q̃n−1(θ)[θ + p(Q̃n−1(θ))] dF (θ) + xn−1

(∫ θ
θ̃(Xn−1)

[θ + p(Xn−1) ]dF (θ)− c
)

>
∫ θ̃(Xn)

θ
q̃n(θ)[θ + p(Q̃n−1(θ))] dF (θ) + xn

(∫ θ
θ̃(Xn)

[θ + p(Xn−1) ]dF (θ)− c
)

>
∫ θ̃(Xn)

θ
q̃n(θ)[θ + p(Q̃n(θ))] dF (θ) + xn

(∫ θ
θ̃(Xn)

[θ + p(Xn) ]dF (θ)− c
)

= πn

The first inequality holds since θ̃(Xn−1) = θ̃(Xn), q̃n−1 > q̃n, xn−1 > xn and (17).

The second inequality holds since Q̃n > Q̃n−1 and Xn > Xn−1.

Proof of Proposition 6

As in the proof of Proposition 4, we demonstrate our result by showing that welfare in

the subgame with n firms and no price cap is strictly lower than welfare in the subgame

with n − 1 firms and no cap. For each θ ∈ Θ let ∆Q(θ) ≡ Qn(θ) − Qn−1(θ). We will

first demonstrate that for each θ, ∆Q(θ) ≤ 1
n
qn(θ).

Using the fact that θ̃(Xn) = θ̃(Xn−1) we first examine the case when θ < θ̃. In this

case, we use the first order conditions and the proof is identical to the proof in the

previous section. For the case when θ > θ̃ we again use the definition of θ̃ and follow

a similar argument as in the previous section.

Thus, for each θ ∆Q(θ) ≤ 1
n
qn(θ)

Now, let Wm denote equilibrium expected welfare in the subgame with m firms.

Let ∆W ≡ Wn−1 −Wn. Note that

Wn = E

[∫ Qn(θ)

0

[θ + p(s) ]ds

]
− cXn − nπn

Which may be written:

Wn =

∫ θ̃

θ

[∫ Q̃n(θ)

0

[θ + p(s) ]ds

]
dF (θ) +

∫ θ

θ̃

[∫ Xn

0

[θ + p(s)] ds

]
dF (θ)− cXn − nπn

Let ∆W = Wn−1 −Wn and note that

33



∆W = −
∫ θ̃

θ

[∫ Q̃n(θ)

Q̃n−1(θ)

[θ + p(s) ]ds

]
dF (θ)−

∫ θ

θ̃

[∫ Xn

Xn−1

[θ + p(s)] ds

]
dF (θ)+(∆X)c+πn

Now, following a similar argument as in the previous section, using the concavity

of p, we may show that for each θ ∈ [θ, θ̃]

∫ Q̃n(θ)

Q̃n−1(θ)

[θ + p(s) ]ds ≤ ∆Q̃(θ)(θ + p(Q̃n(θ)))− 1

2
(∆Q̃(θ))2p′(Q̃n(θ)) ≡ A(θ)

Moreover, for each θ ∈ [θ̃, θ]∫ Xn

Xn−1

[θ + p(s) ]ds ≤ ∆X(θ + p(Xn))− 1

2
(∆X)2p′(Xn) ≡ B(θ)

Now, using the first-order conditions we may write:

πn =

(
−
∫ θ̃

θ

(q̃n(θ))2p′(Q̃n(θ)) dF (θ)

)
+

(
−
∫ θ

θ̃

(xn)2p′(Xn) dF (θ)

)
≡ πAn + πBn

Hence, it follows that

∆W ≥ −
∫ θ̃

θ

A(θ) dF (θ)−
∫ θ

θ̃

B(θ) dF (θ) + (∆X)c+ πAn + πBn

Now, note that

−
∫ θ̃

θ

A(θ) dF (θ)+πAn =

∫ θ̃

θ

[
−∆Q̃(θ)(θ + p(Q̃n(θ))) +

1

2
(∆Q̃(θ))2p′(Q̃n(θ))− (q̃n(θ))2p′(Q̃n(θ))

]
dF (θ)

Using the first-order conditions once again, we know that for each θ ∈ [θ, θ̃] it holds

that θ+ Q̃n = −q̃n(θ)p′(Q̃n). This, combined with the fact that ∆Q̃(θ) ≤ 1
n
q̃n(θ) allow

us to write
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−
∫ θ̃

θ

A(θ) dF (θ) + πAn ≥
∫ θ̃

θ

(q̃n(θ)p′(Q̃n(θ))

(
1

n
+

1

2n2
− 1

)
dF (θ) > 0

Now also see that

−
∫ θ
θ̃
B(θ) dF (θ) + (∆X)c+ πBn

= −∆X
[∫ θ

θ̃
(θ + p(Xn)) dF (θ)− c

]
+
∫ θ
θ̃

[
1
2
(∆X)2p′(Xn)− (xn)2p′(Xn)

]
dF (θ)

From the first-order condition, it follows that

∫ θ

θ̃

(θ + p(Xn)) dF (θ)− c =

∫ θ

θ̃

−xnp′(Xn) dF (θ)

This, combined with the fact that ∆X ≤ 1
n
xn allows us to write:

−
∫ θ

θ̃

B(θ) dF (θ) + (∆X)c+ πBn ≥ (xn)2p′(Xn)

∫ θ

θ̃

(
1

n
+

1

2n2
− 1

)
dF (θ) > 0

It follows immediately that ∆W > 0. The remainder of the proof works identically

to the proof of Proposition 5. The result follows.
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