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Abstract. This paper presents a new estimator for counterfactuals in du-

ration models. The counterfactual in a duration model is the length of the spell in

case the regressor would have been different. We introduce the structural duration

function, which gives these counterfactuals. The advantage of focusing on counter-

factuals is that one does not need to identify the mixed proportional hazard model.

In particular, we present examples in which the mixed proportional hazard model is

unidentified or has a singular information matrix but our estimator for counterfactu-

als still converges at rate 12 where  is the number of observations. We apply the

structural duration function to simulate important policy effects, including a change

in welfare benefits.
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1. Introduction

The estimation of duration models has been the subject of considerable attention

in econometrics since the late seventies. Lancaster (1979) introduced the mixed propor-

tional hazard model in which the hazard rate is a function of a regressor  unobserved

heterogeneity  and a function of time ()

( |  ) = () (1)
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where  and  are independent. The function () is often referred to as the baseline

hazard. The popularity of the mixed proportional hazard model is partly due to the fact

that it nests two alternative explanations for the hazard rate, (|) to decrease with

time. In particular, estimating the mixed proportional hazard model gives the relative

importance of the heterogeneity,  and genuine duration dependence, ()1 Lancaster

(1979) uses functional form assumptions on () and distributional assumptions on 

to identify the model. Examples by Lancaster and Nickell (1980) and Heckman and

Singer (1984a), however, show the sensitivity to these functional form and distributional

assumptions. Elbers and Ridder (1982) and Heckman and Singer (1984b) show that the

mixed proportional hazard model is semi-parametrically identified. It took a long time,

however, before an estimator was developed that avoided functional form assumptions

on () or distributional assumptions on  Horowitz (1996) shows how to estimate2 the

closely related transformation model,

() = +  (2)

where |1| = 1

where  is a vector of regressors. This model does not impose the identifying assumption

of Elbers and Ridder (1982) that  ∞ or the identifying assumption of Heckman and

Singer (1984b) that the right tail of the distribution of  decreases at a known rate. For

this reason, normalizing  is necessary for identification, for example,  = |1| where 1
is the first element of the parameter vector  This implies that one can only estimate the

integrated baseline hazard up to an unknown power transformation, Λ()1|1| = ()

In particular, one cannot estimate  the elasticity of the hazard with respect to the

regressors, and one usually cannot establish whether () is increasing or decreasing.

Horowitz (1999) assumes that 3 ∞ so that the mixed proportional hazard model

is identified and derives a nonparametric estimator for (). In particular, Horowitz

(1999) uses the fact that ( ) is distributed as Weibull and uses durations that are close

1See Lancaster (1990) and Van den Berg (2001) for overviews and Han and Hausman (1990) and Meyer

(1996) for applications.
2Ridder (1990) gives identification proofs for the closely linked generalized accelerated failure time

model and Hausman and Woutersen (2005) estimate a duration model with time-varying regressors;

Honoré and Hu (2010) give a recent review of the transformation model.
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to zero3 to estimate 1 Under Horowitz’ (1999) assumptions, the fastest possible rate of

convergence for the integrated baseline hazard and the regressor parameter is −25 see

Ishwaran (1996), and the rate of convergence of Horowitz’ (1999) estimator is arbitrarily

close to this rate.

This paper introduces the structural duration function, a function that gives the du-

ration of an individual conditional on possible values of the regressor, and conditional

on the unobservables. We use the structural duration function to answer counterfactual

questions such as “how long would the duration of individual  have lasted if his regressor

was ∗ rather than ” and “what is the derivative of the duration with respect to a

particular regressor”. Thus, the structural duration function is a conditional expectation

function for each individual in which we condition on the unobservables4  In the linear

model  = +, such conditioning is done implicitly when the marginal effect is calcu-

lated as 4 = (∗ −) In a nonlinear model, one needs to make the conditioning on

the stochastic terms explicit.5 The advantage of this approach is that the structural du-

ration function is identified under milder restrictions than the mixed proportional hazard

model. Moreover, singularity of the information matrix of the mixed proportional hazard

model does not prevent −12 estimation of the structural duration function. The struc-

tural duration function is an extension of the transformation model of Horowitz (1996)

and we present our estimator in his framework.

We show that, under Lancaster’s (1979) assumptions, the counterfactual has the form

 ∗ =  exp{(∗ −)}

where  is the Weibull parameter,  is the observed regressor,  is the observed outcome

and  ∗ is the duration that would have happened if∗ were the regressor. The parameters

{ } are estimated by Lancaster using maximum likelihood. Lancaster notes that the

parameter  is imprecisely estimated for his dataset of more than 500 individuals. Hahn

(1994) shows that, without parametric assumptions on the heterogeneity,  cannot be

3Van den Berg (2001) argues against relying on very short spells for estimating a duration model.
4 In the mixed proportional hazard model, one can derive the following equality, ln{

 
0
()} =

− − ln() + ln{− ln()} where U is uniformly distributed on [0,1]; we condition on  and  in this

case and we condition on  when we consider the transformation model of equation (2).
5 See also Vytlacil (2002).
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estimated at rate −12 We note that the estimated ratio  in Lancaster’s study

remains constant for several values of  Moreover,  can be estimated at rate −12

even without a distributional assumption on the heterogeneity. Thus, applying the idea

of the structural duration function to Lancaster’s model removes the applied problem of

unstable estimates and the theoretical problem of not being able to estimate the object

of interest at rate −12

This paper is organized as follows. Section 2 discusses the mixed proportional hazard

model and the transformation model. It also shows that our estimator converges at

the regular rate and is asymptotically normally distributed. Section 3 suggests several

parametric estimators for the structural duration function. Section 4 suggests to estimate

the median if spells are censored. Section 5 applies our method to the National Evaluation

of Welfare-to-Work Strategies studies. Section 6 concludes and the proofs are in the

appendices.

2. The Mixed Proportional Hazard Model and Counterfactuals

Lancaster (1979) introduced the mixed proportional hazard model in which the hazard is

a function of a regressor  which does not change over time unobserved heterogeneity 

and a function of time ()

( |  ) = () (3)

The function () is often referred to as the baseline hazard. Integrating () with respect

to time and taking logarithms gives

ln{Λ( )} = − − ln() + ln{− ln()} (4)

where Λ() =
R 
0
() and  is uniformly distributed on [0,1] This representation shows

the double stochastic nature of the mixed proportional hazard model in the sense that

the duration depends on unobserved heterogeneity as well as the uniformly distributed 

In this section, we construct the structural duration function. In particular, we

(i) estimate how long a spell of an individual would have lasted if the regressors were

different; and

(ii) estimate the derivative of the duration of an individual with respect to a regressor.
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It is important to note that the mixed proportional hazard model is not required to

be identified in order to calculate counterfactuals. It seems that this observation has not

been made before. Horowitz (1996) shows how to estimate a closely related transformation

model,

() = +  (5)

where |1| = 1

where  is a vector. This model does not impose the identifying assumption of Elbers

and Ridder (1982) that   ∞ or the identifying assumption of Heckman and Singer

(1984) that the right tail of the distribution of  decreases at a known rate. For this

reason, normalizing 1 is necessary for identification.

Let  ∗(∗  ) denote6 the duration if the regressors were∗ instead of the observed

 We condition on the unobserved  Then

( ∗) = ∗+ 

= ∗+( )−

Consider the structural duration function (∗ ) to calculate  ∗ In particular,

 ∗ = (∗ ) = −1{∗−+( )} (6)

Thus, for known() −1() and  one can construct the counterfactual  ∗We estimate

(∗ ) by replacing () −1() and  by estimators. There are several estimators for

; see Horowitz (1996) and Chen (2002). In the application, we use the estimators of Han

(1987) and Cavanagh and Sherman (1998). Horowitz (1996) and Chen (2002) assume that

() is strictly increasing. We also assume this to ensure that () is invertible. We use

Chen’s (2002) estimator for (). This estimator, denoted by ̂() is piece-wise constant

and we therefore define an estimator of the inverse of ̂() as follows. Let  = ̂() where

 is the smallest  for which ̂() =  We use ̂(∗ ̂) to denote our estimator for

(∗ ) and define it as follows,

̂(∗ ̂) = ̂{∗ ̂( )−̂}

= ̂{( −∗)̂+ ̂( )}
6We often surpress the arguments and write ∗ rather then ∗(∗  )
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where ̂ is an estimator for 

Chen (2002) shows that the following assumptions ensure
√
 -convergence of b()

A1. Let ( ) = + Let {   = 1  } be a random sample of { }

and let  be independent of .

A2. (a) |1| = 1, (b) the distribution of the first component of  conditional on

e = e is absolutely continuous with respect to the Lebesque measure, (c) the support
of  is not contained in any proper linear subspace of R, where  is the number of

exogenous regressors.

A3. () is strictly increasing, (0) = 0, [(1 − )(2 + )] ⊂  , for a small

  0, for some 0 1 and 2 in the support of  , with  a compact interval.

A4. The conditional density of  given e = e and the density of  at , (|e)
and (), are twice differentiable in , the derivatives are uniformly bounded, and e has

finite third-order moments.

Define 1{1 1 2 2()} = [1 {1 ≥ } − 1 {2 ≥ 0}] · 1 {1− 2 ≥  ()} and

2{1 1 2 2()} = [1 {2 ≥ }− 1 {1 ≥ 0}] · 1 {2− 1 ≥  ()} 

A5.  () = 1
2

h
21{1122()}

{()}2 +
22{1122()}

{()}2
i
is negative for each  ∈£

 
¤
for any   0, and uniformly bounded away from zero.

A6. The first step estimator ̂ is
√
 − , i.e.

√
(̂− ) = (1).

We also assume that the following assumption holds.

A7. () is twice continuously differentiable on  ∈ (0 ] and the counterfactual

regressor ∗ is independent of 

Define  () =
()


for all  ∈ (0 ] and define  =  ( ∗) = ( )− (∗ −) and

−1() as the inverse of ( ∗)We now state the theorems concerning the counterfactual

duration.

Theorem 1

Under assumptions A1-A7, the estimated counterfactual duration is defined as

b ∗ = b−1() (7)
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with the following properties

() for any   0

sup∈[−1()−1()]
12
¯̄̄ b−1 ()−−1 () + 1

(−1())

³ b ¡
−1 ()

¢− 
´¯̄̄

−→ 0

() b−1() is a uniformly consistent estimator of −1() i.e. for any   0

sup∈[−1()−1()]
¯̄̄ b−1 ()−−1 ()

¯̄̄
=  (1) 

Proof: See the appendix.

Theorem 2 (Structural Duration Function)

Let assumptions A1-A7 hold. Let

c ∗(∗  ) = ̂(∗ ̂) = b−1{ b ( ) + (∗ −)̂}

and

 ∗(∗  ) = (∗ ) = −1{∗+ }

= −1{ ( ) + (∗ −)}

Then

̂(∗ ̂)→

(∗ )

Let assumptions A1-A7 hold and let  6= ∗ Then

√
{̂(∗ ̂)−(∗ )}→


(0Ω)

where Ω = [{̂(∗ ̂)−(∗ )}2]

Proof: See the appendix.

Another function that is of interest in applied work is the derivative function, the

partial derivative of a potential outcome  ∗ with respect to a regressor 
∗


 Thus,

∗


is the partial derivative of 
(∗ ) with respect to  Let 

(∗ ) denote

the partial derivative of ( ) with respect to , evaluated at 
∗

 ∗


= 
(∗ ) =


( )



|=∗ 
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Consider writing the error term  as a function of the duration  and the regressor 

() = ( )−

Total differentiating with respect to  and  gives





=
()

()
= − 

 0( )


Consider the estimator

\
(




) =  (
∗ ) =

̂c 0( ∗)


where c 0() is an estimator for the derivative of () with respect to its argument. We

base an estimator for  0( ) on Chen’s (2002) estimator for ( ) Consider

\ 0( ∗) =
1



Z ∞
−∞

(



)̂(+  ∗)

where () is a derivative kernel as in Härdle (1990). In particular, we assume the

following.

A8 Let () be a twice continuously differentiable function with bounded derivatives

and
R∞
−∞() = 0

R∞
−∞ () = 1 and

R∞
−∞ 2() = 0

Theorem 3 (Derivative of structural duration function)

Let assumptions A1-A8 hold. Let  =  ·−15 for   0 Then

25{ (
∗ )−  ∗



} = (1)

Undersmoothing (i.e. choosing a  that goes to zero at a rate slower than −15)

yields a normally distributed estimator for the derivative. As we now demonstrate by

example,the mixed proportional hazard model is not required to be identified in order to

calculate counterfactuals or derivatives. It seems that this observation has not been made

before. In particular, consider the following two data generating processes.

DGP I: The baseline hazard is constant and there is no heterogeneity, so

(| ) = 
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where  is a scalar exogenous regressor that is continuously distributed and  6= 0. This

hazard yields the following survival function:

̄ (|) = −


DGP II: Consider the same regressor as in DGP I and let

(| ) = 22

where () ∝ −32−1(4)

This Lèvy mixing distribution is discussed by Woutersen (2003) and this model yields the

same survival function as DGP I.

Note that the survival function ̄ (|) = −
 does not identify the mixed pro-

portional hazard model. For simplicity, we assume that   0 In large samples, the

empirical survival function converges to ̄ (|) = −
 Without imposing parametric

assumptions on  our estimate for () converges to

[() =
1


ln()

We now use c ∗(∗  ) = b−1{ b ( )+(∗−)̂} to find counterfactuals. Note that
 is a scalar and that ̂1 is normalized and assumed to be positive, so that 1 = 1 Also

note that b−1() = exp( · ) Thus,
c ∗(∗  ) = exp[{ 1


ln( ) + (∗ −)}]

=  exp{{(∗ −)}

In particular, consider individual  and consider what the duration of this individual would

have been if the regressor was ∗ instead of 

c ∗(
∗
  ) =  exp{{(∗ −)}

Moreover,





= −

We thus have estimated counterfactuals without calculating the baseline hazard or the

mixing distribution, both of which are unidentified in this example.
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So far, we assumed that the researcher has one particular value of the counterfactual

in mind for individual  ∗  Off course, the researcher may be interested in a distribution

of the counterfactual regressor, denoted by ∗ (
∗
 )
. In that case, the researcher can

sample from ∗ (
∗
 )
and calculate c ∗(

∗
  ) for each realization of 

∗
  Given that

() and its inverse are differentiable, the distribution of c ∗(
∗
  ) converges to

the distribution of  ∗(
∗
  ) This may be useful in some applications where the

treatment can only be extended to a subset of the population.7

3. Parametric estimators of the Mixed Proportional Hazard Model and
the Structural Duration Function

The structural duration function can also be estimated when () and/or  is parametric.

The advantage of the structural duration function is that (i) it can remove an empirical

identification problem when both () and  are parametric, and (ii) it can increase the

rate of convergence for a moment estimator if  is nonparametric. Assuming a parametric

() can be a reasonable choice if the sample size is small or the transformation model fails

to be nonparametrically identified, e.g. in case no regressor is continuously distributed.

3.1. Parametric  parametric  . Lancaster (1979) introduced the mixed propor-

tional hazard model; he used a Weibull function for the baseline hazard and modelled the

heterogeneity as a gamma distribution. Writing his model as a transformation model, we

have

ln() =  − ln() + ln()

where  has a gamma distribution and  has a unit exponential distribution. Thus,

ln( ) =



− ln(0) + ln(0)

=  − ln(0) + ln(0)

where 0 and 0 have a generalized gamma distribution. It is noteworthy that in Lan-

caster’s (1979) application, the Weibull parameter  is weakly identified in the sense that

the standard error of the parameter estimate for  is “quite large” (Lancaster, page 954).

Lancaster (1979) reports his results in Tables IV and V. In Table IV, Lancaster restricts

7We thank an anonymous referee for stressing the importance of a stochastic ∗ 
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 to be one. In Table V,  is estimated and the estimated values of  decrease by about

10%. For the transformation model, the restriction that  = 1 implies that  is a gen-

eralized gamma and  is a unit exponential random variable. Apparently, allowing for

generalized gamma distributions and imposing the restriction  = 1 hardly changes the

estimate of  = 

 The structural duration function relies only on . Therefore, the coun-

terfactuals based on Lancaster’s (1979) Table IV nearly coincide with the counterfactuals

based on Lancaster’s (1979) Table V. Thus, the approach that uses the counterfactual du-

ration function reconciles and somewhat explains the different estimates Lancaster (1979)

obtains in Tables IV and V.

3.2. Parametric  nonparametric  . Honoré (1990) introduces an estimator for

the Weibull model that only requires the mixing distribution to have finite mean. This

estimator only uses durations that are very short and this estimator converges at a rate

slower than −13 Honoré (1990) suggests that his estimator could be used as a first step

and that, in a second step, the coefficients of the regressors would be estimated. Thus,

in the second step, ln() would be regressed on  This second step is equivalent to

estimating the model

ln( ) =


̂
+ 

where  and  are independent and ̂ denotes Honoré’s (1990) estimator for the Weibull

coefficient. Applying the approach of this paper would imply estimating  using the

following model:

ln( ) =  + 

The parameter  can be estimated at rate−12 and counterfactuals would be constructed

using estimates for  Note that the rate of convergence of ̂
̂
is slower than −13 which

is slower than the rate of convergence of ̂ Thus, as far as counterfactuals are concerned,

one may want to avoid estimating  using arbitrarily short durations.

Kiefer and Wolfowitz (1956) consider likelihood models and account for heterogeneity

by extending their likelihood model to include a discrete mixture. Heckman and Singer

(1984a) apply Kiefer and Wolfowitz (1956) to the mixed proportional hazard model and
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derive an estimator that uses a parametric hazard rate. However, the rate of convergence

of the estimator of Kiefer and Wolfowitz (1956) is unknown.

For any integrated baseline hazard rate, we have the equality

Λ() = ()

Choosing a parametric form for Λ() implies that () is a parametric function. Let

(; ) denote this parametric function so that

(; ) =  + 

The following moments can be used to estimate  :

() = {( ; )−}

Identification of the mixed proportional hazard model implies that (;) is not closed

under the power transformation.8 Therefore, under regularity conditions of Ridder and

Woutersen (2003, proposition 2), the information matrix is regular. As a consequence,

the parameter  (; ) and (; )−1 can all be estimated at rate −12

3.3. Nonparametric  parametric  . Meyer (1990), Meyer (1996), and Han and

Hausman (1990) approximate the baseline hazard using a piece-wise constant. This gives

a flexible parametrization of Λ() = () The mixing distribution is then approximated

using the gamma distribution. The idea behind these estimators is that the flexibility

in Λ() = () makes up for the restricted distributional form of the heterogeneity.

As discussed above,  may not be well identified in the Weibull model with gamma

heterogeneity and changes if one switches from a gamma heterogeneity to a generalized

gamma heterogeneity.

3.4. Nonparametric  nonparametric  . Horowitz (1999) introduces an estima-

tor for the mixed proportional hazard model that allows for a nonparametric hazard and

nonparametric heterogeneity. In particular, Horowitz (1999) considers Λ() = () He

estimates () using Horowitz (1996) and estimates  using an estimator that is similar

8A set of functions H is closed under the power transformation if () ∈ H implies {()} ∈ H for

every   0 Here, however, we have () ∈ H implies {()} ∈ H for every   0  6= 1
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to Honoré (1990, 1998). The rate of convergence of Horowitz’ (1999) estimator is deter-

mined by the rate of convergence of the estimator for  The advantage of the structural

duration function is that it avoids estimating  and, therefore, converges at rate −12

3.5. Weibull hazard, Gamma Mixing Distribution. We showed that, under Lan-

caster’s (1979) assumptions, the counterfactual has the form

 ∗ =  exp{(∗ −)}

where  is the observed regressor,  is the observed outcome and  ∗ is the duration that

would have happened if ∗ was the regressor. The parameters { } are estimated by

Lancaster using maximum likelihood. Lancaster notes that the estimate of  depends

a lot on which regressors he includes and this “worries” him. Hahn (1994) shows that,

without parametric assumptions on the heterogeneity,  cannot be estimated at rate

−12 We note that the estimated ratio  in Lancaster’s study depends less on which

regressors are included than when  or  are compared separately. Moreover,  can be

estimated at rate −12

4. Structural Duration Function for unfinished spells

For completed spells, we can condition on the unobserved error term  and calculate the

structural duration function. The intuition for this result is that, for known  and ()

we can calculate  = ( ) −  and  ∗ = −1(∗ + ) However, for censored or

unfinished spells, we do not observe the duration  and therefore cannot calculate 

Suppose that duration spells are censored at  and that we observe the minimum of 

and  Note that,for known  and known()  ≥  implies that  ≥ ()− so that

we can sample from ( ≥ ()−) Thus, we need to ensure that the estimators for

 and () are still consistent and asymptotically normally distributed in the presence of

censoring. Fortunately, the estimator for  is still consistent and asymptotically normally

distributed as long as assumption A10 below holds. Also, Chen (2002) also considers the

model estimation for censored data and adds three assumptions to cover this case9 . In

9Gørgens and Horowitz (1996) also derive an estimator for () for this case of censored data.
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particular, the model we use for the censored observations is

( ) = +  (8)

where   is unobserved. We observe instead  = min{  }, and , with  a random

censoring variable. As before, we normalize normalize (0) = 0 for a finite 0 and use

a scale normalization for the coefficient of the first component of , |1| = 1. Assume

 = 1{ ≥ }, 0 = 1{ ≥ 0}, and () = (  ) for any , e is the vector

containing all but the first component of, and  = 1 {  ≤ }. Following Chen (2002),

the estimator of the transformation model ( ) for censored data is

̂() = argmax
()

 (()) = argmax
()

1

 (− 1)
X
6=

Ã


̂ ()
− 0

̂ (0)

!
1{̂− ̂ ≥ ()}

(9)

for a given  ∈ [1 2]  ̂ a consistent estimator for  and ̂ the Kaplan-Meier estimator

or the product limit estimator for the survival function  The large sample properties

of the ̂() estimator, when the data is censored, are presented by Chen (2002) in

Theorem 2. For the censored case, Chen (2002) uses three additional assumptions.

A9. {   = 1 2  } is a random sample of {} in (8) and  is independent

of 

A10. The censoring variable  is independent of ( ) and continuously distributed

with positive density on interval containing 0 1 2

Define 1{1 1 2 2()} =
³³

1{1≥}
()

− 1{2≥0}
(0)

´´
1 {1̂− 2̂ ≥  ()} and

2{1 1 2 2()} =
³³

1{2≥}
()

− 1{1≥0}
(0)

´´
1 {2̂− 1̂ ≥  ()} 

A11. () =
1
2

h
21{1122()}

{()}2 +
22{1122()}

{()}2
i
is negative for

each  ∈ [1 2] and uniformly bounded away from zero.

Chen’s (2002) Theorem 2 states that under assumptions A2-A4, A6 and A9-A11,

() sup1≤≤2

¯̄̄
̂ ()−0 ()

¯̄̄
=  (1) 

() uniformly over  ∈ [1 2],

√

³
̂ ()−0 ()

´
=

1√


X
=1

0 (  ) +  (1)  (10)
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and 
1
2 {̂ () − 0 ()} =⇒ 

 (0 ) where 
 (0 ) is a Gaussian process with

mean 0 and covariance function{
 (0 )


 (0 

0)} = {0 ( )00 ( )}

with 0 ( ) as in Chen (2002).

Thus, after making stronger assumptions that ensure that the estimated transforma-

tion function, ̂ ()  is well behaved, we can calculate  for the uncensored observations

and establish that  ≥ ̂() − ̂ for the censored observations. Suppose that we

can estimate the distribution of  for some value of the regressors, then we can sample

from (| ≥ ̂() −̂) for the censored observations. If none of the observations

were censored, then we have the same estimator as before. If some observations are cen-

sored, then we draw from (| ≥ ̂()−̂) many times for each censored duration,

calculate  ∗ each time, and then we average over these draws. This method allows us

to calculate the counterfactual policy estimates and we present an example in the next

section.

5. Empirical Results

The data used in the empirical analysis are from the National Evaluation of Welfare-to-

Work Strategies (NEWWS) study, a study undertaken by the US Department of Health

and Human Services to determine the efficacy of various welfare-to-work programs.10 The

NEWWS study was quite broad, testing eleven welfare-to-work strategies across seven

cities over the course of several years. Not all the strategies, however, were tested in all

cities, and we consider only data from Riverside, CA in this analysis.

The study in Riverside accepted participants from June 1991 to June 1993. Once

accepted into the study, participants’ welfare grants, employment status, and earnings

were tracked for 5 years. In addition, data on a variety of demographic characteristics

were collected when participants entered the study.

Participants in Riverside were randomly assigned into either one of two treatment

groups or a control group. The two treatment groups were the Labor Force Attachment

(LFA) group and the Human Capital Development (HCD) group.11 Members of the LFA

10See U.S. Department of Health and Human Services (HHS), “National Evaluation of Welfare-to-Work

Strategies: How Effective are Different Welfare-to-Work Approaches?” (2000) for more information about

the study’s design. See this document for a bibliography of previous research using these data.
11These strategies were also tested in Atlanta, GA and Grand Rapids, MI.
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group were urged to obtain a job as quickly as possible with the rationale that, once the

participant found a job, the subject would remain in the labor force. Members of the HCD

group were offered free access to education. It was hoped that the skills these participants

gained through educational programs would make them attractive to employers, allowing

them improved access into the labor force.

In order to be a participant in this study, subjects had to satisfy an array of require-

ments.12 Chief among these requirements was that subjects had to be eligible for and

apply for Aid to Families with Dependant Children (AFDC) grants or had to be already

receiving AFDC payments. If they satisfied this criterion, among others, the subject was

directed to attend an orientation with the threat of decreased welfare benefits if they did

not comply.13 At these orientations, the subject was randomly sorted into one of the three

groups (LFA, HCD, and control).

California had existing welfare regulations governing educational assistance. Because

of these existing regulations, only those subjects in need of basic education could be sorted

into the HCD group. This group consisted of subjects who did not have a high school

degree or GED, were not fluent in English, or scored below 215 on any part of the CASAS.

Because this restricted the sample of people to be sorted into the control and LFA groups,

the study designers oversampled the LFA and control groups in Riverside. Sample sizes

for the three groups are provided in Table 1.14

Table 1: Sample sizes

Group Subjects

Labor Force Attachment 3384

Human Capital Development 1596

Control 3342

Total: 8322

After sorting participants into one of the three groups, the study tracked them for five

years, mainly through the reports of state-level government agencies. Among the data

12US HHS op. cit.

13 Sanctions were implemented by individual welfare offices, and not all subjects who failed to attend an

orientation were sanctioned. The NEWWS study found no clear relationship between sanctioning rates

within a city and participation rates in welfare-to-work programs.

14Brock and Harknett (1998) found that about 66% of the people directed to attend an orientation in

Riverside actually attended.



Estimating the Derivative Function and Counterfactuals in Duration Models with Heterogeneity 17

collected are quarterly information about AFDC grant levels, food stamp grants, employ-

ment status, and earnings. Demographic characteristics as of the random assignment are

also provided; however, many of these characteristics were grouped in order to preserve

anonymity (i.e. age is reported only as an age group). Table 2 presents summary statistics

of relevant variables.

Table 2: Summary statistics

Variable Description Mean Std. Dev.

Non-White = 1 if Black or Hispanic 0.446 0.497

HS Education = 1 if HS degree or GED 0.580 0.494

Young Child = 1 if child  5 0.572 0.495

1 Child = 1 if 1 child 0.390 0.488

2 Children = 1 if 2 children 0.324 0.468

3+ Children = 1 if 3+ children 0.285 0.452

Age  30 = 1 if age  30 0.402 0.490

Age 30-39 = 1 if age 30-39 0.465 0.499

Age 40+ = 1 if age 40+ 0.133 0.340

log(Avg. welfare) log of avg. FS + AFDC 8.238 1.165

Employed prev. year = 1 if employed in year before entering study 0.396 0.489

N = 2881

As participation in the AFDC program was required to be in the study, the overwhelming

majority of study participants were females. Females account for nearly 90% of the

subjects. Because the number of male subjects is too small to yield useful information,

we estimate parameters only for female subjects.

For the purposes of this analysis, we define non-White to be Blacks and Hispanics and

welfare benefits to be the sum of food stamp and AFDC grants.15 Welfare levels generally

do not vary sufficiently across time to allow for identification of a duration model with

time varying regressors. Therefore, we use average welfare receipt from the time that a

subject enters the study until the start of their first employment spell. The demographic

characteristics provided in the data set are as of the date of random assignment and do

not vary across time. As AFDC participation is a requirement for inclusion in the study,

all participants receive some amount of welfare between their random assignment date

and the start of their first spell of employment.

15We group Asians with Whites because their employment and earnings characteristics are more similar

to that of Whites than Blacks or Hispanics.
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We now discuss estimation results. First, we estimate the Han-Hausman (1990) and

Meyer (1990) (HHM) model that allows for a non-parametric baseline hazard and gamma

heterogeneity. The other two estimators are based on the approach of this paper which

uses semi-parametric estimation of the unknown coefficients in the regression hazard model

and non-parametric estimation of the integrated baseline hazard. The estimators used

for the regression hazard model are the Han (1987) maximum rank correlation (MRC)

estimator and the Cavanagh-Sherman (1998) (CS) rank estimator.

The estimated coefficients in the regression hazard model are given in Table 3.

Table 3: Estimated Coefficients

HHM Scaled HHM MRC Cavanagh-Sherman log(t)

Non-White 0.185 0.254 0.329 0.326

(0.061) (0.088) (0.097) (0.097)

High School Education 0.188 0.260 0.422 0.424

(0.063) (0.092) (0.072) (0.084)

Young Child -0.104 -0.143 -0.029 -0.027

(0.069) (0.094) (0.108) (0.103)

Second Child 0.189 0.260 0.182 0.174

(0.073) (0.107) (0.100) (0.095)

Third Child 0.435 0.599 0.482 0.439

(0.081) (0.136) (0.133) (0.122)

Age 35 -0.129 -0.178 -0.023 -0.023

(0.071) (0.099) (0.119) (0.110)

Age 45 -0.453 -0.624 -0.453 -0.373

(0.106) (0.159) (0.146) (0.126)

Log Average Welfare -0.692 -0.954 -0.542 -0.364

(0.031) (0.121) (0.042) (0.043)

Previously Employed 0.726 1.000 1.000 1.000

(0.073) - - -

ln(Variance) -0.567 -0.781

(0.151) (0.178)

Observations 2881 2881 2881 2881

The HHM model finds a significant role for heterogeneity with the variance estimate

found to be large and highly significant. We find log of average welfare to be a significant

disincentive to exiting into the labor force. In the second column, we rescale the HHM

estimates using the coefficient on previously employed so we can compare these estimates

to the MRC and CS results. The MRC and CS estimates should be close to each other

as they have the same probability limit. We find all of the estimates are quite close to

each other except for the coefficient of log of average welfare, which is the variable of
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most interest! The MRC estimate is considerably higher than the CS estimate, although

the MRC estimate is still lower than the HHM estimate. Thus, considerable uncertainty

exists about the magnitude of the effect of welfare, although all these models find large

and significant results.

In Figure 1, we display the results of the Chen (2002) estimator of the transformation

model along with two standard error bounds derived from bootstrap estimation. The

estimates are quite precise. In Figure 2, we use the Chen (2002) estimates to estimate

a local third degree polynomial along with two standard error bounds using the same

approach we previously used in Hausman-Woutersen (2005). Note that the amount of

uncertainty becomes considerably greater as the durations become longer. In Figure 3, we

calculate the derivative of the transformation function. Note the non-monotonic features

of the estimates. Ridder and Woutersen (2003) discuss that the slope of the baseline

hazard function cannot be derived from the derivative of the transformation function.

Lastly, in Figure 4 we calculate the inverse of the Chen (2002) estimates which we now

use to do policy simulations to estimate the counterfactual durations using the structural

model approach of equation (11).

We now consider a policy simulation using the estimates in Table 3 along with the

estimates of the inverse of the transformation function for use in equation (11). We present

the changes in the average welfare amount in Table 4.
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Table 4: Simulation of Policy Change

HHM

Change in Welfare Benefits

-20.00% -10.00% 0.00% 10.00% 20.00%

Unemployment Duration

Mean 3.85 5.14 8.41 9.35 8.92

Median 2.90 2.90 4.00 3.90 3.90

Standard deviation 2.88 4.54 8.33 8.59 8.89

MRC

Change in Welfare Benefits

-20.00% -10.00% 0.00% 10.00% 20.00%

Unemployment Duration

Mean 6.64 7.09 8.41 8.78 9.92

Median 2.90 2.90 4.00 3.90 3.90

Standard deviation 6.61 7.12 8.33 8.81 8.21

Cavanagh-Sherman (CS)

Change in Welfare Benefits

-20.00% -10.00% 0.00% 10.00% 20.00%

Unemployment Duration

Mean 7.05 7.69 8.41 8.70 8.80

Median 2.90 2.90 4.00 3.90 3.90

Standard deviation 7.12 7.93 8.33 8.07 8.12

In Table 4, the HHM estimator predicts a larger change in duration for the same change

in welfare benefits. For example, for a 10% increase in welfare benefits the HHM model

predicts a 6.5% larger change in the mean duration than does the model based on the MRC

estimates and a 7.5% larger change than the estimates based on CS. To the extent that

the HHM estimates are inconsistent because of model misspecification arising from the

assumption of gamma heterogeneity, our new approach that does not require estimation

of heterogeneity may provide more reliable results. Also note that the estimates of policy

changes based on the MRC and CS estimates are considerably closer to each other than

the estimates based on HHM.

6. Conclusion

In this paper, we propose a new method to estimate the effect of a counterfactual policy in

the transformation model. That is, a method that predicts the effect of new policies, and,

also, the effect of an existing policy on a new population. We also propose an estimator for

the counterfactual policy and show that this estimator converges at the
√
− rate, even
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in cases where the underlying duration model is unidentified or has a singular information

matrix. We do not need to specify the heterogeneity distribution parametrically and we

do not need stringent identification assumptions. We use this structural duration function

to simulate important policy effects, including a change in welfare benefits.

Appendix: The Transformation Model

Consider the following transformation model

( ) = +  (11)

where  is the dependent variable (e.g. duration), () is a strictly increasing function,

 is the set of explanatory variables (strictly exogenous),  is the vector of associated

coefficients and  is the unobserved error term.

The transformation model (1) generates a significant number of econometric models. The

rank estimation of equation (11) was presented in Chen (2002). He considers the model

estimation for uncensored and censored data.

He normalizes (0) = 0 for a finite 0 and uses a scale normalization for the coefficient

of the first component of , |1| = 1.

Assume  = 1{ ≥ }, 0 = 1{ ≥ 0},  is a compact set, e is the vector

containing all but the first component of , and  = 1 {  ≤ }.

The estimator of the transformation model () for uncensored data is

̂() = argmax
()

[ ( ())] = argmax
()

1

 ( − 1)
X
6=

( − 0) 1{̂− ̂ ≥  ()}

(12)

for a given  ∈ [1 2] and where ̂ is a consistent estimator for .

The large sample properties of the ̂() estimator, when the data is uncensored, are pre-

sented by Chen (2002) in Theorem 1.



Estimating the Derivative Function and Counterfactuals in Duration Models with Heterogeneity 22

Appendix: Proof of Theorem 1 and 2

We use Chen’s (2002) estimator for () and as an estimator for −1() we use

∗ = b−1 () = minn ∈ R+ : b () ≥ 
o
 (13)

The following Lemmas are useful to prove Theorem 1:

Lemma A1

Under assumptions A1-A7,  () =
()


 0 for all  ∈ (0 ] and ()


−1() is a strictly

increasing function for  ∈ ((0)()]

Proof:

Note that () is strictly increasing by assumption A3 and twice continuously differ-

entiable by assumption A7 so that the first derivative  () =
()


 0 for all  ∈ (0 ]

Moreover, under assumptions A3 and A7,

−1 ()


=
1

 (−1 ())
 0

so that −1 () is a strictly increasing function.

Lemma A2

Let assumptions A1-A6 hold.16 Then, for any   0  ≥ 0

sup
∈[]

| b ()− b (− )− { ()− (− )}| = 

µr




¶


Proof:

First, let only those individuals with ||||   for some ∞ be used for the estimation

of() where |||| is the Euclidian norm. Define∆ = b ()− b (− )−{ ()− (− )}.

The assumption that only individuals with ||||   for some   ∞ ensures that the

variation of b () exists. Note that
  (∆) =  

³ b ()
´
+  

³ b (− )
´
− 2

³ b ()  b (− )
´


Chen (2002) gives expressions for the variance and covariance function and it follows that

  (∆) = ( 

) The expectation of ∆ is (

p


) so that the variance determines the

16For the censored case, we need assumptions A1-A7 plus Chen’s (2002) A8-A9.
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order of ∆ and ∆ = (
p



) for every  The functions b () and ∆ are stochastically

equicontinuous so that uniform convergence follows from Newey (1991).

Lemma A3

Define ∗ = b−1 ³ b ()´ and let the assumptions of Lemma A1 hold. Let  = 1√
 ln

.

Then sup
√
 |∗ − | −→ 0.

Proof:

Note that ∗ ≤  By definition of b−1 () we have
− ∗   ⇐⇒ b ()  b (− )

⇐⇒ b ()− b (− ) =  ()− (− ) +  0

where  is a random variable and  = 

¡p



¢
 Using a Taylor expansion around 

yields

− ∗  

⇐=  + +  ()  0

⇐⇒ +



+  (1)  0

which holds with probability 1 since 

= 

³q
1


´
= 

³q
ln√


´
= (1). Thus

sup
√
 |∗ − | −→ 0.

Lemma A4

Let the assumptions of Lemma A2 hold. Let  = −12 Then

sup

| b ()− b (− )− ()| = (1)

Proof: Note that  ()− (− ) = () + () and the result follows.

Lemma A5

For any   1
2
,

sup



¯̄̄ b−1 ()−−1 ()

¯̄̄
−→ 0 (14)

Proof:
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Define
−1()


= 1

(−1()) =
1



By the triangle inequality:

sup

¯̄̄ b−1 ()−−1 ()

¯̄̄
= sup∗ 

 |∗ − |

≤ 1

sup∗ 

 | (∗)− ()|, with 1

the upper bound of 1


.

This is because, by making use of a Taylor expansion and of the intermediate value

theorem,

 (∗) =  () + 
¡e¢ (∗ − ) , with e ∈ ( ∗)

=⇒ (∗ − ) =
 (∗)− ()


¡e¢ ≤  (∗)− ()




By Lemma A3, sup
√
 |∗ − | −→ 0

This implies that 1

sup∗ 

 | (∗)− ()| = ()

sup∗ 

 |∗ − | −→ 0 ∀0    1
2
.

Thus sup

¯̄̄ b−1 ()−−1 ()

¯̄̄
−→ 0

The remainder of the proof of theorem 1 follows the proof of Athey and Imbens’s (2006),

Lemma 8.5 and Theorem 5.4 (using our lemma A1-A5).

Proof of Theorem 2

Note that

c ∗(∗  ) = b−1{ b ( ) + (∗ −)̂}

= −1 (̂) +
1

(−1 (̂))

³ b ¡−1 (̂)¢− ̂
´
+ (1)

by Theorem 1 where ̂ = b ( ) + (∗ −)̂ Also note that

c ∗(∗  ) = −1 () +
1

(−1 ())
(̂ − ) +

1

(−1 ())

³ b ¡−1 ()¢− 
´
+ (1)

where  =  ( )+(∗−) By Chen (2002),
√

³ b ()− ()

´
= 1√



P
=1 0 ( ) +  (1) 

Thus,

b (+ )− b ()−( (+ )− ()) =

P
=1 0+ ( )−

P
=1 0 ( )


+

µ
1√


¶


The remainder of the proof of theorem 2 follows the proof of Athey and Imbens’s (2006)

Theorem 5.4 (where the normality result follows from the normality of 1√


P
=1 0 ( )).
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