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Abstract

A seller introduces a novel product to an unfamiliar market. The seller sets a price

and chooses how much information to disclose about the product to a representative

buyer, who may incur a search cost to discover an outside option. The buyer knows

her outside option distribution, but the seller knows only its mean and an upper

bound on its support, and evaluates any selling strategy by its guaranteed profit. The

robustly optimal strategy balances the trade-off between demand and extraction: in-

formation design can boost demand by deterring the buyer’s search, but this requires

providing her with a high payoff via a low price. I find that full disclosure is optimal

only when the search cost is high, and different kinds of partial disclosure policies

are optimal for lower search costs. Perhaps surprisingly, the price is not monotone

in the search cost. These results shed light on the large variations in information

disclosure policies among new products, and suggest that improvements in informa-

tion technology that reduce search costs may increase prices and make information

provision noisier.
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1 Introduction

Rapid technological development has brought an increasing number of new products to

us. Examples of such products include e-readers, electric vehicles, LED lights, and in-

frared cookers, to name a few. Because of its novelty, a seller of a new product often has

considerable control over what a buyer can learn about it. In particular, the seller can

provide information by offering, for example, free trials, product samples, and product

descriptions. The buyer, however, can still check the pricing and features of related exist-

ing products, and the seller may know little about a buyer’s knowledge of her alternatives.

For instance, the seller might be uncertain about how a buyer acquires or processes infor-

mation, what substitute products the buyer has in mind, what kind of stores a buyer has

access to, and so on.

In this paper, I examine the following questions. In the setting described above, what is

the optimal selling strategy if the seller can set a price and choose how much information

to provide about the new product? Would the buyer be better off if learning about her

alternatives becomes easier? Finally, how do the answers to the previous questions shed

light on selling different kinds of new products?

Inmymodel, a seller faces a buyerwhosematch valuewith the seller’s product is either

high or low. Although the match value is unknown to both parties, the (prior) probability

of the match value being high is common knowledge. Along with a posted price, the seller

chooses a disclosure policy to provide information about the match value. The buyer

has access to an unknown outside option that could be interpreted as the buyer’s best

alternative for the seller’s new product. The distribution of this outside option is known

to the buyer. Observing the price and the realized signal from the disclosure policy, the

buyer updates her beliefs about the match value, and then decides whether to discover

the value of the outside option (which I term “search”) at a cost or buy the seller’s product

directly.

To capture the seller’s uncertainty regarding what the buyer knows about her alterna-

tives, I assume that she knows only themean of the buyer’s outside option distribution and

an upper bound on the value of the outside option and that she employs a selling strategy

to maximize her revenue guarantee. That is, the seller maximizes the worst possible rev-

enue generated by an outside option distribution that is consistent with her information;

such a strategy is “robust” in that it performs reasonably well in all possible scenarios.

This can be metaphorically interpreted as the seller facing an “adversary” who designs
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the outside option distribution to minimize her profit.

To solve for the seller’s robustly optimal selling strategy, I take a two-step approach.

First, for each price, I solve for the seller’s optimal information disclosure policy for that

price. This is obtained by solving for a saddle point of a zero-sum game played by the

seller who chooses a disclosure policy to maximize her revenue and the adversary who

chooses an outside option distribution to minimize it. Second, having identified the saddle

point, the seller’s revenue guarantee is determined by her choice of price, and hence the

robustly optimal price can be solved using standard optimization techniques.

Two observations are particularly useful in understanding the seller’s robustly optimal

strategy. Note first that the buyer would like to incur the search cost and search for an

alternative when the belief about the match value is below some threshold. Therefore,

it may be helpful for the seller to pool the beliefs just above the threshold to deter the

buyer from searching, thereby increasing the likelihood of purchase. I call a disclosure

policy with such a feature a deterrence policy. A deterrence policy, however, need not be

robust. In fact, the robustly optimal selling strategy entails a deterrence policy only if

the price is lower than a threshold that is proportional to the search cost–this is the first

key observation. Second, a disclosure policy that continuously and evenly spreads out

beliefs “hedges well” against the adversary: for a fixed price, this disclosure policy keeps

the probability of purchase the same under any outside option distribution with the same

mean. Such a property generates the desired robustness.

The first observation above highlights that the main trade-off the seller faces is be-

tween demand and extraction. Although using a deterrence policy can increase demand,

this strategy is effective only when the price is below the threshold and thus can hurt sur-

plus extraction. When the search cost is small, the price threshold is also low. As argued

above, in this case using a deterrence policy is unprofitable. The second observation above

then suggests that a disclosure policy that generates continuously and evenly spread out

impressions of the product is optimal. In particular, it hedges well against the adversary

and allows the seller to charge a higher price and hence extract a greater surplus. Such

a disclosure policy provides noisy information: it is likely that the buyer’s impression is

neither favorable nor unfavorable.

When the search cost is large, however, so is the price threshold and thus the seller

can charge a higher price even if it must be below the threshold. In this case, full disclo-

sure turns out to be optimal. This disclosure policy only produces two posterior beliefs:

the match value is high with probability one, or the match value is low with probability

3



one. The buyer buys without search whenever the match value is high, and never buys

otherwise. Intuitively, by informing the buyer of the exact match value (high or low), the

seller can identify those for whom the innovative features of the new product are espe-

cially attractive, and make sure that they buy without search with probability one. This

strategy helps the seller secure a sizable demand while charging a higher price.

For intermediate search costs, it can be optimal for the seller to combine the above two

disclosure policies. The resulting disclosure policy informs the buyer that the match value

is high with some probability, and with complementary probability it spreads out beliefs

evenly. In the former case, the buyer buys immediately; otherwise, unlike full disclosure,

she may return to buy the seller’s product after search. This is optimal only when the

prior probability of a high match value is sufficiently large relative to the mean of the

outside option distribution. Put differently, the market must have enough confidence in

the seller’s product vis-à-vis the outside option. Consequently, it is likely that the buyer’s

expected value for the seller’s product is much higher than her realized outside option

value. Thus, the seller has an incentive to attract the buyer to come back to buy if she

goes to search.

To summarize, full disclosure is optimal if the search cost is sufficiently high, and dif-

ferent kinds of partial disclosure policies are optimal for lower search costs. Importantly,

the results help explain the large variation in disclosure policies among new products. For

example, the e-ink tablet reMarkable allows a full refund within 100 days, while many

other new products offer only a 7-day free trial.

Furthermore, the results have concrete implications for the sale of different kinds of

new products. Some of these products are revolutionary: for example, iPhone and 3D

printer. Some of them are evolutionary products, namely, existing products made slightly

better, like smart lamps and foods made with healthier ingredients. Others are alternatives
to existing products, which are revolutionary in some aspects at the cost of losing some

existing features. One may think of portable wireless speakers, which are much more

convenient at the cost of sound quality. One way to interpret the search cost is a measure

of the ease with which a consumer can figure out the best alternative in the market. For

evolutionary products, the search cost is usually low, while it is likely to be higher for

alternatives to existing products. This is because evolutionary products only differ from

existing products in a certain aspect, but alternatives to existing products are in a “com-

pletely different direction” and thus it can be significantly harder for the buyer to figure

out what is the best alternative.
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Consequently, for evolutionary products, noisy information provision is optimal. This

can be done by, for instance, offering a short trial period, limiting the number of features

available in a free trial, or succinct product descriptions. For alternatives to existing prod-

ucts, however, it is optimal to provide full information, divide the consumers into “lovers”

and “haters”, and serve the former only. Examples of such disclosure policies include

a long trial period, a money-back guarantee, or a no-hassle return with a long return

window. The e-ink tablet mentioned above falls into this category. For a revolutionary

product, the market usually has enough confidence in it. My results, therefore, predict

that the optimal disclosure strategy would create some “die-hard fans”, and the rest of the

potential consumers obtain noisy signals. This feature matches what we observed on, for

example, iPhone and Tesla.

The model produces some surprising comparative statics. The conventional wisdom

in the search literature is that a higher search cost makes the buyer more likely to buy

without search, which enables the seller to charge a higher price. In my model, however,

although the robust price as a function of the search cost is increasing nearly everywhere,

the function can “jump down” at one point (see Figure 6 below). This feature stems from

the trade-off between demand and extraction. As discussed above, when the search cost is

small, the seller does not use a deterrence policy and charges a higher price. As the search

cost increases, the price threshold also increases, and hence a deterrence policy becomes

more attractive. When the search cost is sufficiently large, the demand advantage makes

it profitable for the seller to switch to a deterrence policy even if she must lower the price.

Accordingly, the seller may charge a lower price in exchange for more effective search

deterrence.

Another comparative statics result I derive is that, for a large range of parameters, as

the search cost increases, the seller’s information disclosure policy becomes more infor-

mative. As long as an increase in the search cost does not cross the point where the price

jumps down, the robust price increases. In most cases, raising the price requires generat-

ing more favorable beliefs more frequently, which leads to a more informative disclosure

policy. Moreover, if an increase in the search cost makes the seller switch to a deterrence

policy, such a strategy pools beliefs at the top and hence is more likely to reveal that

the match value is high, which increases informativeness. The insight that emerges from

these comparative statics results is that although some technological advancements may

reduce search costs, they can lead to higher prices and noisier information provision for

certain new products.
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To better understand how search frictions and robustness concerns drive the results, I

investigate two variations of the main model. In the first variation, the buyer can discover

the value of her outside option for free. In the absence of search frictions, the seller’s

incentive to pool beliefs disappears, and her robustness concerns render spreading out

beliefs continuously and evenly optimal. In particular, the seller never provides full infor-

mation. In the second variation, I eliminate the seller’s robustness concerns by assuming

that she knows the exact outside option distribution. The trade-off between demand and

extraction persists, as well as the features caused by it, including the nonmonotonicity of

the optimal price. Interestingly, full disclosure is always optimal. The intuition is that full

disclosure maximally differentiates the seller’s product from the buyer’s outside option,

allowing the seller to extract a greater surplus. This feature stands in stark contrast to

the main model: when the seller seeks robustness, since full disclosure pools beliefs at the

top (and hence it is a deterrence policy), it can only be optimal when the price is below a

threshold. This threshold may limit the scope of surplus extraction even if there is ample

differentiation, in which case partial disclosure can be optimal.

As an extension, I allow the seller to recognize whether the buyer is a first-time vis-

itor or is coming back from search: she can either commit to an exploding offer, commit

to a buy-now discount, or increase the posted price when the buyer comes back from

search. I show that exploding offers and lack of commitment to the posted price lead to

the same outcome, which is superior to the outcome in the baseline model, and buy-now

discounts need not be useful. Furthermore, I argue that allowing for an extra fixed outside

option that the buyer can consume without incurring a cost would not change the results

qualitatively, and many important observations continue to hold if the match value is

continuously distributed on an interval.

1.1 Related Literature

While a majority of the literature on selling a new product focuses on strategic pric-

ing,
1
there are a few papers that consider the case where sellers can choose both the

price and an information disclosure policy.
2
Heiman and Muller (1996) study how the

length of demonstration affects the probability of purchasing different kinds of new prod-

1
For a survey, see Chatterjee (2009). Many papers cited therein study the pricing dynamics of new

products, an issue that I abstract away.

2
In Milgrom and Roberts (1986), the seller of a new product chooses both a price and an advertisement

spending level. Although the choice of the latter signals the quality of the product, it does not have any

information content.
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ucts. Fainmesser, Lauga, and Ofek (2021) consider a model in which the seller provides

information about the new product’s quality to first-generation consumers, and second-

generation consumers learn about the quality through first-period buyer’s product re-

views.
3
Boleslavsky, Cotton, and Gurnani (2017) model competition between a firm selling

a new product with an unknown match value and a firm selling an established alternative

whose match value is known. The authors show that if the innovative firm sets the price

first and then chooses the disclosure policy, partial disclosure is optimal; if the pricing

decision has to be made after the choice of the disclosure policy, however, full disclosure

is optimal. To the best of my knowledge, this paper is the first to study the roles of search

frictions and the seller’s robustness concerns in selling a new product.

On a higher level, this paper lies at the intersection of two strands of literature: ro-

bust monopoly pricing, and monopoly pricing with information disclosure and consumer

search. Unlike papers studying robust monopoly pricing,
4
in my model the nonquantifi-

able uncertainty that the seller faces is not about the distribution over the buyer’s valua-

tion of the product she sells, but about the buyer’s outside option distribution. Moreover,

in my model, the seller also has control over how much information to disclose, which

allows me to study the interaction between price and information.

There are some papers that connect monopoly pricing with information disclosure to

consumer search. Anderson and Renault (2006), Wang (2017), and Lyu (2021) study the

problem of pricing and information disclosure of a monopolist who is selling a search

good; this paper focuses instead on experience goods. Furthermore, none of these papers

consider a robustness-seeking seller. Among these papers, the most related one is Lyu

(2021). In his model, the seller of a search good can disclose product information to the

buyer with a private outside option. Upon seeing the signal realization, the buyer chooses

whether to search (the truematch value is revealed after search) or leave: the buyer cannot

buy without search.

In my model, search frictions create a search deterrence motive for the seller. One

strand of literature explores price-based deterrence tactics. Armstrong and Zhou (2016)

study how a seller could use price tools, including buy-now discounts, exploding offers,

and nonrefundable deposits, to deter the buyer from searching for products from com-

3
Although these authors call it “quality”, it is initially unobservable to the seller; in particular, it can be

interpreted as the match value.

4
Representative contributions in this literature include (this list is by no means exhaustive) Bergemann

and Schlag (2008, 2011), Carrasco, Luz, Kos, Messner, Monteiro, and Moreira (2018), Du (2018), Hinnosaar

and Kawai (2020), and Che and Zhong (2022). For a recent survey on robust contracting, see Carroll (2019).
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peting sellers.
5
Another strand of literature allows a seller to strategically increase the

search cost; such strategies are known as “search obfuscation”.
6
Bar-Isaac, Caruana, and

Cuñat (2010) consider a monopoly seller who can increase the search cost by choosing a

marketing strategy that makes it harder for a buyer to learn her true valuation.

Unlike these papers, to dissuade the buyer from searching, the seller in my model

uses a different channel: information disclosure. As far as I am aware, the only paper

that studies a similar channel is Wang (2017). His model is similar to that studied in Bar-

Isaac et al. (2010), but instead of choosing the search cost directly, the search cost is fixed,

and the seller discloses information to prevent the buyer from searching for a finer signal

about her product. In my model search deterrence is, like in Armstrong and Zhou (2016),

with respect to an outside option.

Asmentioned, for each price, mymodel can be thought of as a zero-sum game between

the seller and an adversary. This feature connects this work, from a technical perspective,

to the study of information design contests. In this literature, each sender provides in-

formation about her object by committing to a disclosure policy, and the sender with the

most appealing signal realization wins. Boleslavsky and Cotton (2015, 2018) work on a

setting where the receiver’s prior is binary, and Hwang, Kim, and Boleslavsky (2019) con-

duct analysis with continuous priors; the sellers are also allowed to choose prices in the

latter. He and Li (2021) and Au and Whitmeyer (2022) add search frictions to information

design contests. However, the economic focus of my paper is different from the papers in

this literature, which leads to distinct insights.

Finally, thiswork is related to information design under non-probabilistic uncertainty.
7

In Kosterina (2022) the sender faces non-probabilistic uncertainty over the receiver’s prior:

it may depart from a “reference prior” to some degree. Hu andWeng (2021) and Dworczak

and Pavan (2022) assume that it is common knowledge that the seller and the buyer share

the same prior, and the uncertainty concerns the receiver’s additional signal. Most closely

related is Sapiro-Gheiler (2021), who considers a setting in which the receiver takes the

5
The theoretical predictions therein are experimentally tested in Brown, Viriyavipart, and Wang (2018)

and Pan and Zhao (2020).

6
For a review of this literature that covers both theory and empirics, see Ellison (2016).

7
I list only the papers in which senders maximize their worst-case payoffs, as in this paper. Two other

papers consider a different objective: the sender minimizes the difference between the worst-case scenario

and the no-uncertainty benchmark. In Babichenko, Talgam-Cohen, Xu, and Zabarnyi (2021) the sender has

non-probabilistic uncertainty over the receiver’s utility function. Parakhonyak and Sobolev (2022) assume

that the sender evaluates the worst-case among all possible joint distributions over the state, the prior, and

the outside option of the receiver.
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sender’s preferred action if and only if the posterior mean of the state exceeds the re-

ceiver’s outside option, and the seller faces non-probabilistic uncertainty over the outside

option distribution.
8
Adding the pricing channel shifts the designer’s objective from in-

creasing the odds of certain actions being played to maximizing profit, which, together

with search frictions, generates novel insights into the design of information disclosure

policies.

2 The Model

A seller of a product (Seller) faces a risk-neutral buyer (Buyer) whosematch value with the

product is 𝑥 ∈ {0, 1}, with a commonly known distribution such that 𝜇 = ℙ(𝑥 = 1) ∈ (0, 1).

The probability 𝜇 can be interpreted as the (prior) mean match value. Initially, neither

Seller nor Buyer knows the realization of 𝑥 . Seller’s production cost is assumed to be

zero.
9
Seller chooses a price 𝑝 and a disclosure policy (𝜒 , 𝑆) consisting of a signal space 𝑆

and a mapping 𝜒 ∶ {0, 1} → Δ(𝑆). It is well-known that a cumulative distribution function

(cdf) 𝐻 over posteriors 𝑤 ∈ [0, 1] can be induced by a disclosure policy if and only if it

satisfies the constraint

∫

1

0

𝑤 d𝐻(𝑤) = 𝜇; (1)

that is, the expected posterior equals the prior.
10

Letting M(𝜇) denote the set of all dis-

tributions over posteriors that satisfy (1), the analysis can be recast as Seller choosing

(𝑝, 𝐻) ∈ [0, 1] ×M(𝜇) instead of (𝑝, (𝜒 , 𝑆)). I call (𝑝, 𝐻) a selling strategy, and refer to the

choice of 𝐻 as the choice of a disclosure policy. If the realized posterior is 𝑤, Buyer’s net
value of purchasing Seller’s product is given by 𝑤 − 𝑝.

I assume that Buyer has unit demand and that she has an outside option with an un-

known value; to discover its value 𝑣, a search cost 𝑠 ≥ 0 must be incurred. One way to

interpret this is a reduced form of Buyer’s sequential search. Buyer knows that 𝑣 is dis-

tributed according to cdf 𝐺 with supp(𝐺) ⊆ [0, 1].
11
Seller cannot observe 𝑣, and does not

even know the distribution 𝐺; she only knows that the mean of 𝐺 is 𝜉 , and 𝐺 is supported

8
The problem studied by Sapiro-Gheiler (2021) is mathematically equivalent to an information design

contest, and hence the results therein share many common features of the results in that literature.

9
This is equivalent to assuming that the trade between Seller and Buyer is socially efficient.

10
See, for example, Kamenica and Gentzkow (2011).

11
For any cdf 𝐹 , supp(𝐹) denotes the support of 𝐹 :

supp(𝐹) = {𝑤 ∶ 𝐹(𝑤 + 𝜀) − 𝐹(𝑤 − 𝜀) > 0 for all 𝜀 > 0}.
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on a subset of [0, 1]. To focus on interesting cases in which Buyer prefers to search to

buying nothing, I assume that the search cost satisfies

𝑠 < 𝜉. (2)

I study Seller’s problem of maximizing the revenue guarantee, which is the worst case

(expected) revenue generated by an outside option distribution whose mean is 𝜉 and the

upper bound of the support is 1. Metaphorically, after Seller chooses (𝑝, 𝐻), a “malevolent”

adversary (henceforth Nature) chooses a distribution 𝐺 with mean 𝜉 to minimize Seller’s

payoff. I will use this metaphor in the analysis below, as it is helpful in solving Seller’s

optimization problem as well as interpreting the results.

Let

𝑆𝐺(𝑡) ∶= 𝔼𝐺[max{𝑡, 𝑣}] − 𝑡 =
∫

1

𝑡

(𝑣 − 𝑡) d𝐺(𝑣)

denote the expected benefit of search when Buyer’s net value of purchasing Seller’s prod-

uct is 𝑡 and the outside option is distributed according to some 𝐺 with mean 𝜉 . Let 𝑎 be

such that

𝑆𝐺(𝑎) = 𝑠. (3)

Assumption (2) ensures that such 𝑎 exists.
12
Buyer will purchase Seller’s product without

search whenever the expected benefit from search is no more than the search cost, that is,

𝑆𝐺(𝑤−𝑝) ≤ 𝑠. Then since 𝑆𝐺 is decreasing, (3) implies that this is equivalent to𝑤−𝑝 ≥ 𝑎.
13

Intuitively, 𝑎 represents the net surplus the buyer needs to obtain from the seller to forgo

search, or (in jargon) the reservation value of the outside option. It can be checked that

𝑎 ∈ [𝜉−𝑠, 1−𝑠/𝜉], where the lower bound can be induced by 𝛿𝜉 , the degenerate distribution

at 𝑣 = 𝜉 , and the upper bound is uniquely induced by the binary distribution with support

{0, 1} and mean 𝜉 .
14

By taking convex combinations of these two distributions, any 𝑎 ∈

12
Since 𝐺 is chosen by Nature, 𝑎 is dependent on 𝐺. For notational ease, I suppress the dependence and

simply write 𝑎.

13
Unless explicitly specified, I use “increasing” and “decreasing” in the weak sense; that is, “increasing”

means “weakly increasing”. “Strictly” would be added whenever needed–similarly with “positive”, “nega-

tive”, “above”, “below”, “more”, and “less”.

14
Denoting its cdf by 𝐺𝐵,

𝑆𝐺𝐵
(𝑎) = 𝔼𝐺𝐵

[max{𝑣, 𝑎}] − 𝑎 = 𝜉 max{1, 𝑎} + (1 − 𝜉)max{0, 𝑎} − 𝑎 = 𝜉(1 − 𝑎),

where the last equality follows from the fact that 𝑎 ∈ [0, 1]. Then by Equation (3), 𝑆𝐺𝐵
(𝑎) = 𝜉(1 − 𝑎) = 𝑠,

and thus 𝑎 = 1 − 𝑠/𝜉 .

In search problems, it is well known that (see, for example, Kohn and Shavell (1974)), ceteris paribus, a
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(𝜉 − 𝑠, 1 − 𝑠/𝜉) can be achieved.

If Buyer, instead, prefers to investigate the outside option, that is, if 𝑤−𝑝 < 𝑎, she will

return to buy Seller’s product when the outside option turns out to be worse than Seller’s

offer, that is, when 𝑤 − 𝑝 > 𝑣.
15

I assume that Seller cannot recognize whether Buyer is

a first-time visitor or not; consequently, she cannot change the price when Buyer comes

back from search.
16

The timing of the game is as follows:

1. Seller chooses (𝑝, 𝐻);

2. Nature observes Seller’s choice and chooses a distribution 𝐺.

3. Buyer’s posterior 𝑤 realizes according to 𝐻 , and she also sees 𝐺; she buys immedi-

ately if 𝑤 − 𝑝 ≥ 𝑎. Otherwise, she pays the search cost 𝑠 and observes a realization

of 𝑣 from 𝐺.

4. Buyer returns to Seller to buy if 𝑤 − 𝑝 > 𝑣.

By choosing (𝑝, 𝐻), for a given distribution over outside options 𝐺, Seller’s expected

revenue is given by

Π(𝑝, 𝐻 ∣ 𝐺) ∶= 𝑝 𝔼𝐺[1 − 𝐻(𝑝 + min{𝑎, 𝑣})]. (4)

Equation (4) is intuitive: Buyer eventually purchases Seller’s product if and only if either

𝑤 − 𝑝 ≥ 𝑎 or 𝑤 − 𝑝 > 𝑣. Consequently, 𝔼𝐺[1 − 𝐻(𝑝 + min{𝑎, 𝑣})] is the probability of

eventual purchase, or the demand that Seller faces, under 𝐺.

Since Buyer’s optimal behavior after any history is already embedded in the descrip-

tion of the game, the analysis reduces to Seller’s revenue guarantee maximization prob-

lem, given by

max

(𝑝,𝐻)∈[0,1]×M(𝜇)

min

𝐺∈M(𝜉)

Π(𝑝, 𝐻 ∣ 𝐺),

decision maker prefers a more dispersed distribution. In my setting, this arises because a higher incidence

of very good outside options increases the value of searching, while the higher incidence of very bad outside

options is not too detrimental because Buyer can always return to Seller and buy there. Now observe that

the degenerate distribution is the most “concentrated” distribution with mean 𝜉 , and the binary distribution

is the most dispersed one.

15
The tie-breaking assumption is implicitly embedded in the two inequalities above: Buyer does not

search if she is indifferent between search or not, and she does not return to Seller if she is indifferent

between Seller’s offer and her outside option. This assumption is not only realistic, but also necessary for

an equilibrium to exist.

16
For the same reason, Seller cannot benefit from offering a menu of prices depending on Buyer’s report

of the outside option she discovered: no matter whether Buyer has searched or not, she would report the

outside option that is associated with the lowest price. In Section 4.3 I discuss what could happen if Buyer

identity is recognizable.
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A solution to this problem is called a robustly optimal selling strategy; its components are

called robust price and robustly optimal disclosure policy, respectively.
Equivalently, Seller solves

max

𝑝∈[0,1]

{

max

𝐻∈M(𝜇)

min

𝐺∈M(𝜉)

Π(𝑝, 𝐻 ∣ 𝐺)

}

.

Let Φ(𝑝) ∶= max𝐻∈M(𝜇)min𝐺∈M(𝜉) Π(𝑝, 𝐻 ∣ 𝐺). Seller’s problem can be solved in two steps:

first, Seller chooses𝐻 ∈ M(𝜇) to maximizemin𝐺∈M(𝜉) Π(𝑝, 𝐻 ∣ 𝐺), namely Seller’s revenue

guarantee for a fixed price 𝑝; second, Seller chooses 𝑝 ∈ [0, 1] to maximize Φ(𝑝).

2.1 The Role of Information Disclosure

It can be readily seen from (4) that the “demand” of Seller’s product for a fixed price 𝑝

and a fixed outside option distribution 𝐺 is determined by Seller’s information disclosure

policy, namely the choice of the distribution over posteriors 𝐻 . Furthermore, (4) implies

that Seller’s expected payoff, taking the outside option distribution 𝐺 as given, is

Π(𝑝, 𝐻 ∣ 𝐺) = 𝑝
[
∫

1

𝑎

(1 − 𝐻 (𝑝 + 𝑎)) d𝐺(𝑣) +
∫

𝑎

0

(1 − 𝐻(𝑝 + 𝑣)) d𝐺(𝑣)
]

= 𝑝
[
1 − 𝐻(𝑝 + 𝑎) +

∫

𝑎

0

(𝐻(𝑝 + 𝑎) − 𝐻(𝑝 + 𝑣)) d𝐺(𝑣)
]
.

For a fixed price 𝑝 ∈ [0, 1], the first part in squared brackets, 1−𝐻(𝑝+𝑎), is the probability

that Buyer purchases without search when the distribution over posteriors is 𝐻 . The

second part in squared brackets,

∫

𝑎

0

(𝐻(𝑝 + 𝑎) − 𝐻(𝑝 + 𝑣)) d𝐺(𝑣) = 𝔼𝐺[max{𝐻(𝑝 + 𝑎) − 𝐻(𝑝 + 𝑣), 0}],

is the probability that Buyer returns to buy Seller’s product after searching: 𝐻(𝑝 + 𝑎) is

the probability that Buyer chooses to search, and 𝐻(𝑝 + 𝑣) is the probability that Buyer

chooses the outside option after searching (that is, the probability of 𝑤 −𝑝 ≤ 𝑣) when the

value of the outside option is 𝑣. I call the first term buy-now demand and the second term

buy-later demand in the parlance of Armstrong and Zhou (2016).

Fix an outside option distribution𝐺, and hence 𝑎 is also fixed. If 𝑝 is such that 𝑝+𝑎 < 1,

by pooling more beliefs at or above 𝑝 + 𝑎, 1 − 𝐻(𝑝 + 𝑎) increases and thus Buyer is

more likely to buy without search. At the same time, it may also affect Buyer’s buy-

12



later demand. Therefore, one can say that information disclosure guides Buyer’s decision

regarding whether to search and return to Seller to buy or not after searching.

3 Main Results

As hinted above, I solve for Seller’s robustly optimal selling strategy in two steps. Sec-

tion 3.1 concerns the first step of finding the optimal disclosure policy for each fixed price;

the interaction between price and information is also discussed. In Section 3.2 I proceed

to find the robustly optimal selling strategy by solving for the robust price.

3.1 Optimal Disclosure Policy For a Fixed Price

In this subsection, I consider the first step of Seller’s problem. For any fixed 𝑝 ∈ [0, 1],

Seller’s robustly optimal choice of disclosure policies is summarized in Proposition 1.

Proof of all results in Section 3 are relegated to Appendix A.

Proposition 1. Suppose 𝑝 > 𝑠/𝜉 . If 𝜇 > (1 + 𝑝)/2, the distribution over posteriors 𝑈[2𝜇−1,1]

is optimal.17 If 𝜇 ≤ (1 + 𝑝)/2, there exists 𝑤̄ ∈ [2𝜇 − 𝑝, 1] such that the optimal distribution
is18

𝐻𝑤̄(𝑤 ∣ 𝑝) =

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

1 −
2𝜇

𝑤̄+𝑝
if 𝑤 ∈ [0, 𝑝),

1 −
2𝜇

𝑤̄+𝑝
+

2𝜇

𝑤̄+𝑝 (

𝑤−𝑝

𝑤̄−𝑝)
if 𝑤 ∈ [𝑝, 𝑤̄),

1 if 𝑤 ∈ [𝑤̄, 1].

(5)

Now suppose 𝑝 ≤ 𝑠/𝜉 . If 𝜇 ≥ 𝑝 + 1 − 𝑠/𝜉 , the degenerate distribution 𝛿𝜇 is optimal. If
𝜇 < 𝑝 + 1 − 𝑠/𝜉 and 𝑝 ≥ (1 − 2𝜉)(𝜉 − 𝑠)/(2𝜉

2
), the binary distribution with support on

{0, 𝑝 + 1 − 𝑠/𝜉} is optimal. Otherwise, there are two cases:
(i) if 𝑝 + (1 − 𝑠/𝜉)/2 ≤ 𝜇 < 𝑝 + 1 − 𝑠/𝜉 , the optimal distribution is

𝐻
ℎ

𝑢
(𝑤 ∣ 𝑝) =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

0 if 𝑤 ∈ [0, 𝑝),

2
𝜉
2
(𝑝+1−𝜇)−𝑠𝜉

(𝜉−𝑠)
2 (𝑤 − 𝑝) if 𝑤 ∈ [𝑝, 𝑝 + 1 − 𝑠/𝜉),

1 if 𝑤 ∈ [𝑝 + 1 − 𝑠/𝜉, 1].

(6)

(ii) if 𝜇 < 𝑝 + (1 − 𝑠/𝜉)/2, there exists 𝑤̄ ∈ [2𝜇 − 𝑝, 𝑝 + 1 − 𝑠/𝜉) such that the optimal
distribution is 𝐻𝑤̄(⋅ ∣ 𝑝) defined in (5).

17
𝑈
[𝑎,𝑏]

is the cdf of the uniform distribution over [𝑎, 𝑏].

18
See Appendix A.1.2 for the definition of 𝑤̄.
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𝐻

𝑤

1

𝑝

𝑈[𝑝,1]

1𝑝 + 𝜉 − 𝑠

𝐻 = 𝑈[2𝜇−1,1]

𝐻

𝑤

1

𝑝 1

Figure 1: Distributions that can be optimal when 𝑝 > 𝑠/𝜉 . The left panel corresponds to

the case that 𝜇 > (1 + 𝑝)/2, and the right panel corresponds to 𝜇 ≤ (1 + 𝑝)/2. In the right

panel, the orange curve corresponds to an optimal distribution with 𝑤̄ < 1 and no mass

point at 𝑤 = 0, the pink curve corresponds to an optimal distribution with 𝑤̄ < 1 and

a mass point at 𝑤 = 0, and the violet curve corresponds to an optimal distribution with

𝑤̄ = 1 and a mass point at 0.

Observe that in all cases an optimal distribution has an affine component. This is

because affinity of the distribution over posteriors 𝐻 on (𝑝, sup {supp (𝐻)}) hedges well

against Nature. To see why, let 𝑤̃ ∶= sup {supp (𝐻)}, and note that the probability of

eventual purchase satisfies (recall Equation (3))

𝔼𝐺[1 − 𝐻(𝑝 + min{𝑎, 𝑣})] = 1 − 𝐻(𝑝 + 𝔼𝐺[min{𝑎, 𝑣}]) = 1 − 𝐻(𝑝 + 𝜉 − 𝑠), (7)

where the first equality holds by affinity, and the second equality follows from the defini-

tion of 𝑎 in (3) and the fact that 𝔼𝐺[𝑣] = 𝜉 :

𝔼𝐺[min{𝑎, 𝑣}] = 𝔼𝐺[𝑣 + 𝑎 − max{𝑎, 𝑣}] = 𝔼𝐺[𝑣] − 𝑆𝐺(𝑎) = 𝜉 − 𝑠.

In words, no matter what outside options distribution Nature chooses, the probability of

eventual purchase is the same. Put differently, Nature is indifferent between spreading

and contracting mass in designing the outside option distribution under affinity. This

guarantees that there is not a single choice of the outside option distribution that Nature

can take significant advantage of, which gives rise to the desired robustness. In the proof,

I show that for every set of parameters there exists an optimal distribution that is affine

on (𝑝, 𝑤̃).
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An important consequence of this observation is that there is no mass point in an

optimal distribution on (𝑝, 𝑤̃). However, Seller may have an incentive to pool mass at 𝑤̃.

If Seller knows the distribution over outside options 𝐺 and hence 𝑎, so long as the price

is such that 𝑝 + 𝑎 < 1, she could benefit from deterring search by putting a mass point at

𝑝 + 𝑎: when Buyer gets the posterior 𝑤 = 𝑝 + 𝑎, she would buy without search. When

Seller takes a robust approach, however, she is only able to deter search if the sum of the

price and themaximum reservation value is below one, that is, 𝑝+1−𝑠/𝜉 ≤ 1, or 𝑝 ≤ 𝑠/𝜉 .

When 𝑝 > 𝑠/𝜉 , if Seller attempts to deter search by setting an atom at any 𝑤 ∈ [𝑝, 1],

Nature can always frustrate it by choosing 𝐺 such that 𝑎 = 𝑤 − 𝑝 + 𝜀 for some 𝜀 > 0

small enough: by doing this, 𝑤 − 𝑝 = 𝑎 − 𝜀 < 𝑎 and hence Buyer would search for sure.

Intuitively, when Seller’s price is sufficiently high, she believes that Nature is always able

to make the outside option attractive enough so that deterring search is not possible no

matter how optimistic Buyer’s prior is. When 𝑝 ≤ 𝑠/𝜉 , however, placing a mass point at

𝑤 = 𝑝+1− 𝑠/𝜉 can be helpful. This leads to the second observation: when 𝑝 > 𝑠/𝜉 , there

is no mass point in an optimal distribution on [𝑝, 1]; and when 𝑝 ≤ 𝑠/𝜉 , the only possible

mass point in an optimal distribution on [𝑝, 1] is at 𝑤 = 𝑝 + 1 − 𝑠/𝜉 .

To understand Proposition 1 in more detail, below I thoroughly discuss the two cases,

𝑝 > 𝑠/𝜉 and 𝑝 ≤ 𝑠/𝜉 .

The case of 𝑝 > 𝑠/𝜉 . As discussed above, in this case, an optimal distribution over

posteriors𝐻 is affine on (𝑝, 𝑤̃) and has no mass point on [𝑝, 1]. When 𝜇 ≤ (1+𝑝)/2, if𝐻 is

affine on (𝑝, 1), it must be that the posterior𝑤 is uniformly distributed on [𝑝, 1]. Note that,

however, the uniform distribution over [𝑝, 1], denoted by 𝑈[𝑝,1], has mean (1+𝑝)/2 ≥ 𝜇. In

fact, if 𝜇 = (1+𝑝)/2, the mean of 𝑈[𝑝,1] is exactly 𝜇 and is indeed optimal. If 𝜇 < (1+𝑝)/2,

however, to maintain that (i) 𝐻 is affine on (𝑝, 𝑤̃) and (ii) the mean of 𝐻 is 𝜇, it must be

that either (a) 𝑤̃ is strictly less than 1, or (b) 𝐻 puts some mass on [0, 𝑝) (more formally,

𝐻(𝑝) > 0), or (c) both. Observing that the best way of putting mass on [0, 𝑝) is to have a

mass point at 0,
19
(a), (b), and (c) correspond to the orange, pink, and violet curves in the

right panel of Figure 1. This gives rise to the formula of optimal distribution for this case

in (5).

When 𝜇 > (1 + 𝑝)/2, the power of Nature’s adversarial choice neutralizes the advan-

tage of a larger mean match value: the probability of eventual purchase can be at most

19
Since the expected posterior must be the prior 𝜇, by moving mass on (0, 𝑝) to 0, Seller can put more

mass on [𝑝, 1], which would increase the probability of eventual purchase.
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as large as in the case of 𝜇 = (1 + 𝑝)/2 where the optimal distribution is 𝑈[𝑝,1]. To see

this, consider the binary outside option distribution 𝐺̆ whose probability mass function 𝑔̆

is given by

𝑣 0
(1−𝑝)𝜉

𝜉−𝑠

𝑔̆(𝑣) 1 −
𝜉−𝑠

1−𝑝

𝜉−𝑠

1−𝑝

. (8)

It can be checked that 𝔼𝐺[𝑣] = 𝜉 , and 𝑎 = 1 − 𝑝. Because 𝑝 > 𝑠/𝜉 , 1 − 𝑝 < 1 − 𝑠/𝜉 and

thus 𝐺̆ is feasible for Nature. Then the probability of eventual purchase is

𝔼𝐺[1 − 𝐻(𝑝 + min{𝑎, 𝑣})]

= 1 −
(
1 −

𝜉 − 𝑠

1 − 𝑝)
𝐻 (𝑝 + min {0, 𝑎}) −

𝜉 − 𝑠

1 − 𝑝

𝐻
(
𝑝 + min

{

(1 − 𝑝)𝜉

𝜉 − 𝑠

, 𝑎

}

)

= 1 −
(
1 −

𝜉 − 𝑠

1 − 𝑝)
𝐻 (𝑝) −

𝜉 − 𝑠

1 − 𝑝

𝐻 (1)

≤ 1 −

𝜉 − 𝑠

1 − 𝑝

(9)

where the second equality holds because 𝑎 = 1 − 𝑝, and the inequality follows from

the facts that 𝐻(𝑝) ≥ 0 and 𝐻(1) = 1. Because 𝑈[𝑝,1] is affine on (𝑝, 1), (7) indicates

that the probability of eventual purchase is exactly 1 − (𝜉 − 𝑠)/(1 − 𝑝). In particular,

𝐻 = 𝑈[2𝜇−1,1] has mean 𝜇 and attains this upper bound: taking 𝐺̆ as given, inequality (9)

holds as equality since 𝐻(𝑝) = 0; and it can be shown that there is no outside option

distribution outperforms this one for Nature. Consequently, 𝐻 = 𝑈[2𝜇−1] is optimal; this

distribution and 𝑈[𝑝,1] correspond to the solid blue curve and the dashed maroon curve in

the left panel of Figure 1, respectively.

The case of 𝑝 ≤ 𝑠/𝜉 . In this case, Seller’s price is low enough so that pooling mass at

𝑤 = 𝑝 + 1 − 𝑠/𝜉 can be helpful in deterring search. If 𝜇 ≥ 𝑝 + 1 − 𝑠/𝜉 , Buyer is suffi-

ciently optimistic about the product match value of Seller’s product, and thus disclosing

no information is optimal for Seller because Buyer buys without search with probability

1. This corresponds to the degenerate distribution over posteriors 𝛿𝜇 depicted in the lower

panel of Figure 2. By providing nontrivial information, however, posteriors higher than

the prior does not help Seller, and she is hurt by low posteriors as such realizations may

make Buyer decide to search.

The more interesting case is 𝜇 − 1 + 𝑠/𝜉 < 𝑝 ≤ 𝑠/𝜉 . In this region, hedging against

Nature becomes relevant, which calls for the affinity of the distribution over posteriors
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𝐻

𝑤

1

𝑝 1𝑝 + 1 − 𝑠/𝜉

𝐻

𝑤

1

𝑝 𝑝 + 1 − 𝑠/𝜉 1

𝐻

𝑤𝜇 1

1

𝑝 𝑝 + 1 − 𝑠/𝜉

Figure 2: Distributions that can be optimal when 𝑝 ≤ 𝑠/𝜉 . The upper left panel cor-

responds to the case that 𝑝 + 1 − 𝑠/𝜉 > 𝜇 > 𝑝 + (1 + 𝑠/𝜉)/2; the blue curve is 𝐻
ℎ

𝑢
,

and the light blue curve is the binary distribution. The upper right panel corresponds to

𝜇 ≤ 𝑝 + (1 + 𝑠/𝜉)/2; again the light blue curve is the binary distribution, and the yellow

and pink curves correspond to 𝐻𝑤̃ with and without a mass point at 0, respectively. The

lower panel depicts the case of 𝜇 ≥ 𝑝 + 1 − 𝑠/𝜉 .

on (𝑝, 𝑤̃). When 𝑝 is relatively large (that is, 𝑝 ≥ (1 − 2𝜉)(𝜉 − 𝑠)/(2𝜉
2
)), to guarantee a

decent chance of eventual purchase, Seller must make sure that her product is sufficiently

differentiated from the outside option. A natural candidate for this purpose is the binary

distribution, which not only generates the desired differentiation, but also allows Seller to

take advantage of deterrence in the sense that Buyer would buy immediately if the high

posterior realizes. Such a distribution is displayed in the upper panels of Figure 2.

When 𝑝 is relatively small, intermediate posteriors can also be useful in persuading

Buyer to buy. In fact, since the expected posterior must be the prior, high posteriors are

“produced” at the cost of generating low posteriors that “push” Buyer to her outside op-
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tion more often; in this sense, generating intermediate posteriors is more “cost-efficient”.

When the mean match value 𝜇 is relatively large for the price, it is optimal for Seller to

pool beliefs at 𝑝 + 1 − 𝑠/𝜉 to create some “safe demand”,
20

and also generate some in-

termediate posteriors since they are “less costly”. This gives rise to 𝐻
ℎ

𝑢
defined in (6),

which corresponds to the navy blue curve in the upper left panel of Figure 2. When 𝜇 is

relatively small, generating search-deterring posteriors is too cost-inefficient, and hence

the optimal disclosure policy produces exclusively intermediate posterior beliefs. Then

affinity implies that the robustly optimal distribution over posteriors is isomorphic to the

𝜇 ≤ (1 + 𝑝)/2 case when 𝑝 > 𝑠/𝜉 . The pink and yellow curves in the upper right panel

of Figure 2 illustrate the optimal distribution with or without a mass point at 𝑤 = 0,

respectively.

3.1.1 The Interaction Between Price and Information

Proposition 1 also allows us to understand how Seller’s choice of distribution over poste-

riors changes in the price.

Corollary 1. (1) If 𝑝 > 𝑠/𝜉 , as 𝑝 increases, the optimal disclosure policy becomes Black-
well more informative.

(2) If 𝑝 ≤ 𝑠/𝜉 there are two cases:

(i) if 𝑝1, 𝑝2 are such that 𝑝1 < 𝑝2 < (1 − 2𝜉)(𝜉 − 𝑠)/(2𝜉
2
) and 𝑝1, 𝑝2 ∈ [(𝜇 − (1 −

𝑠/𝜉))/2, 𝜇 − (1 − 𝑠/𝜉)), the corresponding optimal disclosure policies cannot be
Blackwell ranked;

(ii) otherwise, as 𝑝 increases, the optimal disclosure policy becomes Blackwell more
informative.

When 𝑝 > 𝑠/𝜉 , Corollary 1 indicates that price and information are substitutes: if

Seller would like to increase her price, it is optimal for her to provide more information.

Intuitively, as price increases, the distribution over posterior generates higher posteriors

more often so that the likelihood of eventual purchase does not fall too much. Then to

ensure that the resulting distribution has the same mean, there must be a commensurate

increase in the likelihood of lower posteriors. Thus, the new optimal distribution over

posteriors must be a mean-preserving spread (MPS) of the previous one; this is illustrated

20
It is “safe” because Buyer buys immediately whenever the realized posterior is 𝑤 = 𝑝 + 1 − 𝑠/𝜉 , and

hence unaffected by Nature’s choice of the outside option distribution.
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𝐻

𝑤

1

𝑝1 𝑝2

𝐻𝑝1

𝐻𝑝2

1

𝐻

𝑤

1

𝑝
′′
+ 1 − 𝑠/𝜉𝑝

′
+ 1 − 𝑠/𝜉𝑝

′
𝑝
′′

Figure 3: The left panel displays the optimal distributions corresponding to 𝑝1 and 𝑝2

with 𝑠/𝜉 < 𝑝1 < 𝑝2, denoted by 𝐻𝑝1
and 𝐻𝑝2

. It can be readily seen that the latter is a

mean-preserving spread of the former. The right panel illustrates the case that the optimal

distributions corresponding to 𝑝
′
and 𝑝

′′
with 𝑝

′
< 𝑝

′′
≤ 𝑠/𝜉 cannot be Blackwell ordered.

in the left panel of Figure 3.
21
It is well-known that a disclosure policy is more Blackwell

informative than another if and only if it is a MPS of the latter,
22
and hence the optimal

distribution over posteriors associated with the higher price is more informative.

In the case of 𝑝 ≤ 𝑠/𝜉 , the idea of “higher price is paired with more precise informa-

tion” vaguely persists, but not exactly. When 𝑝 ≤ 𝜇 − (1 − 𝑠/𝜉), the price is so low that

the highest reservation value that Nature could generate, namely 1 − 𝑠/𝜉 , is below 𝜇 − 𝑝;

hence, by providing no information, the probability of (eventual) purchase is 1. In con-

trast, when the price is sufficiently high, that is, 𝑝 ≥ (1 − 2𝜉)(𝜉 − 𝑠)/(2𝜉
2
) (provided that

𝑝 > 𝜇−(1−𝑠/𝜉)), a binary distribution with support on {0, 𝑝+1−𝑠/𝜉} is optimal according

to Proposition 1. Evidently, in this price range, as price increases, the binary distribution

becomes more Blackwell informative: to maximize the chance of making a sale, a higher

price must be accompanied by a binary distribution whose higher point of the support

is larger. Finally, for an intermediate price, the optimal distribution over posteriors falls

between the two extremes: it is not completely uninformative, but not as informative as

any binary distribution that can be optimal.

The only exception is that when 𝑝1, 𝑝2 are such that 𝑝1 < 𝑝2 < (1 − 2𝜉)(𝜉 − 𝑠)/(2𝜉
2
)

and 𝑝1, 𝑝2 ∈ [(𝜇 − (1− 𝑠/𝜉))/2, 𝜇 − (1− 𝑠/𝜉)), the respective optimal distributions, 𝐻𝑝1
and

21
Let 𝐹1 and 𝐹2 be two distributions defined on [0, 1]. 𝐹1 is a mean-preserving spread of 𝐹2 if ∫

𝑥

0
𝐹2(𝑠)d𝑠 ≤

∫
𝑥

0
𝐹1(𝑠)d𝑠 for all 𝑥 ∈ [0, 1], where the inequality holds with equality at 𝑥 = 1.

22
This is formally established in Blackwell (1953).
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𝐻𝑝2
, cannot be ranked in the Blackwell order. This is because, as shown in the right panel

of Figure 3,

inf

{

supp (𝐻𝑝1)

}

< inf

{

supp (𝐻𝑝2)

}

< sup

{

supp (𝐻𝑝1)

}

< sup

{

supp (𝐻𝑝2)

}

, (10)

and hence not any of them is more “spread out” than another. This exception, however,

has an intuitive explanation based on the forces of affinity and mass points described

above. In this price range, the mean is high enough relative to prices; consequently, there

is no need to have a mass point at 𝑤 = 0. Then since 𝑝 ≤ 𝑠/𝜉 , the search deterrence

motive gives rise to the mass point at 𝑝 + 1 − 𝑠/𝜉 ; and to hedge against Nature, the dis-

tribution is affine on (𝑝, 𝑝 + 1 − 𝑠/𝜉). Thus, for 𝑝1 < 𝑝2, (10) must hold: the joint effect of

search frictions and robustness concerns renders the resulting distributions unrankable

by Blackwell informativeness.

3.1.2 Proof Sketch for Proposition 1

Define Buyer’s effective outside option as 𝑧 ∶= min{𝑣, 𝑎}, and let 𝐺̂ denote its cumulative

distribution function.
23
It can be shown that 𝑧 ∈ [0, 1−𝜉/𝑠], and𝔼

𝐺̂
[𝑧] = 𝜉−𝑠. Observe that

Nature’s choice of outside option distribution only affects Seller and Nature’s expected

payoffs through the induced distribution over effective outside options:
24
using (4), Seller’s

expected revenue can be written as Ψ
(
𝑝, 𝐻

|
|
|
𝐺̂
)
∶= 𝔼

𝐺̂
[1 − 𝐻(𝑝 + 𝑧)].

25
Consequently,

for a fixed price, the seller’s problem becomes

max

𝐻∈M(𝜇)

min

𝐺̂∈M(𝜉−𝑠)

Ψ
(
𝑝, 𝐻

|
|
|
𝐺̂
)
. (11)

It is well-known that the solution to this problem is a saddle point, or an equilibrium,

of the zero-sum game in which Seller chooses 𝐻 to maximize her revenue and Nature

chooses an effective outside option distribution 𝐺̂ to minimize it.
26

It can be seen by inspecting problem (11) that observing Seller’s choice of (𝑝, 𝐻), Na-

23
That is,

𝐺̂(𝑧) ∶=

{

𝐺(𝑧) if 𝑧 < 𝑎,

1 if 𝑧 ≥ 𝑎.

24
This is first observed by Armstrong (2017) and Choi, Dai, and Kim (2018).

25
Because in this step 𝑝 is taken as given, I drop the multiplicative 𝑝 from the objective functions to

economize notation.

26
See, for example, Proposition 22.2 (b) in Osborne and Rubinstein (1994).
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ture’s problem of choosing an effective outside option distribution is equivalent to

max

𝐺̂∈M(𝜉−𝑠)

∫

1−
𝑠

𝜉

0

𝐻(𝑝 + 𝑧) d𝐺̂(𝑧). (12)

Define

𝐺𝑝(𝑤) ∶=

{

0 if 𝑤 < 𝑝,

𝐺̂(𝑤 − 𝑝) if 𝑤 ≥ 𝑝;

then Seller’s problem, taking Nature’s choice as given, can be written as (after integration

by parts)

max

𝐻∈M(𝜇)
∫

1

0

𝐺𝑝(𝑤) d𝐻(𝑤). (13)

Consequently,

Lemma 1. For a fixed 𝑝, (𝐻 ∗
, 𝐺̂

∗

) solves problem (11) if and only if

𝐻
∗
∈ argmax

𝐻∈M(𝜇)

∫

1

0

𝐺
∗

𝑝
(𝑤) d𝐻(𝑤), and 𝐺̂

∗
∈ argmax

𝐺̂∈M(𝜉−𝑠)

∫

1−
𝑠

𝜉

0

𝐻
∗
(𝑝 + 𝑧) d𝐺̂(𝑧),

where

𝐺
∗

𝑝
(𝑤) =

{

0 if 𝑤 < 𝑝,

𝐺̂
∗
(𝑤 − 𝑝) if 𝑤 ≥ 𝑝.

By Corollary 2 in Kamenica and Gentzkow (2011), the solution of problem (12) is iden-

tified by the concave hull of 𝐻
|
|
|[0,1−𝑠/𝜉]

(𝑝 + 𝑧);
27
and the value of problem (12) is just the

concave hull evaluated at 𝜉−𝑠, which I denote by𝐻
|
|
|[0,1−𝑠/𝜉]

(𝑝+𝜉−𝑠). Similarly, the solution

of problem (13) is identified by 𝐺𝑝, and the value of problem (13) is given by 𝐺𝑝(𝜇).

To find a worst-case effective outside option distribution, I first guess a candidate dis-

tribution over posteriors 𝐻
∗
. Next I find 𝐻

∗
|
|
|[0,1−𝑠/𝜉]

(𝑝 + 𝑧), which identifies the necessary

and sufficient conditions that a worst-case distribution must satisfy: an effective outside

option distribution 𝐺̂ is a worst-case distribution if and only if 𝐺̂ ∈ M(𝜉 − 𝑠) and

∫

1−
𝑠

𝜉

0

𝐻(𝑝 + 𝑧) d𝐺̂(𝑧) = 𝐻
|
|
|[0,1−𝑠/𝜉]

(𝑝 + 𝜉 − 𝑠).

27
Let 𝑓 ∶ ℝ → ℝ be a function. The concave hull of 𝑓 , denoted by ̃

𝑓 , is the smallest upper semicontinuous

and concave function that majorizes 𝑓 . Let 𝑓
|
|
|[𝑐,𝑑]

denote the restriction of 𝑓 to [𝑐, 𝑑] ⊂ [0, 1], and let
̃
𝑓
|
|
|[𝑐,𝑑]

denote the concave hull of the restriction.

21



Then I find a distribution 𝐺̂
∗
that not only satisfy these conditions, but also makes 𝐻

∗
a

solution to the problemmax𝐻∈M(𝜇)
∫

1

0
𝐺
∗

𝑝
(𝑤) d𝐻(𝑤); the latter can be checked by using 𝐺𝑝.

By Lemma 1, (𝐻
∗
, 𝐺̂

∗
) solves problem (11). Finally, to show that 𝐻

∗
is indeed the robustly

optimal distribution over posteriors, it only remains to find an outside option distribution

𝐺 that induces 𝐺̂
∗
. This step is nontrivial but mostly technical, and hence I do not explain

it here.

3.2 Seller’s Robustly Optimal Strategy

Now I am ready to solve for the optimal prices; together with the disclosure policies that

are optimal for these prices, I will be able to identify Seller’s robustly optimal selling

strategy.

To state the main result, define

̄

𝜇 ∶=

2 − 𝜉 + 𝑠 −

√

2(𝜉 − 𝑠) − (𝜉 − 𝑠)
2

2 (1 − 𝜉 + 𝑠)

, and 𝜇̄ ∶= 1 −

√

𝜉 − 𝑠

2

;

algebra reveals that

̄

𝜇 < 𝜇̄ for all 𝜉 ∈ (0, 1) and 𝑠 ∈ (0, 𝜉). Let 𝑝
∗
and 𝑝

∗∗
be given by

𝑝
∗
∶=

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

1−

√

2(𝜉−𝑠)−(𝜉−𝑠)
2

1−𝜉+𝑠
if 𝜇 ≤

̄

𝜇

2𝜇 − 1 if

̄

𝜇 < 𝜇 ≤ 𝜇̄

1 −

√

𝜉 − 𝑠 if 𝜇 > 𝜇̄

and 𝑝
∗∗
∶= 𝑠/𝜉 , respectively.

Say that Seller uses uniform disclosure if 𝑈[2𝜇−1,1] is used when 𝜇 > 1−(

√

𝜉 − 𝑠/2), and

the distribution over posteriors is

𝐻
∗

ℎ
(𝑤) =

{

1 −
2𝜇

1+𝑝
∗

if 𝑤 ∈ [0, 𝑝
∗
)

1 −
2𝜇

1−𝑝
∗2
(1 − 𝑤) if 𝑤 ∈ [𝑝

∗
, 1]

when 𝜇 ≤ 1−(

√

𝜉 − 𝑠/2).
28
Illustrated in panels (c) and (d) of Figure 4, uniform disclosure

induces a distribution over posteriors that is uniform over [𝑝
∗
, 1], and may have a mass

point at 𝑤 = 0 when the mean match value 𝜇 is small. The information provision about

the match value is “noisy” under uniform disclosure: every posterior belief 𝑤 ∈ [0, 1] is

28
This distribution is a convex combination of a point mass at 𝑤 = 0 and a uniform distribution over

[𝑝
∗
, 1].
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assigned to a mix of high and low match values.

Say that Seller uses full disclosure if the distribution over posteriors is the binary dis-

tribution with support {0, 1}.
29

This distribution, illustrated in panel (b) of Figure 4, fully

reveals the match value: if the posterior is 1 (0), the match value is high (low) with prob-

ability one.

Say that Seller uses mixture disclosure if the distribution over posteriors is

𝐻
∗

𝑢
(𝑤) =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

0 if 𝑤 ∈ [0, 𝑝
∗∗
),

2𝜉
2
(1−𝜇)

(𝜉−𝑠)
2 (𝑤 − 𝑝

∗∗
) if 𝑤 ∈ [𝑝

∗∗
, 1),

1 if 𝑤 = 1.

(14)

As the name suggests, such a disclosure policy shares features of the previous two: as

shown in panel (a) of Figure 4, it induces a distribution over posteriors that is uniform over

(𝑝
∗∗
, 1) and has a mass point at 𝑤 = 1. Like uniform disclosure, information provision is

noisy; however, if posterior 𝑤 = 1 realizes, the match value must be high.

For the last two disclosure policies, whenever 𝑝 ≤ 𝑠/𝜉 and posterior 𝑤 = 1 realizes,

Buyer would buy without search because 𝑤 = 1 ≥ 𝑝 + 1 − 𝑠/𝜉 = 𝑝 + max 𝑎. For this

reason, I call them deterrence policies: no matter what outside option distribution Nature

chooses, these disclosure policies guarantee that Buyer buys immediately with strictly

positive probability.

Finally, let 𝐵1(𝜉) = 𝜉(𝜉 − 1)
2
/(𝜉

2
+ 1), 𝐵2(𝜉) = 𝜉(𝜉 − 1)

2
/(𝜉 + 1)

2
, and 𝐵3(𝜉) = 𝜉 − 2𝜉

2
.

It can be checked that 𝐵1(𝜉) > 𝐵2(𝜉) and 𝐵1(𝜉) > 𝐵3(𝜉) for all 𝜉 ∈ (0, 1).

I am now ready to state the main result.

Theorem 1. If 𝑠 ≥ 𝐵1(𝜉), then full disclosure is optimal, and the robust price is 𝑝∗∗
= 𝑠/𝜉 .

If 𝑠 < 𝐵2(𝜉), then uniform disclosure is optimal, and the robust price is 𝑝∗
> 𝑠/𝜉 . If 𝐵2(𝜉) ≤

𝑠 < 𝐵1(𝜉), there are two cases:

(1) If 𝐵3(𝜉) ≤ 𝑠 < 𝐵1(𝜉), then there exists 𝜇̂ ∈ (0, 1) such that for 𝜇 < 𝜇̂, uniform disclosure
is optimal, and the robust price is 𝑝∗

> 𝑠/𝜉 ; and for 𝜇 ≥ 𝜇̂, full disclosure is optimal,
and the robust price is 𝑝∗∗

= 𝑠/𝜉 .

(2) If 𝐵2(𝜉) ≤ 𝑠 < 𝐵3(𝜉), then there exists 𝜇̌ ∈ (0, 1) such that for 𝜇 < 𝜇̌, uniform disclosure
is optimal, and the robust price is 𝑝∗

> 𝑠/𝜉 ; and for 𝜇 ≥ 𝜇̌, mixture disclosure is
optimal, and the robust price is 𝑝∗∗

= 𝑠/𝜉 .
29
See (23) for its cdf.
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𝐻

𝑤

1

𝑝
∗∗

1

(a) Mixture disclosure

𝐻

𝑤

1

1𝑝
∗∗

(b) Full disclosure

𝐻

𝑤

1

1𝑝
∗

(c) Uniform disclosure when 𝜇 ≤ 1 −

√

𝜉−𝑠

2

𝐻

𝑤

1

12𝜇 − 1𝑝
∗

(d) Uniform disclosure when 𝜇 > 1 −

√

𝜉−𝑠

2

Figure 4: Three kinds of information disclosure policies that can be optimal for Seller.
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Figure 5: Illustration of the four regions in Theorem 1.

Although Theorem 1 might seem intricate, the economics behind it is intuitive. The

main trade-off that Seller faces is between demand and extraction. Using a deterrence

policy, namely either full disclosure or mixture disclosure, Seller can increase the demand

she faces. This is because the top mass point makes Buyer more likely to purchase Seller’s

product without search, and this part of demand cannot be “messed up” by Nature’s choice

of the outside option distribution. However, this is only effective when the price is such

that 𝑝 ≤ 𝑠/𝜉 , and is hence bad for surplus extraction when 𝑠/𝜉 is small.

The details of Theorem 1 are illustrated in Figure 5. In Figure 5, the horizontal axis

is the mean of the outside option distribution 𝜉 , and the vertical axis is the search cost 𝑠;

the 45-degree line reflects the assumption that 𝑠 < 𝜉 . In the blue region, namely when

𝑠 < 𝐵2(𝜉), the search cost is sufficiently small. Although putting a mass point “at the top”

boosts the likelihood of eventual purchase, by doing that, the price has to be bounded

above by 𝑠/𝜉 , which is too small in this case. Thus it is optimal for Seller to use uni-

form disclosure, which allows her to charge a higher price 𝑝
∗
> 𝑠/𝜉 . In the violet region,

𝑠 ≥ 𝐵1(𝜉), the search cost is sufficiently large, and hence Seller can charge a higher price

even under the restriction that 𝑝 ≤ 𝑠/𝜉 . Put differently, the tension between demand and

extraction is alleviated for 𝑠 large enough. Full disclosure creates maximal differentiation

between the new product and Buyer’s outside option, and thus increases Buyer’s willing-

ness to pay whenever the match value is revealed to be high. Then since the upper bound

on price is not too restrictive, full disclosure not only helps in extracting surplus, but also

guarantees a demand of size 𝜇 even when the price becomes high.
30
These two properties,

together, render full disclosure optimal.

The area between the blue and violet regions is shaped by the trade-off between de-

mand and extraction. As stated in (1) and (2) in Theorem 1, the optimal selling strategy

30
Under full disclosure, posterior 𝑤 = 1 realizes with probability 𝜇.
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in the green and maroon regions exhibits a “cutoff” feature in 𝜇, and this stems from the

interaction of two effects. One is a “price effect”, as Seller can charge a higher price if she

chooses uniform disclosure. Another one is a “demand effect”, namely as 𝜇 increases, the

demand generated by a distribution with a mass point “at the top” grows faster than the

demand from uniform disclosure. For a small 𝜇, the price effect makes it optimal to use

uniform disclosure and charge a higher price; and the demand effect dominates when 𝜇

is large, which favors a deterrence policy. Thus, the cutoff structure results.

In the maroon region, the mean of the outside option distribution is relatively small.

In this region, when the mean match value is above some cutoff 𝜇̌, it is optimal for Seller

to use mixture disclosure. Intuitively, a relatively small 𝜉 indicates that conditional on

checking the outside option, Buyer is more likely to get an unsatisfactory draw. Therefore,

there is an incentive for Seller to attract Buyer to come back to buy after searching. In

particular, for a sufficiently large 𝜇, the mean of the distribution over posteriors is high

enough for Seller to put a mass point “at the top” and spread out the remaining mass

evenly on the support of the distribution; thus it creates room for deterring search and

attracting Buyer who searches and gets an unsatisfactory draw to come back at the same

time. In the green region, the mean of the outside option distribution is relatively large.

This means that Buyer is more likely to get a good draw upon checking the outside option,

which in turn indicates that Seller faces fierce competition. To soften competition, Seller

should maximally differentiate her product from the outside option; this incentive renders

full disclosure optimal when the mean match value is above some cutoff 𝜇̂.

Interestingly, as Figure 5 illustrates, the cutoffs in 𝑠 as a function of 𝜉 are all hump-

shaped. This is because there are two countervailing forces shaping the cutoffs as 𝜉 in-

creases. One is that a larger 𝜉 makes the outside option more attractive ex ante, and

hence a higher search cost is needed to make a deterrence policy profitable, as otherwise

the “search deterrence price” 𝑝
∗∗

= 𝑠/𝜉 would be too small. Another is that a larger 𝜉

indicates that Buyer is more unlikely to come back to buy if she goes to search, which

strengthens Seller’s deterrence motive. When 𝜉 is relatively small, the first force domi-

nates, and the second dominates when 𝜉 is relatively large.

It may seem paradoxical that, except for boundary cases,
31
the mean match value 𝜇

does not enter Seller’s robust price. This is because, when there is search deterrence, the

revenue guarantee is increasing in price and hence the optimal price coincides with the

threshold, which does not depend on the meanmatch value. When Seller chooses uniform

31
See Appendix A.4 for a formal definition of “boundary cases”.
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disclosure, this feature stems from Seller’s robustness concerns. If 𝜇 is small, it is optimal

for Seller to evenly spread out the posterior beliefs over the entire interval. Thus, the

support of the robustly optimal distribution over posteriors has nothing to do with the

mean match value. Consequently, it only enters the revenue guarantee as a multiplicative

term, and hence does not enter the expression of the robust price. If instead 𝜇 is large, as

discussed after Proposition 1, there exists a choice of Nature that completely dissipates

the effect of the mean match value.

Another interesting feature of my results is that no disclosure is never optimal. Fixing

price 𝑝, the degenerate distribution over posteriors 𝛿𝜇 is optimal only if 𝑝 ≤ 𝜇 + 𝑠/𝜉 − 1.

Although such a pricemakes Buyer buywithout searchwith probability 1, Seller’s revenue

guarantee is minimal since the price is too low. In particular, no disclosure is strictly

dominated by full disclosure paired with 𝑝
∗∗
= 𝑠/𝜉 .

As explained in the introduction, the robustly optimal selling strategies identified in

Theorem 1 have sharp implications for selling new products.

3.3 Comparative Statics

I now derive some comparative statics on the robust price, the robustly optimal disclosure

policy, and the revenue guarantee.

Theorem 2 (Comparative statics). (i) The robust price 𝑝𝑟 is non-monotone in the search
cost 𝑠: holding 𝜇 and 𝜉 fixed, there exist 𝑠 such that 𝑝𝑟 is increasing on [0, 𝑠) and (𝑠, 𝜉),
but 𝑝𝑟(𝑠−) > 𝑝𝑠(𝑠+).

(ii) For any 𝑠1 < 𝑠2, the robustly optimal disclosure policy corresponding to 𝑠2 is more
informative than the one corresponding to 𝑠1 unless 𝑠1, 𝑠2 ∈ (𝐵2(𝜉), 𝐵3(𝜉)) and 𝜇 is
sufficiently large.

(iii) Seller’s revenue guarantee is strictly increasing in 𝑠, strictly decreasing in 𝜉 , and in-
creasing in 𝜇.

Part (i) of Theorem 2 states that the robust price is not always increasing in the search

cost; this is illustrated in Figure 6. This is a consequence of the trade-off between demand

and extraction. The conventional wisdom in the search literature says that an increase

in the search cost decreases the value of search, and hence makes Buyer more likely to

buy without search; consequently, Seller can extract more surplus from Buyer by simply

charging a higher price. In fact, the conventional wisdom does work in the sense that
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𝑝𝑟

𝑂 𝑠
𝑠

Figure 6: The robust price is non-monotone in the search cost. When 𝑠 < 𝑠, uniform

disclosure is optimal; and when 𝑠 ≤ 𝑠 < 𝜉 , it is optimal for Seller to put a “top mass” in

the distribution over posteriors.

as 𝑠 increases, both 𝑝
∗
and 𝑝

∗∗
are increasing. However, as 𝑠 increases, 𝑝

∗∗
grows faster

than 𝑝
∗
, and hence the gap between the two prices shrinks. Moreover, the probability of

eventual purchase when Seller uses uniform disclosure is always bounded above by the

counterpart when a distribution with a top mass is used: loosely speaking, charging a

price 𝑝 > 𝑠/𝜉 gives Nature more power on “messing up” Seller’s demand. Therefore, as 𝑠

gets larger, Seller would eventually find that using a deterrence policy is more profitable

albeit the corresponding price 𝑝
∗∗
= 𝑠/𝜉 is smaller than 𝑝

∗
.
32

Part (ii) asserts that except for one parameter region, as the search cost increases, the

robustly optimal disclosure policy gets more informative. An increase in the search cost

has two effects: it makes a deterrence policy more attractive and also affects the price. So

long as the search cost does not cross the “jump down point” 𝑠, an increase in the search

cost also makes the price higher; then as the discussion in Section 3.1.1 indicates, in most

of the parameter regions the information also gets more precise. If the increase makes

Seller adopt a deterrence policy instead, such a strategy comes with more information

because it reveals that the match value is surely high with positive probability. In most

circumstances, the two effects work hand in hand to make the robustly optimal disclosure

policy more informative.

32
Choi et al. (2018) find that in an oligopolistic market with sequential consumer search, the equilibrium

price is decreasing in the search cost under some conditions. This stems from their assumption that the

match values are hidden but the prices are posted and hence can be used to direct search, which is completely

different from the driving force behind my result.
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When the prior is sufficiently large and the mean of the outside option distribution is

sufficiently small, the informativeness of the robustly optimal disclosure policy is decreas-

ing in the search cost when mixture disclosure is optimal. In this region, the robust price

is 𝑝
∗∗

= 𝑠/𝜉 , and the robustly optimal disclosure policy features a mass point at 𝑤 = 1,

and is otherwise uniformly distributed on (𝑝
∗∗
, 1). Then as the search cost increases, the

high match value is less likely to be fully revealed, which renders the disclosure policy

less informative.

Part (iii) has a simple economic intuition: a higher search cost implies a rise in the

market power, as it is less likely for Buyer to check her outside option; and a higher mean

of the outside option distribution indicates more competition in the market. Moreover,

a higher mean match value makes it easier to generate higher posteriors, and hence in-

creases the probability that Buyer eventually buys.

4 Variations and Extensions

The two key features of the main model are search frictions and Seller’s robustness con-

cerns. To better understand the role of these features in the main results, I consider two

variations of the main model; in each of them, only one of the key features is present. In

Section 4.1, I shut down the search frictions, and Seller is still taking a robust approach.

In Section 4.2, Seller’s robustness concerns are absent in the sense that the outside option

distribution is known to her, and hence the effect of search frictions can be isolated. As

an extension, I investigate what happens if Seller is able to recognize the identity of the

buyer in Section 4.3.

4.1 Zero Search Cost

When 𝑠 = 0, Buyer always checks the outside option since doing that is costless. Fur-

thermore, having a “mass at the top” is never optimal because 𝑠/𝜉 = 0. Then since the

hedging motive persists, the robustly optimal selling strategy is isomorphic to the “low

search cost” case in the main model.

To state the result formally, define

̄

𝜇
0
∶=

2 − 𝜉 −

√

2𝜉 − 𝜉
2

2 (1 − 𝜉)

, and 𝜇̄
0
∶= 1 −

√

𝜉

2

.
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Proposition 2. Suppose 𝑠 = 0. The robust price is

𝑝
∗

0
=

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

1−

√

2𝜉−𝜉
2

1−𝜉
if 𝜇 ≤

̄

𝜇
0
,

2𝜇 − 1 if
̄

𝜇
0
< 𝜇 ≤ 𝜇̄

0
,

1 −

√

𝜉 if 𝜇 > 𝜇̄
0
.

If 𝜇 > 𝜇̄
0, an robustly optimal distribution over posteriors is 𝑈[2𝜇−1,1]; and if 𝜇 ≤ 𝜇̄

0, the
robustly optimal distribution over posteriors is

𝐻(𝑤) =

{

1 −
2𝜇

1+𝑝
∗

0

if 𝑤 ∈ [0, 𝑝
∗

0
),

1 −
2𝜇

1−𝑝
∗

0

2 (1 − 𝑤) if 𝑤 ∈ [𝑝
∗

0
, 1].

Proof of this result, and all other results in Section 4, can be found in Appendix B.

It can be seen from Proposition 2 that when search frictions are absent, the affinity of

the distribution over posteriors is still the optimal way to address robustness concerns,

but the trade-off between demand and extraction disappears. In particular, full disclosure

is never optimal: only when she wants to take advantage of the search frictions is Seller

willing to provide full information about the match value.

4.2 Known Outside Option Distribution

The only difference between the model considered in this subsection and the main model

is that Buyer’s outside option distribution𝐺 is assumed to be known to Seller in the former.

For simplicity, I assume that 𝐺 has full support, and admits a log-concave density 𝑔 . The

optimal selling strategy for this problem is strikingly simple.

Proposition 3. The optimal selling strategy consists of a disclosure policy that fully discloses
the match value and an optimal price 𝑝𝑜, where

𝑝
𝑜
=

⎧
⎪
⎪

⎨
⎪
⎪
⎩

1 − 𝑎 if 1 − 𝑎 ≥ 𝑝ℎ𝐺 (1 − 𝑝ℎ) ,

𝑝ℎ if 1 − 𝑎 < 𝑝ℎ𝐺 (1 − 𝑝ℎ) ,
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where 𝑎 is defined by Equation (3), and 𝑝ℎ is the unique solution of the equation33

𝑝 =

𝐺(1 − 𝑝)

𝑔(1 − 𝑝)

. (15)

To understand Proposition 3, observe that when 𝑝 = 1−𝑎 is paired with full disclosure,

Buyer buys without search if the match value is high, and would not come back for sure

if the match value is low. Consequently, this strategy fully deters search. The resulting

revenue is the product of the price and the (prior) probability that the match value is

high, namely 𝜇(1 − 𝑎). Alternatively, if Seller does not deter search and charges price 𝑝,

full disclosure makes Buyer comes back with probability 𝐺(1 − 𝑝) when the match value

is high, and when the match value is low she never comes back. Hence, Seller’s payoff

from setting price 𝑝 is 𝑝𝜇𝐺(1 − 𝑝), and the profit-maximizing price is precisely 𝑝ℎ. As a

consequence, Seller’s profit is given by max{𝜇(1 − 𝑎), 𝜇𝑝ℎ𝐺(1 − 𝑝ℎ)}: when the former is

larger, Seller charges 𝑝
𝑜
= 1 − 𝑎 to fully deter search; otherwise, Seller charges 𝑝

𝑜
= 𝑝ℎ

and lets Buyer search.

Importantly, regardless of whether Seller deters search or not, full disclosure is always

optimal. This can be shown by noticing that for any selling strategy that does not feature

full disclosure, Seller’s profits can be improved by either increasing the price or providing

more information, or both. By providing full information, Seller maximally differentiates

her product from Buyer’s outside option. This strategy softens the competition brought

by the outside option, and thus allows Seller to maximally extract surplus.
34

In contrast, full disclosure is not always optimal in the main model. When Seller seeks

robustness, full disclosure can only be optimal if 𝑝 ≤ 𝑠/𝜉 . When using full disclosure, this

upper bound on price may limit the extent to which Seller can extract surplus from Buyer

even if the latter highly values the innovative features of the new product. Consequently,

full disclosure can be suboptimal when 𝑠 is relatively small; in particular, uniform disclo-

sure allows Seller to charge a higher price, and mixture disclosure may generate higher

demand.

33
Because 𝑔 is log-concave, the right-hand side (RHS) of the equality above is decreasing in 𝑝. Since 𝐺

has full support, the left-hand side (LHS) is strictly less than the RHS when 𝑝 = 0, and is strictly greater

than the RHS when 𝑝 = 1. Consequently, the solution to Equation (15) must be unique.

34
More precisely, by providing more information, it is also more likely for Buyer to realize that her

match value is low, and hence increases the likelihood that Buyer prefers the outside option or opts out

without search. However, the benefit from extracting more surplus from “likers” by jointly charging a

higher price and providing more information dominates this loss. In this sense, price and information are

“complementary” when the outside option distribution is known to Seller.
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Roughly, one can think of Seller having “a lot of uncertainty” about the outside option

distribution in the main model; in the model studied in this subsection, however, she has

no uncertainty at all. Interestingly, the information that Seller provides is noisier when

she has much more uncertainty.
35

Because 𝑝
𝑜
= 𝑝ℎ only when 1 − 𝑎 < 𝑝ℎ𝐺(1 − 𝑝ℎ), when 𝑝ℎ is the optimal price, it must

be that 𝑝ℎ > 1 − 𝑎. This highlights the trade-off between demand and extraction similar

to the main model. In fact, for a known outside option distribution 𝐺, the optimal selling

strategy is completely dictated by the magnitude of the search cost.

Corollary 2. For every outside option distribution 𝐺, there exists 𝑠𝐺 ∈ (0, 𝜉) such that 𝑝𝑜
=

𝑝ℎ for every 𝑠 < 𝑠𝐺, and 𝑝𝑜
= 1−𝑎 for every 𝑠 ≥ 𝑠𝐺. Furthermore, at 𝑠 = 𝑠𝐺, the optimal price

drops from 𝑝ℎ to 1 − 𝑎 (𝑠𝐺).

Corollary 2 is intuitive. In this model, when deterring search Buyer eventually buys

with probability 𝜇, and otherwise Buyer eventually buys with probability 𝜇𝐺(1 − 𝑝ℎ).

Therefore, deterring search increases the “demand” Seller faces. To deter search, however,

the maximal price that Seller can charge is capped at 1−𝑎. When 𝑠 is small, so is 1−𝑎, and

hence an increased chance of eventual purchase does not justify search deterrence since

the price has to be very low; instead, charging 𝑝ℎ and letting Buyer search is optimal.

Analogous to the main model, as 𝑠 gets sufficiently large, deterring search becomes more

profitable. Consequently, the tradeoff between demand and extraction remains, and the

nonmonotonicity of the optimal price in the search cost also holds here for the same

reason as in the main model.

Another implication of Corollary 2 is that the middle sliver in the robust case disap-

pears: there is not a region that whether to deter search depends on 𝜇. This is because

the optimal disclosure policy is always full disclosure in this model, and hence regardless

of whether she deters search or not, 𝜇 enters Seller’s revenue in the same (multiplicative)

way.

Corollary 3 summarizes some comparative statics.

Corollary 3. (i) The optimal price does not depend on 𝜇, and Seller’s profit is strictly
increasing in 𝜇.

(ii) For 𝑠 < 𝑠𝐺, both the optimal price and Seller’s profit do not depend on 𝑠. For 𝑠 ≥ 𝑠𝐺,
both the optimal price and Seller’s profit are strictly increasing in 𝑠.

35
It would be interesting to understand how the optimal disclosure policy changes when Seller’s uncer-

tainty gradually reduces, but that is beyond the scope of this paper.
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To summarize, many insights persist when Seller knows the outside option distribu-

tion, but Seller’s robustness concerns in the main model beget the feature of continuously

and evenly spread out impressions. Consequently, this model does not generate as clear-

cut implications for selling new products as the main model.

4.3 Recognizable Buyer Identity

In this subsection, I allow Seller to recognize whether Buyer is a first-time visitor or came

back from search.

4.3.1 Exploding Offers and Renegotiation

One way that Seller can take advantage of this is to make an exploding offer: she com-

mits not to sell to Buyer if she does not buy during her first visit. In this case, Buyer

buys without search if and only if 𝑤 − 𝑝 ≥ 𝜉 − 𝑠, namely when her value of Seller’s

product is no less than the expected value of the unknown outside option net of the

search cost; and if she goes to search, she would never come back. The probability of

this event is 1 − 𝐻 ((𝑝 + 𝜉 − 𝑠)
−
), and hence Seller’s revenue from an exploding offer is

𝑝 [1 − 𝐻 ((𝑝 + 𝜉 − 𝑠)
−
)].

36
One striking feature of exploding offers is that Nature’s choice

of outside option does not play any role in Seller’s problem: it is outcome equivalent to

that the outside option distribution is 𝛿𝜉 , the degenerate distribution at 𝜉 , and Buyer must

incur a cost 𝑠 to consume the outside option.

Another possibility is that Seller posts a price first, and then if Buyer comes back she

may have an incentive to increase the price. As noted in Armstrong and Zhou (2016), in

the current framework very little can be said; but if Buyer must incur an exogenous cost

𝑟 > 0 to return to buy Seller’s product after search, no matter how small 𝑟 is, a Diamond

paradox style argument shows that once Buyer goes to search, shewould never come back.

Hence, the equilibrium outcome is the same as Seller committing to exploding offers.

Proposition 4 summarizes the findings when Buyer’s identity is recognizable.

Proposition 4. Suppose that Seller can recognize whether Buyer is a first-time visitor. Then

(i) if Seller can commit to an exploding offer, it is optimal to offer 𝑝 = 1 − 𝜉 + 𝑠 with full
disclosure;

36
For a function 𝑓 ∶ ℝ → ℝ, 𝑓 (𝑠

−
) = lim𝑥↘𝑠 𝑓 (𝑥) whenever this limit exists.
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(ii) for all 𝜇, 𝜉 ∈ (0, 1) and 0 ≤ 𝑠 < 𝜉 , Seller earns strictly higher profits than the case that
she cannot distinguish between first-time visitors and searchers.

(iii) if Seller cannot commit to the price, and there is a cost of returning to Seller 𝑟 > 0, then
the equilibrium outcome is the same as Seller committing to exploding offers.

The optimality of full disclosure stems from the fact that full disclosure is “efficient” in

the sense that it leaves Buyer with no uncertainty on whether she should choose Seller’s

product or her outside option, and that when the outside option distribution is 𝛿𝜉 Seller

can appropriate all the surplus simply by pricing at 1− 𝜉 + 𝑠. Recognizable Buyer identity

helps Seller because 𝛿𝜉 is always suboptimal for Nature when her choice matters.

4.3.2 Price Discrimination

Now I assume that Seller can deviate from the robustly optimal selling strategy in the

sense that while the disclosure policy cannot be changed, she can commit to a price path

(𝑝1, 𝑝2)with 𝑝1 < 𝑝2 such that 𝑝1 and 𝑝2 are the prices charged if Buyer buys immediately

or after search, respectively.
37

In particular, I allow Seller to deviate by either charging

a higher price in the second period, or offering a “buy-now discount”: a lower price is

offered if Buyer purchases without search, but if she comes back from search she has to

pay the equilibrium price.

Proposition 5. Suppose that Seller can recognize whether Buyer is a first-time visitor. Let

(𝑝𝑟 , 𝐻
∗
) be a robustly optimal selling strategy identified in Theorem 1, and let 𝐺∗ be the

corresponding worst-case outside option distribution. If Seller deviates by committing to a
pair of prices (𝑝1, 𝑝2), where either 𝑝1 = 𝑝𝑟 or 𝑝2 = 𝑝𝑟 , then

(i) If Nature cannot detect this deviation and hence the outside option distribution is still
𝐺
∗, Seller can benefit from such a deviation unless 𝐻 ∗ corresponds to full disclosure;

(ii) If Nature can detect this deviation and optimally responds to it by choosing a new
outside option distribution, Seller cannot benefit from such a deviation.

When Nature cannot detect Seller’s deviation and hence the outside option distribu-

tion is fixed at 𝐺
∗
, a celebrated result in Armstrong and Zhou (2016) can be used off-

the-shelf. They show that whenever the buy-now demand is strictly more elastic than

37
This form of price discrimination is studied in, for example, Nocke, Peitz, and Rosar (2011) and Arm-

strong and Zhou (2016).
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the buy-later demand,
38
charging a higher “buy-later price” benefits Seller because by do-

ing that she either extracts more surplus if Buyer buys after search, or makes Buyer more

likely to buy without search. Unless𝐻
∗
corresponds to full disclosure, in which case there

is no buy-later demand and hence such selling tactics would not be useful, the buy-now

demand is always strictly more elastic than the buy-later demand.

When Nature can detect Seller’s deviation, she would choose 𝐺 = 𝛿𝜉 to counter it.

For any fixed 𝐻
∗
, 𝛿𝜉 creates the largest buy-now demand among all outside option dis-

tributions. The affinity of 𝐻 implies that the “total demand”, namely the probability of

eventual purchase, is the same for all outside option distributions with the same mean

(recall Equation (7)). Consequently, by “transforming” buy-later demand to buy-now de-

mand, 𝛿𝜉 minimizes the effect of the price discrimination strategy since it only helps when

it is optimal for Buyer to search under ((𝑝𝑟 , 𝐻
∗
) , 𝐺

∗
). In fact, 𝛿𝜉 makes Seller’s expected

revenue under (𝑝1, 𝑝2) the same as that she cannot price discriminate and the posted price

is 𝑝1. Thus, Seller is at most as well off as in the main model.

Fully solving the problem of Seller choosing ((𝑝1, 𝑝2), 𝐻) under robustness concerns

is beyond the scope of this paper, and is left for future research.

5 Discussion

I conclude by discussing a few of the assumptions.

Deterministic price. In the main model, I assume that the seller posts a single price.

Because there is no information asymmetry at the time of contracting, and the buyer’s

identity is not recognizable, screening via a menu does not help. A natural question is

whether randomizing over prices could help the seller. For the current setting, the answer

is no, because the adversary observes the price before she chooses the outside option

distribution.
39

38
A sufficient condition is that 1−𝐹(𝑝) is strictly log-concave, where 𝐹 is the distribution of Buyer’s value

of Seller’s product. In this model, 𝐹 is identical to the distribution over posteriors.

39
One may be tempted to ask what if the seller is allowed to choose a joint distribution over prices and

signals, and this is the only thing that is observable to the adversary. Such an assumption can be a bit tricky

for this model: because the buyer’s identity is not recognizable, and going back to the seller is costless, the

buyer may prefer to “sample” many times until she is sufficiently informed about the match value and/or

encounters an attractive price.
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No “safe” outside option. An implicit assumption of the model is that the buyer does

not have a “safe” outside option that she can consume without incurring the search cost.

Alternatively, her “safe” outside option 𝑢0 is less than or equal to zero. This assumption

is only made to ease exposition. If 𝑢0 > 0, the seller’s expected revenue under ((𝑝, 𝐻), 𝐺)

is given by

𝑝 𝔼𝐺 [1 − 𝐻 (𝑝 + max {min{𝑎, 𝑣}, 𝑢0})] .

In solving the seller’s problem in the baseline model, I define the buyer’s effective outside

option to be 𝑧 ∶= min{𝑎, 𝑣}. Then I solve the auxiliary problem in which the adversary

chooses the effective outside option distribution, and show that the adversary’s optimal

choice can be induced by an outside option distribution.

To solve this new problem, it only suffices to define 𝑦 ∶= max{𝑧, 𝑢0} and work with

the distribution of this new variable instead. It can be shown that Nature’s optimal distri-

bution of this new variable can be induced by an outside option distribution, and adding

this (relevant) “safe” outside option does not change the qualitative features of the main

results.

Binary match value. A key assumption in the model is that the buyer’s match value

is binary. If instead it can take a continuum of values, then the problem becomes much

more complex. To see why, recall that in the first stage a continuum of information design

problems needs to be solved, one for each price. The tractability provided by binary match

values allows me to classify the solutions to this continuum of problems into a small

number of “groups” such that all problems in the same group can be solved at once. With a

continuum ofmatch values, however, even if a strong assumption is imposed on the (prior)

match value distribution (for example, the distribution admits a single-peaked density),

there are way too many groups to consider. Furthermore, characterizing the robust price

is another daunting task; in particular, unlike the binary match value case, a closed-form

robust price cannot be obtained.

Despite the nontrivial additional complexity, some important observations remain to

hold when the match value is continuously distributed. In particular, the tension between

demand and extraction persists. Moreover, the optimal distribution is affine on a subset

of its support in many cases.

The assumptions on the seller’s knowledge about the outside option distribution.

In the model I assume that the seller knows the mean of the outside option distribution
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as well as an upper bound on its support. For a new product, it should be reasonable to

assume that if it is a good match for a buyer, this product should provide more value,

when the price is zero, to the buyer than any alternatives in the market. Then since the

(gross) value of the new product to “likers” is normalized to one, I assume that the value

of the buyer’s “best alternative” cannot exceed one.

One reasonable alternative assumption on the seller’s knowledge about the outside

option distribution is that she knows the mean and an upper bound on a higher moment

(for example, variance). To solve for the optimal information for any fixed price, consider

a relaxed problem without the higher moment constraint first. Equivalently, in this prob-

lem, the seller knows the mean and that the upper bound is infinity; as a consequence,

the seller does not benefit from a top mass. If the adversary’s choice of outside option

distribution in this auxiliary problem satisfies the higher moment constraint, a solution

to the original problem is found; otherwise, the higher moment constraint must bind. It is

only in the latter case that the seller may benefit from deterrence, and the seller’s optimal

distributionmay be strictly convex instead of affine. The qualitative insights, however, are

not affected: deterring search imposes an upper bound on price, which begets the main

trade-off; and there are large variations in disclosure policies.

Appendices

A Proofs and Omitted Details for Section 3

A.1 Proof of Proposition 1

A.1.1 Preliminaries

I proceed as follows: as outlined in Section 3.1.2, for every candidate robustly optimal

distribution𝐻
∗
in Proposition 1, I find a corresponding worst-case effective outside option

distribution 𝐺̂
∗
, and then use Lemma 1 to show that (𝐻

∗
, 𝐺̂

∗
) solves problem (11). Next,

I show that the worst-case effective outside option distribution 𝐺̂
∗
can be induced by an

outside option distribution (or just “induced” for simplicity), which then implies that 𝐻
∗

is indeed a robustly optimal distribution.

To check that an effective outside option distribution can be induced, in some cases I

use the following result due to Au and Whitmeyer (2022).
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Lemma A.1 (Au and Whitmeyer, 2022). An effective outside option distribution can be
induced if and only if there exists ∇ ∈ Δ([𝜉 − 𝑠, 1 − 𝑠/𝜉]) where for each 𝑎 ∈ supp(∇) there is
a distribution of outside options 𝐺𝑎 ∈ M(𝜉) such that for each 𝑧 ∈ [0, 1 − 𝑠/𝜉],

𝐺̂(𝑧) = ∇(𝑧) +
∫
supp(∇)∩(𝑧,1−𝑠/𝜉]

𝐺𝑎(𝑧) d∇(𝑎). (16)

Observe also that any price 𝑝 > 1 − (𝜉 − 𝑠) is weakly dominated by 𝑝 = 0: for any

such price, by setting the outside option distribution to be the degenerate distribution

at 𝜉 , Nature is able to make Buyer not to buy from Seller for sure. This is because the

highest posterior that Seller can generate is 1, and hence the highest net value is 1 − 𝑝,

but 1 − 𝑝 < 𝜉 − 𝑠. Consequently, Seller does not sell at all and makes zero profit, which

is the same as setting 𝑝 = 0. Therefore, when optimizing over 𝑝, it suffices to consider

𝑝 ∈ [0, 1 − (𝜉 − 𝑠)].

A.1.2 The case of 𝑝 > 𝑠/𝜉

The following two claims establish the results for this case.

Claim A.1. Suppose 𝑝 > 𝑠/𝜉 and 𝜇 > (1 + 𝑝)/2. Then any distribution over posteriors
𝐻 ∈ M(𝜇) that first-order stochastically dominates 𝑈[𝑝,1] is robustly optimal. Furthermore,
Seller’s revenue is Φ(𝑝) = 𝑝[1 − (𝜉 − 𝑠)/(1 − 𝑝)].

Proof of Claim A.1. Consider any distribution𝐻 ∗
that first-order stochastically dominates

𝑈[𝑝,1]. Then the concave hull of 𝐻
|
|
|[0,1−𝑠/𝜉]

(𝑝+𝑧) coincides with 𝑈[𝑝,1], and Nature can attain

the value of problem (12) by using a binary distribution

𝐺̂
∗
(𝑧) =

{

1 −
𝜉−𝑠

1−𝑝
if 0 ≤ 𝑧 < 1 − 𝑝,

1 if 𝑧 ≥ 1 − 𝑝.

Now 𝜇 > (1 + 𝑝)/2 implies that 𝑝 < 2𝜇 − 1 < 𝜇, and hence Seller’s value is 𝐺𝑝(𝜇) =

1− (𝜉 − 𝑠)/(1−𝑝) for any choice of distribution over posteriors. Thus, (𝐻
∗
, 𝐺̂

∗
) is a saddle

point; and to show that 𝐻
∗
is robustly optimal, it only suffices to show that 𝐺̂

∗
can be

induced by some outside option distribution 𝐺
∗
. Consider

𝐺
∗
(𝑣) =

{

1 −
𝜉−𝑠

1−𝑝
if 0 ≤ 𝑣 <

𝜉(1−𝑝)

𝜉−𝑠
,

1 if 𝑣 ≥
𝜉(1−𝑝)

𝜉−𝑠
;
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by (3), 𝑎 = 1 − 𝑝. Thus, by definition of the effective outside option distribution, the

effective value distribution induced by 𝐺
∗
is

𝐺̂(𝑧) =

{

𝐺
∗
(𝑧) if 0 ≤ 𝑧 < 1 − 𝑝,

1 if 𝑧 ≥ 1 − 𝑝,

which is exactly 𝐺̂
∗
. This completes the proof. ■

In particular, since 𝜇 > (1 + 𝑝)/2, 𝑈[2𝜇−1,1] is well-defined, has mean 𝜇, and first-order

stochastically dominates 𝑈[𝑝,1]. Consequently, 𝑈[2𝜇−1,1] is optimal.

Claim A.2. If 𝜇 ≤ (1 + 𝑝)/2, there exists 𝑤̄ ∈ [2𝜇 − 𝑝, 1] where

𝑤̄ =

⎧
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎩

2𝜇 − 𝑝 if 𝜇 > 𝑝 and 𝜉 − 𝑠 ≤
2(𝜇−𝑝)

2

2𝜇−𝑝
,

√

(𝜉 − 𝑠)(𝜉 − 𝑠 + 2𝑝) + (𝜉 − 𝑠 + 𝑝) if 𝜇 > 𝑝 and 2(𝜇−𝑝)
2

2𝜇−𝑝
< 𝜉 − 𝑠 ≤

(1−𝑝)
2

2
,

or 𝜇 ≤ 𝑝 and 𝜉 − 𝑠 ≤
(1−𝑝)

2

2
,

1 if 𝜉 − 𝑠 ≥
(1−𝑝)

2

2
,

such that the robustly optimal distribution is

𝐻𝑤̄(𝑤) =

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

1 −
2𝜇

𝑤̄+𝑝
𝑤 ∈ [0, 𝑝),

1 −
2𝜇

𝑤̄+𝑝
+

2𝜇

𝑤̄+𝑝 (

𝑤−𝑝

𝑤̄−𝑝)
𝑤 ∈ [𝑝, 𝑤̄),

1 𝑤 ∈ [𝑤̄, 1].

And Seller’s revenue is

Φ(𝑝) =

⎧
⎪
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎩

𝑝
[
1 −

𝜉−𝑠

2(𝜇−𝑝)]
if 𝜇 > 𝑝 and 𝜉 − 𝑠 ≤

2(𝜇−𝑝)
2

2𝜇−𝑝
,

𝑝𝜇
√

(𝜉−𝑠)(𝜉−𝑠+2𝑝)+(𝜉−𝑠+𝑝)

if 𝜇 > 𝑝 and 2(𝜇−𝑝)
2

2𝜇−𝑝
< 𝜉 − 𝑠 ≤

(1−𝑝)
2

2
,

or 𝜇 ≤ 𝑝 and 𝜉 − 𝑠 ≤
(1−𝑝)

2

2
,

2𝜇

1+𝑝 (
1 −

𝜉−𝑠

1−𝑝)
if 𝜉 − 𝑠 ≥

(1−𝑝)
2

2
.

Proof of Claim A.2. I consider the case of 𝑤̄ = 2𝜇 − 𝑝 first, where the distribution in the

statement of the claim becomes

𝐻2𝜇−𝑝(𝑤) =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

0 𝑤 ∈ [0, 𝑝),

𝑤−𝑝

2(𝜇−𝑝)
𝑤 ∈ [𝑝, 2𝜇 − 𝑝),

1 𝑤 ∈ [2𝜇 − 𝑝, 1].
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Observe that the concave hull of 𝐻2𝜇−𝑝

|
|
|[0,1−𝑠/𝜉]

(𝑝 + 𝑧) coincides with 𝐻2𝜇−𝑝(𝑤) on [𝑝, 1],

and hence Nature’s value is 𝐻2𝜇−𝑝(𝑝 + 𝜉 − 𝑠), which can be obtained by effective outside

option distribution with mean 𝜉 − 𝑠 supported on a subset of [0, 2(𝜇 − 𝑝)]. Now consider

effective outside option distribution

𝐺̂
2𝜇−𝑝

(𝑧) =

{

1 −
𝜉−𝑠

𝜇−𝑝
+

𝜉−𝑠

2(𝜇−𝑝)
2
𝑧 if 𝑧 ∈ [0, 2(𝜇 − 𝑝)),

1 if 𝑧 ∈ [2(𝜇 − 𝑝), 1],

which induces

𝐺̂
2𝜇−𝑝

𝑝
(𝑤) =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

0 if 𝑤 ∈ [0, 𝑝)

1 −
𝜉−𝑠

𝜇−𝑝
+

𝜉−𝑠

2(𝜇−𝑝)
2
(𝑤 − 𝑝) if 𝑤 ∈ [𝑝, 2𝜇 − 𝑝),

1 if 𝑤 ∈ [2𝜇 − 𝑝, 1].

Then the concave hull of 𝐺̂
2𝜇−𝑝

𝑝 (𝑤) coincide with the function itself on [𝑝, 1]; and since

𝜇 > 𝑝, Seller’s value is 𝐺̂
2𝜇−𝑝

𝑝 (𝜇) = 1 − (𝜉 − 𝑠)/(2(𝜇 − 𝑝)). It can be obtained by any

distribution withmean 𝜇 supported on a subset of [𝑝, 2𝜇−𝑝], and this condition is satisfied

by𝐻2𝜇−𝑝. Thus, (𝐻2𝜇−𝑝, 𝐺̂
2𝜇−𝑝

) is a saddle point; and to show that𝐻2𝜇−𝑝 is robustly optimal,

it only remains to show that 𝐺̂
2𝜇−𝑝

can be induced. Consider

∇(𝑎) =

𝑎

𝜇 − 𝑝

− 1 on [𝜇 − 𝑝, 2(𝜇 − 𝑝)];

and let 𝐺𝑎(𝑣) be a binary distribution with support on {2(𝜇−𝑝)−𝑎, 𝑎+2𝑠(𝜇−𝑝)/(𝜉 −𝑠)}. It

is not difficult to show that 𝐺𝑎(𝑣) ∈ M(𝜉) for all 𝑎 ∈ [𝜇 − 𝑝, 2(𝜇 − 𝑝)]; then by Lemma A.1,

𝐺̂
2𝜇−𝑝

can be induced.

Next I consider the case of 𝑤̄ =

√

(𝜉 − 𝑠)(𝜉 − 𝑠 + 2𝑝)+(𝜉 −𝑠+𝑝) < 1. The concave hull

of 𝐻𝑤̄

|
|
|[0,1−𝑠/𝜉]

(𝑝 + 𝑧) coincides with 𝐻𝑤̄(𝑤) on [𝑝, 1], and hence Nature’s value is 𝐻𝑤̄(𝑝 +

𝜉 − 𝑠), which can be obtained by effective outside option distribution with mean 𝜉 − 𝑠 and

supported on a subset of [0, 𝑤̄ − 𝑝]. Now consider effective outside option distribution

𝐺̂
𝑤̄
(𝑧) =

{

(𝑧 + 𝑝)/𝑤̄ if 𝑧 ∈ [0, 𝑤̄ − 𝑝),

1 if 𝑧 ∈ [𝑤̄ − 𝑝, 1],
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which induces

𝐺̂
𝑤̄

𝑝
(𝑤) =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

0 if 𝑤 ∈ [0, 𝑝)

𝑤/𝑤̄ if 𝑤 ∈ [𝑝, 𝑤̄),

1 if 𝑤 ∈ [𝑤̄, 1];

and the concave hull of 𝐺̂
𝑤̄

𝑝
is

𝐺
𝑤̄

𝑝
(𝑤) =

{

𝑤/𝑤̄ if 𝑤 ∈ [0, 𝑤̄),

1 if 𝑤 ∈ [𝑤̄, 1].

Consequently, Seller’s value is 𝐺
𝑤̄

𝑝
(𝜇) = 𝜇/𝑤̄, which can be attained by any distribution

over posteriors with mean 𝜇 supported on a subset of {0} ∪ [𝑝, 𝑤̄], and this condition is

satisfied by 𝐻𝑤̄. Thus, (𝐻𝑤̄, 𝐺̂
𝑤̄
) is a saddle point; and to show that 𝐻𝑤̄ is indeed robustly

optimal, it only remains to show that 𝐺̂
𝑤̄
can be induced. Consider

∇(𝑎) =

2𝑎

𝑤̄ − 𝑝

− 1 on [(𝑤̄ − 𝑝)/2, 𝑤̄ − 𝑝];

and let 𝐺𝑎(𝑣) be a ternary distribution with pmf 𝑔𝑎(𝑣) given by

𝑣 0 𝑤̄ − 𝑝 − 𝑎
2𝑤̄𝜉

𝑤̄−𝑝
− (𝑤̄ − 𝑝) + 𝑎

𝑔𝑎(𝑣) 𝑝/𝑤̄ (1 − 𝑝/𝑤̄)/2 (1 − 𝑝/𝑤̄)/2

It is not difficult to show that 𝐺𝑎(𝑣) ∈ M(𝜉) for all 𝑎 ∈ [(𝑤̄ − 𝑝)/2, 𝑤̄ − 𝑝]; then by

Lemma A.1, 𝐺̂
𝑤̄
can be induced.

Finally, I consider the case of 𝑤̄ = 1, where the proposed distribution becomes

𝐻1(𝑤) =

{

1 −
2𝜇

1+𝑝
if 𝑤 ∈ [0, 𝑝),

1 −
2𝜇

1+𝑝
+

2𝜇

1+𝑝 (

𝑤−𝑝

1−𝑝 )
if 𝑤 ∈ [𝑝, 1].

The concave hull of 𝐻1

|
|
|[0,1−𝑠/𝜉]

(𝑝 + 𝑧) coincides with 𝐻1(𝑤) on [𝑝, 1], and hence Nature’s

value is 𝐻1(𝑝 + 𝜉 − 𝑠), which can be obtained by any effective outside option distribution

with mean 𝜉 − 𝑠 and supported on a subset of [0, 1 − 𝑝]. Now consider effective outside

option distribution

𝐺̂
1
(𝑧) =

{
2(𝑝+𝑧)

1+𝑝 (
1 −

𝜉−𝑠

1−𝑝)
if 𝑧 ∈ [0, 1 − 𝑝),

1 if 𝑧 ∈ [1 − 𝑝, 1],
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which induces

𝐺̂
1

𝑝
(𝑤) =

{

0 if 𝑤 ∈ [0, 𝑝)

2𝑤

1+𝑝 (
1 −

𝜉−𝑠

1−𝑝)
if 𝑤 ∈ [𝑝, 1];

and the concave hull of 𝐺̂
1

𝑝
is

𝐺
1

𝑝
(𝑤) =

2𝑤

1 + 𝑝 (
1 −

𝜉 − 𝑠

1 − 𝑝)
on [0, 1].

Consequently, Seller’s value is 𝐺
1

𝑝
(𝜇), which can be attained by any distribution over pos-

teriors with mean 𝜇 supported on a subset of {0} ∪ [𝑝, 1], and this condition is satisfied by

𝐻1. Thus, (𝐻1, 𝐺̂
1
) is a saddle point; and to show that 𝐻1 is indeed robustly optimal, it only

remains to show that 𝐺̂
1
can be induced. Consider

∇(𝑎) =

𝑎 − (𝜉 − 𝑠)

1 − 𝑝 − (𝜉 − 𝑠)

on [𝜉 − 𝑠, 1 − 𝑝];

and let 𝐺𝑎(𝑣) be a quarternary distribution with pmf 𝑔𝑎(𝑣) given by

𝑣 0 1 − 𝑝 − 𝑎 𝜙 −
[1−𝑝−(𝜉−𝑠)](1−𝑝−𝑎)

𝜉−𝑠
1

𝑔𝑎(𝑣)
2𝑝[1−𝑝−(𝜉−𝑠)]

(1−𝑝)(1+𝑝)

2[1−𝑝−(𝜉−𝑠)]
2

(1−𝑝)(1+𝑝)

2(𝜉−𝑠)[1−𝑝−(𝜉−𝑠)]

(1−𝑝)(1+𝑝)

2(𝜉−𝑠)−(1−𝑝)
2

(1−𝑝)(1+𝑝)

where

𝜙 =

𝜉 (1 − 𝑝
2

) + (1 − 𝑝)
2

2(𝜉 − 𝑠)

− 1 −

[1 − 𝑝 − (𝜉 − 𝑠)](1 − 𝑝)

𝜉 − 𝑠

, and 𝜏 =

1 − 𝑝 − (𝜉 − 𝑠)

𝜉 − 𝑠

.

It is not difficult to show that 𝐺𝑎(𝑣) ∈ M(𝜉) for all 𝑎 ∈ [𝜉 − 𝑠, 1 − 𝑝]; then by Lemma A.1,

𝐺̂
1
can be induced. This completes the proof. ■

A.1.3 The case of 𝑝 ≤ 𝑠/𝜉

The following four claims establish the results for this case.

Claim A.3. If 𝑝 ≤ 𝑠/𝜉 and 𝜇 ≥ 𝑝 + 1 − 𝑠/𝜉 , the degenerate distribution 𝛿𝜇 is optimal.
Furthermore, Seller’s revenue is Φ(𝑝) = 𝑝.

Proof of Claim A.3. By using distribution over posteriors 𝛿𝜇, because 𝜇 − 𝑝 ≥ 1 − 𝑠/𝜉 ,

the highest possible effective outside option is below Buyer’s net value from purchasing
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Seller’s product. Therefore, Buyer buys without search with probability one, and thus 𝛿𝜇

must be optimal, and Seller’s revenue equals her price 𝑝. ■

ClaimA.4. If 𝑝 ≤ 𝑠/𝜉 , 𝜇 < 𝑝+1−𝑠/𝜉 , and 𝑝 ≥ (1−2𝜉)(𝜉 −𝑠)/(2𝜉
2
), the binary distribution

with support on {0, 𝑝 + 1 − 𝑠/𝜉}, is robustly optimal. Its cdf is

𝐻𝑏(𝑤) =

{

1 −
𝜇𝜉

𝜉(1+𝑝)−𝑠
if 𝑤 ∈ [0, 𝑝 + 1 − 𝑠/𝜉),

1 if 𝑤 ∈ [𝑝 + 1 − 𝑠/𝜉, 1].

(17)

Proof of Claim A.4. Evidently, the concave hull of 𝐻𝑏

|
|
|[0,1−𝑠/𝜉]

(𝑝 + 𝑧) is constant on [𝑝, 𝑝 +

1 − 𝑠/𝜉], and hence any effective outside option distribution with mean 𝜉 − 𝑠 supported

on a subset of [0, 1 − 𝑠/𝜉] is optimal for Nature. When (1 − 2𝜉)(𝜉 − 𝑠)/(2𝜉
2
) ≤ 𝑝 <

(1 − 2𝜉)(𝜉 − 𝑠)/𝜉
2
, consider effective outside option distribution

𝐺̂
0
(𝑧) =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

(

2

𝜉−𝑠
−
(

1−𝜉

𝜉 )

1+𝜉

𝜉(1+𝑝)−𝑠)
𝑧 +

(1−2𝜉)(𝜉−𝑠)−𝜉
2
𝑝

𝜉
2
(1+𝑝)−𝑠𝜉

if 𝑧 ∈ [0, 𝜉 − 𝑠),

𝜉

𝜉(1+𝑝)−𝑠
(𝑧 + 𝑝) if 𝑧 ∈ [𝜉 − 𝑠, 1 − 𝑠/𝜉];

the restriction on 𝑝 guarantees that 𝐺̂
0
is a cdf, and it induces

𝐺̂
0

𝑝
(𝑤) =

⎧
⎪
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎩

0 if 𝑤 ∈ [0, 𝑝),

(

2

𝜉−𝑠
−
(

1−𝜉

𝜉 )

1+𝜉

𝜉(1+𝑝)−𝑠)
(𝑤 − 𝑝) −

(1−2𝜉)(𝜉−𝑠)−𝜉
2
𝑝

𝜉
2
(1+𝑝)−𝑠𝜉

if 𝑤 ∈ [𝑝, 𝑝 + 𝜉 − 𝑠),

𝜉

𝜉(1+𝑝)−𝑠
𝑤 if 𝑤 ∈ [𝑝 + 𝜉 − 𝑠, 𝑝 + 1 − 𝑠/𝜉),

1 if 𝑤 ∈ [𝑝 + 1 − 𝑠/𝜉, 1].

Inspection shows that the concave hull of 𝐺̂
0

𝑝
(𝑤) is

𝐺
0

𝑝
(𝑤) =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝜉

𝜉(1+𝑝)−𝑠
𝑤 if 𝑤 ∈ [0, 𝑝 + 1 − 𝑠/𝜉],

1 if 𝑤 ∈ [𝑝 + 1 − 𝑠/𝜉, 1].

Consequently, any distribution over posteriors with mean 𝜇 and with support on a subset

of {0} ∪ [𝑝 + 𝜉 − 𝑠, 𝑝 + 1 − 𝑠/𝜉] is optimal for Seller, and this condition is satisfied by the

binary distribution 𝐻
𝑏
. Thus, (𝐻

𝑏
, 𝐺̂

0
) is a saddle point; to show that 𝐻

𝑏
is indeed robustly
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optimal, it only remains to show that 𝐺̂
0
can be induced. Consider

∇(𝑎) =

𝑎

𝜉(1 + 𝑝) − 𝑠

+ 1 −

𝜉 − 𝑠

𝜉
2
(1 + 𝑝) − 𝑠𝜉

on [𝜉 − 𝑠, 1 − 𝑠/𝜉];

and let 𝐺
0

𝑎
(𝑣) be a ternary distribution with pmf 𝑔

0

𝑎
(𝑣) given by

𝑣 0 𝛽 − 𝛾𝑎 𝑎 + 𝑠/𝜉

𝑔
0

𝑎
(𝑣)

(1−2𝜉)(𝜉−𝑠)−𝜉
2
𝑝

𝜉
2
(1+𝑝)−𝑠𝜉

𝑝𝐿 𝜉

where

𝑝𝐿 = 1 − 𝜉 −

(1 − 2𝜉)(𝜉 − 𝑠) − 𝜉
2
𝑝

𝜉
2
(1 + 𝑝) − 𝑠𝜉

,

𝛾 = 𝜉/𝑝𝐿, and 𝛽 = (𝜉 −𝑠)𝛾/𝜉 . It can be checked that 𝐺
0

𝑎
(𝑣) ∈ M(𝜉) for all 𝑎 ∈ [𝜉 −𝑠, 1−𝑠/𝜉];

then by Lemma A.1, 𝐺̂
0
can be induced.

And for 𝑝 ≥ (1 − 2𝜉)(𝜉 − 𝑠)/𝜉
2
, consider effective outside option distribution

𝐺̂
𝜉−𝑠

(𝑧) =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

(1−𝜉)
2

𝜉
2
(1+𝑝)−𝑠𝜉

𝑧 if 𝑧 ∈ [0, 𝜉 − 𝑠),

𝜉

𝜉(1+𝑝)−𝑠
(𝑧 + 𝑝) if 𝑧 ∈ [𝜉 − 𝑠, 1 − 𝑠/𝜉];

the restriction on 𝑝 guarantees that 𝐺̂
𝜉−𝑠

is a cdf, and it induces

𝐺̂
𝜉−𝑠

𝑝
(𝑤) =

⎧
⎪
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎩

0 𝑤 ∈ [0, 𝑝),

(1−𝜉)
2

𝜉
2
(1+𝑝)−𝑠𝜉

(𝑤 − 𝑝) if 𝑤 ∈ [𝑝, 𝑝 + 𝜉 − 𝑠),

𝜉

𝜉(1+𝑝)−𝑠
𝑤 if 𝑤 ∈ [𝑝 + 𝜉 − 𝑠, 𝑝 + 1 − 𝑠/𝜉),

1 if 𝑤 ∈ [𝑝 + 1 − 𝑠/𝜉, 1].

Inspection shows that the concave hull of 𝐺̂
𝜉−𝑠

𝑝 (𝑤) is

𝐺
𝜉−𝑠

𝑝
(𝑤) =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝜉

𝜉(1+𝑝)−𝑠
𝑤 if 𝑤 ∈ [0, 𝑝 + 1 − 𝑠/𝜉],

1 if 𝑤 ∈ [𝑝 + 1 − 𝑠/𝜉, 1].

Consequently, any distribution over posteriors with mean 𝜇 and with support on a subset

of {0} ∪ [𝑝 + 𝜉 − 𝑠, 𝑝 + 1 − 𝑠/𝜉] is optimal for Seller, and this condition is satisfied by

the binary distribution 𝐻
𝑏
. Thus, (𝐻

𝑏
, 𝐺̂

𝜉−𝑠
) is a saddle point; to show that 𝐻

𝑏
is indeed
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robustly optimal, it only remains to show that 𝐺̂
𝜉−𝑠

can be induced. Consider

∇(𝑎) =

𝑎

𝜉(1 + 𝑝) − 𝑠

+ 1 −

𝜉 − 𝑠

𝜉
2
(1 + 𝑝) − 𝑠𝜉

on [𝜉 − 𝑠, 1 − 𝑠/𝜉];

and let 𝐺
𝜉−𝑠

𝑎
(𝑣) be a binary distribution with pmf 𝑔

𝜉−𝑠

𝑎
(𝑣) given by

𝑣 (𝜉(1 − 𝑎) − 𝑠)/(1 − 𝜉) 𝑎 + 𝑠/𝜉

𝑔
𝜉−𝑠

𝑎
(𝑣) 1 − 𝜉 𝜉

It can be checked that 𝐺
0

𝑎
(𝑣) ∈ M(𝜉) for all 𝑎 ∈ [𝜉 − 𝑠, 1 − 𝑠/𝜉]; then by Lemma A.1, 𝐺̂

𝜉−𝑠

can be induced. This completes the proof. ■

Claim A.5. If 𝑝 ≤ 𝑠/𝜉 , 𝑝 ≤ 𝜇 − (1 − 𝑠/𝜉)/2, and 𝑝 < (1 − 2𝜉)(𝜉 − 𝑠)/(2𝜉
2
), the distribution

𝐻
ℎ
(𝑤) =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

0 if 𝑤 ∈ [0, 𝑝),

2
𝜉
2
(𝑝+1−𝜇)−𝑠𝜉

(𝜉−𝑠)
2 (𝑤 − 𝑝) if 𝑤 ∈ [𝑝, 𝑝 + 1 − 𝑠/𝜉),

1 if 𝑤 ∈ [𝑝 + 1 − 𝑠/𝜉, 1]

is robustly optimal. Furthermore, Seller’s revenue is

Φ(𝑝) = 𝑝
[
1 − 2𝜉 + 2𝜉

2
𝜇 − 𝑝

𝜉 − 𝑠 ]
.

Proof of Claim A.5. Observe that the concave hull of𝐻 ℎ
|
|
|[0,1−𝑠/𝜉]

(𝑝+𝑧) coincideswith𝐻
ℎ
(𝑤)

on [𝑝, 𝑝+1−𝑠/𝜉], which is affine. Consequently, any effective outside option distribution

with mean 𝜉 − 𝑠 supported on a subset of [0, 1 − 𝑠/𝜉] is optimal for Nature. Now consider

effective outside option distribution

𝐺̂
ℎ
(𝑧) = 1 − 2𝜉 +

2𝜉
2

𝜉 − 𝑠

𝑧 on [0, 1 − 𝑠/𝜉];

note that 𝐺̂
ℎ
(0) ≥ 0 because 𝑝 < (1 − 2𝜉)(𝜉 − 𝑠)/(2𝜉

2
) implies 𝜉 < 1/2. Then

𝐺̂
ℎ

𝑝
(𝑤) =

{

0 if 𝑤 ∈ [0, 𝑝),

1 − 2𝜉 +
2𝜉

2

𝜉−𝑠
(𝑤 − 𝑝) if 𝑤 ∈ [𝑝, 𝑝 + 1 − 𝑠/𝜉];
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and its concave hull is

𝐺
ℎ

𝑝
(𝑤) = 1 − 2𝜉 +

2𝜉
2

𝜉 − 𝑠

(𝑤 − 𝑝) on [0, 𝑝 + 1 − 𝑠/𝜉].

Therefore, any distribution over posteriors with mean 𝜇 and with support on a subset of

[0, 𝑝 + 1 − 𝑠/𝜉] is optimal for Seller, and this condition is satisfied by 𝐻
ℎ
. Furthermore,

Seller’s value is 𝐺
ℎ

𝑝
(𝜇). Thus, (𝐻

ℎ
, 𝐺̂

ℎ
) is a saddle point; and to show that 𝐻

ℎ
is indeed

robustly optimal, it only remains to show that 𝐺̂
ℎ
can be induced. Consider

∇(𝑎) =

2𝜉

𝜉 − 𝑠

𝑎 − 1 on [(𝜉 − 𝑠)/(2𝜉), 1 − 𝑠/𝜉];

and let 𝐺
ℎ

𝑎
(𝑣) be a ternary distribution with pmf 𝑔

ℎ

𝑎
(𝑣) given by

𝑣 0 1 − 𝑠/𝜉 − 𝑎 𝑎 + 𝑠/𝜉

𝑔
ℎ

𝑎
(𝑣) 1 − 2𝜉 𝜉 𝜉

It can be checked that𝐺
ℎ

𝑎
(𝑣) ∈ M(𝜉) for all 𝑎 ∈ [(𝜉−𝑠)/(2𝜉), 1−𝑠/𝜉]; then by LemmaA.1, 𝐺̂

ℎ

can be induced by a mixture of outside option distributions. This completes the proof. ■

Claim A.6. If 𝑝 ≤ 𝑠/𝜉 , 𝜇 − (1 − 𝑠/𝜉) ≥ 𝑝 > 𝜇 − (1 − 𝑠/𝜉)/2, and 𝑝 < (1 − 2𝜉)(𝜉 − 𝑠)/(2𝜉
2
),

there exists 𝑤̄ ∈ [2𝜇 − 𝑝, 1] where

𝑤̄ =

{

2𝜇 − 𝑝 if 𝜇 > 𝑝 and 𝜉 − 𝑠 ≤
2(𝜇−𝑝)

2

2𝜇−𝑝
,

√

(𝜉 − 𝑠)
2
+ 2𝑝(𝜉 − 𝑠) + (𝜉 − 𝑠 + 𝑝) otherwise,

such that the robustly optimal distribution is

𝐻𝑤̄(𝑤) =

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

1 −
2𝜇

𝑤̄+𝑝
if 𝑤 ∈ [0, 𝑝),

1 −
2𝜇

𝑤̄+𝑝
+

2𝜇

𝑤̄+𝑝 (

𝑤−𝑝

𝑤̄−𝑝)
if 𝑤 ∈ [𝑝, 𝑤̄),

1 if 𝑤 ∈ [𝑤̄, 1].

And Seller’s revenue is

Φ(𝑝) =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝑝
[
1 −

𝜉−𝑠

2(𝜇−𝑝)]
if 𝜇 > 𝑝 and 𝜉 − 𝑠 ≤

2(𝜇−𝑝)
2

2𝜇−𝑝
,

𝑝𝜇
√

(𝜉−𝑠)(𝜉−𝑠+2𝑝)+(𝜉−𝑠+𝑝)

otherwise.
(18)
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Proof of Claim A.6. In this case,

√

(𝜉 − 𝑠)
2
+ 2𝑝(𝜉 − 𝑠) + (𝜉 − 𝑠 + 𝑝) < 𝑝 + 1 − 𝑠/𝜉 ≤ 1,

where the first inequality holds because 𝑝 < (1 − 2𝜉)(𝜉 − 𝑠)/(2𝜉
2
), and the second follows

from the assumption that 𝑝 ≤ 𝑠/𝜉 . Rearranging the above inequalities, 𝜉 − 𝑠 < (1 − 𝑝)
2
/2.

The rest of the proof is analogous to the proof of Claim A.2, and hence omitted.
40

■

The results in Appendix A.1.2 and Appendix A.1.3 together establish Proposition 1.

A.2 Proof of Corollary 1

Proof of Part (1). Fix 𝜇, 𝜉 , 𝑠 such that 𝜇, 𝜉 ∈ (0, 1) and 0 < 𝑠 < 𝜉 . Take any 𝑝1, 𝑝2 ∈ (0, 1)

such that 𝑝1 < 𝑝2. Denote the optimal distributions over posteriors corresponding to

𝑝1 and 𝑝2 by 𝐻𝑝1
and 𝐻𝑝2

, respectively. By Theorem 7 in Blackwell (1953), the optimal

disclosure policy for 𝑝2 is more informative than the one for 𝑝1 if and only if 𝐻𝑝2
is a MPS

of 𝐻𝑝1
. If 𝑝1 < 𝑝2 ≤ 2𝜇 − 1, by Proposition 1, 𝐻𝑝1

= 𝐻𝑝2
, and hence 𝐻𝑝2

is a MPS of 𝐻𝑝1
.

Suppose instead that 𝑝2 > 2𝜇 − 1. By Proposition 1, it can be seen that 𝐻𝑝1
must cross

𝐻𝑝2
only once, and from below. Then since they must have the same mean (namely 𝜇), by

Theorem 3.A.44 in Shaked and Shanthikumar (2007), 𝐻𝑝2
is a MPS of 𝐻𝑝1

. This completes

the proof. ■

Proof of Part (2). Let 𝑝1, 𝑝2 ∈ (0, 𝑠/𝜉) be such that 𝑝1 < 𝑝2. It can be seen from Proposi-

tion 1 that, if there exists 𝑖 ∈ {1, 2} such that 𝑝𝑖 ∉ [0, (1 − 2𝜉)(𝜉 − 𝑠)/(2𝜉
2
)) ∩ [(𝜇 − (1 −

𝑠/𝜉))/2, 𝜇 − (1 − 𝑠/𝜉)), by Proposition 1 there must exist 𝛼 ∈ [0, 1] such that 𝐻𝑝1
(𝑤) ≤

𝐻𝑝2
(𝑤) for all 𝑤 ≤ 𝛼, and 𝐻𝑝1

(𝑤) ≥ 𝐻𝑝2
(𝑤) for all 𝑤 > 𝛼. Again by Theorem 3.A.44 in

Shaked and Shanthikumar (2007), 𝐻𝑝2
is a MPS of 𝐻𝑝1

, which establishes Part (2)(ii).

For Part (2)(i), take any 𝑝1, 𝑝2 are such that 𝑝1 < 𝑝2 < (1 − 2𝜉)(𝜉 − 𝑠)/(2𝜉
2
) and

𝑝1, 𝑝2 ∈ [(𝜇 − (1 − 𝑠/𝜉))/2, 𝜇 − (1 − 𝑠/𝜉)). Proposition 1 indicates that, there exists 𝜀 > 0

sufficiently small such that 𝐻𝑝1
(𝑤) > 𝐻𝑝2

(𝑤) for all 𝑤 ∈ (𝑝1, 𝑝1 + 𝜀). Thus,

∫

𝑝1+𝜀

0

𝐻𝑝1
(𝑤) d𝑤 >

∫

𝑝1+𝜀

0

𝐻𝑝2
(𝑤) d𝑤. (19)

40
There is one subtle point, though: for the case of 𝑤̄ = 2𝜇 −𝑝, to make sure that my choice of the saddle

point in the proof of Claim A.2 works, it has to be that 2(𝜇−𝑝) ≤ 1−𝑠/𝜉 . This must hold by the assumption

that 𝑝 > 𝜇 − (1 − 𝑠/𝜉)/2.
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One can also find 𝛿 > 0 small enough such that 𝐻𝑝1
(𝑤) > 𝐻𝑝2

(𝑤) for all 𝑤 ∈ (𝑝2+1−𝑠/𝜉 −

𝛿, 𝑝2 + 1 − 𝑠/𝜉). Consequently, ∫
1

𝑝2+1−𝑠/𝜉−𝛿
𝐻𝑝1

(𝑤) d𝑤 > ∫
1

𝑝2+1−𝑠/𝜉−𝛿
𝐻𝑝2

(𝑤) d𝑤. Because 𝐻𝑝1

and 𝐻𝑝2
have the same means, ∫

1

0
𝐻𝑝1

(𝑤) d𝑤 = ∫
1

0
𝐻𝑝2

(𝑤) d𝑤. Therefore,

∫

𝑝2+1−𝑠/𝜉−𝛿

0

𝐻𝑝1
(𝑤) d𝑤 >

∫

𝑝2+1−𝑠/𝜉−𝛿

0

𝐻𝑝2
(𝑤) d𝑤. (20)

But (19) and (20) together imply that 𝐻𝑝1
is not a MPS of 𝐻𝑝2

, and 𝐻𝑝2
is not a MPS of

𝐻𝑝1
. Thus, the corresponding optimal disclosure policies are not Blackwell ranked. This

completes the proof. ■

A.3 Proof of Theorem 1

I first establish two preliminary results, Claim A.7 and Claim A.8, that concern the cases

of 𝑝 > 𝑠/𝜉 and 𝑝 ≤ 𝑠/𝜉 , respectively.

Claim A.7. Assume 𝑝 > 𝑠/𝜉 . The robust price is

𝑝
∗
=

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

1−

√

2(𝜉−𝑠)−(𝜉−𝑠)
2

1−𝜉+𝑠
𝜇 ≤

̄

𝜇,

2𝜇 − 1

̄

𝜇 < 𝜇 ≤ 𝜇̄,

1 −

√

𝜉 − 𝑠 𝜇 > 𝜇̄.

(21)

And if 𝜇 > 1 − (

√

𝜉 − 𝑠/2), any distribution over posteriors 𝐻 ∈ M(𝜇) such that 𝐻(𝑤) ≤

𝑈[1 −

√

𝜉 − 𝑠, 1] is optimal; if 𝜇 ≤ 1 − (

√

𝜉 − 𝑠/2), the optimal distribution over posteriors is

𝐻(𝑤) =

{

1 −
2𝜇

1+𝑝
∗

𝑤 ∈ [0, 𝑝
∗
),

1 −
2𝜇

1−𝑝
∗2
(1 − 𝑤) 𝑤 ∈ [𝑝

∗
, 1].

The seller’s revenue guarantee is

Πℎ =

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

𝜇 (1 −

√

2(𝜉 − 𝑠) − (𝜉 − 𝑠)
2

) 𝜇 ≤

̄

𝜇,

(2𝜇 − 1)
(
1 −

𝜉−𝑠

2−2𝜇)
̄

𝜇 < 𝜇 ≤ 𝜇̄,

(1 −

√

𝜉 − 𝑠)

2

𝜇 > 𝜇̄.

(22)

Proof of Claim A.7. Consider any price 𝑝 with 𝑝 > 𝑠/𝜉 . By Claim A.1 and Claim A.2, after

rearranging some inequalities, Seller’s expected revenue can be written as a function of
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𝑝:

Φ(𝑝) =

⎧
⎪
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎩

𝑝
(
1 −

𝜉−𝑠

1−𝑝)
if 𝑝 < 2𝜇 − 1,

𝑝
[
1 −

𝜉−𝑠

2(𝜇−𝑝)]
if 𝜇 − 𝑡 > 𝑝 ≥ 2𝜇 − 1,

𝑝𝜇
√

(𝜉−𝑠)(𝜉−𝑠+2𝑝)+(𝜉−𝑠+𝑝)

if 1 −

√

2 (𝜉 − 𝑠) > 𝑝 ≥ max{𝜇 − 𝑡, 2𝜇 − 1},

2𝜇

1+𝑝 (
1 −

𝜉−𝑠

1−𝑝)
if 𝑝 ≥ 1 −

√

2 (𝜉 − 𝑠) and 𝑝 ≥ 2𝜇 − 1,

where

𝑡 ∶= 𝜉 − 𝑠 +

√

(𝜉 − 𝑠)(𝜉 − 𝑠 + 8𝜇)

4

> 0.

It can be checked that Φ(𝑝) is concave and piecewise continuously differentiable. Then

note that if 𝜇 − 𝑡 > 𝑝 > 2𝜇 − 1, or 1 −

√

2 (𝜉 − 𝑠) > 𝑝 > max{𝜇 − 𝑡, 2𝜇 − 1}, Φ
′
(𝑝) is strictly

positive, which implies that these prices yield strictly less revenue than 𝑝 = 1−

√

2 (𝜉 − 𝑠).

Consequently, an optimal price cannot lie in these regions; thus, optimal prices can be

solved by maximizing

Φ̃(𝑝) =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝑝
(
1 −

𝜉−𝑠

1−𝑝)
if 𝑝 < 2𝜇 − 1,

2𝜇𝑝

1+𝑝 (
1 −

𝜉−𝑠

1−𝑝)
if 𝑝 ≥ 2𝜇 − 1;

note that Φ̃ is continuous at 𝑝 = 2𝜇 − 1. To solve this problem, I first solve

max
𝑝

𝑝
(
1 −

𝜉 − 𝑠

1 − 𝑝)
subject to 0 ≤ 𝑝 ≤ 2𝜇 − 1;

standard Lagrangian approach shows that the solution is

𝑝1 =

{

1 −

√

𝜉 − 𝑠 if 𝜇 ≥ 𝜇̄,

2𝜇 − 1 if 𝜇 < 𝜇̄.

Similarly, the solution to the problem

max
𝑝

2𝜇𝑝

1 + 𝑝 (
1 −

𝜉 − 𝑠

1 − 𝑝)
subject to 2𝜇 − 1 ≤ 𝑝 ≤ 1,

is

𝑝2 =

{
1−

√

2(𝜉−𝑠)−(𝜉−𝑠)
2

1−𝜉+𝑠
if 𝜇 ≤

̄

𝜇,

2𝜇 − 1 if 𝜇 >

̄

𝜇.

Thus, the optimal robust price when 𝑝 > 𝑠/𝜉 , 𝑝
∗
, is given by (21). The other statements
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in Claim A.7 then follow from Claim A.1, Claim A.2, and (21). ■

Claim A.8. Assume 𝑝 ≤ 𝑠/𝜉 . Then the robust price is always 𝑝∗∗
= 𝑠/𝜉 . Furthermore, if

𝑠 ≥ 𝜉 − 2𝜉
2, the optimal distribution over posteriors is the binary distribution

𝐻
∗

𝑏
(𝑤) =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

1 − 𝜇 𝑤 ∈ [0, 1),

1 𝑤 = 1,

(23)

and the revenue guarantee is Π = 𝜇𝑠/𝜉 .
Suppose instead 𝑠 < 𝜉 − 2𝜉

2. If 𝜇 > 𝑝
∗∗

+ (1 − 𝑠/𝜉)/2 = (1 + 𝑠/𝜉)/2, the optimal
distribution over posteriors is

𝐻
∗

ℎ
(𝑤) =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

0 𝑤 ∈ [0, 𝑝
∗∗
),

2𝜉
2
(1−𝜇)

(𝜉−𝑠)
2 (𝑤 − 𝑝

∗∗
) 𝑤 ∈ [𝑝

∗∗
, 1),

1 𝑤 = 1,

(24)

and the revenue guarantee is

Π =

𝑠

𝜉

−

2𝑠𝜉 (1 − 𝜇)

𝜉 − 𝑠

. (25)

If 𝜇 ≤ (1 + 𝑠/𝜉)/2, the optimal distribution over posteriors is

𝐻𝑤̄(𝑤 ∣ 𝑝
∗∗
) =

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

1 −
2𝜇

𝑤̄+𝑝
∗∗

𝑤 ∈ [0, 𝑝
∗∗
),

1 −
2𝜇

𝑤̄+𝑝
∗∗
+

2𝜇

𝑤̄+𝑝
∗∗
(

𝑤−𝑝
∗∗

𝑤̄−𝑝
∗∗
)

𝑤 ∈ [𝑝
∗∗
, 𝑤̄),

1 𝑤 ∈ [𝑤̄, 1];

(26)

and Seller’s revenue guarantee is

Π =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝑝
∗∗

[
1 −

𝜉−𝑠

2(𝜇−𝑝
∗∗
)]

if 𝜇 > 𝑝 and 𝜉 − 𝑠 ≤
2(𝜇−𝑝

∗∗
)
2

2𝜇−𝑝
∗∗

,

𝑝
∗∗
𝜇

√

(𝜉−𝑠)(𝜉−𝑠+2𝑝
∗∗
)+(𝜉−𝑠+𝑝

∗∗
)

otherwise.
(27)

Proof of Claim A.8. If 𝑝 ≥ (1 − 2𝜉) (𝜉 − 𝑠) /(2𝜉
2
), by Claim A.4, the binary distribution 𝐻𝑏

is always optimal whenever 𝑝 > 𝜇 + 𝑠/𝜉 − 1. Then for such a price 𝑝, Seller’s revenue is

𝑝 [1 − 𝐻𝑏(𝑝 + 𝜉 − 𝑠)] =

𝑝𝜇𝜉

𝜉(1 + 𝑝) − 𝑠

,

which is strictly increasing in 𝑝, so the optimal price is just 𝑝
∗
= 𝑠/𝜉 , and the resulting
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profit is 𝜇𝑠/𝜉 . If instead 𝑝 ≤ 𝜇 + 𝑠/𝜉 − 1, Proposition 1 implies that the degenerate

distribution 𝛿𝜇 is optimal, and clearly it is optimal to charge the highest possible price

consistent with this case, which makes Buyer buys without search with probability 1.

Thus, 𝑝 = Π = 𝜇 + 𝑠/𝜉 − 1. Now observe that

(
𝜇 +

𝑠

𝜉

− 1
)
−

𝜇𝑠

𝜉

=
(
1 −

𝑠

𝜉 )
(𝜇 − 1) < 0,

where the inequality holds since 𝑠 < 𝜉 and 𝜇 < 1. Therefore, the strategy with the

degenerate distribution is dominated by the strategywith the binary distribution, and thus

one can say that the former is never a part of a revenue guarantee maximizing strategy,

and there is no need to worry about this case henceforth.

When (1 − 2𝜉) (𝜉 − 𝑠) /(2𝜉
2
) > 𝑝 ≥ 𝜇−(1−𝑠/𝜉)/2, again by Proposition 1, 𝐻𝑤̄ defined

in (26) is optimal;
41
and a similar argument as in the proof of Claim A.7 shows that Seller’s

revenue is strictly increasing in 𝑝. When 𝑝 < min{𝜇 − (1− 𝑠/𝜉)/2, (1 − 2𝜉) (𝜉 − 𝑠) /(2𝜉
2
)},

Seller chooses price to solve

max
𝑝

𝑝
[
1 − 2𝜉

𝜉 (𝑝 + 1 − 𝜇) − 𝑠

𝜉 − 𝑠 ]
.

The objective is strictly concave in 𝑝, so it suffices to look at the first-order condition

(FOC). The FOC yields

𝑝
𝑜
=

(1 − 2𝜉)(𝜉 − 𝑠)

4𝜉
2

+

𝜇

2

;

but it can be shown that 𝑝
𝑜
≥ min{𝜇 − (1 − 𝑠/𝜉)/2, (1 − 2𝜉) (𝜉 − 𝑠) /(2𝜉

2
)};

42
then since

Seller’s objective is strictly concave, in this case it is also strictly increasing in 𝑝. Then

because the objective function is strictly increasing in 𝑝 in all three cases above, when

𝑝 ≤ 𝑠/𝜉 it is always optimal to choose 𝑝
∗∗

= 𝑠/𝜉 ; and the optimal distribution over

posteriors and revenue guarantee is determined by which of the three cases 𝑝
∗∗

= 𝑠/𝜉

falls in.

Finally, simple algebra reveals that

𝑝
∗∗
=

𝑠

𝜉

≥

(1 − 2𝜉) (𝜉 − 𝑠)

2𝜉
2

41
If (1 − 2𝜉) (𝜉 − 𝑠) /(2𝜉

2
) < 𝜇 − (1 − 𝑠/𝜉)/2, then 𝐻𝑤̄(⋅ ∣ 𝑝

∗∗
) is never optimal.

42
I prove this fact in Claim C.1 in Appendix C.
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if and only if 𝑠 ≥ 𝜉 − 2𝜉
2
. This completes the proof. ■

Notice that (26) is just (5), one candidate for optimal distribution over posteriors in

the case of 𝑝 > 𝑠/𝜉 , evaluated at 𝑝
∗∗
; and the revenue guarantee in (27) is Φ(𝑝) defined

in (18) evaluated at 𝑝
∗∗
. When 𝜇 ≤ (1 + 𝑠/𝜉)/2, one can check that Φ

′
(𝑝) > 0 even for

𝑝 > 𝑠/𝜉 , and hence the price-information pair (𝑝
∗∗
, 𝐻𝑤̄(⋅ ∣ 𝑝

∗∗
)) can never be optimal.

Consequently, the candidates for optimal selling strategies with 𝑝 ≤ 𝑠/𝜉 are just (𝑝
∗∗
, 𝐻

∗

𝑏
)

and (𝑝
∗∗
, 𝐻

∗

𝑢
).

Next I am going to compare Seller’s revenue guarantee from the above two cases,

namely 𝑝 > 𝑠/𝜉 and 𝑝 ≤ 𝑠/𝜉 . To that end, for fixed 𝜉 ∈ (0, 1) and 𝑠 ∈ (0, 𝜉), define

𝐷 = {𝜇 ∈ [0, 1] ∶ 𝜇𝑠/𝜉 ≥ Πℎ} ,

and

𝑁 =

{

𝜇 ≥

1 + 𝑠/𝜉

2

∶

𝑠

𝜉

−

2𝑠𝜉 (1 − 𝜇)

𝜉 − 𝑠

≥ Πℎ

}

,

where Πℎ is the revenue guarantee for the case of 𝑝 > 𝑠/𝜉 defined in (22). 𝐷 and 𝑁 are

the sets of priors that the revenue guarantees from 𝐻
∗

𝑏
and 𝐻

∗

ℎ
, respectively, exceed Πℎ.

Note that 𝐷 is empty if and only if 𝜇𝑠/𝜉
|
|
|𝜇=1

< Πℎ

|
|
|𝜇=1

, namely 𝑠/𝜉 < (1 −

√

𝜉 − 𝑠)
2
;

rearrange,

𝑠 <

𝜉 (𝜉 − 1)
2

(𝜉 + 1)
2

= 𝐵2(𝜉). (28)

Moreover, algebra reveals that 𝑁 is empty if and only if 𝐷 is empty. Thus, focusing on

buy-later demand is optimal if (28) holds. If instead (28) does not hold, define

𝜇̂ = inf 𝐵, and 𝜇̌ = inf 𝑁 .

Because 𝜇𝑠/𝜉 is linear in 𝜇, and Πℎ is also linear for low 𝜇, 𝜇̂ = 0 if and only if the slope

of the linear part of Πℎ is less than or equal to 𝑠/𝜉 , namely

𝑠

𝜉

≥ 1 −

√

2(𝜉 − 𝑠) − (𝜉 − 𝑠)
2
, (29)
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or equivalently
43

𝑠 ≥

𝜉(𝜉 − 1)
2

𝜉
2
+ 1

= 𝐵1(𝜉). (30)

If (30) holds, (𝑝
∗∗
, 𝐻

∗

𝑏
) is optimal for all 𝜇 ∈ [0, 1]; in other words, maximally deterring

search is optimal. If both (28) and (30) do not hold, it must be that 𝐵2(𝜉) ≤ 𝑠 < 𝐵1(𝜉),

and 𝜇̂, 𝜇̌ ∈ (0, 1]. In this case, Claim A.8 suggests that (𝑝
∗∗
, 𝐻

∗

𝑢
) dominates (𝑝

∗∗
, 𝐻

∗

𝑏
) if and

only if 𝑠 < 𝜉 − 2𝜉
2
= 𝐵3(𝜉). Thus, if further 𝐵3(𝜉) ≤ 𝑠 < 𝐵1(𝜉), there exists a cutoff 𝜇̂

such that focusing on buy-later demand is optimal whenever 𝜇 ≤ 𝜇̂, and maximally deter

search is optimal otherwise. If instead 𝐵2(𝜉) < 𝑠 < 𝐵3(𝜉), there exists 𝜇̌ ∈ (0, 1) such that

for 𝜇 < 𝜇̌, Seller focuses on buy-later demand; and for 𝜇 ≥ 𝜇̌, Seller optimally balances

between buy-now and buy-later demand.

It only remains to verify that, whenever 𝑝
∗
is the robust price, it indeed satisfies 𝑝

∗
>

𝑠/𝜉 . To see this, observe that for (𝑝
∗
, 𝐻) in Claim A.7 to be optimal for some 𝜇 ∈ (0, 1) and

0 < 𝑠 < 𝜉 < 1, it must be that

𝑠

𝜉

< 1 −

√

2(𝜉 − 𝑠) − (𝜉 − 𝑠)
2
<

1 −

√

2(𝜉 − 𝑠) − (𝜉 − 𝑠)
2

1 − 𝜉 + 𝑠

< 1 −

√

𝜉 − 𝑠;

where the first inequality holds because a necessary condition for 𝑝
∗
to be optimal is

that (29) does not hold, as otherwise 𝑝
∗∗

is always optimal; the second inequality fol-

lows because 𝜉 − 𝑠 < 1, and the third follows by algebra. Consequently, both 𝑝
∗
=

(1 −

√

2(𝜉 − 𝑠) − (𝜉 − 𝑠)
2
)/(1 − 𝜉 + 𝑠) and 𝑝

∗
= 1 −

√

𝜉 − 𝑠 satisfy 𝑝
∗
> 𝑠/𝜉 . Further-

more, 𝑝
∗
= 2𝜇−1 is optimal only if it is strictly above (1−

√

2(𝜉 − 𝑠) − (𝜉 − 𝑠)
2
)/(1−𝜉 +𝑠).

Therefore, whenever 𝑝
∗
is optimal, it must be that 𝑝

∗
> 𝑠/𝜉 . This completes the proof.

A.4 The “Boundary Cases”

The only candidate robust price that depends on the prior 𝜇 is 𝑝 = 2𝜇 − 1, and by Theo-

rem 1, it is indeed the robust price if and only if

i. either 𝑠 < 𝐵2(𝜉), and

̄

𝜇 ≤ 𝜇 < 𝜇̄; or

ii. 𝐵2(𝜉) ≤ 𝑠 < 𝐵1(𝜉), and either

43
Observe that

𝐵2(𝜉) =

𝜉 (𝜉 − 1)
2

(𝜉 + 1)
2

<

𝜉(𝜉 − 1)
2

𝜉
2
+ 1

= 𝐵1(𝜉)

for all 𝜉 ∈ (0, 1).
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(a) 𝐵3(𝜉) ≤ 𝑠 < 𝐵1(𝜉), and

̄

𝜇 ≤ 𝜇 < min{𝜇̄, 𝜇̂}, or

(b) 𝐵2(𝜉) ≤ 𝑠 < 𝐵3(𝜉), and

̄

𝜇 ≤ 𝜇 < min{𝜇̄, 𝜇̌}.

These conditions are stringent: the distance between

̄

𝜇 and 𝜇̄ is usually very small, and

for ii. to be relevant, both

̄

𝜇 ≤ 𝜇 < 𝜇̄ and 𝜇̂ ≥

̄

𝜇 (or 𝜇̌ ≥

̄

𝜇) must hold.

A.5 Proof of Theorem 2

A.5.1 Proof of Part (i)

For fixed 𝜇 and 𝜉 , Theorem 1 indicates that 𝑠, the level of the search cost at which Seller

switches to a deterrence policy, must satisfy 𝑠 = 𝐵𝑖(𝜉) for some 𝑖 = 1, 2, 3. It is easy to see,

from the expressions of 𝑝
∗
and 𝑝

∗∗
, that the robust price

𝑝𝑟 =

{

𝑝
∗

if 𝑠 ∈ [0, 𝑠)

𝑝
∗∗

if 𝑠 ∈ [𝑠, 𝜉)

is increasing in 𝑠 on (0, 𝑠) and (𝑠, 𝜉). Now it only suffices to show that 𝑝𝑟(𝑠−) > 𝑝𝑠(𝑠+);

that is, 𝑝
∗
(𝑠) > 𝑝

∗∗
(𝑠). After some algebra, one can show that for all 𝜉 ∈ (0, 1), so long as

𝑠 < 𝐵1(𝜉),

1 −

√

2(𝜉 − 𝑠) − (𝜉 − 𝑠)
2

1 − 𝜉 + 𝑠

>

𝑠

𝜉

.

Then because 𝐵1(𝜉) > max{𝐵2(𝜉), 𝐵3(𝜉)}, it must be that 𝑝
∗
(𝑠) > 𝑝

∗∗
(𝑠) no matter what

value does 𝑠 take. This completes the proof.

A.5.2 Proof of Part (ii)

Suppose 𝑠1 < 𝑠2. Fix 𝜉 ∈ (0, 1); for any 𝑠 ∈ (0, 𝜉), let 𝜇̂(𝑠) and 𝜇̌(𝑠) denote the cutoffs in

the statement of Theorem 1 when the search cost is 𝑠 and the mean of the outside option

distribution is 𝜉 . It can be shown that both 𝜇̂ and 𝜇̌ are decreasing in 𝑠; consequently,

𝜇̂(𝑠1) ≥ 𝜇̂(𝑠2), and 𝜇̌(𝑠1) ≥ 𝜇̌(𝑠2). Note also that 𝐵3(𝜉) ≤ 𝐵2(𝜉) if and only if 𝜉 ≥

√

2 − 1,

and hence whenever 𝜉 ≥

√

2 − 1, it cannot be that 𝐵2(𝜉) ≤ 𝑠 < 𝐵3(𝜉). Consequently, it is

convenient the two cases, 𝜉 <

√

2 − 1 and 𝜉 ≥

√

2 − 1, separately.

Case 1: 𝜉 ≥

√

2 − 1.

(1-1) 𝑠1 < 𝑠2 < 𝐵2 (𝜉).
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In this case, both 𝑠1 and 𝑠2 correspond to some uniform disclosure policies; let 𝐻𝑠1

and 𝐻𝑠2
denote the corresponding distribution over posteriors. It suffices to show

that 𝐻𝑠2
is a MPS of 𝐻𝑠1

. Since 𝑠1 < 𝑠2 < 𝐵2 (𝜉), by Theorem 1, the corresponding

robust prices are 𝑝
∗
(𝑠1) and 𝑝

∗
(𝑠2), respectively. In particular, 𝑝

∗
(𝑠1) > 𝑠1/𝜉 , and

𝑝
∗
(𝑠2) > 𝑠2/𝜉 . Moreover, since 𝑠1 < 𝑠2 < 𝑠, Part (i) implies that 𝑝

∗
is increasing in 𝑠

on (0, 𝑠). In this region, the search cost only enters the robustly optimal distribution

over posteriors via the robust price; then by Corollary 1, 𝐻𝑠2
is a MPS of 𝐻𝑠1

.

(1-2) 𝑠1 < 𝐵2 (𝜉) ≤ 𝑠2.

If 𝑠2 ≥ 𝐵1(𝜉) then it is obvious that the robustly optimal disclosure policy that cor-

responds to 𝑠2 is more Blackwell informative since it is full disclosure. Otherwise,

there are two cases: 𝜇̂ (𝑠2) ≤ 𝜇 or 𝜇̂ (𝑠2) > 𝜇. In the first case, again the robustly

optimal disclosure policy that corresponds to 𝑠2 is full disclosure, and hence must

be more Blackwell informative. In the second, since 𝜇̂(𝑠1) ≥ 𝜇̂(𝑠2), both 𝑠1 and 𝑠2

correspond to some uniform disclosure policies, and thus the same argument as in

Case (1-1) would do the work.

(1-3) 𝐵2(𝜉) ≤ 𝑠1 < 𝑠2. There are two sub-cases:

(a) 𝜇 < 𝜇̂ (𝑠2). Then there are three possibilities: 𝑠2 < 𝐵1(𝜉), and hence both 𝑠1 and

𝑠2 correspond to uniform disclosure; 𝑠1 < 𝐵1(𝜉) ≤ 𝑠2, and hence 𝑠1 corresponds

to uniform disclosure and 𝑠2 corresponds to full disclosure; 𝑠1 ≥ 𝐵1(𝜉), and

hence both 𝑠1 and 𝑠2 correspond to full disclosure. In all these possibilities, the

robustly optimal disclosure policy that corresponds to 𝑠2 is more Blackwell

informative than the one that corresponds to 𝑠1.

(b) 𝜇 ≥ 𝜇̂ (𝑠2). Then it must be that 𝑠2 corresponds to full disclosure, and hence

the desired statement follows.

Case 2: 𝜉 <

√

2 − 1.

(2-1) 𝑠1 < 𝑠2 < 𝐵2 (𝜉).

The same argument as in Case (1-1) proves the desired conclusion.

(2-2) 𝑠1 < 𝐵2 (𝜉) ≤ 𝑠2.

If 𝑠2 ≥ 𝐵1(𝜉) then it is obvious that the robustly optimal disclosure policy that cor-

responds to 𝑠2 is more Blackwell informative since it is full disclosure. If 𝐵3(𝜉) ≤
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𝑠2 < 𝐵1(𝜉), the same argument as in Case (1-2) proves the desired conclusion. If

𝐵2(𝜉) ≤ 𝑠2 < 𝐵3(𝜉), there are two cases: 𝜇̌ (𝑠2) > 𝜇 or 𝜇̌ (𝑠2) ≤ 𝜇. In the first, again

the same argument as in Case (1-1) shows that the robustly optimal disclosure pol-

icy that corresponds to 𝑠2 is more Blackwell informative. In the second, however,

it can be that the disclosure policies correspond to 𝑠1 and 𝑠2 cannot be Blackwell

ranked.

(2-3) 𝐵2(𝜉) ≤ 𝑠1 < 𝑠2.

If 𝑠1 ≥ 𝐵3(𝜉), an analogous argument as in Case (1-3) proves the desired conclusion.

If 𝑠2 ≥ 𝐵3(𝜉) > 𝑠1, the definition of 𝐷 and 𝑁 in the proof of Theorem 1 implies that

𝜇̂(𝑠2) < 𝜇̌(𝑠1), and hence there are three possibilities: 𝜇̂(𝑠2) ≥ 𝜇, 𝜇̂(𝑠2) < 𝜇 < 𝜇̌(𝑠1),

and 𝜇̌(𝑠1) ≥ 𝜇. The first one is the same as in Case (1-1), and in the other two the

robustly optimal disclosure policy that corresponds to 𝑠2 is full disclosure, and hence

must be more Blackwell informative.

If instead 𝐵2(𝜉) ≤ 𝑠1 < 𝑠2 < 𝐵3(𝜉). There are three possibilities: 𝜇̌(𝑠2) ≥ 𝜇,

𝜇̌(𝑠2) < 𝜇 < 𝜇̌(𝑠1), and 𝜇̌(𝑠1) ≥ 𝜇. In the second, everything is the same as the

last possibility considered in Case (2-2); and in the third, the same argument as in

Case (1-1) shows that the disclosure policy associated with 𝑠2 is more informative.

Now suppose 𝜇̌(𝑠2) ≥ 𝜇, and hence for both 𝑠1 and 𝑠2 the robustly optimal distri-

bution over posteriors is 𝐻
∗

𝑢
defined in (14). Since 𝑠1 < 𝑠2, 𝑝

∗∗
(𝑠1) < 𝑝

∗∗
(𝑠2), and

the slope of the affine segment is strictly higher for 𝑠2. Therefore, 𝐻
∗

𝑢,𝑠2
crosses 𝐻

∗

𝑢,𝑠1

only once and from below; then by Theorem 3.A.44 in Shaked and Shanthikumar

(2007), the robustly optimal disclosure policy corresponding to 𝑠2 is less Blackwell
informative.

Summarizing, for any 𝑠1 < 𝑠2, the robustly optimal disclosure policy that corresponds

to 𝑠2 ismore Blackwell informative than the one that corresponds to 𝑠1 unless 𝑠2 ∈ (𝐵2(𝜉), 𝐵3(𝜉))

and 𝜇̌(𝑠1) ≥ 𝜇. This completes the proof.

A.5.3 Proof of Part (iii)

Claim A.9, which is a corollary of Theorem 1, Claim A.7, and Claim A.8, summarizes

Seller’s revenue guarantee for different parameter values.

Claim A.9. If 𝑠 ≥ 𝜉(𝜉 − 1)
2
/(𝜉

2
+ 1), Seller’s revenue guarantee is Π = 𝜇𝑠/𝜉 ; and if 𝑠 <

𝜉(𝜉 − 1)
2
/(𝜉 + 1)

2, Seller’s revenue guarantee is given by (22). If 𝜉(𝜉 − 1)
2
/(𝜉 + 1)

2
≤ 𝑠 <
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𝜉(𝜉 − 1)
2
/(𝜉

2
+ 1), there are two cases:

(1) If either 𝜉 ≥

√

2 − 1, or 𝜉 <

√

2 − 1 and 𝜉 − 2𝜉
2
< 𝑠 < 𝜉(𝜉 − 1)

2
/(𝜉

2
+ 1), there

exists 𝜇̂ ∈ (0, 1) such that for 𝜇 < 𝜇̂, Seller’s revenue guarantee is given by (22); and
for 𝜇 ≥ 𝜇̂, Seller’s revenue guarantee is Π = 𝜇𝑠/𝜉 .

(2) If instead 𝜉 <

√

2 − 1 and 𝜉(𝜉 − 1)
2
/(𝜉 + 1)

2
≤ 𝑠 < 𝜉 − 2𝜉

2, there exists 𝜇̌ ∈ (0, 1)

such that for 𝜇 < 𝜇̌, Seller’s revenue guarantee is given by (22); and for 𝜇 ≥ 𝜇̌, Seller’s
revenue guarantee is given by (25).

Based on Claim A.9, the conclusions made in Part (iv) can be obtained from routine

algebraic exercises.

B Proofs for Section 4

B.1 Proof of Proposition 2

When 𝑠 = 0, (3) indicates that 𝑎 = 1. Consequently, Seller’s payoff when the distribution

over outside options is 𝐺 can be simplified to 𝑝 𝔼𝐺[1 − 𝐻(𝑝 + 𝑣)]. Therefore, I can work

with the outside option distribution directly; in particular, there is no need to find an

effective outside option distribution first and then find an outside option distribution that

generates it.

For each pair of distribution over posterior means and effective outside option distri-

bution (𝐻, 𝐺̂) that is a saddle point in the proof of Claim A.1 and Claim A.2, by setting

𝑠 = 0, the resulting pair (𝐻
′
, 𝐺

′
) of distribution over posterior means and outside option

distribution is a saddle point for the zero search cost problem. Therefore, the analogs of

Claim A.1 and Claim A.2 can be obtained. Using these results, an argument similar to the

proof of Claim A.7 establishes the proposition.

B.2 Proof of Proposition 3

For a fixed posterior 𝑤, the probability of Buyer buying from Seller is given by 𝐺
𝑎

𝑝
(𝑤),

where when 𝑝 + 𝑎 ≤ 1,

𝐺
𝑎

𝑝
(𝑤) ∶=

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

0 if 𝑤 < 𝑝,

𝐺(𝑤 − 𝑝) if 𝑝 ≤ 𝑤 < 𝑝 + 𝑎,

1 if 𝑤 ≥ 𝑝 + 𝑎;
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Figure 7: Constructing 𝐺
𝑎

𝑝
from 𝐺. The left panel shows the case of 𝑝+𝑎 ≤ 1, and the case

of 𝑝 + 𝑎 > 1 is displayed in the right panel.

and

𝐺
𝑎

𝑝
(𝑤) ∶=

{

0 if 𝑤 < 𝑝,

𝐺(𝑤 − 𝑝) if 𝑤 ≥ 𝑝,

when 𝑝+𝑎 > 1. See Figure 7 for an illustration of this function. Therefore, if Seller chooses

a distribution 𝐻 , her payoff can be written as 𝑝 ∫
1

0
𝐺
𝑎

𝑝
(𝑤) d𝐻(𝑤). Therefore, Seller solves

max

𝑝∈[0,1]

{

max

𝐻∈M(𝜇)

𝑝
∫

1

0

𝐺
𝑎

𝑝
(𝑤) d𝐻(𝑤)

}

.

To prove Proposition 3, I solve for the optimal information disclosure policy for a fixed

price first. For a fixed 𝑝 ∈ [0, 1], Seller’s problem of choosing a distribution over posteriors

is

max

𝐻∈M(𝜇)
∫

1

0

𝐺
𝑎

𝑝
(𝑤) d𝐻(𝑤).

This problem is identical to the information design problem studied in Kamenica and

Gentzkow (2011),
44
where Seller’s (who plays the role of Sender in their framework) value

function is exactly 𝐺
𝑎

𝑝
(𝑤). Consequently, Seller’s optimal distribution can be identified by

finding the concave hull of 𝐺
𝑎

𝑝
(𝑤).

To identify the concave hull of 𝐺
𝑎

𝑝
(𝑤), starting from 𝑣 = 0, I try to find a line segment

44
See the problem on page 2596 in Kamenica and Gentzkow (2011).
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Figure 8: The concave hull of 𝐺
𝑎

𝑝
when 𝑝 > 1−𝑎, which is identified by the orange dashed

curve.

that tangents to 𝐺
𝑎

𝑝
at some 𝑟(𝑝): 𝑟(𝑝) solves

𝑔(𝑟(𝑝) − 𝑝)𝑟(𝑝) = 𝐺(𝑟(𝑝) − 𝑝); (31)

if a solution to the above equation does not exist for some 𝑝, set 𝑟(𝑝) = 1. Note that when

𝑟(𝑝) < 1, it must be that 𝑔
′
(𝑟(𝑝) − 𝑝) < 0. If 𝑝 > 1 − 𝑎, it is not hard to see that 𝐺

𝑎

𝑝
is a

convex-concave function on [0, 1], and it is concave on [𝑟(𝑝), 1]. Thus, the concave hull

of 𝐺
𝑎

𝑝
, as illustrated in Figure 8, is affine on [0, 𝑟(𝑝)], and identical to 𝐺

𝑎

𝑝
on [𝑟(𝑝), 1].

The case of 𝑝 ≤ 1− 𝑎 is more complicated. If 𝑔(𝑟(𝑝) −𝑝) ≤ 1/(𝑝 + 𝑎), that is, the slope

of 𝐺
𝑎

𝑝
at 𝑟(𝑝) is less than or equal to the slope of the line segment that connects (0, 0) and

(𝑝 + 𝑎, 1), which I denote by 𝓁𝑝, then the concave hull of 𝐺
𝑎

𝑝
is essentially identified by 𝓁𝑝.

If instead 𝑔(𝑟(𝑝) − 𝑝) > 1/(𝑝 + 𝑎), then draw another line segment from (𝑝 + 𝑎, 1) that

tangents to 𝐺
𝑎

𝑝
at some 𝑡(𝑝): 𝑡(𝑝) solves

𝑔(𝑡(𝑝) − 𝑝)(𝑝 + 𝑎 − 𝑡(𝑝)) = 1 − 𝐺(𝑡(𝑝) − 𝑝). (32)

And in this case the concave hull is identified by 𝑟(𝑝) and 𝑡(𝑝). The left and right panel of

Figure 9 illustrate the above two cases, respectively.

Being able to identify the concave hull of 𝐺
𝑎

𝑝
, the optimal disclosure policy for a fixed

price is immediate.

PropositionB.1. Suppose that 𝑝 ≤ 1−𝑎. Then if 𝑔(𝑟(𝑝)−𝑝) ≤ 1/(𝑝+𝑎), when 𝜇 ∈ (0, 𝑝+𝑎),
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Figure 9: The concave hull of 𝐺
𝑎

𝑝
when 𝑝 ≤ 1 − 𝑎. The left panel depicts the case of

𝑔(𝑟(𝑝) − 𝑝) ≤ 1/(𝑝 + 𝑎), and the concave hull of 𝐺
𝑎

𝑝
is identified by the orange dashed

curve. The right panel illustrates the case of 𝑔(𝑟(𝑝)−𝑝) > 1/(𝑝 +𝑎), and the concave hull

of 𝐺
𝑎

𝑝
is identified by the cyan dashed curve.

{0, 𝑝 + 𝑎} is optimal;45 and when 𝜇 ∈ [𝑝 + 𝑎, 1], {𝜇} is optimal. If 𝑔(𝑟(𝑝) − 𝑝) > 1/(𝑝 + 𝑎),

• when 𝜇 ∈ (0, 𝑟(𝑝)), {0, 𝑟(𝑝)} is optimal;

• when 𝜇 ∈ [𝑟(𝑝), 𝑡(𝑝)], {𝜇} is optimal;

• when 𝜇 ∈ (𝑡(𝑝), 𝑝 + 𝑎), {𝑡(𝑝), 𝑝 + 𝑎} is optimal; and

• when 𝜇 ∈ [𝑝 + 𝑎, 1), {𝜇} is optimal.

Suppose instead that 𝑝 > 1 − 𝑎. Then when 𝜇 ∈ (0, 𝑟(𝑝)), {0, 𝑟(𝑝)} is optimal; and when
𝜇 ∈ [𝑟(𝑝), 1), {𝜇} is optimal.

Now I am ready to prove Proposition 3.

Proof of Proposition 3. Suppose first that 𝑝 > 1 − 𝑎. Let

𝑝̂ = sup{𝑝 ∈ [0, 1] ∶ there exists 𝑟(𝑝) ∈ [0, 1] that solves (31)}.

If 𝐺 is concave, let 𝑟(0) = 0; and otherwise let 𝑟(0) solve 𝑔(𝑟(0))𝑟(0) = 𝐺(𝑟(0)) if a solution

exists, or else let 𝑟(0) = 1. By the implicit function theorem,

𝑟
′
(𝑝) = 𝑟(𝑝) −

𝑔(𝑟(𝑝) − 𝑝)

𝑔
′
(𝑟(𝑝) − 𝑝)

. (33)

45
Since every optimal distribution over posteriors is either degenerate or binary, I identify such a distri-

bution by its support.
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By Proposition B.1, the optimal disclosure policy depends on the location of 𝜇: if 𝜇 ∈

(0, 𝑟(𝑝)), {0, 𝑟(𝑝)} is optimal; and if 𝜇 ∈ [𝑟(𝑝), 1), {𝜇} is optimal. Suppose 𝜇 ∈ (0, 𝑟(𝑝)),

Seller’s payoff by setting 𝑝 ∈ (1 − 𝑎, 𝑝̂) is given by

𝑝

𝜇

𝑟(𝑝)

𝐺(𝑟(𝑝) − 𝑝) = 𝑝𝜇𝑔(𝑟(𝑝) − 𝑝),

where the equality follows from (31) in the text; and by setting 𝑝 ∈ [𝑝̂, 1), Seller’s payoff

is 𝑝𝜇𝐺(1 − 𝑝). It can be checked that, using (33), when 𝑝 ∈ (1 − 𝑎, 𝑝̂) Seller’s payoff is

strictly increasing in 𝑝, and hence Seller fully discloses information by using distribution

{0, 1}, with price being 𝑝ℎ defined by the solution of Equation (15).

Now suppose Seller uses no disclosure strategy {𝜇}; her payoff is given by 𝑝𝐺(𝜇 − 𝑝),

which is maximized at

𝑝𝜇 =

𝐺(𝜇 − 𝑝𝜇)

𝑔(𝜇 − 𝑝𝜇)

. (34)

Note that by definition of 𝑟(𝑝), 𝑟(𝑝) > 𝑝 unless possibly at 𝑝 = 0, which is never optimal.

Then

𝐺(𝑟(𝑝𝜇) − 𝑝𝜇)

𝑔(𝑟(𝑝𝜇) − 𝑝𝜇)

= 𝑟(𝑝𝜇) > 𝑝𝜇 =

𝐺(𝜇 − 𝑝𝜇)

𝑔(𝜇 − 𝑝𝜇)

,

where the first equality follows from (31), and the second equality holds by (34). By log-

concavity of 𝑔 , it must be that 𝜇 < 𝑟(𝑝𝜇). Then the optimal distribution is in fact {0, 𝑟(𝑝𝜇)},

which implies that no disclosure is never optimal. To summarize, when 𝑝 > 1 − 𝑎, full

disclosure is optimal, and Seller’s optimal price and profits are given by 𝑝ℎ and 𝑝ℎ𝜇𝐺(𝑝ℎ−

𝜇), respectively, where 𝑝ℎ is the solution to (32).

Now suppose that 𝑝 ≤ 1 − 𝑎. Again by the implicit function theorem,

𝑡
′
(𝑝) = 1; (35)

consequently, both 𝑟(𝑝) and 𝑡(𝑝) are increasing in 𝑝, and by (35),

𝑡(𝑝) = 𝑡(0) + 𝑝. (36)

If 𝑔(𝑟(0)) ≤ 1/𝑎, it can be checked that for all 𝑝 ≤ 1−𝑎, 𝑔(𝑟(𝑝)−𝑝) ≤ 1/(𝑝+𝑎). Then by

Proposition B.1, the distribution {0, 𝑝 +𝑎} is optimal; and by using this distribution, Buyer

buys if and only if she buys without search, which happens with probability 𝜇/(𝑝 + 𝑎).

Consequently, Seller’s expected payoff is 𝑝𝜇/(𝑝 + 𝑎), which is strictly increasing in 𝑝. It

is maximized at 𝑝 = 1−𝑎, with profit (1− 𝑎)𝜇; the associated distribution is {0, 1}, namely

61



full disclosure. To summarize, when 𝑔(𝑟(0)) ≤ 1/𝑎, full disclosure is optimal; 𝑝 = 1 − 𝑎 is

the optimal price, and Seller’s expected payoff is 𝜇(1 − 𝑎).

Consider next the case that 𝑔(𝑟(0)) > 1/𝑎. Again by Proposition B.1, define

𝑝̄ = sup

{

𝑝 ∈ [0, 1 − 𝑎] ∶ 𝑔(𝑟(𝑝) − 𝑝) >

1

𝑝 + 𝑎

}

;

by log-concavity of 𝑔 , 𝑝̄ is unique. Now for a fixed 𝑝, optimal information disclosure

policy again depends on the location of 𝜇: if 𝑝̄ ≤ 𝑝 ≤ 1 − 𝑎, {0, 𝑝 + 𝑎} is optimal; and for

𝑝 < 𝑝̄,

• if 𝜇 ∈ (0, 𝑟(𝑝)), {0, 𝑟(𝑝)} is optimal,

• if 𝜇 ∈ [𝑟(𝑝), 𝑡(𝑝)], {𝜇} is optimal,

• if 𝜇 ∈ (𝑡(𝑝), 𝑝 + 𝑎), {𝑡(𝑝), 𝑝 + 𝑎} is optimal,

• if 𝜇 ∈ [𝑝 + 𝑎, 1), {𝜇} is optimal.

An analogous argument like the case of 𝑝 > 1−𝑎 shows that no disclosure is never optimal;

and 𝑝 < 𝑝̄ implies that 𝑟(𝑝) < 𝑝+𝑎, but then Seller’s expected payoff is strictly increasing

in 𝑝, which implies that it is strictly better for Seller to price at 𝑝̄ and disclose according

to {0, 𝑝 + 𝑎} instead. Consequently, it only remains to consider the third bulletpoint.

To this end, suppose Seller discloses according to {𝑡(𝑝), 𝑝 + 𝑎}. Seller’s problem of

finding the optimal price is

𝑝
[
𝐺(𝑡(𝑝) − 𝑝)

𝑝 + 𝑎 − 𝜇

𝑝 + 𝑎 − 𝑡(𝑝)

+

𝜇 − 𝑡(𝑝)

𝑝 + 𝑎 − 𝑡(𝑝)]
;

by (32), it can be written as

𝑝
[
𝐺(𝑡(0))

𝑝 + 𝑎 − 𝜇

𝑎 − 𝑡(0)

+

𝜇 − 𝑝 − 𝑡(0)

𝑎 − 𝑡(0) ]
;

because 𝐺(𝑡(0)) < 1, it is strictly concave in 𝑝. Then the optimal price is given by

𝑝𝑡 =

𝑎𝐺(𝑡(0)) − 𝑡(0)

2[1 − 𝐺(𝑡(0))]

+

𝜇

2

.

For this price to be indeed optimal, it has to be that 𝑝𝑡 < 𝑝̄. Observe that at 𝑝̄, 𝑟(𝑝̄) =

62



𝑡(𝑝̄) = 𝑡(0) + 𝑝̄. Then by definition of 𝑝̄,

𝑔(𝑟(𝑝̄) − 𝑝) =

𝐺(𝑟(𝑝̄) − 𝑝̄)

𝑟(𝑝̄)

=

1

𝑝̄ + 𝑎

,

and hence

𝑝̄ =

𝑎𝐺(𝑡(0)) − 𝑡(0)

1 − 𝐺(𝑡(0))

.

But then 𝑝𝑡 < 𝑝̄ implies that 𝜇 < 𝑡(0)+𝑝𝑡 = 𝑡(𝑝𝑡), which in turn implies that {𝑡(𝑝𝑡), 𝑝𝑡+𝑎} is

not optimal at 𝑝𝑡 . Therefore, the only candidate for optimal selling strategy is (𝑝, {0, 𝑝+𝑎}).

Consequently, similar to the case of 𝑔(𝑟(0)) ≤ 1/𝑎, full disclosure is optimal, 𝑝 = 1 − 𝑎 is

the optimal price, and Seller’s expected payoff is 𝜇(1 − 𝑎). Summarizing, when 𝑝 ≤ 1 − 𝑎,

the selling strategy described above is optimal.

To conclude, full disclosure is always optimal, the choice of the optimal selling strategy

boils down to comparing 1 − 𝑎 and 𝑝ℎ𝐺(1 − 𝑝ℎ). Then 𝑝 = 1 − 𝑎 is optimal if and only

if 𝑝ℎ𝐺(1 − 𝑝ℎ) ≤ 1 − 𝑎, and otherwise 𝑝ℎ is optimal. This yields the statement in the

proposition, and hence concludes the proof. ■

B.3 Proof of Corollary 2

Because the density of the outside option distribution 𝑔 is strictly positive, (3) indicates

that 𝑎 is strictly decreasing in 𝑠. Because 𝑝ℎ does not depend on 𝑠, there exists a unique 𝑎
∗

that solves 1 − 𝑎 = 𝑝ℎ𝐺 (1 − 𝑝ℎ); let the search cost that correspond to 𝑎
∗
by 𝑠𝐺. Then the

statement follows from Proposition 3.

B.4 Proof of Corollary 3

The price part of Part (i) follows directly from the expression of 𝑝
𝑜
in Proposition 3, and

the profit part holds since

𝜋
𝑜
=

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝜇(1 − 𝑎) if 1 − 𝑎 ≥ 𝑝ℎ𝐺 (1 − 𝑝ℎ) ,

𝜇𝑝ℎ𝐺 (1 − 𝑝ℎ) if 1 − 𝑎 < 𝑝ℎ𝐺 (1 − 𝑝ℎ) .

For Part (ii), Corollary 2 and the fact that 𝑝ℎ does not depend on 𝑠 together implies the

first assertion. And when 𝑠 ≥ 𝑠𝐺, by Corollary 2, the optimal price is 1 − 𝑎, and Seller’s

profit is 𝜇(1 − 𝑎). Then since 𝑎 is strictly decreasing in 𝑠, the second assertion follows.
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B.5 Proof of Proposition 4

I prove part (i) first. For a fixed 𝑝, Seller minimizes 𝐻 ((𝑝 + 𝜉 − 𝑠)
−
). There are two cases:

𝑝 + 𝜉 − 𝑠 ≤ 𝜇 and 𝑝 + 𝜉 − 𝑠 > 𝜇. If 𝑝 + 𝜉 − 𝑠 ≤ 𝜇, the optimal distribution over posteriors is

the degenerate distribution at 𝜇, which correspond to no disclosure. Consequently, Buyer

buys with probability 1, and hence Seller’s revenue is exactly 𝑝. Thus, it is optimal for

Seller to set 𝑝 = 𝜇 − 𝜉 + 𝑠 provided the right-hand side is nonnegative, and her profit is

𝜇 − 𝜉 + 𝑠.

Another case is 𝑝 + 𝜉 − 𝑠 > 𝜇. In this case, to minimize 𝐻 ((𝑝 + 𝜉 − 𝑠)
−
), it is optimal

to put as much mass as possible at 𝑝 + 𝜉 − 𝑠, and put the rest of the mass at 0 so that

𝔼𝐻 [𝑤] = 𝜇. Thus, the optimal distribution for a fixed 𝑝 is the binary distribution with

support on {0, 𝑝 + 𝜉 − 𝑠}. Consequently, Seller’s revenue is 𝑝𝜇/(𝑝 + 𝜉 − 𝑠), and one can

show that this expression is strictly increasing in 𝑝. Therefore, the optimal price is 1−𝜉+𝑠,

the optimal distribution is the binary distribution with support on {0, 1}, and Seller’s profit

is 𝜇(1 − 𝜉 + 𝑠).

Finally, note that 𝜇(1 − 𝜉 + 𝑠) ≥ 𝜇 − 𝜉 + 𝑠 and the inequality is strict for all 𝜇 ∈ (0, 1).

Hence full disclosure, namely the binary distribution with support on {0, 1}, and price

1 − 𝜉 + 𝑠 is the optimal selling strategy when Seller can commit to an exploding offer.

Part (ii) is obtained by comparing Seller’s profits in this case, namely 𝜇(1−𝜉 + 𝑠), with

her revenue guarantee I solved in the proof of Theorem 1. Finally, Part (iii) follows from

a similar argument as the proof of Proposition 4 in Armstrong and Zhou (2016).

B.6 Proof of Proposition 5

Proof of part (i). In this case the outside option distribution is fixed at 𝐺
∗
. If 𝐻

∗
corre-

sponds to full disclosure, that is, it is the binary distribution with mean 𝜇 and with support

on {0, 1}. Under full disclosure, there is no buy-later demand and hence charging different

prices for “buy-now” and “buy-later” does not increase Seller’s payoff.

If𝐻
∗
is not the binary distribution, then 1−𝐻

∗
(𝑝) is strictly log-concave on (𝑝𝑟 , sup {supp (𝐻

∗
)}).

Then by Proposition 1 in Armstrong and Zhou (2016), Seller benefits from such a devia-

tion. This concludes the proof. ■

Proof of part (ii). Suppose Seller offers prices (𝑝1, 𝑝2) with 𝑝1 < 𝑝2, and upon observing

this Nature can choose an outside option distribution different from 𝐺
∗
. Seller’s total
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demand is given by

1 − 𝔼𝐺 [𝐻
∗

(𝑝2 + min

{

𝑣, 𝑆
−1

𝐺
(𝑠 + 𝑝2 − 𝑝1)

}

)] ,

and the buy-now demand is 1 − 𝐻
∗

(𝑝2 + 𝑆
−1

𝐺
(𝑠 + 𝑝2 − 𝑝1)). Thus, Seller’s buy-later de-

mand is given by

1 − 𝔼𝐺 [𝐻
∗

(𝑝2 + min

{

𝑣, 𝑆
−1

𝐺
(𝑠 + 𝑝2 − 𝑝1)

}

)] − [1 − 𝐻
∗

(𝑝2 + 𝑆
−1

𝐺
(𝑠 + 𝑝2 − 𝑝1))]

= 𝐻
∗

(𝑝2 + 𝑆
−1

𝐺
(𝑠 + 𝑝2 − 𝑝1)) − 𝔼𝐺 [𝐻

∗

(𝑝2 + min

{

𝑣, 𝑆
−1

𝐺
(𝑠 + 𝑝2 − 𝑝1)

}

)] .

Consequently, Seller’s expected payoff is

𝑝1 [1 − 𝐻
∗

(𝑝2 + 𝑆
−1

𝐺
(𝑠 + 𝑝2 − 𝑝1))] +

𝑝2 [𝐻
∗

(𝑝2 + 𝑆
−1

𝐺
(𝑠 + 𝑝2 − 𝑝1)) − 𝔼𝐺 [𝐻

∗

(𝑝2 + min

{

𝑣, 𝑆
−1

𝐺
(𝑠 + 𝑝2 − 𝑝1)

}

)]] ,

which is equivalent to

𝑝2𝔼𝐺 [1 − 𝐻
∗

(𝑝2 + min

{

𝑣, 𝑆
−1

𝐺
(𝑠 + 𝑝2 − 𝑝1)

}

)]−(𝑝2 − 𝑝1) [1 − 𝐻
∗

(𝑝2 + 𝑆
−1

𝐺
(𝑠 + 𝑝2 − 𝑝1))] .

But then since 𝐻 is affine on (𝑝𝑟 , 1), the first term is constant in the choice of 𝐺, and the

second is minimized by choosing 𝐺 = 𝛿𝜉 . Then the above expression becomes

𝑝2 [1 − 𝐻
∗

(𝑝2 + 𝜉 − 𝑠 − 𝑝2 + 𝑝1)]−(𝑝2−𝑝1) [1 − 𝐻
∗

(𝑝2 + 𝜉 − 𝑠 − 𝑝2 + 𝑝1)] = 𝑝1 [1 − 𝐻
∗

(𝑝1 + 𝜉 − 𝑠)] .

But this implies that Seller cannot benefit from setting different buy-now and buy-later

prices. ■

C Supplementary Results

Claim C.1. For any 𝜉 < 1/2,

𝑝
𝑜
=

(1 − 2𝜉)(𝜉 − 𝑠)

4𝜉
2

+

𝜇

2

≥ min

{

(1 − 2𝜉) (𝜉 − 𝑠)

2𝜉
2

, 𝜇 −

1 − 𝑠/𝜉

2

}

.

Proof. The desired inequality is equivalent to that of one of the two inequalities below
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holds:

(1 − 2𝜉)(𝜉 − 𝑠)

4𝜉
2

+

𝜇

2

≥

(1 − 2𝜉) (𝜉 − 𝑠)

2𝜉
2

,

(1 − 2𝜉)(𝜉 − 𝑠)

4𝜉
2

+

𝜇

2

≥ 𝜇 −

𝜉 − 𝑠

2𝜉

.

And the two inequalities are equivalent to

𝜇 ≥

(1 − 2𝜉) (𝜉 − 𝑠)

2𝜉
2

(37)

and

𝜇 ≤

𝜉 − 𝑠

2𝜉
2
, (38)

respectively. Now observe that for every 𝜇 ∈ [0, 1] such that (37) fails,

𝜇 < (1 − 2𝜉)

𝜉 − 𝑠

2𝜉
2

≤

𝜉 − 𝑠

2𝜉
2
,

where the last inequality holds since 1 − 2𝜉 ∈ [0, 1] for all 𝜉 ∈ (0, 1/2), and 𝑠 < 𝜉 by

assumption. Therefore, (38) must hold whenever (37) fails. ■

References

Anderson, S. P. and R. Renault (2006): “Advertising Content,” American Economic Re-
view, 96, 93–113.

Armstrong, M. (2017): “Ordered Consumer Search,” Journal of the European Economic
Association, 15, 989–1024.

Armstrong, M. and J. Zhou (2016): “Search Deterrence,” The Review of Economic Studies,
83, 26–57.

Au, P. H. and M. Whitmeyer (2022): “Attraction Versus Persuasion,” Journal of Political
Economy, forthcoming.

Babichenko, Y., I. Talgam-Cohen, H. Xu, and K. Zabarnyi (2021): “Regret-Minimizing

Bayesian Persuasion,” Available at arXiv:2105.13870.

66



Bar-Isaac, H., G. Caruana, and V. Cuñat (2010): “Information Gathering and Market-

ing,” Journal of Economics & Management Strategy, 19, 375–401.

Bergemann, D. and K. Schlag (2011): “Robust Monopoly Pricing,” Journal of Economic
Theory, 146, 2527–2543.

Bergemann, D. and K. H. Schlag (2008): “Pricing without Priors,” Journal of the European
Economic Association, 6, 560–569.

Blackwell, D. (1953): “Equivalent Comparisons of Experiments,” The Annals of Mathe-
matical Statistics, 24, 265–272.

Boleslavsky, R. and C. Cotton (2015): “Grading Standards and Education Quality,”

American Economic Journal: Microeconomics, 7, 248–279.

——— (2018): “Limited Capacity in Project Selection: Competition Through Evidence Pro-

duction,” Economic Theory, 65, 385–421.

Boleslavsky, R., C. S. Cotton, andH. Gurnani (2017): “Demonstrations and Price Com-

petition in New Product Release,” Management Science, 63, 2016–2026.

Brown, A. L., A. Viriyavipart, and X. Wang (2018): “Search Deterrence in Experimental

Consumer Goods Markets,” European Economic Review, 104, 167–184.

Carrasco, V., V. F. Luz, N. Kos, M. Messner, P. Monteiro, and H. Moreira (2018):

“Optimal Selling Mechanisms under Moment Conditions,” Journal of Economic Theory,
177, 245–279.

Carroll, G. (2019): “Robustness in Mechanism Design and Contracting,” Annual Review
of Economics, 11, 139–166.

Chatterjee, R. (2009): “Strategic Pricing of New Products and Services,” in Handbook of
Pricing Research in Marketing, ed. by V. R. Rao, Cheltenham: Edward Elgar Publishing,

169–215.

Che, Y.-K. and W. Zhong (2022): “Robustly Optimal Mechanisms for Selling Multiple

Goods,” Available at arXiv:2105.02828.

Choi, M., A. Y. Dai, and K. Kim (2018): “Consumer Search and Price Competition,” Econo-
metrica, 86, 1257–1281.

67



Du, S. (2018): “Robust Mechanisms Under Common Valuation,” Econometrica, 86, 1569–
1588.

Dworczak, P. and A. Pavan (2022): “Preparing for the Worst But Hoping for the Best:

Robust (Bayesian) Persuasion,” Econometrica, 90, 2017–2051.

Ellison, S. F. (2016): “Price Search and Obfuscation: An Overview of the Theory and

Empirics,” in Handbook on the Economics of Retailing and Distribution, ed. by E. Basker,

Cheltenham: Edward Elgar Publishing, 287–305.

Fainmesser, I. P., D. O. Lauga, and E. Ofek (2021): “Ratings, Reviews, and the Marketing

of New Products,” Management Science, 67, 7023–7045.

He, W. and J. Li (2021): “Competitive Information Disclosure in Random Search Markets,”

Chinese University of Hong Kong working paper.

Heiman, A. and E.Muller (1996): “UsingDemonstration to Increase NewProduct Accep-

tance: Controlling Demonstration Time,” Journal of Marketing Research, 33, 422–430.

Hinnosaar, T. and K. Kawai (2020): “Robust Pricing with Refunds,” The RAND Journal
of Economics, 51, 1014–1036.

Hu, J. and X. Weng (2021): “Robust Persuasion of A Privately Informed Receiver,” Eco-
nomic Theory, 72, 909–953.

Hwang, I., K. Kim, and R. Boleslavsky (2019): “Competitive Advertising and Pricing,”

Seoul National University working paper.

Kamenica, E. and M. Gentzkow (2011): “Bayesian Persuasion,” American Economic Re-
view, 101, 2590–2615.

Kohn, M. G. and S. Shavell (1974): “The Theory of Search,” Journal of Economic Theory,
9, 93–123.

Kosterina, S. (2022): “Persuasion with Unknown Beliefs,” Theoretical Economics, 17,
1075–1107.

Lyu, C. (2021): “Information Design for Selling Search Goods and the Effect of Competi-

tion,” University of Wisconsin working paper.

68



Milgrom, P. and J. Roberts (1986): “Price and Advertising Signals of Product Quality,”

Journal of Political Economy, 94, 796–821.

Nocke, V., M. Peitz, and F. Rosar (2011): “Advance-purchase discounts as a price dis-

crimination device,” Journal of Economic Theory, 146, 141–162.

Osborne, M. J. and A. Rubinstein (1994): A Course in Game Theory, Cambridge, MA:

MIT Press.

Pan, S. and X. Zhao (2020): “Commitment and Cheap Talk in Search Deterrence,” The
RAND Journal of Economics, forthcoming.

Parakhonyak, A. and A. Sobolev (2022): “Persuasion without Priors,” University of Ox-

ford working paper.

Sapiro-Gheiler, E. (2021): “Persuasion with Ambiguous Receiver Preferences,” Available

at arXiv:2109.11536v2.

Shaked, M. and J. G. Shanthikumar (2007): Stochastic Orders, Berlin: Springer.

Wang, C. (2017): “Advertising as A Search Deterrent,” The RAND Journal of Economics,
48, 949–971.

69


	Introduction
	Related Literature

	The Model
	The Role of Information Disclosure

	Main Results
	Optimal Disclosure Policy For a Fixed Price
	The Interaction Between Price and Information
	Proof Sketch for Proposition 1

	Seller's Robustly Optimal Strategy
	Comparative Statics

	Variations and Extensions
	Zero Search Cost
	Known Outside Option Distribution
	Recognizable Buyer Identity
	Exploding Offers and Renegotiation
	Price Discrimination


	Discussion
	Proofs and Omitted Details for Section 3
	Proof of Proposition 1
	Preliminaries
	The case of price above the cutoff
	The case of price below the cutoff

	Proof of Corollary 1
	Proof of Theorem 1
	The ``Boundary Cases''
	Proof of Theorem 2
	Proof of Part (i)
	Proof of Part (ii)
	Proof of Part (iii)


	Proofs for Section 4
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Corollary 2
	Proof of Corollary 3
	Proof of Proposition 4
	Proof of Proposition 5

	Supplementary Results

