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Abstract

This paper gives a test of overidentifying restrictions that is robust to many instruments and

heteroskedasticity. It is based on a jackknife version of the overidentifying test statistic. Correct

asymptotic critical values are derived for this statistic when the number of instruments grows

large, at a rate up to the sample size. It is also shown that the test is valid when the number

instruments is fixed and there is homoskedasticity. This test improves on recently proposed tests

by allowing for heteroskedasticity and by avoiding assumptions on the instrument projection matrix.

The distribution theory is based on the heteroskedasticity-robust, many-instrument asymptotics of

Chao et al. (2010). In Monte Carlo experiments the rejection frequency of the test is found to be

very insensitive to the number of instruments. This paper finds in Monte Carlo studies that the

test is more accurate and less sensitive to the number of instruments than the Hausman-Sargan or

GMM tests of overidentifying restrictions.
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1 Introduction

The Sargan (1958) and Hansen (1982) tests of overidentifying restrictions validity can be sensitive

to the number of restrictions being tested. This paper proposes an alternative test that is robust

to many instruments and to heteroskedasticity. It is based on subtracting out the diagonal terms

in the numerator of the overidentifying test statistic and normalizing appropriately. This test has a

jackknife interpretation, as it is based on the objective function of the JIVE2 estimator of Angrist,

Imbens, and Krueger (1999).

We show that the test has correct rejection frequency as long as the number of instruments

goes to infinity with the sample size at any rate up to the sample size. It is also correct under

homoskedasticity with a fixed number of instruments. In Monte Carlo experiments we find that the

rejection frequency is close to its nominal values in all cases we consider, including heteroskedastic

ones with few overidentifying restrictions. In these ways this test solves the problem of sensitivity

to the number of overidentifying restrictions being tested.

Recently Anatolyev and Gospodinov (2009) and Lee and Okui (2010) have formulated tests that

allow for many instruments but impose homoskedasticity. Our test is valid under their conditions

and also with heteroskedasticity. Also, we do not impose side conditions on the instrument projec-

tion matrix. The asymptotic theory is based on the results of Chao et. al. (2010) and Hausman et

al. (2010), including a central limit theorem that imposes no side conditions on the instrumental

variable projection matrix.

In Section 2 we describe the model and test statistic. In Section 3 we give the asymptotic

theory. Section 4 reports the Monte Carlo results.

2 The Model and Test Statistic

We adopt the same model and notation as in Hausman et al. (2010) and Chao et al. (2010). The

model we consider is given by


×1

= 
×

0
×1

+ 
×1



 = Υ+ 

where  is the number of observations,  is the number of right-hand side variables, Υ is the

reduced form matrix, and  is the disturbance matrix. For the asymptotic approximations, the
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elements of Υ will be implicitly allowed to depend on , although we suppress dependence of Υ on

 for notational convenience. Estimation of 0 will be based on an × matrix,  of instrumental

variable observations with () = . Here we will treat  and Υ as nonrandom for simplicity

though it is possible to do asymptotic theory conditional on these as in Chao et al. (2010). We will

assume that [] = 0 and [ ] = 0. Further explanation of this framework is provided in Section

3.

This model allows for Υ to be a linear combination of  (i.e. Υ =  for some  × 

matrix ). Furthermore, some columns of  may be exogenous, with the corresponding column

of  being zero. The model also allows for  to approximate the reduced form. For example,

let  0
 Υ

0
 and  0 denote the 

 row (observation) for  Υ and  respectively. We could let

Υ = 0() be a vector of unknown functions of a vector  of underlying instruments and let

 = (1()  ())
0 for approximating functions () such as power series or splines.

In this case, linear combinations of  may approximate the unknown reduced form.

For estimation of  we consider the heteroskedasticity-robust version of the Fuller (1977) estima-

tor of Hausman et al. (2010), referred to as HFUL. Other heteroskedasticity and many instrument

robust estimators could also be used, such as jackknife instrumental variable (IV) estimators of

Angrist, Imbens, and Krueger (1999) or the continuously updated GMM estimator (CUE). We

focus on HFUL because of its high efficiency relative to jackknife IV, because it has moments, and

because it is computationally simple relative to CUE. To describe HFUL, let

 = ( 0)−1 0

 denote the 
 element of  and ̄ = [] Let

̃ be the smallest eigenvalue of (̄ 0̄)−1(̄ 0̄ −
X
=1

̄̄
0
)

Although the matrix in this expression is not symmetric it has real eigenvalues because (̄ 0̄)−1

is positive definite and ̄ 0̄ −P
=1 ̄̄

0
 is symmetric. Let

̂ = [̃− (1− ̃) ][1− (1− ̃) ]

HFUL is given by

̂ =

Ã
 0 −

X
=1


0
 − ̂ 0

!−1Ã
 0 −

X
=1

 − ̂ 0

!
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Thus, HFUL can be computed by finding the smallest eigenvalue of a matrix and then using this

explicit formula. Motivation for HFUL is further discussed in Hausman et al. (2010).

To describe the overidentification statistic, let ̂ = − 0
 ̂ ̂ = (̂1  ̂)

0  ̂(2) = (̂21  ̂
2
)
0

and  (2) be the -dimensional square matrix with  component equal to  2 . Also, let
P

6=

denote the double sum over all  not equal to . The test statistic is

̂ =
̂0 ̂−P

=1 ̂
2
p

̂
+ ̂ =

̂(2)0 (2)̂(2)−P 
2
̂
4



=

P
6= ̂

2


2
 ̂

2




Treating ̂ as if it is chi-squared with  −  degrees of freedom will be asymptotically correct

if  −→ ∞ no faster than  and when  is fixed and  is homoskedastic. Let () be the 


quantile of the chi-squared distribution with  degrees of freedom. A test with asymptotic rejection

frequency  will reject the null hypothesis if

̂ ≥ −(1− )

We will show that the test with this critical region has a probability of rejection that converges to

.

To explain the form of this test statistic, note that the numerator is

̂0 ̂−
X
=1

̂
2
 =

X
6=

̂ ̂ 

This object is the numerator of the Sargan (1958) statistic with the own observation terms sub-

tracted out. It has a jackknife form, in the sense that it is the sum of sums where the own

observations have been deleted. If ̂ were chosen to minimize this expression, it would be the

JIVE2 estimator of Angrist, Imbens, and Krueger (1999).

One effect of removing the own observations is that
P

6= ̂ ̂ would be mean zero if ̂ were

replaced by  In fact,
P

6=  has a martingale difference structure that leads to it being

asymptotically normal as  −→∞, e.g. as in Lemma A2 of Chao et al. (2010). The denominator
incorporates a heteroskedasticity consistent estimator of the variance of

P
6=   By dropping

terms that have zero expectation, similarly to Chao et al. (2010), it follows that for 2 = [2 ],

[(
X
6=

)
2] = [

X


X
∈{}


0

2
 +

X
6=

 2
2
 
2
 ]

= [2
X
6=

 2
2
 
2
 ] = 2

X
6=

 2
2
 
2
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Similarly to White (1980) the variances are replaced by squared residuals to obtain ̂ . Also, 2

is replaced by 1 and  is added to normalize the statistic to be chi-squared with  fixed

and  homoskedastic. Unfortunately, it does not appear possible to normalize the statistic to be

chi-squared if there is heteroskedasticity when  is fixed.

3 Many Instrument Asymptotics

The asymptotic theory we give combines the many instrument asymptotics of Kunitomo (1980),

Morimune (1983), and Bekker (1994) with the many weak instrument asymptotics of Chao and

Swanson (2005), as further discussed in Chao et al. (2010). Some regularity conditions are impor-

tant for this theory. Let  0  
0
  and Υ

0
 denote the 

 row of    and Υ respectively.

Assumption 1:  includes among its columns a vector of ones, () =  and there is a

constant  such that  ≤   1 ( = 1  )  −→∞

The restriction that () =  is a normalization that requires excluding redundant columns

from . It can be verified in particular cases. For instance, when  is a continuously dis-

tributed scalar,  = (), and () = −1 it can be shown that  0 is nonsingular

with probability one for   .1 The condition  ≤   1 implies that  ≤ , because

 =
P

=1  ≤ 

The next condition specifies that the reduced form Υ is a linear combination of a set of variables

 having certain properties.

Assumption 2: Υ = 
√
 where  = ̃ diag (1  ) and ̃ is nonsingular. Also,

for each  either  =
√
 or 

√
 −→ 0,  = min

1≤≤
 −→ ∞ and

√
2 −→ 0. Also,

there is   0 such that kP
=1 

0
k ≤  and min (

P
=1 

0
) ≥ 1 for  sufficiently large.

This condition is similar to Assumption 2 of Hansen, Hausman, and Newey (2008). It ac-

commodates linear models where included instruments (e.g. a constant) have fixed reduced form

coefficients and excluded instruments with coefficients that can shrink as the sample size grows, as

1The observations 1   are distinct with probability one and therefore, by    cannot all be roots of a

 degree polynomial. It follows that for any nonzero  there must be some  with 0 = 0() 6= 0, implying
that 00  0
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further discussed in Hausman et al. (2010). The 2 can be thought of as a version of the concen-

tration parameter, determining the convergence rate of estimators of 0, just as the concentration

parameter does in other settings. For 2 =  the convergence rate will be
√
, where Assump-

tions 1 and 2 permit  to grow as fast as the sample size, corresponding to a many instrument

asymptotic approximation as in Kunitomo (1980), Morimune (1983), and Bekker (1994). For 2

growing slower than  the convergence rate will be slower than 1
√
 corresponding to the many

weak asymptotics of Chao and Swanson (2005).

Assumption 3: There is a constant   0 such that (1 1)  ( ) are indepen-

dent, with [] = 0, [] = 0, [2 ]  , [kk2] ≤ ,  (( 
0
)
0) = (Ω∗  0), and

min(
P

=1Ω
∗
 ) ≥ 1.

This assumption requires second conditional moments of disturbances to be bounded. It also

imposes uniform nonsingularity of the variance of the reduced form disturbances, that is useful in

the consistency proof.

Assumption 4: There is a  such that
P

=1 k − k2  −→ 0.

This condition and  ≤   1 will imply that for a large enough sample

X
6=

ΥΥ
0
 = Υ0Υ−

X
=1

ΥΥ
0
 =

X
=1

(1− )ΥΥ
0
−Υ0( −  )Υ

=

X
=1

(1− )ΥΥ
0
+ (1) ≥ (1− )

X
=1

ΥΥ
0


so that the structural parameters are identified asymptotically. Also, Assumption 4 is not very

restrictive because flexibility is allowed in the specification of Υ. If we simply make Υ the expec-

tation of  given the instrumental variables then Assumption 4 holds automatically.

Assumption 5: There is a constant,   0 such that with probability one,
P

=1 kk4 2 −→
0 [4 ] ≤  and [kk4] ≤ 

It simplifies the asymptotic theory to assume that certain objects converge and to allow for

two cases of growth rates of  relative to 2. These conditions could be relaxed at the expense

of further notation and detail, as in Chao et al.. Let 2 = [2 ],  =
P

=1[]
P

=1 
2
 ,

̃ =  − 0 having  row ̃ 0 ; and let Ω̃ = [̃̃
0
 ].

6



Assumption 6: 
−1
 −→ 0 and either I) 2 −→  for finite  or; II) 2 −→ ∞.

Also, each of the following exists:

 = lim
−→∞

X
=1

(1− )
0
Σ = lim

−→∞

X
=1

(1− )
2

0

2
 

Ψ = lim
−→∞

X
6=

 2

³
2[̃̃

0
 ] +[̃][̃

0
 ]
´


The first result shows that the chi-square approximation is asymptotically correct when grows

with .

Theorem 1: If Assumptions 1-6 are satisfied then Pr(̂ ≥ −(1− )) −→ 

The next result shows asymptotic validity of the chi-squared approximation when  is fixed.

Theorem 2: If [2 ] = 2  is fixed,  0 −→  nonsingular,  0Υ −→  with

() = , [4 ] ≤ , kΥk ≤ , and Assumption 3 is satisfied, then Pr(̂ ≥ −(1−)) −→


This test should have power against some forms of misspecification. Under misspecification, ̂

will still be bounded and bounded away from zero. Also, for ̄ = [− 0
(̂)] the normalized

numerator
P

6=  ̂̂
√
 will be centered atÃ

̄0 ̄−
X


̄
2


!

√


Assuming a linear combination of  approximates ̄ this is close to

X


̄2 (1− )
√


This will increase at rate 
√
 by  bounded away from one.

̂ provides a specification check for many instrument estimator ̂ Note however that it may

not be optimal as a test of the null hypothesis that [̄] = 0 The magnitude of the test statistic

under the alternative grows more quickly when  grows more slowly. Thus, for higher power it

would be better to use fewer instruments.
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4 Monte Carlo Experiments

In this Monte Carlo simulation, we provide evidence concerning the finite sample behavior of ̂ .

We consider two designs, the first of which is the same as in Hausman et al. (2010). The model

for this design is

 = 10 + 202 +  2 = 1 + 2 (1)

where 1 ∼ (0 1) and 2 ∼ (0 1). The  instrument observation is

 0 = (1 1 
2
1 

3
1 

4
1 11  1−5) (2)

where ∈ {0 1}, Pr( = 1) = 12 and is independent of 1. Thus, the instruments consist

of powers of a standard normal up to the fourth power plus interactions with dummy variables.

Only 1 affects the reduced form.

The structural disturbance,  is allowed to be heteroskedastic, being given by

 = 2 +

s
1− 2

2 + (086)4
(1 + 0862) 1 ∼ (0 21) 2 ∼ (0 (086)2)

where 1 and 2 are independent of 2. This is a design that will lead to LIML being inconsistent

with many instruments, as discussed in Hausman et al. (2010).

We report properties of the overidentifying test statistic ̂ considered in this paper, the ho-

moskedasticity based Sargan test statistic ̂0 ̂̂0̂, and the Hansen GMM overidentifying test

statistic that uses a heteroskedasticity consistent weighting matrix. Throughout we use HFUL as

the estimator of We consider  = 800 and  = 03 throughout, and let the number of instrumen-

tal variables be  = 10 30 50 Experiments with  = 1600 produced very similar results to those

reported here. We choose  so that the concentration parameter is 2 = 8 and 32We also choose

 so that the R-squared for the regression of 2 on the instruments is 0 or 2. Experiments with

the R-squared for 2 is 1 gave similar results.

Tables 1 and 2 report rejection frequencies for nominal 5 percent and 1 percent tests. Table 1 is

a homoskedastic case and Table 2 is heteroskedastic. We find that the actual rejection frequencies

for the test ̂ we propose to be close to their nominal values throughout these tables, including with

and without heteroskedasticity and with few or many instrumental variables. We also find that the

GMM overidentifying statistic is more sensitive to the number of overidentifying restrictions but in

this design the Jstat is not very sensitive.
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To see if these results were sensitive to the design we also tried a design where the heteroskedas-

ticity was more closely related to the instruments. Note than in the previous design most of the

instruments are uncorrelated with 1 and that the heteroskedasticity depend entirely on 1 The

alternative design we considered was the same as above except that

 = (2 + 2) (1 +
 − 5
2

)|1| 2 ∼ (0 1) 2 ∼ (0
√
91)

This design has stronger heteroskedasticity that increases in strength with the number of instru-

ments. Table 3 reports the results of this experiment. Here we find that, presumably due to the

heteroskedasticity, the actual rejection frequencies for  are far from their nominal values. Also,

the rejection frequencies for the  test are even more sensitive to the number of instruments

than in the previous design. Remarkably, the test statistic proposed here continues to have rejection

frequencies very close to nominal values.

To compare the power of the statistics we considered a homoskedastic design that allows for

simple instrument misspecification. This design has a model, reduced form disturbance, and in-

strumental variables as in equations (1) and (2), but the structural disturbance is

 = 2 + 1 + 

where  is standard normal and independent of (1 2) and 
2
+

2
+

2
 = 1We set the correlation

 between structural and reduced form disturbances to be  = 3. We also allow the correlation

 between structural disturbance and the instrument to vary between 0 and 1. The total number

of instruments is taken to be  = 10. Also, we choose the concentration parameter 2 = 8 for

sample sizes of  = 400 and  = 800

For  = 400 the rejection frequencies under the null hypothesis are 47 050 041 respectively

for ̂ ,  and  For  = 800 they are 052 053 049 respectively. The power curves

(rejection frequencies) for the three tests as a function of  are plotted in Figures 1 and 2 for 400

and 800 observations respectively. The ranking of the power curves is similar to the ranking of

sizes. Also the power curves are quite close. We do find that the power of ̂ is quite similar to that

of the other statistics. Thus, there seems to be little cost in terms of power under homoskedasticity

to using a test statistic that is valid under heteroskedaticity with many instruments.
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Table 1:  = 800 R2
2|21

= 0

2  5%    1%   

8 10 525 512 461 087 106 071

8 30 525 538 399 099 090 057

8 50 488 462 306 085 085 044

32 10 502 504 470 111 099 092

32 30 471 476 367 088 094 041

32 50 511 493 297 091 076 036

***Results based on 10,000 simulations.

Table 2:  = 800; R2
2|21

= 2

2  05    .01   

8 10 568 579 534 111 120 091

8 30 540 498 409 085 089 049

8 50 479 479 305 086 085 032

32 10 505 515 469 097 100 071

32 30 465 484 377 093 089 059

32 50 480 480 312 083 062 030

***Results based on 10,000 simulations.

Table 3:  = 800;

2  HFUL .05 JSTAT .05 GMM .05 HFUL .01 JSTAT .01 GMM .01

8 10 546 7935 1045 116 6518 268

8 30 566 9863 615 098 9608 091

8 50 504 9993 347 071 9970 035

32 10 530 7893 1055 085 6476 256

32 30 548 9885 569 086 9663 099

32 50 550 9994 401 088 9996 081

***Results based on 10,000 simulations.
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5 Appendix A - Proofs of Theorems

We will define a number of abbreviations as well as some notation and.  denotes a generic positive

constant that may be different in different uses and let M, CS, and T denote the Markov inequality,

the Cauchy-Schwartz inequality, and the Triangle inequality respectively. Also, for random variables

, , and , let ̄ = [], ̃ =  − ̄ ̄ = [] ̃ =  − ̄ ̄ = [] ̃ =  − ̄

̄ = (̄1  ̄)
0  ̄ = (̄1  ̄)

0 

̄ = max
1≤≤

|̄|  ̄ = max
1≤≤

|̄|  ̄ = max
1≤≤

|̄| 
̄2 = max

 ≤ 
  []  ̄

2
 = max

 ≤ 
  []  ̄

2
 = max

 ≤ 
  [] ;

The following Lemmas are special cases of results in Chao et al. (2010) but are given here for

exposition:

Lemma A1: Suppose that the following conditions hold: i)  is a symmetric, idempotent

matrix with ( ) =   ≤   1; ii) (1 1 1)  (  ) are independent and

 =
P

=1 [
0
] satisfies kk ≤ ; iii)  [ 0

] = 0 [] = 0, [] = 0 and there exists

a constant  such that [kk4] ≤  [4 ] ≤ ; iv)
P

=1
h
kk4

i
−→ 0; v)  −→ ∞ as

→∞. Then for
Σ̄

def
=

X
 6=

 2

³
[

0
 ][

2
 ] +[][

0
 ]
´


and any sequences 1 and 2 depending on  conformable vectors with k1k ≤  k2k ≤ 

Ξ = 011 + 02Σ̄2  1 it follows that

 = Ξ
−12
 (01

X
=1

 + 02
X
6=


√
)

−→  (0 1) 

Proof: This is Lemma A2 of Chao et al. (2010) when  and Υ are not random. Q.E.D.

Lemma A2: If Assumptions 1-3 are satisfied then

−1
X
6=


0

−10
 = (1) 

−1


X
6=

 = (1 +
q
)

Proof: The second conclusion holds by Lemma A5 of Chao et al. (2010), and by that same

result,

−1
X
6=


0

−10
 =

X
6=


0
+ (1)
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We also have X
6=


0
 = 0−

X




and both 0 ≤ 0 and
P

 
0
 ≤ 0 are bounded, giving the first conclusion. Q.E.D.

Lemma A3: If ̂ −→  [kk2] ≤  [4 ] ≤  1   are mutually independent, and

either  −→∞ or max≤  −→ 0 thenX
6= 

2
 ̂

2
 ̂
2



−
X

6= 
2


2
 
2




−→ 0

Proof: Hence by ̂
−→  we have

°°°̂ − 
°°°2 ≤ °°°̂ − 

°°° with probability approaching one (w.p.a.1).
Hence w.p.a.1, for  = 3(1 + kk2)¯̄̄

̂2 − 2

¯̄̄
≤ 2 kk

°°°̂ − 
°°°+ kk2

°°°̂ − 
°°°2 ≤ 

°°°̂ − 
°°° 

Also by
P

 
2
 =

P
  = ,

[
X
6=

 2 ] ≤ 
X
6=

 2 ≤ [
X
6=

 2
2
  ] ≤ 

Then by M, X
6=

 2 = (1)
X
 6=

 2
2
  = (1)

Therefore, for ̂ =
P

6=  2 ̂
2
 ̂
2
 ̃ =

P
6=  2

2
 
2
 we have¯̄̄

̂ − ̃

¯̄̄
≤

X
6=

 2

¯̄̄
̂2 ̂

2
 − 2 

2


¯̄̄


≤
°°°̂ − 

°°°2X
6=

 2 + 2
°°°̂ − 

°°°X
6=

 2
2
 

−→ 0

Let  =
P

 6= 
2


2
 
2
 and  = 2 − 2 Note that by  = X
6=

 2
2
 
2
 −

X
6=

 2
2
 
2
 = 2

X
6=

 2
2
 +

X
6=

 2 

Note that [2 ] ≤ [4 ] ≤  so we have

[(
X
6=

 2
2
 )

2] = −2X


X
 6=

X
 6=

 2
2
[

2
 ]

2

2


≤ −2X


X


 2
X


 2 = −2X


 2

≤ −1max
≤


X


 ≤ −1max
≤

 −→ 0
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Also, by CS, max≤  2 ≤ max≤  2, so that

[(
X
 6=

 2)
2] = 2−2X

6=
 4[

2
 ][

2
 ] ≤ −2X



 4

≤ −1max
≤

 2
X


 2 = −1max
≤

 2 −→ 0

Then by T and M we have ̃ − 
−→ 0 The conclusion then follows by T. Q.E.D.

Proof of Theorem 1: Note thatP
6= ̂ ̂√


=

X
6=

h
 − 0

(̂ − )
i


h
 − 0

(̂ − )
i

√


=

P
6= √


+ (̂ − )0

⎡⎣−1 X
6=


0

−10


⎤⎦0(̂ − )
√


+2(̂ − )0

⎡⎣−1 X
6=



⎤⎦ √

If 2 −→  ∞ (case I of Assumption 6) then by Theorem 2 of Hausman et al. (2010) we have

0(̂ − ) = (1) Then by Lemma A2 we haveP
6= ̂ ̂√


=

P
6= √


+ (1) (3)

If2 −→∞ (case II of Assumption 6) then by Theorem 2 of Hausman et al. (2010), (
√
)0(̂−

0) = (1) so that by
√
2 −→ 0

(̂ − )0

⎡⎣−1 X
6=


0

−10


⎤⎦0(̂ − )
√
 = (1)

³
2

´

√
 = (1)

(̂ − )0

⎡⎣−1 X
6=



⎤⎦ √ = (1)(
√
)(1 +

√
)

√


= (1 +
√
2) = (1)

Therefore, eq. (3) is also satisfied when 2 −→∞

Next, note that 2 ≥  by Assumption 3 and  ≤   1 by Assumption 1, so that

 =

P
6= 

2
 

2


2



 

ÃP
 

2



−
P

 
2




!
= 

P
 (1− )


   0
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Also, [4 ] ≤  and as shown above, [
P

6=()
2] = 2. Now apply Lemma A1 with

 = 0 1 = 0, and 2 = 1. It follows by the conclusion of Lemma A1 thatP
 6= √
2

−→ (0 1)

Next, by Theorem 1 of Hausman et al. (2010) we have ̂
−→  so that by Lemma A3,

̂ − 
−→ 0. Then by  bounded and bounded away from zero,

q
̂

−→ 1. Therefore by

the Slutzky theorem,P
6= ̂ ̂q
2̂

=

P
6= q
2̂

+
(1)q
2̂

=

s


̂

P
6= √
2

+ (1)
−→ (0 1)

Next, note that ̂ ≥ −(1− ) if and only ifP
6= ̂ ̂q
2̂

≥ −(1− )−√
2



It is known that as  −→∞, [−(1− )− ( −)] 
p
2( −) −→ (1−) where (1−)

is the 1−  quantile of the standard normal distribution. Also, we have

=

s
 −



Ã
−(1− )− ( −)p

2( −)

!
− √

2
−→ (1− )

The conclusion now follows. Q.E.D.

Proof of Theorem 2: It follows in the usual way from the conditions that

√

³
̂ − 0

´
−→ (0 2(0−1)−1)

In addition, it is straightforward to show that  0 −→  nonsingular implies that max≤  −→
0; e.g. see McFadden (1982). Furthermore, note for  = 3(1 + kk2) from the proof of Lemma

A3 that

[
X


] ≤
X


[] ≤ 

so
P

  = (1) Then similarly to the proof of Lemma A3, by  ≥ 0¯̄̄̄
¯X


(̂
2
 − 2 )

¯̄̄̄
¯ ≤X





¯̄̄
̂2 − 2

¯̄̄
≤
X




°°°̂ − 
°°° = (1)(1)

−→ 0
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Also, we have

[(
X



2
 −2)2] = [(

X


{2 − 2})2] =
X


 2 (
4
 )

≤ max
≤


X


 −→ 0

Then by the Markov and Triangle inequalities,

X


̂
2


−→ 2

Also, since (as just shown)
P

 
2
 −→ 0 it follows by Lemma A3 and 2 = 2 that

̂ − 4 =

X
6= 

2
 ̂

2
 ̂
2



− 4

X
6= 

2



− 4

X

 2


= (1) + (1)

−→ 0

Therefore,

̂ =
2p
̂

̂0 ̂
2

+ −
P

=1 ̂
2
p

̂
= [1 + (1)]

̂0 ̂
2

+ (1)

It follows by standard arguments that ̂0 ̂2 −→ 2( − ), so the conclusion follows by the

Slutzky Lemma. Q.E.D.
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