
A Survey of Shodan Data

By

Vincent Ercolani

A Master’s Paper Submitted to the Faculty of the

DEPARTMENT OF MANAGEMENT INFORMATION SYSTEMS

ELLER COLLEGE OF MANAGEMENT

In Partial Fulfillment of the Requirements

For the Degree of

MASTER OF SCIENCE

In the Graduate College

THE UNIVERSITY OF ARIZONA

2017

STATEMENT BY AUTHOR

 This paper has been submitted in partial fulfillment of requirements for an advanced degree

at the University of Arizona.

 Brief quotations from this paper are allowable without special permission, provided that

an accurate acknowledgement of the source is made. Requests for permission for extended

quotation from or reproduction of this manuscript in whole or in part must be obtained from

the author.

SIGNED: Vincent Ercolani

APPROVAL BY MASTERS PAPER ADVISOR

This paper has been approved on the date shown below:

 05/05/2017

 Dr. Mark Patton Date

 Lecturer of Management Information Systems

Table of Contents

STATEMENT BY AUTHOR .. i

Table of Contents .. ii

List of Figures ... vi

List of Tables ... vii

1 INTRODUCTION .. 1

2 BACKGROUND/LITERATURE REVIEW ... 1

2.1 Literature Review ...1

2.1.1 Cyber Threat Intelligence (CTI) .. 1

2.1.2 Shodan ... 1

2.1.3 Security Visualizations ... 2

2.1.4 Research Gaps ... 3

3 METHODOLOGY .. 4

3.1 Introduction ...4

3.2 Approach ...4

4 DATA COLLECTION .. 5

4.1 Introduction ...5

4.1.1 Shodan Dumps .. 5

4.1.2 Data Processing ... 5

4.1.3 Data Store .. 7

4.2 Tool Creation ...7

5 Data Processing .. 8

5.1 Introduction ...8

5.2 ICS Identification ..9

5.3 Data Sampling .. 11

5.4 Feature Selection & Analysis ... 11

5.4.1 Reverse DNS & IP Locations ... 12

5.4.2 Change in Scans over time .. 13

6 Data Visualization ... 14

6.1 Changes Over Time ... 14

6.2 Finding Malicious Protocols .. 17

6 Conclusion .. 19

APPENDIX A – Shodan Data ... 20

Main Properties ... 20

Opt Properties ... 22

SSL Properties .. 23

APPENDIX B – Shodan Tables ... 24

Information Tables ... 25

ShodanModules ... 25

Core Data .. 26

IPv4_Scans_WW ... 27

IPAddresses .. 27

Locations .. 28

Banner Data... 28

Banners_WW ... 29

Scan_Banner_WW.. 29

Banner_Dates_WW .. 29

Common Properties ... 29

Common_Properties_WW ... 30

Host / Domain Data ... 30

Host_Dom_Properties_WW ... 30

HTML Data ... 30

HTML_WW ... 31

Scan_HTML_WW .. 31

IP Address History .. 31

IPAddress_History_WW ... 31

Opt Data .. 32

Opt_Properties_WW .. 32

Vulnerability Opt Data ... 32

Opt_Prop_Vuln_WW .. 32

SSL Data .. 33

Scan_SSL_WW .. 33

SSL_Properties_WW... 33

Properties .. 33

Properties_WW .. 33

Appendix C – Shodan Database ERD .. 34

Appendix D – Shodan Modules and Classifications ... 35

Appendix D – Shodan Modules and Classifications ... 43

parseShodanFile.py .. 43

shodan_sql_import.py ... 54

REFERENCES .. 60

List of Figures

Figure 1: Research Design .. 4

Figure 2: Section bitmask values .. 8

Figure 3: Venezuela ICS devices Aug 2016 [Afarin, 2017] ... 15

Figure 4: Venezuela ICS devices Jan 2017 [Afarin, 2017] .. 16

Figure 5: Arizona PLC5 IPs by Modularity .. 17

Figure 6: Arizona plc5 IPs by protocol type ... 18

Figure 7: Shodan Database ERD .. 34

file:///X:/vercolani/Google%20Drive/Masters%20of%20Science%20%20MIS/201701%20Spring/VErcolani_MasterPaper_v1.0.0%20-%20MWP.docx%23_Toc482273854

List of Tables

Table 1: Shodan IPv4 Scans per Week ... 7

Table 2: Shodan parser input parameters .. 7

Table 3: Shodan modules communicating with IOT devices ... 9

Table 4: Shodan modules communicating with ICS devices .. 10

Table 5: Top 20 ICS scans per state.. 11

Table 6: Scans where country code of IP and domain differ .. 12

Table 7: Change in frequency of scans ... 13

Table 8: Main Shodan Object Properties .. 21

Table 9: Optional Shodan Object Properties .. 22

Table 10: SSL Object Properties in Shodan Object .. 23

Table 11: Parser and Data store Sections .. 24

Table 12: Shodan Modules ... 25

Table 13: IPv4_Scans_WW .. 27

Table 14: IPAddresses .. 28

Table 15: Locations... 28

Table 16: Banners_WW .. 29

Table 17: Scan_Banner_WW ... 29

Table 18: Banner_Dates_WW .. 29

Table 19: Common_Properties_WW .. 30

Table 20: Host_Dom_Properties_WW ... 30

Table 21: HTML_WW ... 31

Table 22:Scan_HTML_WW ... 31

Table 23: IPAddress_History_WW .. 31

Table 24: Opt_Properties_WW... 32

Table 25: Opt_Prop_Vuln_WW ... 32

Table 26: Scan_SSL_WW .. 33

Table 27: SSL_Properties_WW .. 33

Table 28: Properties_WW ... 33

Table 29: Shodan Modules ... 42

1 INTRODUCTION

This is a survey of information obtainable from the Shodan internet database with a discussion of

the limitations.

The devices on the internet continuously expands as many non-traditional items are introduced

and connected. Items ranging from personal to business devices are being rapidly introduced and

many of them are now being connected to the internet and are visible to online searches, yet

security often seems to take a back seat to features, functionality, and connectivity despite growing

cyber threats to all online devices. In 2016 there were 189 new vulnerabilities in Industrial Control

Systems (ICS) components published, most of them deemed to have medium (42%) or critical

(49%) severity levels (Andreeva, 2016). Because the industrial sector is critically important to a

smoothly functioning society and quality of life, threats to this sector are considered significant

and as such it is key area of interest for cybersecurity research.

The search engine Shodan is one tool often utilized to better understand the landscape for industrial

control systems. Shodan is a database connected to an internet portal that leverages ongoing scans

of the internet to find open ports on the IPv4 address space. From the Shodan data, one can search

for and analyze services, ports, IP addresses, and other relevant information to industrial control

systems (ICS) and/or supervisory control and data acquisition devices (SCADA).

Shodan captures many attributes for each IP/port scanned, and adds additional attributes based on

the original scan data. Understanding these fields, their reliability, limitations, and meaning is

critical to conducting research and analysis which can lead to insights for cyber threat intelligence

(CTI) and related cybersecurity initiatives. Cyber threat intelligence needs to be relevant and

accurate; therefore Shodan data must be evaluated for consistency and the stability of attributes

reported over time. This research implements security visualizations (VizSec) to survey Shodan

data across a specified dataset over time, allowing us to understand the identification process of

ICS/SCADA devices and evaluate Shodan’s data and data attributes for completeness with respect

to CTI. The motivation for this research stems from the need to understand Shodan data with

respect to ICS/SCADA, understand the limits and variability of internet scan results over time, and

ultimately determine if Shodan can be used as a reliable data source for CTI information

specifically in the ICS/ SCADA domains.

2 BACKGROUND/LITERATURE REVIEW

2.1 Literature Review

To form the basis of this research, we reviewed three major areas of literature to include: Cyber

Threat Intelligence, Shodan, and Security Visualizations. The following sections discuss the

findings within each area.

2.1.1 Cyber Threat Intelligence (CTI)

Many organizations rely on Cyber Threat Intelligence (CTI) data and reports to mitigate cyber

threats. CTI is threat intelligence related to computers and networks (Shackleford, 2015). It is

important to understand that CTI focuses on mitigating potential or pending attacks before they

occur (EY, 2014). It should be noted that one piece of literature was unable to find any CTI portals

leveraging machine learning or data mining techniques to gain a deeper understanding of their data

(Samanti, 2016). Therefore analyzing the Shodan data through data mining techniques for the

purpose of providing CTI does hold value.

2.1.2 Shodan

Shodan, a search engine for the Internet of Things (IoT) can help provide a novel data source for

CTI visualizations (Bodenheim, 2014). Through a Cyber Threat Intelligence course at the

University of Arizona we know Shodan does the following:

• Crawls, scans, and indexes billions of devices on the Internet

• Uses various search filters so users can find indexed devices including Supervisory Control

and Data Acquisition (SCADA) devices (Bodenheim, 2014).

• Returns network (port, IP), location (latitude, longitude), and device specific (banner,

protocol) data pertaining to the devices (Bodenheim, 2014).

• Prior Shodan explorations have used specific keywords, either manually through the web

interface (Bodenheim et al., 2014) or automatically through the API (Patton et al., 2014)

to identify SCADA devices. (Samtani, 2016).

Through Shodan we can understand device exposure amongst the internet. It should be noted that

previous work on the Shodan database has shown devices are generally indexed within 3 weeks of

coming online (Ercolani, 2016). Additional work done on evaluating Shodan as a scanning tool

does show inconsistency in results from scans. However, analysis of the data from the scans has

not been delved into for deeper analysis. Findings from Rohrmann’s research show discrepancies

from his own scans to that of Shodan over the same IP range over the same time frame (Rohrmann,

2017).

2.1.3 Security Visualizations

Information visualization is one of these tools that allows users to understand the behavior of the

managed network (Guimaraes, 2015). Visualization alternatives include: 3D, network graph,

line/bar chart, radial methods, trees and geographical maps. (Langton, 2010; McKenna, 2015).

Security metrics, security monitoring, anomaly detection, forensics, and malware analysis are

examples where data visualization can play a vital role (SANS, 2014). Even with the information

that many studies identify accessible and vulnerable SCADA systems (Arnaert, 2015), a lack of

literature exists in utilizing visualization techniques with the type of data from Shodan. Through a

case study performed by Cyrus Afarin, security visualization is performed on a small scaled

focused group. The techniques utilized are for representing the changes (if any) from Shodan data

over time through security visualizations (Afarin, 2017).

2.1.4 Research Gaps

Based on the literature review of cyber threat intelligence, Shodan, and security visualizations, the

following gaps were identifies:

• Visualization techniques are not being used for device identification on the internet

• Cyber Threat Intelligence does not take advantage of data mining techniques or proactive

visualizations using Shodan or comparable data sets to enhance data comprehension and hence

cyber posture

• Shodan scans have been evaluated to identify if differences exist through self-conducted scans

(Rohrmann, 2017) and over time evaluations (Afarin, 2017) but specific data variances have

not been systematically analyzed

• Larger scaled visualizations over an increased dataset over time are necessary due to the

evolving nature of ICS/SCADA devices coming online as well as the growing cyber threats to

internet enabled devices. The visualizations clarify the risks and posture within networks and

provide insights on where to focus efforts

Therefore, this research proposes to further efforts performed by Afarin and Rhormann by

performing a deep analysis of Shodan data gathered and visualized to better understand data

variances and inconsistencies over time (Afarin, 2017; Rohrmann, 2017). Additionally, the

research will attempt to address whether visualizations can be created that will be effective in

identifing devices through the understanding of open ports and the protocols running on these ports

(specifically for SCADA/ICS). Through the methods of visualizations, data analysis, trend

identification, and active CTI development this work aims to evaluate Shodan and the value it’s

data can provide.

3 METHODOLOGY

3.1 Introduction

To get a better understanding of Shodan data we need unfettered access to the data that is collected.

The most complete approach is to forgo the online API and work with complete daily dumps of

Shodan scan data. Access was obtained to the daily gzip files of Shodan scans. These files range

from 75 to over 100 gigabytes in size and contain upwards of 40 million rows a day. All records

are kept in a JSON format that is only semi structured. This created several challenges that needed

to overcome in order to store and work with the data.

3.2 Approach

To address the research questions a design was created centered on three main steps: data

collection, data processing, and visualization creation. Figure 1: Research Design gives an

overview of the research design.

Figure 1: Research Design

Data Collection

Data
Processing

Shodan
Dumps

Data
Store

Data Processing Data Visualization

ICS
Identification

Data
Sampling

Gephi
Visualization

Community
Creation

Spatial –
Temporal
Analysis

Feature
Selection &

Analysis

4 DATA COLLECTION

4.1 Introduction

The initial step in the collection of data was obtaining and analyzing the daily data dumps

downloaded from Shodan. These are gzipped files containing one JSON object per line

representing all data that Shodan has gathered from a successful scan. The dumps were reverse

engineered to understand the JSON objects that contained Shodan scans. Care was taken to insure

that relevant portions of the object were in a format that could be easily put in a database and to

insure that there was no loss of the unstructured data. Finally, a database was designed and a tool

was developed to parse the files and load the data into the extensible database design.

4.1.1 Shodan Dumps

Since dumps contained 30 to 45 million rows per files a script was written to extract portions of

the file for closer inspection. Shodan scan object were analyzed to determine the structure.

Knowledge of the Shodan scan object structure can be explored in more depth in Appendix A.

4.1.2 Data Processing

In the process of parsing the Shodan scan object data the information within the object was

separated into ten distinct sections. These sections allowed the analysis of only the portions of the

record object that would be of research interest. Files would be able to be processed and only the

key information needed would be saved to a database. These sections included:

• Core Data

• Banner Data

• Common Properties

• Host / Domain Data

• HTML Data

• IP Address History

• Opt (Optional) Data

• Vulnerability Opt Data

• SSL Data

• Properties

Further explanation of the sections please refer to Table 11: Parser and Data store Sections in

Appendix B.

Care was taken to insure that when information in a Shodan scan object changed all information

would be processed and stored. Crawler information (information identifying the specific Shodan

crawling server which executed the recorded scan) is captured but it is stored in the properties table

within the database. This makes it difficult to use with the current structure of the database.

One important piece of data that had proven invaluable within the Shodan scan object is the

shodanModule field. This field gave the name of the specific Shodan module being employed by

the crawling server, or crawler, to communicate on the port. This gives us the best indication of

what protocol the port is running as Shodan has the ability to communicate using over 150 different

protocols. These protocols were captured and classified to facilitate research on protocols of

interest. Sixty-one of the Shodan modules still remain unclassified at this time. The main

classifications of interest to this research are ICS classified protocols. A full list of current protocol

classes are located in Appendix B.

4.1.3 Data Store

Once a complete understanding of Shodan scan objects was gained and the data processing was

worked out I created a design for the database that would be able to hold the parsed data. An entity

relation diagram (ERD) of the database is in Appendix C – Shodan Database ERD, the related data

dictionary is in APPENDIX B – Shodan Tables. These appendices hold all information needed to

understand the database.

The database loads information according to ISO weeks. This

shards the data and limits table sizes to facilitate analytics.

Even with sharding the data the tables are still huge, the eight

weeks of data that were used for this research are described in

Table 1: Shodan IPv4 Scans per Week.

Table 1: Shodan IPv4 Scans per Week

This leads to almost 2.2 billion scans stored for further analysis over an 8 week period.

4.2 Tool Creation

A parser was created for parsing the daily dump files obtained from Shodan. This is parser was

written in python. The main executable is parseShodanFile.py, which required the python script

shodan_sql_import.py to create the SQL insert scripts. The arguments to run the file are described

in the following table.

Table 2: Shodan parser input parameters

Tag Alt Tag Type Requried Default Description

-g --gzipfile String Yes The gzip file to be parsed

-u --update Integer No 10000 Print update to console every [x] number of lines in the file

-s --sections Integer No 1023 Bitmask of the sections to be parsed from the file

-S --skip Integer No 0 Number of lines to skip before parsing begins

-f --flushfreq Integer No 8 Flush print buffers every [y] updates

-v --verbose True No False Display verbose output of parsing actions

 Num Records

2016, Week 31 271,408,627

2016, Week 32 283,806,490

2016, Week 33 293,899,514

2016, Week 34 262,092,886

2017, Week 01 273,706,070

2017, Week 02 295,574,020

2017, Week 03 278,058,182

2017, Week 04 236,070,732

All parsed files are put into a directory called [filename]_parsed. Daily dump gzip files are moved

to a completed directory when parsing is complete. Files in the parsed directory include the CSV

(Comma Separated Variable) files for loading into each table

as well as the SQL script for doing the loads of each section.

Sections should be loaded into the database in the order of the

sections in Figure 2: Section bitmask values. By adding the

values of the section that you want parsed it is possible to only

have those sections pulled out for inserting into the database.

Additional sections can be parsed at a later time if a user would

like to expand the information available.

5 Data Processing

5.1 Introduction

Through experimentation, discussions with John Matherly (the creator of Shodan), and gaining a

better understanding of the Shodan scan object I have found that additional data has been included

that is not directly related to performing the scan. Many additional data gathering steps had already

been performed at the time of the scan, including:

- Reverse DNS lookup: gets the name and domain for an IP

- Whois Lookup to get the ISP and Organization associated with the IP Address

- IP locations: gets the location of the IP

- Checks for vulnerabilities

o Check for susceptibility to heart bleed bug

Figure 2: Section bitmask values

- Tags for a scan

o ICS, IOT, VPN, Database, Honeypot, TOR, Medical

Beyond information that can be gathered from the JSON object of a scan these items can be put

together to further CTI knowledge.

5.2 ICS Identification

Shodan has access to over 150 communication protocols used by devices on the web. Shodan

created shodanModules to communicate using these protocols. Scans are saved based on finding

a port open and a successful communication using one of these shodanModules. Using information

gathered from the Shodan site and looking up shodanModule names, industrial control services

(ICS) and internet of things (IOT) protocols were identified and classified. Table 3: Shodan

modules communicating with IOT devices & Table 4: Shodan modules communicating with ICS

devices display the Shodan modules for IOT and ICS devices respectively.

Shodan Module Class Description

dahua-dvr IOT Grab the serial number from a Dahua DVR device.

flux-led IOT Grab the current state from a Flux LED light bulb.

gardasoft-vision IOT Grabs the version for the Gardasoft controller.

hifly IOT Checks whether the HiFly lighting control is running.

idevice IOT Connects to an iDevice and grabs the property list.

ikettle IOT Check whether the device is a coffee machine/ kettle.

moxa-nport IOT Attempts to grab information from Moxna Nport devices.

mqtt IOT Grab a list of recent messages from an MQTT broker.

smarter-coffee IOT Checks the device status of smart coffee machines.

wemo-http IOT Connect to a Wemo Link and grab the setup.xml file

yahoo-smarttv IOT Checks whether the device is running the Yahoo Smart TV device
communication service.

Table 3: Shodan modules communicating with IOT devices

Shodan Module Class Description

automated-tank-gauge ICS Get the tank inventory for a gasoline station.

bacnet ICS Gets various information from a BACnet device.

coap ICS Check whether the server supports the CoAP protocol

codesys ICS Grab a banner for Codesys daemons

dnp3 ICS A dump of data from a DNP3 outstation

ethernetip ICS Grab information from a device supporting EtherNet/IP over TCP

ethernetip-udp ICS Grab information from a device supporting EtherNet/IP over
UDP

fox ICS Grabs a banner for proprietary FOX protocol by Tridium

general-electric-srtp ICS Check whether the GE SRTP service is active on the device.

hart-ip-udp ICS Checks whether the IP is a HART-IP gateway.

iec-104 ICS Banner grabber for the IEC-104 protocol.

kamstrup ICS Kamstrup Smart Meters

knx ICS Grabs the description from a KNX service.

lantronix-udp ICS Attempts to grab the setup object from a Lantronix device.

matrikon-opc ICS Checks whether the device is running Matrikon OPC.

melsec-q-tcp ICS Get the CPU information from a Mitsubishi Electric Q Series PLC.

melsec-q-udp ICS Get the CPU information from a Mitsubishi Electric Q Series PLC.

modbus ICS Grab the Modbus device information via functions 17 and 43.

omron-tcp ICS Gets information about the Omron PLC.

pcworx ICS Gets information about the Omron PLC.

plc5 ICS Rockwell Automation. Customers are encouraged to migrate
from the PLC-5 Control System to the ControlLogix Control
System.

proconos ICS Gets information about the PLC via the ProConOs protocol.

realport ICS Get the banner for the Digi Realport device

redlion-crimson3 ICS A fingerprint for the Red Lion HMI devices running CrimsonV3

s7 ICS Communicate using the S7 protocol and grab the device
identifications.

secure-fox ICS Grabs a banner for proprietary FOX protocol by Tridium

toshiba-pos ICS Grabs device information for the IBM/ Toshiba 4690.

vertx-edge ICS Checks whether the device is running the VertX/ Edge door
controller.

wdbrpc ICS Checks whether the WDB agent (used for debugging) is enabled
on a VxWorks device.

Table 4: Shodan modules communicating with ICS devices

5.3 Data Sampling

 As Shodan executes and captures approximately a

quarter billion scans every week it was important that

we get a smaller sample of the data within Shodan. For

the purpose if this research we are mainly concerned

with ICS devices protocols. The first four weeks of

2017 gave us 1,187,384 scans in the US. These ICS

scans included 385,152 unique IP addresses and

498,022 IP / Port combinations. In order to understand

the information further we looked at the ICS scans per

state. Table 5: Top 20 ICS scans per state shows the top

20 states by the number of ICS Shodan data objects that

were captured. Since we are located in Arizona most of

the following information pertains to information

gathered to coincide with the Arizona scans.

5.4 Feature Selection & Analysis

Some interesting information I found from the US ICS scans are:

• 114 scans tagged as honeypots (65 unique IPs)

• 2869 scans with associated vulnerabilities (1189 unique IPs)

Future work can include adding the tags Shodan put on the scan objects into the visualizations to

try to confirm our suspicions that IPs with many (> 100) ports open are honeypots or NAT servers.

State
Total
Scans

ICS Module
Count

CA 141456 27

DE 83568 27

TX 81281 27

NY 16857 26

CO 14195 26

NJ 12762 26

IL 11107 27

VA 10068 27

UT 10053 26

FL 9640 27

WY 9591 25

MI 8072 27

GA 6555 26

MO 6455 26

AZ 6253 26

MA 6153 26

WA 5980 27

OR 4962 27

NC 4586 27

PA 3671 27
Table 5: Top 20 ICS scans per state

We would also like to highlight the IPs with vulnerabilities. For example, several were found to

still be susceptible to the Heartbleed bug.

5.4.1 Reverse DNS & IP Locations

Other pieces of interesting information that can be used to supplement the Shodan data is trying to

match the IP location to the country of the domain found in the reverse DNS lookup. Table 6:

Scans where country code of IP and domain differ shows some of the data that can be queried from

our database.

scanID ip port shodanModule IP Country Domain
Country

58633c6c27105869fa71 1482898540 10000 https-simple GB DE

b215746627105869fa71 2987750502 10000 https-simple-new NL IT

52c6556f01d15869fa71 1388729711 465 smtps DE AT

481d46ad1f905869fa71 1209878189 8080 http US BR

a2dee31d08235869fa72 2732516125 2083 https US IN

b91f9d2f024b5869fa72 3105856815 587 smtp PT CO

94fbaac400195869fa72 2499521220 25 smtp DE AT

2e692b2000165869fa72 778644256 22 ssh FR EU

5413d87c1f905869fa72 1410586748 8080 http DE AG

c14664dd08275869fa72 3242616029 2087 https-simple-new IT EU

d520312000b35869fa72 3575656736 179 bgp DK EU

534dc02d1d7b5869fa72 1397604397 7547 http-simple-new EU CH

bca5b00e00195869fa73 3164975118 25 smtp FR BR

a484ebb800505869fa74 2760174520 80 http FR EU

d83b151700165869fa74 3627750679 22 ssh US BR

b9133496008f5869fa74 3105043606 143 imap DE EU

5159c43700195869fa74 1364837431 25 smtp DE EU

422dede300355869fa74 1110306275 53 dns-udp US BR

5cdea2b800165869fa75 1558094520 22 ssh FR EU

b98861de00b35869fa75 3112722910 179 bgp BG MX
Table 6: Scans where country code of IP and domain differ

Future research can be done to determine if there is a correlation between mismatched country

codes and malicious actors, or if it can be used as a feature to identify organizations.

5.4.2 Change in Scans over time

One of the biggest things we found is that there is no consistency in what is scanned within a time

period. We had been working on the assumption that the entire IPv4 address space was scanned

for all ports and protocols every 2 weeks. We now know this is not exactly accurate. Table 7:

Change in frequency of scans shows a comparison of scan counts.

 August 2016 January 2017

shodanModule Count Percent Count Percent Percent Change

iec-104 878600 99.48% 4566 0.52% -99.48%

modbus 19280 71.02% 7866 28.98% -59.20%

s7 877 66.95% 433 33.05% -50.63%

knx 4 66.67% 2 33.33% -50.00%

melsec-q-udp 380 64.30% 211 35.70% -44.47%

realport 13222 62.37% 7977 37.63% -39.67%

redlion-crimson3 8838 62.14% 5384 37.86% -39.08%

codesys 18429 62.01% 11289 37.99% -38.74%

fox 91131 60.88% 58559 39.12% -35.74%

automated-tank-gauge 24792 58.34% 17707 41.66% -28.58%

pcworx 8197 57.53% 6051 42.47% -26.18%

melsec-q-tcp 9657 56.53% 7427 43.47% -23.09%

omron-tcp 21437 54.55% 17860 45.45% -16.69%

hart-ip-udp 36232 53.03% 32088 46.97% -11.44%

wdbrpc 34197 52.31% 31177 47.69% -8.83%

general-electric-srtp 24395 51.42% 23046 48.58% -5.53%

ethernetip-udp 5567 50.65% 5424 49.35% -2.57%

proconos 20664 50.20% 20496 49.80% -0.81%

lantronix-udp 36053 49.82% 36311 50.18% 0.72%

ethernetip 29840 49.47% 30484 50.53% 2.16%

dnp3 214200 47.06% 240950 52.94% 12.49%

coap 4503 46.26% 5231 53.74% 16.17%

matrikon-opc 16916 44.82% 20823 55.18% 23.10%

secure-fox 2935 44.06% 3726 55.94% 26.95%

bacnet 16413 37.75% 27070 62.25% 64.93%

vertx-edge 13799 33.27% 27673 66.73% 100.54%

kamstrup 4 22.22% 14 77.78% 250.00%

plc5 147162 22.14% 517619 77.86% 251.73%
Table 7: Change in frequency of scans

Looking at the scan data between August of 2016 (2016 ISO weeks 31-34) and January of 2017

(2017 ISO weeks 01-04) we can see that there are some drastic changes in the number of scans

performed on iec-104, Modbus, plc5 and other ICS protocols. Again, another anomaly to be further

investigated.

6 Data Visualization

6.1 Changes Over Time

We can see visual evidence that the scans performed on ICS devices in Venezuela between August

2016 and January 2017 have a large discrepancy [Afarin, 2017]. Figure 3: Venezuela ICS devices

Aug 2016 [Afarin, 2017] below shows that in August 2016 there were 1415 IP addresses that had

positive results when being scanned by the iec-104 Shodan module. Figure 4: Venezuela ICS

devices Jan 2017 [Afarin, 2017] shows that by January 2017 this number had decreased to 6 IP

addresses.

Figure 3: Venezuela ICS devices Aug 2016 [Afarin, 2017]

Building Automation

plc5

dnp3

Automated tank gauge

iec-104

August 2016 (ISO Week 31 – 34)

Megaport IPs

http 80

Figure 4: Venezuela ICS devices Jan 2017 [Afarin, 2017]

Using both the visual and the tabular data show the inconsistency of the Shodan scans over time.

It is more readily apparent in the visual representation with the tabular data working well to give

the details of what is happening.

January 2017 (ISO Week 01 – 04)

plc5

dnp3

Megaport IPs
Automated tank gauge

iec-104

Building Automation

http 80

6.2 Finding Malicious Protocols

For a semester project we looked at plc5 devices in Arizona as plc5 is known to be insecure. The

visualizations show that all the IP addresses that had malware and Trojans on them belong to the

same cluster or neighborhood. Using modularity in Gephi we are able to see that all the malicious

protocols are in the orange colored neighborhood. Figure 5: Arizona PLC5 IPs by Modularity

shows the neighborhoods created using modularity.

Figure 5: Arizona PLC5 IPs by Modularity

In Figure 6: Arizona plc5 IPs by protocol type the blue nodes are ICS protocols and the dark green

nodes are IP addresses. The IP address nodes point to all the protocols that are running on them.

The dark red nodes are malicious protocols: All located in the upper part of the image.

Figure 6: Arizona plc5 IPs by protocol type

Future work will be used to see if we can create a classification algorithm to determine if we can

find malicious IPs on a network

6 Conclusion

As we can see, Shodan data has many uses but there are significant limitations to what it can tell

us as well. There is no guarantee that the entirety of the internet is scanned within any specific

time frame although on well-known ports like port 80 it appears that the majority of the internet

would be captured within 3 to 4 weeks [Bodenheim, 2014]. Rohrmann’s comparisons to his own

nMap scans have shown that there are IPs that have ports open that are not showing up on Shodan

within a timeframe [Rohrmann, 2017]. For example, we have seen 9000 scans in a week for an IP

range on a certain port to just find out that it was a single unique IP that was being scanned

continuously.

Looking at Shodan data from time periods does not show change in the internet structure. It only

shows what was scanned. It also does not show that something that had been there in the past is

no longer there. Further research needs to be done to find how long it takes to truly scan the whole

internet as well as how often Shodan truly repeats scans. It is important to know if I should look

at two weeks, a month or three months to get an accurate understanding of what is on the internet.

A tool also needs to be created to verify if Shodan data is still accurate over time.;

It does do a large amount of correlating NSLookups, Whois, and IP Geolocation data with the

scans that are performed. Further work needs to be done in many areas as discussed previously in

this paper.

APPENDIX A – Shodan Data

Shodan data is stored in JSON format. There is one scan to a line and the JSON object can vary

greatly depending on when and how the scan was completed. This section will cover the known

parts of a Shodan scan and try to explain where unknown fields are located. The Shodan website

provides a sparse banner specification for their REST and Streaming APIs at

https://developer.shodan.io/api/banner-specification. The information on the page does not show

a complete specification for what is in the raw scan files. Below I will try to explain the known

keys that we have found of interest.

Main Properties

Property Name Data Type Description

ip [Integer] The IP address of the host as an integer.

ip_str [String] The IP address of the host as a string.

IPv6 [String] The IPv6 address of the host as a string. If this is present then

the "ip" and "ip_str" fields won’t be.

asn [String] The autonomous system number (ex. "AS4837").

port [Integer] The port number that the service is operating on.

timestamp [String] The timestamp for when the banner was fetched from the

device in the UTC time zone. Example: "2014-01-

15T05:49:56.283713"

transport [String] Either "udp" or "tcp" to indicate which IP transport protocol

was used to fetch the information

os [String] The operating system that powers the device.

location [Object] An object containing all of the location information for the

device.

https://developer.shodan.io/api/banner-specification

area_code [Integer] The area code for the device's location. Only available for the

US.

city [String] The name of the city where the device is located.

country_code [String] The 2-letter country code for the device location.

country_code3 [String] The 3-letter country code for the device location.

country_name [String] The name of the country where the device is located.

dma_code [Integer] The designated market area code for the area where the

device is located. Only available for the US.

latitude [Double] The latitude for the geolocation of the device.

longitude [Double] The longitude for the geolocation of the device.

postal_code [String] The postal code for the device's location.

region_code [String] The name of the region where the device is located.

data [String] Contains the banner information for the service.

org [String] The name of the organization that is assigned the IP space for

this device.

isp [String] The ISP that is providing the organization with the IP space

for this device. Consider this the "parent" of the organization

in terms of IP ownership.

hostnames [String[]] An array of strings containing all of the hostnames that have

been assigned to the IP address for this device.

domains [String[]] An array of strings containing the top-level domains for the

hostnames of the device. This is a utility property in case you

want to filter by TLD instead of subdomain. It is smart enough

to handle global TLDs with several dots in the domain (ex.

"co.uk").

Table 8: Main Shodan Object Properties

Properties not in this table are optional and may not be found within the JSON object. This is the

data available as of the date this was written.

Opt Properties

Property Name Data Type Description

opts [Object] Contains experimental and supplemental data for the

service. This can include the SSL certificate, robots.txt and

other raw information that hasn't yet been formalized into

the Banner Specification.

uptime [Integer] The number of minutes that the device has been online.

link [String] The network link type. Possible values are: "Ethernet or

modem", "generic tunnel or VPN", "DSL", "IPIP or SIT",

"SLIP", IPSec or GRE, "VLAN", "jumbo Ethernet",

"Google", "GIF", "PPTP", "loopback", "AX.25 radio

modem".

title [String] The title of the website as extracted from the HTML

source.

html [String] The raw HTML source for the website.

product [String] The name of the product that generated the banner.

version [String] The version of the product that generated the banner.

devicetype [String] The type of device (webcam, router, etc.).

info [String] Miscellaneous information that was extracted about the

product.

cpe [String] The relevant Common Platform Enumeration for the

product or known vulnerabilities if available. For more

information on CPE and the official dictionary of values

visit the CPE Dictionary.

Table 9: Optional Shodan Object Properties

SSL Properties

Property Name Data Type Description

ssl [Object] If the service uses SSL, such as HTTPS, then the banner

will also contain a property called "ssl":

cert [Object] The parsed certificate properties that includes information

such as when it was issued, the SSL extensions, the issuer,

subject etc.

cipher [Object] Preferred cipher for the SSL connection

chain [Array] An array of certificates, where each string is a PEM-

encoded SSL certificate. This includes the user SSL

certificate up to its root certificate.

dhparams [Object] The Diffie-Hellman parameters if available: "prime",

"public_key", "bits", "generator" and an optional

"fingerprint" if we know which program generated these

parameters.

versions [Array] A list of SSL versions that are supported by the server. If a

version isn’t supported the value is prefixed with a "-".

Example: ["TLSv1", "-SSLv2"] means that the server

supports TLSv1 but doesn’t support SSLv2.

Table 10: SSL Object Properties in Shodan Object

All other properties found within the JSON object are not been officially defined. When these

properties are explicitly parsed from the object for storage they will be defined further.

APPENDIX B – Shodan Tables

The Shodan database is designed to be able to store all information from the Shodan data object

and be future proof to insure that all data is stored. This does not mean that all data is usable in the

current form for research purposes. Because of this the database is broken into distinct parts that

can be parsed and loaded depending on the information needed for research. There is a color coded

ERD of the database in Appendix B: Shodan Database ERD.

A short breakdown of these sections follows:

Core Data This includes the primary scan data of ip, port, timestamp, Shodan

module, location, etc.

Banner Data Storage of banner data from the Shodan object

Common Properties Common properties needed for research, i.e., os, tags, product, and

version

Host / Domain Data Host and domain information from doing an nslookup on scan data

HTML Data Storage of HTML data from Shodan object

IP Address History Timestamped storage of org and isp for an ip

Opt Data Data from opt object (does not include object if vulns field is present)

Vulnerability Opt Data Data from opt object if vulns field is present

SSL Data Storage of the SSL object

Properties All other properties not covered above

Table 11: Parser and Data store Sections

These ten sections of the Shodan object are utilized throughout the parsing and loading of Shodan

data into the database. They will be described more deeply in the following sections of this

document. For now we will go into the database in more detail.

Information Tables

This section provides information about informational tables that are not filled by the parsing of

the JSON files provided by Shodan. These tables are used to supplement the information that we

currently have in Shodan to investigate the information further.

ShodanModules

This tables describes the current understanding of the Shodan module used to communicate with

the port during a scan. The information in this table was acquired by researching the names of the

modules online. This is not a definitive list or description of what each module does. It will need

to be updated as more information and modules become available.

The class field is to attempt to classify the devices or port purposes that are being communicated

with. Currently there are 15 classes. They are as follow:

• ICS – Industrial control devices (may also contain SCADA)

Field Data Type Description

shodanModule VARCHAR PRIMARY KEY Shodan Module as it comes from the JSON

object.

shodanName VARCHAR Name from the Shodan API.

class VARCHAR Class given to the module.

shodanDescription VARCHAR The API description of the Shodan module

description TEXT Description from looking up the name online.

Table 12: Shodan Modules

• TORRENT – Bit torrent protocols including trackers

• Trojan – Communications with remote access Trojans (RATs) and others

• DB – Databases & DBMS. i.e., MySQL, MongoDB, Oracle, etc.

• IOT – internet of things devices. i.e., iKettle

• HTTP – uses HTTP

• HTTPS – uses HTTPS

• AUTH – authentication protocols

• PRINT – printers and print spools

• GAME – game servers. i.e., Minecraft

• VOIP – voice over IP

• TEST – test communication, this includes sending nothing or just a new line character

• REMOTE – remote access protocols. i.e., RDP

• Malware – Communicating with known malware

• TOR – Tor communications

There are many standard internet protocols (imap, dns, dhcp, etc.) that are not classed at this point

in time. Some thought will need to go into a classification system.

Core Data

Core data is the basic data for when a scan took place. The location and whois information is

included in the Locations and IPAddresses tables. The main scan table is named ipv4_scans_WW

where WW is the ISO week that the scan took place. IPv6 information is ignored at this point in

time. All tables with the _WW suffix will be of the ISO week. Queries over larger periods of time

can be done by using a union of queries for each week. Non weekly table were created for any

information that was relatively constant and small.

IPv4_Scans_WW

The scanID from this table is used throughout the schema to indicate what scan the stored

information is referring to. The scanID is create by concatenating the hex value of the ip, port, and

timestamp.

Field Data Type Description

scanID CHAR(20) PRIMARY KEY Unique Identifier for a scan.

Ip INT The IP address of the host as an integer.

port INT The port number that the service is operating

on.

timestamp INT The UNIX timestamp of when scan took place

transport SET Either "udp" or "tcp" to indicate the IP transport

protocol used

shodanModule VARCHAR Foreign Key to the ShodanModules table.

locationID CHAR(32) Foreign key to the Locations table.

Table 13: IPv4_Scans_WW

IPAddresses

This information is for the first time we saw the IP for that ISO year. Look to

IPAddress_History_WW for all scan info.

Field Data Type Description

ip INT PRIMARY KEY The IP address of the host as an integer.

org VARCHAR The name of the organization that is assigned the IP space

for this device.

isp VARCHAR The ISP that is providing the organization with the IP space

for this device. Consider this the "parent" of the organization

in terms of IP ownership.

Table 14: IPAddresses

Locations

Location give the relative location for the IP address of the scan. This table holds the location data.

The locationID is the primary key created using the concatenation of the formatted latitude and

longitude.

Field Data Type Description

locationID CHAR(32) PRIMARY KEY Unique identifier for the location.

areaCode INT The area code for the device's location. Only available

for the US.

city VARCHAR The name of the city where the device is located.

countryCode CHAR(2) The 2-letter country code for the device location.

countryCode3 CHAR(3) The 3-letter country code for the device location.

countryName VARCHAR The name of the country where the device is located.

dmaCode INT The designated market area code for the area where

the device is located. Only available for the US.

latitude DECIMAL The latitude for the geolocation of the device.

longitude DECIMAL The longitude for the geolocation of the device.

postalCode VARCHAR The postal code for the device's location.

regionCode VARCHAR The name of the region where the device is located.

Table 15: Locations

Banner Data

Banner data is data associated with the storing of banners retrieved during scans. Certain dates are

removed from the banners such as modified and expires before being MD5’d and saved. This

allows us to have the same banner even if the current time and date are used for each scan. An

MD5 of the date removed banner is used as a unique identifier of the banner.

Banners_WW

This table holds all the banners seen in this ISO week.

Field Data Type Description

bannerID CHAR(32) PRIMARY KEY Unique identifier for the banner.

banner TEXT Full text of the banner

Table 16: Banners_WW

Scan_Banner_WW

This table associated the banner with the scan that pulled it.

Field Data Type Description

scanID CHAR(20) Unique Identifier for a scan.

bannerID CHAR(32) Unique identifier for the banner.

Table 17: Scan_Banner_WW

Banner_Dates_WW

This table holds the dates that were removed from a scans banner.

Field Data Type Description

scanID CHAR(20) Unique Identifier for a scan.

dateType ENUM ‘Date’, ’Expires’, or ‘Modified’

date DATE The date removed from the banner.

Table 18: Banner_Dates_WW

Common Properties

Common properties stores information for the following fields: os, version, product, tags.

Common properties can be expanded in the future as additional fields become relevant to the

research taking place. It is also recommended that we made need a crawler table to understand

what the different crawlers responsibilities are.

Common_Properties_WW

Field Data Type Description

scanID CHAR(20) Unique Identifier for a scan.

property VARCHAR The name of the property in the JSON file.

data TEXT Data the property points to.

Table 19: Common_Properties_WW

Host / Domain Data

Holds the host and domain information retrieved with the scan.

Host_Dom_Properties_WW

Field Data Type Description

scanID CHAR(20) Unique Identifier for a scan.

property VARCHAR The name of the property in the JSON file.

(‘hosts’, ‘domains’)

data TEXT Data the property points to.

Table 20: Host_Dom_Properties_WW

HTML Data

HTML data is data associated with the storing of html retrieved during scans. An MD5 of the html

is used as a unique identifier.

HTML_WW

This table holds all the html seen in this ISO week.

Field Data Type Description

htmlID CHAR(32) PRIMARY KEY Unique identifier for the html.

html TEXT Full text of the html

Table 21: HTML_WW

Scan_HTML_WW

This table associated the html with the scan that pulled it.

Field Data Type Description

scanID CHAR(20) Unique Identifier for a scan.

htmlID CHAR(32) Unique identifier for the html.

Table 22:Scan_HTML_WW

IP Address History

Hold the information retrieved each time the IP address was seen. Used to check if it changes over

time. May become deprecated if research shows that this never changes over time.

IPAddress_History_WW

Field Data Type Description

ip INT The IP address of the host as an integer.

timestamp INT The UNIX timestamp of when scan took place

org VARCHAR The name of the organization that is assigned the IP space

for this device.

isp VARCHAR The ISP that is providing the organization with the IP space

for this device. Consider this the "parent" of the

organization in terms of IP ownership.

Table 23: IPAddress_History_WW

Opt Data

All the properties in the opt object within the JSON object. If there is a property name ‘vulns’ the

information is not stored.

Opt_Properties_WW

Field Data Type Description

scanID CHAR(20) Unique Identifier for a scan.

property VARCHAR The name of the property in the JSON file.

data TEXT Data the property points to.

Table 24: Opt_Properties_WW

Vulnerability Opt Data

All the properties in the opt object within the JSON object if it contains a property name ‘vulns’.

Opt_Prop_Vuln_WW

Field Data Type Description

scanID CHAR(20) Unique Identifier for a scan.

property VARCHAR The name of the property in the JSON file.

data TEXT Data the property points to.

Table 25: Opt_Prop_Vuln_WW

SSL Data

All the properties in the opt object within the JSON object. An MD5 of the stringified SSL object

is used as a unique identifier.

Scan_SSL_WW

This table associated the SSL with the scan that pulled it.

Field Data Type Description

scanID CHAR(20) Unique Identifier for a scan.

sslID CHAR(32) Unique identifier for the ssl.

Table 26: Scan_SSL_WW

SSL_Properties_WW

Field Data Type Description

sslID CHAR(32) Unique Identifier for the ssl object.

property VARCHAR The name of the property in the JSON file.

data TEXT Data the property points to.

Table 27: SSL_Properties_WW

Properties

Properties stores all information found in the JSON object that is not stored in one of the other

tables.

Properties_WW

Field Data Type Description

scanID CHAR(20) Unique Identifier for a scan.

property VARCHAR The name of the property in the JSON file.

data TEXT Data the property points to.

Table 28: Properties_WW

Appendix C – Shodan Database ERD

Figure 7: Shodan Database ERD

Appendix D – Shodan Modules and Classifications

Shodan Module Class Description

amqp Unclassified Grab information from an AMQP service

andromouse Unclassified Checks whether the device is running the remote mouse AndroMouse service.

apple-airport-admin Unclassified Check whether the device is an Apple AirPort administrative interface.

automated-tank-gauge ICS Get the tank inventory for a gasoline station.

bacnet ICS Gets various information from a BACnet device.

bgp Unclassified Checks whether the device is running BGP.

bitcoin Unclassified Grabs information about a Bitcoin daemon, including any devices connected to it.

bittorrent-tracker TORRENT Check whether there is a BitTorrent tracker running.

blackshades Trojan Determine whether a server is running a Blackshades C&C

cassandra DB Get cluster information for the Cassandra database software.

citrix-apps Unclassified This module attempts to query Citrix Metaframe ICA server to obtain a published list of

applications.

clamav Unclassified Determine whether a server is running ClamAV

coap ICS Check whether the server supports the CoAP protocol

codesys ICS Grab a banner for Codesys daemons

couchdb DB HTTP banner grabbing module

dahua-dvr IOT Grab the serial number from a Dahua DVR device.

dhcp Unclassified Send a DHCP INFORM request to learn about the lease information from the DHCP server.

dht Unclassified Gets a list of peers from a DHT node.

Shodan Module Class Description

dicom Unclassified Checks whether the DICOM service is running.

dictionary Unclassified Connects to a dictionary server using the DICT protocol.

dnp3 ICS A dump of data from a DNP3 outstation

dns-tcp Unclassified Try to determine the version of a DNS server by grabbing version.bind

dns-udp Unclassified Try to determine the version of a DNS server by grabbing version.bind

echo-udp Unclassified Checks whether the device is running echo.

epmd Unclassified Get a list of Erlang services and the ports they are listening on

ethernetip ICS Grab information from a device supporting EtherNet/IP over TCP

ethernetip-udp ICS Grab information from a device supporting EtherNet/IP over UDP

flux-led IOT Grab the current state from a Flux LED light bulb.

fox ICS Grabs a banner for proprietary FOX protocol by Tridium

frdm-1234 Unclassified Checks for FRDM.

frdm-60007 Unclassified Checks for FRDM.

ftp Unclassified Grab the FTP banner

gardasoft-vision IOT Grabs the version for the Gardasoft controller.

general-electric-srtp ICS Check whether the GE SRTP service is active on the device.

git Unclassified Check whether git is running.

gtp-v1 Unclassified Checks whether the device is running a GPRS Tunnel.

hart-ip-udp ICS Checks whether the IP is a HART-IP gateway.

hbase DB Grab the status page for HBase database software.

hbase-old DB Grab the status page for old, deprecated HBase database software.

Shodan Module Class Description

hifly IOT Checks whether the HiFly lighting control is running.

http HTTP HTTP banner grabbing module

http-check HTTP HTTP banner grabbing module for Supermicro servers

http-simple HTTP Grabs the HTTP banner for a server but doesnt grab robots or anything else.

http-simple-new HTTP Grabs the HTTP banner for a server but doesnt grab robots or anything else.

http-supermicro HTTP HTTP banner grabbing module for Supermicro servers

https HTTPS HTTPS banner grabbing module

https-simple HTTPS HTTPS banner grabber only (no robots, sitemap etc.)

https-simple-new HTTPS HTTPS banner grabber only (no robots, sitemap etc.)

ibm-db2-das DB Grab basic information about the IBM DB2 Database Server.

ibm-nje Unclassified Check whether the z/OS Network Job Entry service is running.

idevice IOT Connects to an iDevice and grabs the property list.

iec-104 ICS Banner grabber for the IEC-104 protocol.

iec-61850 Unclassified MMS protocol

ike Unclassified Checks whether a device is running a VPN using IKE.

ike-nat-t Unclassified Checks whether a device is running a VPN using IKE and NAT traversal.

ikettle IOT Check whether the device is a coffee machine/ kettle.

imap Unclassified Get the welcome message of the IMAP server

imap-ssl Unclassified Get the welcome message of the secure IMAP server

ipmi Unclassified Checks whether a device is running IPMI remote management software.

java-rmi Unclassified Check whether the device is running Java RMI.

Shodan Module Class Description

kamstrup ICS Kamstrup Smart Meters

kerberos AUTH Checks whether a device is running the Kerberos authentication daemon.

kilerrat Trojan Determine whether a server is running a KilerRAT C&C

knx ICS Grabs the description from a KNX service.

lantronix-udp ICS Attempts to grab the setup object from a Lantronix device.

ldap AUTH LDAP banner grabbing module

ldap-udp AUTH CLDAP banner grabbing module

ldaps AUTH LDAPS banner grabbing module

lifx TORRENT Check whether there is a BitTorrnt tracker running.

line-printer-daemon PRINT Get a list of jobs in the print queue to verify the device is a printer.

matrikon-opc ICS Checks whether the device is running Matrikon OPC.

mdns Unclassified Perform a DNS-based service discovery over multicast DNS

melsec-q-tcp ICS Get the CPU information from a Mitsubishi Electric Q Series PLC.

melsec-q-udp ICS Get the CPU information from a Mitsubishi Electric Q Series PLC.

memcache Unclassified Get general information about the Memcache daemon

minecraft GAME Gets the server status information from a Minecraft server

modbus ICS Grab the Modbus device information via functions 17 and 43.

mongodb DB Collects system information from the MongoDB daemon.

moxa-nport IOT Attempts to grab information from Moxna Nport devices.

mqtt IOT Grab a list of recent messages from an MQTT broker.

ms-sql-monitor DB Pings an MS-SQL Monitor server

Shodan Module Class Description

mumble-server VOIP Grabs the version information for the Murmur service (Mumble server)

munin Unclassified Check whether a Munin node is active and list its plugins

mysql DB Grabs the version of the running MySQL server

natpmp Unclassified Checks whether NAT-PMP is exposed on the device.

netbios Unclassified Grab NetBIOS information including the MAC address.

netmobility Unclassified Checks whether the device is a NetMobility.

newline-tcp TEST Connect to a server with TCP and send a newline.

newline-udp TEST Connect to a server with UDP and send a newline.

njrat Trojan Determine whether a server is running a njRAT C&C

nntp Unclassified Get the welcome message of a Network News server

nodata-tcp TEST Connect to a server without sending any data and store whatever it returns.

nodata-tcp-small TEST NULL

nodata-tcp-ssl TEST Connect to a server using SSL and without sending any data.

ntp Unclassified Get a list of IPs that NTP server recently saw and try to get version info.

nuclear-rat Trojan Checks whether the device is a C2 for Nuclear RAT.

omron-tcp ICS Gets information about the Omron PLC.

opc-ua Unclassified Grab a list of nodes from an OPC UA service

open-tcp TEST Checks whether a port is open and nothing else.

oracle-tns DB Check whether the Oracle TNS Listener is running.

pcanywhere-status REMOTE Asks the PC Anywhere status daemon for basic information.

pcworx ICS Gets information about the Omron PLC.

Shodan Module Class Description

plc5 ICS Rockwell Automation. Customers are encouraged to migrate from the PLC-5 Control System

to the ControlLogix Control System.

poison-ivy-rat Trojan Checks whether the device is running Poison Ivy.

pop3 Unclassified Grab the POP3 welcome message

pop3-ssl Unclassified Grab the secure POP3 welcome message

portmap-tcp Unclassified Get a list of processes that are running and their ports.

portmap-udp Unclassified Get a list of processes that are running and their ports.

postgresql DB Collects system information from the PostgreSQL daemon

pptp Unclassified Connect via PPTP

printer-job-language PRINT Get the current output from the status display on a printer

proconos ICS Gets information about the PLC via the ProConOs protocol.

qrat Trojan Determine whether a server is running a QRAT C&C

rdate Unclassified Get the time from a remote rdate server

rdp REMOTE RDP banner grabbing module

realport ICS Get the banner for the Digi Realport device

redis DB Redis banner grabbing module

redlion-crimson3 ICS A fingerprint for the Red Lion HMI devices running CrimsonV3

riak DB Sends a ServerInfo request to Riak

rip Unclassified Checks whether the device is running the Routing Information Protocol.

rsync Unclassified Get a list of shares from the rsync daemon.

rtsp-tcp Unclassified Determine which options the RTSP server allows.

Shodan Module Class Description

s7 ICS Communicate using the S7 protocol and grab the device identifications.

secure-fox ICS Grabs a banner for proprietary FOX protocol by Tridium

serialnumbered Unclassified Checks for other servers with the same serial number on the local network. AAAAAA is a

dummy value.

sip Unclassified Gets the options that the SIP device supports.

smarter-coffee IOT Checks the device status of smart coffee machines.

smb Unclassified Grab a list of shares exposed through the Server Message Block service

smtp Unclassified Get basic SMTP server response

smtps Unclassified Grab a banner and certificate for SMTPS servers

snmp Unclassified Gets the sysDescr.0 MIB of the SNMP service.

ssh Unclassified Get the SSH banner, its host key and fingerprint

steam-a2s GAME Get a list of IPs that NTP server recently saw and try to get version info.

steam-dedicated-server-rcon GAME Checks whether an IP is running as a Steam dedicated game server with remote

authentication enabled.

ta14-353a Malware Alert (TA14-353A). Targeted Destructive Malware. Original release date: December 19, 2014 |

Last revised: September 30, 2016.

tacacs AUTH Check whether the device supports TACACS+ AAA.

teamviewer REMOTE Determine whether a server is running TeamViewer

telnet Unclassified Telnet banner grabbing module

telnets Unclassified Telnet wrapped in SSL banner grabbing module

tenda-backdoor Trojan Firmware backdoor in some models of Tenda routers allow for remote command execution

Shodan Module Class Description

tor-control TOR Checks whether a device is running the Tor control service.

tor-versions TOR Checks whether the device is running the Tor OR protocol.

toshiba-pos ICS Grabs device information for the IBM/ Toshiba 4690.

ubiquiti-discover Unclassified Grabs information about the Ubiquiti-powered device

udpxy Unclassified Udpxy banner grabbing module

upnp Unclassified Collects device information via UPnP.

ventrilo VOIP Gets the detailed status information from a Ventrilo server.

vertx-edge ICS Checks whether the device is running the VertX/ Edge door controller.

voldemort DB Pings the Voldemort database.

wdbrpc ICS Checks whether the WDB agent (used for debugging) is enabled on a VxWorks device.

wemo-http IOT Connect to a Wemo Link and grab the setup.xml file

x11 Unclassified Connect to X11 w/ no auth and grab the resulting banner.

xmpp Unclassified Sends a hello request to the XMPP daemon

xtremerat Trojan XtremeRAT: Remote Access Trojan or Remote Administration Tool.

yahoo-smarttv IOT Checks whether the device is running the Yahoo Smart TV device communication service.

zookeeper Unclassified Grab statistical information from a Zookeeper node

Table 29: Shodan Modules

Appendix D – Shodan Modules and Classifications

parseShodanFile.py

'''

 File name: parseShodanFile.py

 Author: Vincent J Ercolani

 Date created: 11/10/2015

 Date last modified: 06/13/2016

 Python Version: 3.5.1 64bit

 Requires: shodan_sql_import.py

 from shodan_sql_import import processSQLImportFile

 This program parses gzipped shodan files into csv files for import into MySQL.

 usage: parseShodanFile.py [-h] -g GZIPFILE [-s SKIP] [-u UPDATE] [-f FLUSHFREQ] [-v]

 required arguments:

 -g GZIPFILE, --gzipfile GZIPFILE Full path of the gzipfile to be parsed

 optional arguments:

 -h, --help show this help message and exit

 -s SKIP, --skip SKIP Number of lines to skip before parsing

 -u UPDATE, --update UPDATE Print update every [x] number of lines in file

 -f FLUSHFREQ, --flushfreq FLUSHFREQ Number of times through UPDATE lines to flush buffers

 -v, --verbose Display verbose output of parsing actions

'''

import argparse

import json

import gzip

import re

import os

from timeit import default_timer as timer

from shodan_sql_import import processSQLImportFile

from hashlib import md5

from datetime import datetime

import time

import csv

import io

initialize timer

timer()

Get script arguments

parser = argparse.ArgumentParser()

parser.add_argument('-g', '--gzipfile',help='Full path of the gzipfile to be parsed',

 type=str, required=True)

parser.add_argument('-s', '--skip', help='Number of lines to skip before parsing',

 type=int, default=0)

parser.add_argument('-u', '--update', help='Print update every [x] number of lines in file',

 type=int, default=10000)

parser.add_argument('-f', '--flushfreq', help='Number of times through update lines to flush buffers',

 type=int, default=8)

parser.add_argument('-v', '--verbose', help='Display verbose output of parsing actions',

 action='store_true', default=False)

args = parser.parse_args()

#initialize global variables

count = 0

flushcount = 0

maxline = 3000000000

(path,basename) = os.path.split(args.gzipfile)

Create file and path that we will move gzip file to upon completion

comppath = os.path.abspath(os.path.join(path,'..\\JSON_Complete'))

if not os.path.exists(comppath):

 try:

 os.makedirs(comppath)

 except OSError as exc: # Guard against race condition

 if exc.errno != errno.EEXIST:

 raise

mvfile = os.path.join(comppath,basename)

Create output directory for the csv files

basename = basename.split('.')[0]

path = os.path.join(path,basename+'_parsed')

if not os.path.exists(path):

 try:

 os.makedirs(path)

 except OSError as exc: # Guard against race condition

 if exc.errno != errno.EEXIST:

 raise

rejectout = open(os.path.join(path, basename + '__REJECT__.json'), 'w+', encoding='utf-8')

errorout = open(os.path.join(path, basename + '__ERROR__.log'), 'w+', encoding='utf-8')

failout = open(os.path.join(path, basename + '__FAIL__.json'), 'w+', encoding='utf-8')

log = open(os.path.join(path, basename + '.log'), 'w+', encoding='utf-8')

hashmap of counters

counter = {}

hashmaps to insure unique items

banners = {}

htmls = {}

locations = {}

ips = {}

ssls = {}

hashmap for outfiles

out = {}

files = {}

Tables that json will be parsed into

tables = ['scan','banner','banner_date','ip','location','html','scan_html',

 'properties','opts','ssl','scan_ssl','host_dom']

Initialize headers to table files

header = {}

header['scan'] = ['scanID','IP','port','timestamp','transport','asn','shodanModule',

 'crawler','bannerID','locationID']

header['banner'] = ['bannerID','banner']

header['banner_date'] = ['scanID','dateType','date']

header['ip'] = ['IP','org','isp']

header['location'] = ['locationID','areacode','city','countryCode','countryCode3','countryName',

 'dmaCode','latitude','longitude','postaCode','regionCode']

header['html'] = ['htmlID','html']

header['scan_html'] = ['scanID','htmlID']

header['properties'] = ['scanID','property','data']

header['opts'] = ['scanID','property','data']

header['ssl'] = ['sslID','property','data']

header['scan_ssl'] = ['scanID','sslID']

header['host_dom'] = ['scanID','property','data']

def initFiles(basename):

 global out

 global files

 global counter

 for table in tables:

 quote = csv.QUOTE_MINIMAL

 if(table in ['banner','html','ssl','opts']):

 quote = csv.QUOTE_ALL

 filename = basename + '_' + table + '.csv'

 files[table] = open(os.path.join(path,filename), 'w', encoding='utf-8', newline='')

 out[table] = csv.writer(files[table], delimiter=',', quotechar='"',

 escapechar='\\', quoting=quote, doublequote='false')

 out[table].writerow(header[table])

 counter[table] = 0

def xstr(s):

 if s is None:

 return ''

 return str(s)

def hexstr(num,len):

 return hex(num).split('x')[1].rjust(len,'0')

def createScanID(ip,port,timestamp):

 return hexstr(ip,8) + hexstr(port,4) + hexstr(int(time.mktime(timestamp.timetuple())),8)

def writeToStatsFile(basename, count):

 global counter

 processout = csv.writer(open('output_stats.csv', 'a', encoding='utf-8', newline=''), delimiter=',',

 quotechar='"', escapechar='\\', quoting=csv.QUOTE_MINIMAL, doublequote='false')

 output = [basename, str(count)]

 for table in tables: output.append(str(counter[table]))

 output.append(str(timer()))

 processout.writerow(output)

def processBanner(banner, scanID):

 global banners

 global counter

 bannerDates = re.findall('\w+?: \w\w\w, \d\d \w\w\w \d\d\d\d \d\d:\d\d:\d\d \w\w\w', banner)

 banner = re.sub('\w+?: \w\w\w, \d\d \w\w\w \d\d\d\d \d\d:\d\d:\d\d \w\w\w', '', banner)

 for dates in bannerDates:

 (dateType,date) = dates.split(': ')

 try:

 out['banner_date'].writerow([scanID,dateType,

 '{0:%Y-%m-%d %X}'.format(datetime.strptime(date[5:-4],"%d %b %Y %X"))])

 counter['banner_date'] += 1

 except ValueError as e:

 out['banner_date'].writerow([scanID,dateType,'Unknown: ' + date])

 errorout.write("ValueError: {}\tLine: {}\tFile: {}\n".format(scanID,str(count),args.gzipfile))

 errorout.write("\t\t" + scanID + "\tDates: " + dates + "\tDate: " + date + '\n')

 errorout.write("\t\t" + str(e) + '\n')

 if args.verbose:

 print("ValueError: {}\tLine: {}\tFile: {}".format(scanID,str(count),args.gzipfile))

 pass

 digest = md5(banner.encode('utf-8')).hexdigest()

 if digest in banners: return digest

 banners[digest] = 1

 out['banner'].writerow([digest,banner.encode('unicode_escape').decode('utf-8')])

 counter['banner'] += 1

 return digest

def processLocation(scanObj):

 global locations

 global counter

 location = scanObj.get('location')

 if(location is None): return None

 if(location.get('longitude') is None or location.get('latitude') is None):

 return None

 locationID = "%016.11f" % location.get('latitude') + "%016.11f" % location.get('longitude')

 if locationID in locations: return locationID

 locations[locationID] = 1

 out['location'].writerow([locationID,xstr(location.get('city')),xstr(location.get('country_code')),

 xstr(location.get('country_code3')),xstr(location.get('country_name')),

 xstr(location.get('area_code')),xstr(location.get('dma_code')),

 xstr(location.get('latitude')),xstr(location.get('longitude')),

 xstr(location.get('postal_code')),xstr(location.get('region_code'))])

 counter['location'] += 1

 return locationID

def processShodan(shodan):

 # breakdown shodan obj into module and crawler

 module = None

 crawler = None

 if (shodan is not None):

 module = shodan.get('module')

 crawler = shodan.get('crawler')

 return (module,crawler)

def processIP(ip,scanObj):

 global ips

 global counter

 if ip in ips: return

 ips[ip] = 1

 out['ip'].writerow([xstr(ip),xstr(scanObj.get('org')),xstr(scanObj.get('isp'))])

 counter['ip'] += 1

def processHtml(scanID,html):

 global htmls

 global counter

 if(html is None): return

 try:

 digest = md5(html.encode('utf-8')).hexdigest()

 if digest not in htmls:

 htmls[digest] = 1

 out['html'].writerow([digest,html.encode('unicode_escape').decode('utf-8')])

 counter['html'] += 1

 out['scan_html'].writerow([scanID,digest])

 counter['scan_html'] += 1

 except MemoryError as e:

 errorout.write("HTML_MemoryError: {}\tLine: {}\tFile: {}\n".format(scanID,str(count),args.gzipFile))

 errorout.write("\t\t{}".format(str(e)))

 if args.verbose:

 print("HTML_MemoryError: {}\tLine: {}\tFile: {}".format(scanID,str(count),args.gzipfile))

 print("HTML_MemoryError: {}".format(str(e)))

 pass

def processSSL(scanID, sslObj):

 global ssls

 global counter

 if(sslObj is None): return

 digest = md5(json.dumps(sslObj).encode('utf-8')).hexdigest()

 if digest not in ssls:

 ssls[digest] = 1

 processProp(digest,'ssl',sslObj)

 out['scan_ssl'].writerow([scanID,digest])

 counter['scan_ssl'] += 1

def processProp(scanID, prop, data):

 global counter

 if (data is not None):

 if(type(data) is dict):

 processObj(scanID,prop,data)

 elif(type(data) is list):

 processList(scanID,prop,data)

 else:

 (table,prop) = prop.split('.',1)

 out[table].writerow([scanID,xstr(prop),xstr(data).encode('unicode_escape').decode('utf-8')])

 counter[table] += 1

def processList(scanID, table, obj):

 if (obj is not None and len(obj) > 0):

 for data in obj:

 processProp(scanID,table,data)

def processObj(scanID, table, obj):

 for key in obj:

 tmp = obj[key]

 processProp(scanID,table + '.' + key,tmp)

def processAdditionalProperties(scanID, scanObj):

 global counter

 for prop in scanObj:

 if(prop not in ['ip','ip_str','port','timestamp','transport','asn',

 'org', 'isp','_shodan','data','location']):

 if(prop == 'html'):

 processHtml(scanID,scanObj[prop])

 elif(prop == 'ssl'):

 processSSL(scanID,scanObj[prop])

 elif(prop == 'opts'):

 processProp(scanID,prop,scanObj[prop])

 elif(prop in ['hostnames','domains']):

 processProp(scanID,'host_dom.' + prop, scanObj[prop])

 else:

 processProp(scanID,'properties.' + prop,scanObj[prop])

def processScan(scanObj):

 global counter

 # set up initial scan variables

 ip = scanObj.get('ip')

 if (ip is None): return

 port = scanObj.get('port')

 if (port is None): return

 timestamp = scanObj.get('timestamp')

 if (timestamp is None): return

 ptimestamp = None

 try:

 ptimestamp = datetime.strptime(timestamp, '%Y-%m-%dT%H:%M:%S.%f')

 except ValueError:

 try:

 ptimestamp = datetime.strptime(timestamp, '%Y-%m-%dT%H:%M:%S')

 except ValueError:

 raise

 # create identifier for the scan

 scanID = createScanID(ip,port,ptimestamp)

 # banner will always be present so send banner

 bannerID = processBanner(scanObj.get("data"), scanID)

 # additonal error checking needed for location send json object

 locationID = processLocation(scanObj)

 # breakdown shodan obj into module and crawler

 (module,crawler) = processShodan(scanObj.get('_shodan'))

 # process the ip address and parts

 processIP(ip,scanObj)

 out['scan'].writerow([xstr(scanID),xstr(ip),xstr(port),ptimestamp.strftime('%Y-%m-%d %H:%M:%S.%f'),

 xstr(scanObj.get('transport')),xstr(scanObj.get('asn')),xstr(module),xstr(crawler),

 bannerID, xstr(locationID)])

 processAdditionalProperties(scanID, scanObj)

 counter['scan'] += 1

def outputUpdate():

 global flushcount

 time = "%018.11f" % timer()

 stats = basename + "\t" + time + "\t" + str(count) + '\tbanners: ' + \

 str(counter['banner']) + '\tlocations: ' + str(counter['location']) + '\tscans: ' + \

 str(counter['scan'])

 print(stats)

 log.write(stats + '\n')

 flushcount += 1

 if((flushcount%args.flushfreq) == 0):

 for table in tables: files[table].flush()

 rejectout.flush()

 errorout.flush()

 failout.flush()

 log.flush()

def processFile(file):

 global count

 initFiles(basename)

 for line in file:

 if count >= args.skip and len(line) < maxline and '"ipv6":' not in line:

 # parse the line into a json object

 try:

 processScan(json.loads(line))

 except ValueError as e:

 print("ValueError: ", e)

 errorout.write("ValueError: " + str(e) + '\n')

 failout.write(line)

 pass

 except MemoryError as e:

 print("processFile MemoryError: ", e)

 errorout.write("processFile MemoryError: " + str(e))

 failout.write(line)

 raise

 except (BaseException, KeyboardInterrupt) as e:

 print('Handling run-time error: ', e)

 errorout.write("processFile Exception: " + str(e))

 failout.write(line)

 raise

 elif len(line) >= maxline:

 rejectout.write(line)

 count += 1

 if (count%args.update) == 0:

 outputUpdate()

def main():

 try:

 with io.TextIOWrapper(gzip.GzipFile(args.gzipfile,'r')) as file:

 processFile(file)

 os.rename(args.gzipfile,mvfile)

 except IOError as e:

 print('Handling IOError: ', e)

 except BaseException as e:

 print('Handling run-time error: ', e)

 errorout.write("processFile Exception: " + str(e))

 finally:

 print('Last line completed: ' + str(count) + "\t" + str(timer()))

 log.write('Last line completed: ' + str(count) + "\t" + str(timer()))

 processSQLImportFile(basename, path)

 writeToStatsFile(basename, count)

main()

shodan_sql_import.py

'''

 File name: shodan_sql_import.py

 Author: Vincent J Ercolani

 Date created: 06/01/2016

 Date last modified: 06/13/2016

 Python Version: 3.5.1 64bit

 This program create import files for shodan Sinfo into MySQL.

 usage: from shodan_sql_import import processSQLImportFile

'''

import datetime

import os

isoweek = None

def processSQLImportFile(basename, path):

 global isoweek

 (isoyear,isoweek,null) = datetime.datetime.strptime(basename, '%Y-%m-%d').isocalendar()

 isoweek = str(isoweek).rjust(2,'0')

 fullname = os.path.join(path,basename).replace('\\','\\\\')

 _processHTMLImportFile(fullname,isoyear,basename)

 with open(fullname + '.sql', 'w') as sqlout:

 sqlout.write("CREATE DATABASE IF NOT EXISTS ShodanData_{};\n".format(isoyear))

 sqlout.write("USE ShodanData_{};\n".format(isoyear))

 sqlout.write("\n")

 _writeCreateDatabase(sqlout)

 _writeStatTable(sqlout)

 _writeStartLoad(sqlout)

 _writeLoadDataInfile(sqlout,'IPAddresses','ip','IP,org,isp',fullname)

 _writeLoadDataInfile(sqlout,'Locations','location',

 'locationID,areaCode,city,countryCode,countryCode3,countryName,' + \

 'dmaCode,latitude,longitude,postalCode,regionCode',fullname)

 _writeLoadDataInfile(sqlout,'Banners','banner','bannerID,banner',fullname)

 _writeLoadDataInfile(sqlout,'IPv4_Scans','scan',

 'scanID,IP,port,timestamp,transport,asn,shodanModule,crawler,' + \

 'bannerID,locationID',fullname)

 _writeLoadDataInfile(sqlout,'Banner_Dates','banner_date','scanID,dateType,date',fullname)

 _writeLoadDataInfile(sqlout,'Properties','properties','scanID,property,data',fullname)

 _writeLoadDataInfile(sqlout,'Opt_Properties','opts','scanID,property,data',fullname)

 _writeLoadDataInfile(sqlout,'SSL_Properties','ssl','sslID,property,data',fullname)

 _writeLoadDataInfile(sqlout,'Scan_SSL','scan_ssl','scanID,sslID',fullname)

 _writeLoadDataInfile(sqlout,'Host_Dom_Properties','host_dom','scanID,property,data',fullname)

 _writeEndLoad(sqlout)

 _writeStats(sqlout,basename)

def _processHTMLImportFile(fullname,isoyear,basename):

 with open(fullname + '.html.sql', 'w') as sqlout:

 sqlout.write("USE ShodanData_{};\n\n".format(isoyear))

 _writeStartLoad(sqlout)

 _writeLoadDataInfile(sqlout,'HTML','html','htmlID,html',fullname)

 _writeLoadDataInfile(sqlout,'Scan_HTML','scan_html','scanID,htmlID',fullname)

 _writeEndLoad(sqlout)

 _writeUpdateStats(sqlout,basename)

def _writeLoadDataInfile(sqlout,table,prop,fields,fullname):

 orig = table

 if table not in ['IPAddresses','Locations']: table = table + '_' + isoweek

 sqlout.write("SET @CURTIME=CURRENT_TIMESTAMP();\n")

 sqlout.write("LOCK TABLES `{}` WRITE;\n".format(table))

 sqlout.write("ALTER TABLE `{}` DISABLE KEYS;\n".format(table))

 sqlout.write("LOAD DATA LOCAL INFILE '{}_{}.csv'\n".format(fullname,prop))

 sqlout.write(" IGNORE INTO TABLE {}\n".format(table))

 sqlout.write(" FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '\"'\n")

 sqlout.write(" ESCAPED BY '\\\\' LINES TERMINATED BY '\\r\\n'\n")

 sqlout.write(" IGNORE 1 LINES\n")

 sqlout.write(" ({}); \n".format(fields))

 sqlout.write("ALTER TABLE `{}` ENABLE KEYS;\n".format(table))

 sqlout.write("UNLOCK TABLES;\n")

 sqlout.write("SET @{}=UNIX_TIMESTAMP(CURRENT_TIMESTAMP())-UNIX_TIMESTAMP(@CURTIME);\n".format(orig))

 sqlout.write("SELECT \"{}\" as mytable, CURRENT_TIMESTAMP(), @{} as

elapsed_time;\n\n".format(table,orig))

def _writeCreateDatabase(sqlout):

 sqlout.write("CREATE TABLE IF NOT EXISTS IPAddresses (\n")

 sqlout.write(" IP INT UNSIGNED NOT NULL PRIMARY KEY,\n")

 sqlout.write(" org VARCHAR(255),\n")

 sqlout.write(" isp VARCHAR(255)\n")

 sqlout.write(")ENGINE=MyISAM CHARACTER SET =utf8;\n")

 sqlout.write("\n")

 sqlout.write("CREATE TABLE IF NOT EXISTS Locations (\n")

 sqlout.write(" locationID CHAR(32) NOT NULL PRIMARY KEY,\n")

 sqlout.write(" areaCode INT UNSIGNED,\n")

 sqlout.write(" city VARCHAR(255),\n")

 sqlout.write(" countryCode CHAR(2),\n")

 sqlout.write(" countryCode3 CHAR(3),\n")

 sqlout.write(" countryName VARCHAR(255),\n")

 sqlout.write(" dmaCode INT UNSIGNED,\n")

 sqlout.write(" latitude DECIMAL(16,11),\n")

 sqlout.write(" longitude DECIMAL(16,11),\n")

 sqlout.write(" postalCode VARCHAR(20),\n")

 sqlout.write(" regionCode VARCHAR(45)\n")

 sqlout.write(")ENGINE=MyISAM CHARACTER SET=utf8;\n")

 sqlout.write("\n")

 sqlout.write("CREATE TABLE IF NOT EXISTS Banners_{} (\n".format(isoweek))

 sqlout.write(" bannerID CHAR(32) NOT NULL PRIMARY KEY,\n")

 sqlout.write(" banner LONGTEXT\n")

 sqlout.write(")ENGINE=MyISAM CHARACTER SET=utf8;\n")

 sqlout.write("\n")

 sqlout.write("CREATE TABLE IF NOT EXISTS IPv4_Scans_{} (\n".format(isoweek))

 sqlout.write(" scanID CHAR(20) NOT NULL PRIMARY KEY,\n")

 sqlout.write(" IP INT UNSIGNED NOT NULL REFERENCES IPAddresses,\n")

 sqlout.write(" port INT UNSIGNED NOT NULL,\n")

 sqlout.write(" timestamp TIMESTAMP NOT NULL,\n")

 sqlout.write(" transport ENUM('tcp','udp'),\n")

 sqlout.write(" asn VARCHAR(8),\n")

 sqlout.write(" shodanModule VARCHAR(255),\n")

 sqlout.write(" crawler VARCHAR(255),\n")

 sqlout.write(" bannerID CHAR(32) NOT NULL REFERENCES Banners_{},\n".format(isoweek))

 sqlout.write(" locationID CHAR(32) DEFAULT NULL REFERENCES Locations ON DELETE SET NULL\n")

 sqlout.write(")ENGINE=MyISAM CHARACTER SET=utf8;\n")

 sqlout.write("\n")

 sqlout.write("CREATE TABLE IF NOT EXISTS Banner_Dates_{} (\n".format(isoweek))

 sqlout.write(" scanID CHAR(20) NOT NULL REFERENCES IPv4_Scans_{},\n".format(isoweek))

 sqlout.write(" dateType VARCHAR(255) NOT NULL,\n")

 sqlout.write(" date TIMESTAMP NOT NULL,\n")

 sqlout.write(" PRIMARY KEY (scanID,dateType)\n")

 sqlout.write(")ENGINE=MyISAM CHARACTER SET=utf8;\n")

 sqlout.write("\n")

 sqlout.write("CREATE TABLE IF NOT EXISTS HTML_{} (\n".format(isoweek))

 sqlout.write(" htmlID CHAR(32) NOT NULL PRIMARY KEY,\n")

 sqlout.write(" html LONGTEXT\n")

 sqlout.write(")ENGINE=MyISAM CHARACTER SET=utf8;\n")

 sqlout.write("\n")

 sqlout.write("CREATE TABLE IF NOT EXISTS Scan_HTML_{} (\n".format(isoweek))

 sqlout.write(" scanID CHAR(20) NOT NULL REFERENCES IPv4_Scan_{},\n".format(isoweek))

 sqlout.write(" htmlID CHAR(32) NOT NULL REFERENCES HTML_{},\n".format(isoweek))

 sqlout.write(" PRIMARY KEY (scanID,htmlID)\n")

 sqlout.write(")ENGINE=MyISAM CHARACTER SET=utf8;\n")

 sqlout.write("\n")

 sqlout.write("CREATE TABLE IF NOT EXISTS Properties_{} (\n".format(isoweek))

 sqlout.write(" scanID CHAR(20) NOT NULL REFERENCES IPv4_Scan_{},\n".format(isoweek))

 sqlout.write(" property VARCHAR(255) NOT NULL,\n")

 sqlout.write(" data TEXT,\n")

 sqlout.write(" PRIMARY KEY (scanID,property)\n")

 sqlout.write(")ENGINE=MyISAM CHARACTER SET=utf8;\n")

 sqlout.write("\n")

 sqlout.write("CREATE TABLE IF NOT EXISTS Opt_Properties_{} (\n".format(isoweek))

 sqlout.write(" scanID CHAR(20) NOT NULL REFERENCES IPv4_Scan_{},\n".format(isoweek))

 sqlout.write(" property VARCHAR(255) NOT NULL,\n")

 sqlout.write(" data TEXT\n")

 sqlout.write(")ENGINE=MyISAM CHARACTER SET=utf8;\n")

 sqlout.write("\n")

 sqlout.write("CREATE TABLE IF NOT EXISTS SSL_Properties_{} (\n".format(isoweek))

 sqlout.write(" sslID CHAR(32) NOT NULL,\n")

 sqlout.write(" property VARCHAR(255) NOT NULL,\n")

 sqlout.write(" data TEXT\n")

 sqlout.write(")ENGINE=MyISAM CHARACTER SET=utf8;\n")

 sqlout.write("\n")

 sqlout.write("CREATE TABLE IF NOT EXISTS Scan_SSL_{} (\n".format(isoweek))

 sqlout.write(" scanID CHAR(20) NOT NULL REFERENCES IPv4_Scan_{},\n".format(isoweek))

 sqlout.write(" sslID CHAR(32) NOT NULL REFERENCES SSL_Properties_{},\n".format(isoweek))

 sqlout.write(" PRIMARY KEY (scanID,sslID)\n")

 sqlout.write(")ENGINE=MyISAM CHARACTER SET=utf8;\n")

 sqlout.write("\n")

 sqlout.write("CREATE TABLE IF NOT EXISTS Host_Dom_Properties_{} (\n".format(isoweek))

 sqlout.write(" scanID CHAR(20) NOT NULL REFERENCES IPv4_Scan_{},\n".format(isoweek))

 sqlout.write(" property VARCHAR(255) NOT NULL,\n")

 sqlout.write(" data TEXT\n")

 sqlout.write(")ENGINE=MyISAM CHARACTER SET=utf8;\n")

 sqlout.write("\n")

def _writeStartLoad(sqlout):

 sqlout.write("SET @START_TIME=CURRENT_TIMESTAMP();\n")

 sqlout.write("SELECT @START_TIME;\n")

 sqlout.write("\n")

 sqlout.write("SET @OLD_UNIQUE_CHECKS=@@UNIQUE_CHECKS, UNIQUE_CHECKS=0;\n")

 sqlout.write("SET @OLD_FOREIGN_KEY_CHECKS=@@FOREIGN_KEY_CHECKS, FOREIGN_KEY_CHECKS=0;\n")

 sqlout.write("SET @OLD_SQL_LOG_BIN=@@SQL_LOG_BIN, SQL_LOG_BIN=0;\n")

 sqlout.write("\n")

def _writeEndLoad(sqlout):

 sqlout.write("SET FOREIGN_KEY_CHECKS=@OLD_FOREIGN_KEY_CHECKS;\n")

 sqlout.write("SET UNIQUE_CHECKS=@OLD_UNIQUE_CHECKS;\n")

 sqlout.write("SET SQL_LOG_BIN=@OLD_SQL_LOG_BIN;\n")

 sqlout.write("\n")

 sqlout.write("SET @ELAPSED_TIME = UNIX_TIMESTAMP(CURRENT_TIMESTAMP())-UNIX_TIMESTAMP(@START_TIME);\n")

 sqlout.write("SELECT CURRENT_TIMESTAMP(), @ELAPSED_TIME;\n")

def _writeStatTable(sqlout):

 sqlout.write("CREATE TABLE IF NOT EXISTS Load_Statistics (\n")

 sqlout.write(" filename CHAR(20) NOT NULL PRIMARY KEY,\n")

 sqlout.write(" started TIMESTAMP NOT NULL,\n")

 sqlout.write(" completed TIMESTAMP NOT NULL,\n")

 sqlout.write(" elapsedTime INT UNSIGNED NOT NULL,\n")

 sqlout.write(" ipAddresses INT UNSIGNED,\n")

 sqlout.write(" locations INT UNSIGNED,\n")

 sqlout.write(" banners INT UNSIGNED,\n")

 sqlout.write(" ipv4Scans INT UNSIGNED,\n")

 sqlout.write(" bannerDates INT UNSIGNED,\n")

 sqlout.write(" html INT UNSIGNED,\n")

 sqlout.write(" scanHtml INT UNSIGNED,\n")

 sqlout.write(" properties INT UNSIGNED,\n")

 sqlout.write(" optProperties INT UNSIGNED,\n")

 sqlout.write(" sslProperties INT UNSIGNED,\n")

 sqlout.write(" scanSsl INT UNSIGNED,\n")

 sqlout.write(" hostDomProps INT UNSIGNED\n")

 sqlout.write(")ENGINE=MyISAM CHARACTER SET=utf8;\n")

def _writeStats(sqlout,basename):

 sqlout.write("INSERT INTO Load_Statistics (filename,started,completed,elapsedTime,\n\t\t" + \

 "ipAddresses, locations, banners, ipv4Scans,bannerDates,\n\t\t" + \

 "properties,optProperties,sslProperties,scanSsl,HostDomProps)\n\t" + \

 "VALUES ({},@START_TIME,NOW(),ELAPSED_TIME,\n\t\t" + \

 "@IPAddresses,@Locations,@Banners,@IPv4_Scans,@Banner_Dates,\n\t\t" + \

"@Properties,@Opt_Properties,@SSL_Properties,@Scan_SSL,@Host_Dom_Properties);\n".format(basename))

def _writeUpdateStats(sqlout,basename):

 sqlout.write("UPDATE Load_Statistics SET html = @HTML, scanHtml = @Scan_HTML " + \

 "WHERE filename = {};\n".format(basename))

REFERENCES

Afarin, Cyrus. (2017). Can Shodan Keep Up With the Times?. University of Arizona.

Auffret, P., “SinFP, unification of active and passive operating system fingerprinting,” Journal

in Computer Virology, vol. 6, no. 3, pp. 197-205, 2010.

Andreeva, O., Gordeychik, S., Gritsai, G., & Kochetova, O. (2016). Industrial Control Systems

Vulnerabilities Statistics, 1–19.

Arnaert, M., & Antipolis, S. (2016). Modeling Vulnerable Internet of Things on SHODAN and

CENSYS : An Ontology for Cyber Security, (c), 299–302.

Attipoe, Antoinette E.; Yan, Jie; Turner, Claude; Richards, D. (2016). Visualization Tools for

Network Security. Electronic Imaging, Visualization, 1–8.

Ayuburi and L. Sobrevinas, “Securing Supervisory Control and Data Acquisition Systems:

Factors and Research Direction,” in Americas’ Conference on Information

Systems (AMCIS), 2015.

Bodenheim, R., Butts, J., Dunlap, S., & Mullins, B. (2014). Evaluation of the ability of the

Shodan search engine to identify Internet-facing industrial control devices.

International Journal of Critical Infrastructure Protection, 7(2), 114–123.

http://doi.org/10.1016/j.ijcip.2014.03.001

Genge, B., & Enăchescu, C. (2015). Non-Intrusive Historical Assessment of Internet-Facing

Services in the Internet of Things, 25–36.

Guimaraes, V. T., Dal Sasso Freitas, C. M., Sadre, R., Tarouco, L. M., & Granville, L. Z. (2015).

A Survey on Information Visualization for Network and Service Management.

Communications Surveys Tutorials, IEEE, PP(99), 1.

http://doi.org/10.1109/COMST.2015.2450538

Hadlak, S., Schumann, H., & Schulz, H. (2015). A Survey of Multi-faceted Graph Visualization.

Eurographics Conference on Visualization (EuroVis), (JANUARY), 1–20.

http://doi.org/10.2312/eurovisstar.20151109

Institute, S. (2014). Security Data Visualization. Worm Propagation and Countermeasures, 36.

Jeon, S., Yun, J.-H., Choi, S., & Kim, W.-N. (2016). Passive Fingerprinting of SCADA in Critical

Infrastructure Network without Deep Packet Inspection, (1). Retrieved from

http://arxiv.org/abs/1608.07679

Kehrer, J., & Hauser, H. (2013). Visualization and visual analysis of multifaceted scientific data:

A survey. IEEE Transactions on Visualization and Computer Graphics, 19(3), 495–

513. http://doi.org/10.1109/TVCG.2012.110

Ko, Y., Ra, I., & Kim, C. (2015). A Study on IP Exposure Notification System for IoT Devices

Using IP Search Engine Shodan, 10(12), 61–66.

KOBARA, K. (2016). Cyber Physical Security for Industrial Control Systems and IoT. IEICE

Transactions on Information and Systems, E99.D(4), 787–795.

http://doi.org/10.1587/transinf.2015ICI0001

Langton, J. T., & Newey, B. (2010). <title>Evaluation of current visualization tools for cyber

security</title>, 7709, 770910-770910–11. http://doi.org/10.1117/12.850160

http://doi.org/10.2312/eurovisstar.20151109
http://doi.org/10.2312/eurovisstar.20151109
http://arxiv.org/abs/1608.07679
http://arxiv.org/abs/1608.07679
http://doi.org/10.1109/TVCG.2012.110
http://doi.org/10.1109/TVCG.2012.110
http://doi.org/10.1587/transinf.2015ICI0001
http://doi.org/10.1587/transinf.2015ICI0001

Liu, S., Cui, W., Wu, Y., & Liu, M. (2014). A survey on information visualization: recent advances

and challenges. Visual Computer, 30(12), 1373–1393.

http://doi.org/10.1007/s00371-013-0892-3

McKenna, S., Staheli, D., & Meyer, M. (2015). 009 Unlocking user-centered design methods for

building cyber security visualizations. 2015 IEEE Symposium on Visualization for

Cyber Security (VizSec), 1–8. http://doi.org/10.1109/VIZSEC.2015.7312771

Onyeji, M. Brazilian, and C. Bronk, “Cyber Security and Critical Energy Infrastructure,” Electr.

J, vol 27, no. 2, pp. 52-60, Mar 2014.

Patton, M., Gross, E., Chinn, R., Forbis, S., Walker, L., & Chen, H. (2014, September).

Uninvited connections: a study of vulnerable devices on the internet of things

(IoT). In Intelligence and Security Informatics Conference (JISIC), 2014 IEEE

Joint (pp. 232-235). IEEE.

 Rasmeet S. Bali, Neeraj Kumar, Secure clustering for efficient data dissemination in vehicular

cyber–physical systems, in Future Generation Computer Systems, Volume 56,

March 2016, Pages 476-492, ISSN 0167-739X,

http://dx.doi.org/10.1016/j.future.2015.09.004.

Riesenfeld, R. F. (2009). A Survey of Radial Methods for Information Visualization, 15(5), 759–

776.

Rohrmann, Rodney (2017). Large Scale Anonymous Port Scanning. University of Arizona.

http://doi.org/10.1109/VIZSEC.2015.7312771
http://doi.org/10.1109/VIZSEC.2015.7312771

